
Towards an Institutional Framework
for Heterogeneous Formal Development in UML

— A Position Paper —

Alexander Knapp1, Till Mossakowski2, and Markus Roggenbach3

1 Universität Augsburg, Germany
2 Otto-von-Guericke Universität Magdeburg, Germany

3 Swansea University, UK

Abstract. We present a framework for formal software development with UML.
In contrast to previous approaches to equipping UML with a formal semantics, we
propose an institution-based heterogeneous approach. This can express suitable
formal semantics of the different UML diagram types directly, without the need
to map everything to one specific formalism (let it be first-order logic or graph
grammars). We provide ideas how different aspects of the formal development
process can be coherently formalised, ranging from requirements over design and
Hoare-style conditions on code to the implementation itself. The framework can
be used to verify consistency of different UML diagrams both horizontally (e.g.,
consistency among various requirements) as well as vertically (e.g., correctness
of design or implementation w.r.t. the requirements).

Keywords: UML, heterogeneous formal methods, institutions.

1 Introduction

In Martin Wirsing’s research, the development of applicable formal methods plays an
important role. Martin has examined real-world modeling and programming languages
like UML and Java, and has studied suitable formal theories that can lead to increased
trustworthiness due to the possibility of formal verification. In this work, we build
on and extend the first author’s joint work with Martin Wirsing about views in soft-
ware development, heterogeneous semantics of UML, and multi-modeling languages
[24,34,3,7]. In fact, the integration of different, heterogeneous views on and in a soft-
ware system is a continual theme in Martin’s research, be it for data bases [10], multi-
media systems [20], or mobile systems [22]. We also build on joint work of Martin
Wirsing with the second and third author on the design of CASL [31]; indeed, in the
1990s, Martin hosted some of the CASL/COFI meetings and provided valuable input
for the CASL design. For the present paper, CASL forms a building block for the dis-
tributed ontology, modeling and specification language (DOL), which has evolved from
a generalisation of CASL to heterogeneous specifications.

In the industrial design of software for critical systems, the Unified Modeling Lan-
guage (UML) is an often used development mechanism. In aerospace industry, e.g., the
company Aero Engine Controls (AEC)1 uses the UML to define the software architecture

1 AEC is the former name of Rolls-Royce Control and Data Services,
http://www.controlsdata.com.

http://www.controlsdata.com

216

of aeroplane engine controllers through various levels of abstraction from a layered ar-
chitecture overview to a detailed class, operation and attribute definition of the soft-
ware components. This model is then used for code generation. Typically, the software
components developed are either reactive or logic-based and/or stateful in nature, where
notations such as UML state diagrams are used to define the required behaviour [17].
Micro-controllers in the automotive sector or, in the medical sector, ventricular assis-
tance devices exemplify further uses of UML in the development of critical systems.

The UML is an OMG standard [32], which describes a language family of 14 types
of diagrams, of structural and behavioural nature. A typical development by AEC in-
volves about eight different UML diagrams [18]. The OMG specification provides an
informal semantics of nine sub-languages in isolation. The languages are mostly linked
through a common meta-model, i.e., through abstract syntax only. This situation leads
to a gap between standards’ recommendation to apply formal methods, and current
industrial practice, which by using the UML lacks the semantic foundations to apply
such methods. One common approach to deal with this gap is to define a comprehen-
sive semantics for the UML using a system model, e.g., [4,5]. However, this is a thorny
business, as every detail has to be encoded into one, necessarily quite complex seman-
tics. Furthermore, such an approach has difficulties to cater for UML’s variations of
usage, leading to company or domain-specific variations. On the other hand, there are
many approaches like component models (e.g. [16,2]) which are based on sound the-
ory, but do not meet the main goal of the present work: to set up a framework in which
one can eventually capture precisely the semantics and semantic variation points of the
UML standard (including all its idiosyncrasies), such that a holistic model-driven de-
velopment in UML can be complemented with rigorous consistency and verification
conditions.

In this position paper, we outline a competing approach by providing a heteroge-
neous semantics, where we extend [7] by considering a subset of diagrams rich enough
for industrial use, adding components and composite structures as well as behavioural
and protocol state machines. We substantiate this claim by a small case study that is
modelled holistically, using a variety of different diagram types. We distinguish be-
tween diagrams for properties, types and instances, where we express the meaning of
a model in a sub-language/diagram directly in an appropriate semantic domain. We
also distinguish diagrams for requirements, design, deployment and implementation.
This degree of completeness in the coverage of the development process has not been
achieved so far.

We further systematically identify meaningful connections given by the abstract syn-
tax of the UML specification or which can be gleaned from its semantic description. The
separation between the meaning of the individual diagrams and their relation allows our
approach to be adopted by different methodologies, for instance an object-oriented ap-
proach or a component-based one.

2 Methodology

Our overall aim is to provide qualified formal methods for dependable software design
for critical systems, especially embedded, reactive systems based on UML. We illustrate

 217

this aim by first giving a case study in UML and then discussing desirable checks for
consistency between the various artefacts. We then explain how languages and UML
diagram types involved in a software design can be viewed as types, instances, and
properties, either on the modelling level or on the implementation level. Finally, we
address the topic of semantic variation points.

2.1 ATM Case Study

In order to illustrate our heterogeneous semantics and method, we present as a running
example the design of a traditional automatic teller machine (ATM) connected to a
bank. For simplicity, we only describe the handling of entering a card and a PIN with
the ATM. After entering the card, one has three trials for entering the correct PIN (which
is checked by the bank). After three unsuccessful trials the card is kept.

Requirements. Figure 1(a) shows a possible interaction between an atm and a bank,
which consists out of four messages: the atm requests the bank to verify if a card and
PIN number combination is valid, in the first case the bank requests to reenter the PIN,
in the second case the verification is successful.

The composite structure of the ATM-bank system is specified in the component dia-
gram in Fig. 1(b). In order to communicate with a bank component, the atm component
has a behaviour port called bankCom and the bank component has a behaviour port
atmCom. Furthermore, atm has a port userCom to a user. Figure 1(c) provides structural
information in the form of the interfaces specifying what is provided at the userCom
port of the atm instance (UserIn) and what is required (UserOut). An interface is a set
of operations that other model elements have to implement. In our case, the interface is
described in a class diagram. Here, the operation keepCard is enriched with the OCL
constraint trialsNum >= 3, which refines its semantics: keepCard can only be invoked if
the OCL constraints hold.

The communication protocol required between the atm’s port bankCom and the
bank’s port atmCom is captured with a protocol state machine, see Fig. 1(d): After a
verify message from atm, either verified or reenterPIN can be sent as a reply from bank;
atm can request a card to be rendered invalid whenever it has not just asked to verify a
card and a PIN.

Design. The dynamic behaviour of the atm component is specified by the state machine
shown in Fig. 1(e). The machine consists of five states including Idle, CardEntered, etc.
Beginning in the initial Idle state, the user can trigger a state change by entering the
card, where we indicate that the event card has to occur at port userCom. This has the
effect that the parameter c from the card event (declared for operation card in Fig. 1(c)) is
assigned to the cardId in the atm component. Entering a PIN triggers another transition to
PINEntered. Then the ATM requests verification from the bank using its bankCom port.
The transition to Verifying uses a completion event: No explicit trigger is declared and
the machine autonomously creates such an event whenever a state is completed, i.e., all
internal activities of the state are finished (in our example there are no such activities).
In case the interaction with the bank results in reenterPIN, and the guard trialsNum < 3
is true, the user can again enter a PIN. If, on the other hand, trialsNum >= 3, the user

218

ATM2Bank Scenario

verify(17, 4711)

reenterPIN()

verify(17, 4242)

verified()

sd

bank : Bankatm : ATM

(a) Interaction

«component» «component»atmCom

bankCom

userCom

Systemcmp

bank : Bankatm : ATM

(b) Composite structure

{ { OCL } trialsNum >= 3 }
«precondition»

card(in c : Integer)

«interface»
UserOut

PIN(in p : Integer)

«interface»
UserIn

keepCard()
ejectCard()

(c) Interfaces

markInvalid /

ATM2Bank { protocol }stm

VerifyingIdle

reenterPIN /

verified /

verify /

(d) Protocol state machine

userCom.card(c) /

cardId = c

[trialsNum >= 3] /

userCom.keepCard();
bankCom.markInvalid(cardId);
trialsNum = 0

bankCom.reenterPIN /

/ bankCom.verify(cardId, pin)

bankCom.verified /

/ userCom.ejectCard(); trialsNum = 0

pin = p

userCom.PIN(p) /

[trialsNum < 3] /
trialsNum++

Idle PINEntered

Verifying

Verified

CardEntered

ATM Behaviourstm

(e) State machine

Fig. 1. ATM example

is informed that the card is kept by userCom.keepCard(), and the bank is informed to
render the card invalid by bankCom.markInvalid(cardId).

Deployment. Although the UML allows to specify which component instances should
run on which computational resources and which physical connectors transport their
communication, we currently restrict ourselves to specifying which component and
connector instances have to be present at system start. This initial configuration is de-
scribed in a composite structure diagram, see Fig. 1(b) now interpreted at the com-
ponent instance level. In particular, instances of the behaviour specifications for the
components have to be deployed accordingly. The starting configuration could change

 219

over time by changing the wiring of the connectors to ports as well as creating or delet-
ing component instances.

Code. The state machine shown in Fig. 1(e) can be implemented in the programming
language C, enriched with pre-/post-conditions written in the ANSI/ISO C Specification
Language (ACSL). The code example below shows how the event card is encoded as a
C function, where the ACSL annotations ensure that the system is in some defined state
and that the number of trials to re-enter the PIN is smaller than three.

typedef enum states {

EMPTY = 0, IDLE = 1, CARDENTERED = 2,

PINENTERED = 3, VERIFYING = 4, PINVERIFIED = 5

} states_t;

int cardId = 0; int pin = 0; int trialsNum = 0;

states_t state = EMPTY;

/*@
requires state != EMPTY; requires trialsNum <= 3;
ensures state != EMPTY; ensures trialsNum <= 3;
@*/
void card(int c) {

switch (state) {

case IDLE:

cardId = c;

state = CARDENTERED;

break;

default:

}

}

2.2 Consistency and Satisfaction

A typical software devolopment for a critical system will cover requirements, design,
deployment, and code using several sub-languages and diagram types summarised in
Fig. 2 and classified towards a software design process. In fact, class and component
diagrams also will be used for expressing requirement, as already illustrated by our
small case study.

Interactions Protocol State
Machines

Object Constraint
Language (OCL) Requirements

Class Diagram Component Diagram State Machines Design

Object Diagram
Composite Structure

Diagram
State Machine

Instances
Deployment

ACSL C Implementation

Fig. 2. Methodological use of languages and diagrams considered

220

It is desirable to detect inconsistencies at an early stage of the development in order
to ease corrections and avoid costly re-engineering at a late stage (e.g. during the im-
plementation phase). While there are some tools providing static inconsistency checks
based on UML’s meta-model, only few works consider dynamic checks, and generally
only for specific UML diagram types, e.g. [25].

The analysis of UML models can proceed either horizontally within the require-
ments or within the design level checking for consistency within the level, or vertically
checking for satisfaction between these two levels, see Fig. 4. A typical horizontal con-
sistency check on the requirements level would ask if the sequential composition of
actions in an interaction diagram is justified by an accompanying OCL specification. A
typical vertical satisfaction check between the requirements and the design level would
ask if the behaviour prescribed in an interaction diagram is realisable by several state
machine (instance)s cooperating according to a composite structure diagram. The no-
tion of a state machine instance will be explained in the next section. Code generation
transforms a UML logical design to code templates with semantic annotations in the
form of pre-/post-conditions and invariants. If the templates are completed satisfying
the semantic annotations, it is guaranteed that the resulting code is a correct model of
the logical design and therefore, by the vertical checks, also for the requirements.

Concerning Fig. 1, there are the following (succeeding) consistency and satisfiability
checks: speaking horizontally, the interaction in Fig. 1(a) can be realised by the protocol
state machine in Fig. 1(d), which in turn (vertically) refines to the behavioural state
machine in Fig. 1(e), which in turn (vertically) refines to the C code shown at the end
of Section 2.1.

A simple example for a failing horizontal check among several requirements is the
interaction in Fig. 3, which cannot be realised by the protocol state machine in Fig. 1(d).

ATM2Bank Scenario 2

verify(17, 4711)

verified()

verify(17, 4242)

reenterPIN()

sd

bank : Bankatm : ATM

Fig. 3. Interaction that cannot be realised by the protocol state machine in Fig. 1(d)

2.3 Levels and Views

The languages and UML diagram types that we consider are restructured into different
levels and views (according to the role they play in respective the languages) in Fig. 4.
On the modelling level we use parts of the UML and the Object Constraint Language
(OCL). On the implementation level we currently employ the programming language C
and ACSL. It is left for future work to also include a proper object-oriented language
such as Java together with some specification formalism.

 221

In the types view of the modelling level we look at class diagrams for modelling data;
component diagrams for modelling components; and state machines for specifying dy-
namic behaviour. These diagrams can be instantiated in the instance view using com-
posite structure diagrams for showing component configurations; and object diagrams
for showing concrete data. Although they are not present in UML, we also have added
state machine instances (in a dashed box). Constraints on the models can be specified
in the properties view using interactions, i.e., sequence diagrams or communication di-
agrams, for prescribing message exchanges between components and objects; protocol
state machines for specifying port behaviour; and the OCL for detailing the behaviour
of components and objects in terms of invariants and method pre-/post-conditions.

Interactions

Protocol State
Machines

Object Constraint
Language (OCL)

State Machines

Component Diagram

Class Diagram

State Machine
Instances

Composite Structure
Diagram

Object Diagram

Modelling in UML

ACSL C
Implementation

Properties Types Instances

Fig. 4. Languages and diagrams considered

2.4 Semantic Variation Points

The UML specification uses the notion of “semantic variation point” whenever she does
not want to fix or enforce a particular meaning for a construct, but sees room for vari-
able but valid interpretations useful in different contexts. Examples of such semantic
variation points include the behaviour of an operation invocation when a pre-condition
is not satisfied; the compatibility of connectable elements, like components; the for-
warding of requests at a port with several outgoing connectors; the ordering of events
in event pools; the time intervals between event occurrence, event dispatching, and con-
sumption; or the reception of an event in an unexpected situation for a protocol state
machine. Different domains or implementation technologies will require different res-
olutions, like whether message overtaking is possible in a middle-ware. Additionally,
some resolutions may enable particular validation or verification techniques, e.g., when
using multi-sets or bounded queues for event pools.

However, the specification does not show clear-cut means to resolve these variation
points: Not surprisingly, no parameterised semantics is explained where the resolu-
tion of a semantic variation point would simply amount to setting a particular value —
which, in fact, would be quite hard more often than not. More embarrassingly, also no
dedicated syntactic means are provided for at least specifying that a particular meaning
is intended by the use of a feature subject to semantic variation. For the syntactical side,
the most common, though rather ad hoc, resort is to employ stereotypes to express that,

222

say, the event pool for a state machine is to be realised as a queue, or that the violation
of an operation’s precondition will result in an error. For the semantical issues, the use
of a comprehensive system model approach would require to corral all possible inter-
pretations of a semantic variation point into a single common ground using, e.g., loose
specifications.

By contrast, heterogeneous institutional semantics offer the additional possibility
to provide particular stand-alone semantics for different resolutions of semantic vari-
ation points. The mutual effects of combining different resolutions can be identified
and consistent resolutions can be plugged together. Also, different choices for semantic
variation points can be related via abstraction maps. For example, it is easy to design
an institution comorphism that abstracts the labelled transition system semantics of
state machines to a trace semantics. Depending on the choice of abstraction map, the
institution-independent notion of refinement [30,8] then will lead to refinement up to
trace equivalence of refinement up to bisimilarity.

3 UML as a Basis for Heterogeneous Formal Methods,
Using Institutions

In this section, we will provide some semantic foundations for model based specifi-
cation and design using a heterogeneous framework based on Goguen’s and Burstall’s
theory of institutions [14]. We handle the complexity of giving a coherent semantics
to UML by sketching several institutions formalising different diagrams of UML, and
several institution translations (formalised as so-called institution morphisms and co-
morphisms) describing their interaction and information flow. The central advantage
of this approach over previous approaches to formal semantics for UML (e.g. [25])
is that each UML diagram type can stay “as-is”, without the need of a coding using
graph grammars (as in [12]) or some logic (as in [25]). This also keeps full flexibility in
the choice of both the development method and the verification mechanisms. The for-
malisation of UML diagrams as institutions has the additional benefit that a notion of
refinement comes for free, see [30,8]. The exact nature of the thus obtained refinement
relation depends on the semantic choices that have been made.

This systematic coverage in a single semantic based meta-formalism is unique. We
discuss semantic links in the form of institution (co-)morphisms, that, on the one hand,
provide the basis for correct model transformations and validations, and on the other
hand give rise to an integrated semantic view (via the so-called Grothendieck institution
[9,26]) on the identified UML subset as well as the target implementation languages.
Institution theory provides an adequate abstraction level for such a semantic integration.
The framework is flexible enough to support various development paradigms as well as
different resolutions of UML’s semantic variation points. This is the crucial advantage
of the proposed approach to the semantics of UML, compared to existing approaches
in the literature which map UML to a specific global semantic domain in a fixed way.

3.1 Institutions and Their (Co)Morphisms

Institutions [14] are an abstract formalisation of the notion of logical system. Informally,
institutions provide four different logical notions: signatures, sentences, models and

 223

satisfaction. Signatures provide the vocabulary that may appear in sentences and that is
interpreted in models. The satisfaction relation determines whether a given sentence is
satisfied in a given model. The exact nature of signatures, sentences and models is left
unspecified, which leads to a great flexibility. This is crucial for the possibility to model
UML diagrams types (which do not at first sight look like logics) as institutions.

An important feature of institutions is the presence of signature morphisms, which
can be seen as mappings between signatures. Sentences can be translated along sig-
nature morphisms, and models reduced against signature morphisms. The satisfaction
condition states that satisfaction is invariant under change of notation and enlargement
of context (along a signature morphism). For details, we refer to [14,33].

It is possible to define standard logical notions like logical consequence, logical the-
ory, satisfiabilty etc. as well as languages for structured specification and refinement in
an institution-independent way [33].

For relating institutions in a semantics preserving way, we consider institution mor-
phisms [14]. Given institutions I and J, an institution morphism consists of (i) a mapping
from I-signatures to J-signatures (also for signature morphisms); (ii) a mapping from
J-sentences to I-sentences; and (iii) a mapping from I-models to J-models. Again, there
is a satisfaction condition governing these mappings. Dually, we consider institution
comorphisms [15]. They are like institution morphisms, except that the direction of
sentence and model translations are reversed.

The methodological need for these two kinds of mappings between institutions will
be explained in Sect. 3.4 below. Both morphisms and comorphisms also come in a
“semi” variant (i.e. semi-morphisms and semi-comorphisms) [15]. These omit both the
sentence translation and the satisfaction condition. Semi-(co-)morphisms can provide
a model-theoretic link between institutions that are too different to permit a sentence
translation, e.g. OCL and state machines.

3.2 Heterogeneous Formal Semantics of Languages and Diagrams

Carrying out our program of institutionalising UML is ongoing work. In this position
paper, we review this work and sketch how it can be extended to all diagrams in Fig. 2.

Building on existing UML semantics, see [25] for an overview, we want to turn
UML’s sub-languages and diagram types into separate institutions2. For substantial
fragments of several UML diagram types, we have already provided a formalisation
as institutions:

Class diagrams In [7], we have sketched an institution for class diagrams, which has
been detailed in [19]. It includes a construction for stereotypes.

Component diagrams form an institution similar to that for class diagrams. The main
difference are the connector and port types, which however are quite similar to
associations.

Object diagrams are essentially reifications of models of class diagrams.
Composite structure diagrams are similar to object diagrams. The main difference

are the connectors, which however are quite similar to the links of object diagrams.

2 Alternative or complementing approaches like statecharts instead of UML state machines or
SysML/MARTE components could be added to this family of institutions.

224

Interactions In [7], we have sketched an institution for interactions, as well as their
interconnection (also with class diagrams) via institution comorphisms.

OCL In [7], we have sketched institutions for OCL. In [6], the OCL semantics is pre-
sented in more detail. An institution based on this is in preparation.

State machines In [23], we have provided in full detail institutions for UML state ma-
chines and protocol state machines (so far only for non-hierarchical states, a gener-
alization to hierarchical states is in preparation). Both institutions are very similar;
only their sentences differ in that UML protocol state machines have a post condi-
tion instead of an action. Post conditions can also speak about messages being sent
(using OCL).

Formalising both C and ACSL as institutions is future work.

3.3 Institutional Interaction of Heterogeneous UML Diagrams

We now will discuss how different diagram types can be linked using the institutional
approach. A characteristic example is the interplay between class diagrams, component
diagrams and state machines. Here, an environment institution [23] provides the inter-
face necessary to define state machines. Signatures in this environment institution fix
the conditions which can be used in guards of transitions, the actions for the effects of
transitions, and also the messages that can be sent from a state machine. The source
of this information are the class and component diagrams: The conditions and actions
involve the properties available in the classes or components, the messages are derived
from the available signals and operations. The sentences of this environment institu-
tion form a simple dynamic logic (inspired by OCL). This logic can express that if a
guard holds as pre-condition when executing an action, then a certain set of messages
has been sent out and another guard holds as post-condition. In particular, this environ-
ment institution forms the interface to the outside; different institutions for classes and
components can be linked to it via (co-)morphisms.

A family of institutions for state machines (and similarly for protocol state machines)
is then parameterized over such environment institutions. Using a product construction
on the state machine institution, communicating state machines, with their linkage de-
scribed in a composite structure, can be captured. The essential idea behind the product
construction is to control the flow of messages in such a way that each message is sent
to the correct event pool.

Example 1. Consider the composite structure diagram in Fig. 1(b), showing instances
atm and bank of the ATM and Bank components, respectively, that are connected through
their bankCom and atmCom ports. In execution, atm and bank will exchange messages,
as prescribed by their state machines, and this exchange is reflected by the product
which internalises those events that are part of the common signature. On the other
hand, messages to the outside, i.e., through the userCom port are still visible.

3.4 Transformations Among UML institutions

Figure 5 gives an overview of the transformations to be developed between the modeling
languages, diagram types, and additional languages. We claim that the transformations

 225

in this Figure can be formalised as institution morphisms and comorphisms. An institu-
tion morphism (represented by a solid line in the figure) roughly corresponds to a pro-
jection from a “richer” to a “poorer” logic, expressing that the “richer” logic has some
more features, which are forgotten by the morphism. The main purpose of the institution
morphisms is the ability to express, e.g., that an interaction diagram and a state machine
are compatible because they are expressed over the same class diagram. Institution mor-
phisms thus enable the formalisation of heterogeneous UML specifications as structured
specifications over the Grothendieck institution, a flattening of the diagram of institu-
tions and morphisms [9]. Practically, these structured Grothendieck specifications can
be formulated in the distributed ontology, modeling and specification language (DOL),
which currently is being standardized in the OMG (see ontoiop.org and [28]).

Interactions

Protocol State
Machines

Object Constraint
Language (OCL)

State Machines

Component Diagram

Class Diagram

State Machine
Instances

Composite Structure
Diagram

Object Diagram

ACSL C

Properties Types Instances

OCL+Int

Automata, LTL SMT

Fig. 5. Institution morphisms (dashed arrows) and institution co-morphisms (solid arrows) be-
tween the languages and diagrams

By contrast, institution comorphisms (represented by dashed lines in Fig. 5) are often
more complex. Roughly, a comorphism corresponds to an encoding of one logic into
another one. The purpose of institution comorphisms is threefold: (1) to provide a means
for expressing the dynamic checks (see below) in the institutional framework, (2) to
obtain tool support for the various UML diagrams by using comorphisms into tool-
supported institutions, and (3) to transform UML diagrams into ACSL specifications
and C programs.

Dynamic checks and tool support involve additional institutions (also depicted in
Fig. 5, but not formalised in detail here) for certain automata, like those used in the
model checker SPIN, and satisfiability modulo theories (SMT) provers, as well as linear
temporal logic. The modeling language institutions can be embedded into these, paving
the way for tool and prover support.

3.5 Consistency and Satisfaction, Revisited

The horizontal dimension of the relationship between the different models has to en-
sure consistency of the models, i.e., that the models fit together and describe a coherent

ontoiop.org

226

system. The same has to be checked on the implementation level for the consistency be-
tween the C program and the ACSL specification; however, here we can reuse existing
theory and tools.

There are different kinds of consistency checks on the modelling level: Static checks
ensuring type consistency and type correctness between types and instances. Dynamic
checks include the properties and one or several cooperating instances or types. Most of
the dynamic checks are theoretically undecidable, thus fully automatic tools will not be
able to answer all instances. However, in many cases, useful automatic approximations
are possible, while in other cases, manual effort may be involved.

Interactions

Protocol State
Machines

Object Constraint
Language (OCL)

State Machines

Component Diagram

Class Diagram

State Machine
Instances

Composite Structure
Diagram

Object Diagram

Modelling in UML

ACSL C
Implementation

Properties Types Instances

FRA-

MAC

Fig. 6. Consistency relations (double-headed arrows) on the modelling and the implementation
level; the bold arrows represent the model transformations

Figure 6 gives an overview of useful relations between different kinds of diagrams,
along which consistency checks are possible. Here, we list only a few of these. Some
useful static checks are:
S1. Does an OCL specification or a composite structure diagram only use the methods

of a class diagram?
S2. Does a state machine or an interaction comply with the interfaces referred to in a

composite structure diagram?
S3. Does an instance diagram (an object or a composite structure diagram) comply to

its corresponding type diagram (a class or a component diagram)?
S4. Do the objects used in an interaction diagram form an object diagram complying

to a class diagram?
Here are some useful dynamic checks:

D1. Does an object or composite structure diagram satisfy an OCL invariant? Here
we use institution semi-comorphisms from the OCL institution to the object and
composite structure diagram institution that turn a model of the object or composite
structure diagram into a model of the OCL invariant.

D2. Does a state machine satisfy an OCL invariant or an OCL pre-/post-condition?
Here we use a semi-comorphism from the OCL institution to the state machines
institution that takes the runs of the state machine and selects those states and tran-
sitions that are relevant for the invariant or the method with pre-/post-conditions.

 227

However, the UML does not specify the time point when the OCL post-condition
should be evaluated; one possibility is to choose the finishing of the fired transition.

D3. Do the protocol state machines at the ends of a connector of a composite structure
diagram fit together? Here we use a comorphism from the protocol state machine
institution into a temporal logic institution [13], where we can form the product
of the protocol state machines along the connector. However, the precise nature of
compatibility may be seen as a “semantic variation point”. An important question
is the absence of deadlocks and buffer overruns.

D4. Is the sequential composition of methods in an interaction diagram justified by the
state machines and/or the OCL specification? For the relation to an OCL spec-
ification we use a co-span of institution comorphisms between the interactions
institution and the OCL institution [7]. At least two links are possible: In a strict
interpretation, for each pair of successive methods in the interaction there must be
a state meeting the post-condition of the first method and the pre-condition of the
second method. In a more loose interpretation, a sequence of additional method
calls, not prescribed but also not excluded by the interaction, must be possible to
reach the pre-condition of the second method from the post-condition of the first
method. For also considering state machines, the co-span approach is extended by
also involving the state machines institution.

D5. Does an interaction comply with the protocol state machines? Here we proceed
similarly to the case where an interaction is checked against a state machine and
an OCL specification using a comorphism turning the protocol state machine into
an OCL specification.

D6. Does a state machine refine the protocol state machines in a component diagram?
This is expressible as a heterogeneous refinement from the protocol state machines
to the state machine using a semi-comorphism which keeps signatures and mod-
els as they are (protocol state machines and state machines only differ in their
sentences).

Example 2. Though our running example of an ATM machine is quite simple, it is rich
enough to illustrate some dynamic checks. The interface UserIn in Fig. 1(c) requires
the operation keepCard only to be invoked when the precondition trialsNum >= 3 holds.
This property holds for the state machine in Fig. 1(e) thanks to the guard trialsNum < 3
– an illustration of check D1. This property trivially holds for the interaction shown in
Figure 1(a) as keepCard is not invoked – an illustration of check D3.

4 Tools

The Heterogeneous Tool Set (Hets) [27,29] provides analysis and proof support for
multi-logic specifications. The central idea of Hets is to provide a general framework
for formal methods integration and proof management that is equipped with a strong
semantic (institution-based) backbone. One can think of Hets acting like a mother-
board where different expansion cards can be plugged in, the expansion cards here
being individual institutions (with their analysis and proof tools) as well as institution
(co)morphisms. The Hets motherboard already has plugged in a number of expansion
cards (e.g., SAT solvers, automated and interactive theorem provers, model finders,

228

model checkers, and more). Hence, a variety of tools is available, without the need to
hard-wire each tool to the logic at hand. Via suitable translations, new formalisms can
be connected to existing tools.

We have just started to integrate first institutions for UML, such as class diagrams,
into Hets. In order to obtain proof support for the methodology presented in this pa-
per, beyond the individual institutions, also the morphisms and comorphisms need to
be implemented in Hets. Moreover, we plan to connect Hets to the tool HugoRT [21].
HugoRT can, on the one hand, perform certain static checks on UML diagrams. More-
over, it provides transformations of UML diagrams to automata and linear temporal
logic formulas, which can then be fed into model checkers like SPIN in order to check
certain properties. The crucial benefit of our approach is a clear separation of con-
cerns: verification conditions for consistency and satisfaction checks can be formulated
abstractly in terms of the UML institutions and (co)morphisms described above. In a
second step, these checks can then be reformulated in terms of specific logics and tools
that have been connected to Hets.

5 Conclusion

We have outlined an institution-based semantics for the main UML diagrams. More-
over, we have sketched a methodology how consistency among UML diagrams and
with implementation languages can be modeled at the institutional level and supported
with tools.

Much remains to be done to fill in the details. Semantically, the greatest missing bit
is certainly the institutional formalisation of programming languages and their Hoare
logics, like C and ACSL, or Java and JML. Here, we want to follow the ideas sketched
by A. Tarlecki and D. Sannella [33, Ex. 4.1.32, Ex. 10.1.17] for rendering an impera-
tive programming language as an institution. The semantic basis could be a simplified
version of the operational semantics of C. Ellison and G. Rosu [11]. The concepts for
institutionalising a Hoare logic like ACSL on the basis of its specification [1] can be
similar as for OCL. On the tools side, it is future work to make UML institutions, checks
and code generation part of the tool Hets. This will allow also non-experts in institution
theory to apply the suggested framework.

Acknowledgements. The authors would like to thank the reviewers of their valuable
feedback, the editors for their considered handling of this paper, and Erwin R. Cates-
beiana for pointing out the many sources of inconsistency.

References

1. Baudin, P., Cuoq, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. Report. In: CEA 2012 (2012)

2. Bauer, S.S., Hennicker, R.: Views on Behaviour Protocols and Their Semantic Foundation.
In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 367–382.
Springer, Heidelbrg (2009)

 229

3. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What Is a Multi-modeling Language?
In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 71–87. Springer,
Heidelberg (2009)

4. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Considerations and Rationale for a
UML System Model. In: Lano (ed.) [25], ch. 3, pp. 43–60

5. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Definition of the System Model. In:
Lano (ed.) [25], ch. 4, pp. 61–93

6. Cengarle, M.V., Knapp, A.: OCL 1.4/5 vs. 2.0 Expressions — Formal Semantics and Expres-
siveness. Softw. Syst. Model. 3(1), 9–30 (2004)

7. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach to UML
Semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Mod-
els. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)

8. Codescu, M., Mossakowski, T., Sannella, D., Tarlecki, A.: Specification Refinements:
Calculi, Tools, and Applications (Submitted, 2014)

9. Diaconescu, R.: Grothendieck Institutions. Applied Cat. Struct. 10, 383–402 (2002)
10. Dosch, W., Mascari, G., Wirsing, M.: On the Algebraic Specification of Databases. In: Proc.

8th Int. Conf. Very Large Data Bases (VLDB 1982), pp. 370–385. Morgan Kaufmann (1982)
11. Ellison, C., Rosu, G.: An Executable Formal Semantics of C With Applications. In: Field,

J., Hicks, M. (eds.) Proc. 39th ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages (POPL 2012), pp. 533–544. ACM (2012)

12. Engels, G., Heckel, R., Küster, J.M.: The Consistency Workbench: A Tool for Consistency
Management in UML-Based Development. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML
2003. LNCS, vol. 2863, pp. 356–359. Springer, Heidelberg (2003)

13. Fiadeiro, J.L.: Categories for Software Engineering. Springer (2005)
14. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and Pro-

gramming. J. ACM 39, 95–146 (1992)
15. Goguen, J.A., Rosu, G.: Institution Morphisms. Formal Asp. Comp. 13, 274–307 (2002)
16. Hennicker, R., Janisch, S., Knapp, A.: On the Observable Behaviour of Composite Compo-

nents. In: Proc. 5th Int. Wsh. Formal Aspects of Component Software (FACS 2008). ENTCS
260, pp. 125–153 (2010)

17. Hutchesson, S.: Chief software architect at AEC. Industrial case study outline (2012)
18. Hutchesson, S.: Chief software architect at AEC. Personal communication (2012)
19. James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing Domain Specific Lan-

guages – A Craftsman’s Approach for the Railway Domain Using CASL. In: Martí-Oliet,
N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 178–194. Springer, Heidelberg
(2013)

20. Knapp, A., et al.: Epk-fix: Methods and tools for engineering electronic product catalogues.
In: Steinmetz, R. (ed.) IDMS 1997. LNCS, vol. 1309, pp. 199–209. Springer, Heidelberg
(1997)

21. Knapp, A., Merz, S., Rauh, C.: Model checking - timed UML state machines and collabora-
tions. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–416.
Springer, Heidelberg (2002)

22. Knapp, A., Merz, S., Wirsing, M., Zappe, J.: Specification and Refinement of Mobile Sys-
tems in MTLA and Mobile UML. Theo. Comp. Sci. 351(2), 184–202 (2006)

23. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An Institution for Simple UML
State Machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS. Springer (to appear,
2015)

24. Knapp, A., Wirsing, M.: A Formal Approach to Object-Oriented Software Engineering.
Theo. Comp. Sci. 285, 519–560 (2002)

25. Lano, K.: UML 2 — Semantics and Applications. Wiley, Chichester (2009)

230

26. Mossakowski, T.: Comorphism-Based Grothendieck Logics. In: Diks, K., Rytter, W. (eds.)
MFCS 2002. LNCS, vol. 2420, pp. 593–604. Springer, Heidelberg (2002)

27. Mossakowski, T., Autexier, S., Hutter, D.: Development Graphs — Proof Management for
Structured Specifications. J. Log. Alg. Program. 67(1–2), 114–145 (2006)

28. Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The Distributed Ontology, Modeling
and Specification Language. In: Proc. 7th Int. Wsh. Modular Ontologies (WoMO 2013).
CEUR-WS 1081, CEUR (2013)

29. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, HETS. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg
(2007)

30. Mossakowski, T., Sannella, D., Tarlecki, A.: A Simple Refinement Language for CASL. In:
Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 162–185.
Springer, Heidelberg (2005)

31. Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004),
Free online version available at http://www.cofi.info

32. Object Management Group. Unified Modeling Language. Standard, OMG (2011)
33. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software

Development. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg
(2012)

34. Wirsing, M., Knapp, A.: View Consistency in Software Development. In: Wirsing, M.,
Knapp, A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 341–357. Springer,
Heidelberg (2004)

http://www.cofi.info

	Preface
	Organization
	Table of Contents
	A Homage to Martin Wirsing
	1 Martin's Origins, Positions and Services
	2 Martin's Research
	2.1 Selected Publications
	2.2 Research Projects

	3 Martin's Students

	Ode to the PST
	1 Welcome to the PST
	2 Science and Education
	3 Research Projects across Europe
	4 Promoting the Future: PhDs, Habils, and Junior Professors
	5 The Social Framework: It's a Group Thing!
	6 Closing Words
	References

	From Formal Logic through Program Transformations to System Dynamics: 40 Years of Meeting Points with Martin Wirsing
	The Broad View: How To Spawn a Radical Organizational Transformation `En Passant'
	1 Introduction
	2 The Broad View on Scientific Topics
	3 The Broad View on Organizational Structures
	4 Finding Creative Solutions for Organizational Problems
	5 Conclusion
	References

	Modal Satisfiability via SMT Solving
	1Introduction
	2Background
	2.1Basic Modal Logic
	2.2SMT Solving for Modal Satisfiability: Overall Setup

	3Decision Procedure for Basic Modal Logic
	3.1Instantiation Rules
	3.2Soundness and Completeness
	3.3Termination

	4Extensions of the Basic Modal Logic
	4.1Global Modalities
	4.2Hybrid Logic
	4.3SMT-Based Decision Procedure for Hybrid Logic
	4.4Soundness, Completeness, and Termination

	5Conclusions and Related Work
	References

	Division by Zero in Common Meadows
	1Introduction
	1.1Common Meadows versus Involutive Meadows
	1.2Motivating a Preference for Common Meadows

	2Common Meadows
	2.1Meadow Signatures
	2.2Axioms for Common Meadows
	2.3Conditional Equations

	3Models and Model Classes
	3.1Common Cancellation Meadows
	3.2A Basis Theorem For Common Cancellation Meadows of Characteristic Zero

	4Concluding Remarks
	5References

	Logical Relations and Nondeterminism
	1 Introduction
	2 Language
	2.1 Examples

	3 Operational Semantics
	4 Denotational Semantics
	5 Program Equivalences
	6 Lifting Predicates to Sets
	7 Typed Program Equivalence
	8 Observational Equivalence
	9 Operational Adequacy
	10 Conclusion
	References

	Simplified Coalgebraic Trace Equivalence
	1 Introduction
	2 Preliminaries
	3 A Simple Definition of Coalgebraic Trace Equivalence
	4 Examples
	5 Relation to Other Frameworks
	6 Conclusions
	References

	Localized Operational Termination in General Logics
	1Introduction
	2Logics and Operational Termination
	3Localized Operational Termination
	4Proof Jumps and Localized Operational Termination
	5Proof Graph
	6Mechanizing Proofs of Localized Operational Termination
	7Some Processors for the Localized OT Framework
	7.1Expansion of Localizations and Proof Jumps
	7.2Removing Useless Proof Jumps and Localizations
	7.3SCC Processor
	7.4Use of Well-Founded Relations

	8Related Work and Conclusions
	References

	Partial Valuation Structures for Qualitative Soft Constraints
	1Introduction
	2Soft Constraints in Distributed Energy Management
	3Partial Valuation Structures as a Unifying Formalism
	3.1Partial Valuation Structures
	3.2Soft Constraints
	3.3Product Operators for Partial Valuation Structures

	4Constraint Relationships as Partial Valuation Structures
	4.1Constraint Relationships
	4.2From Constraint Relationships to Partial Valuation Structures

	5Expressing Constraint Hierarchies as Lexicographic Products
	5.1Locally Predicate Better
	5.2Globally Weighted Better

	6Simulating Partial Valuation Structures
	7Conclusions
	References

	An Institution for Object-Z with Inheritance and Polymorphism
	1Introduction
	1.1Institutions
	1.2An Introductory Example

	2The OZS Institution
	2.1Signatures
	2.2Models
	2.3Sentences
	2.4Satisfaction

	3Inheritance and Polymorphism
	4Concluding Remarks
	References

	Abstract Constraint Data Types
	1Introduction
	2Basic Algebraic Concepts and Notation
	3Extending Algebraic Specifications with Constraints
	4Composing Specifications
	5Relationship with Institutions
	6Conclusions and Further Work
	References

	Generate Check Method for Verifying Transition Systems in
	1Introduction
	2Preliminaries
	2.1Equational Specifications and Quotient Term Algebras
	2.2Rewrite Rules and Reductions
	2.3Transition Systems
	2.4Verification of Invariant Properties

	3Specifications of QLOCK in CafeOBJ
	3.1QLOCK Description
	3.2System Specification
	3.3Property Specification

	4Generate & Check Method
	4.1Generate & Check for st St
	4.2Built-in Search Predicate of CafeOBJ
	4.3Generate & Check for tr Tr
	4.4Generate & Check for Verification of Invariant Properties
	4.5Verification of (p leads-to q) Properties
	4.6Generat & Check for Verification of (p leads-to q) Properties

	5Proof Scores for QLOCK
	5.1Proof Scores for Invariant Properties
	5.2Proof Scores for a (p leads-to q) Property

	6Related Work and Conclusion
	References

	Institutions for OCL-Like Expression Languages
	1 Introduction
	2 Indexed Categories
	3 Term Charters
	3.1 Term Charter Domains and Term Charters
	3.2 Term Charters from Adjunctions
	3.3 Constructing an Institution from a Term Charter

	4 OCL Terms and Evaluation
	4.1 Built-ins
	4.2 Iteration, All Instances, Undefinedness
	4.3 Institutions for OCL Sub-languages

	5 Operators on Term Charters
	5.1 Sequencing of Term Charters
	5.2 Co-limits of Term Charters

	6 Conclusions and Future Work
	References
	A OCL Terms and Evaluation
	A.1 Order-Sorted Terms and Evaluation
	A.2 Adding Built-ins
	A.3 Iteration
	A.4 All Instances
	A.5 Undefinedness

	Towards an Institutional Framework for Heterogeneous Formal Development in UML
	1Introduction
	2Methodology
	2.1ATM Case Study
	2.2Consistency and Satisfaction
	2.3Levels and Views
	2.4Semantic Variation Points

	3UML as a Basis for Heterogeneous Formal Methods, Using Institutions
	3.1Institutions and Their (Co)Morphisms
	3.2Heterogeneous Formal Semantics of Languages and Diagrams
	3.3Institutional Interaction of Heterogeneous UML Diagrams
	3.4Transformations Among UML institutions
	3.5Consistency and Satisfaction, Revisited

	4Tools
	5Conclusion
	References

	Formal Analysis of Leader Election in MANETs Using Real-Time Maude
	1 Introduction
	2 Real-Time Maude
	3 Modeling MANETs in Real-Time Maude
	4 The LE Leader Election Algorithm for MANETs
	5 Modeling LE in Real-Time Maude
	5.1 Nodes and Messages
	5.2 Modeling Communication
	5.3 Neighbor and Connectivity Discovery
	5.4 Modeling the Behavior of LE

	6 Formal Analysis of the LE Protocol
	6.1 Nodes
	6.2 Modeling Checking the Correctness Property
	6.3 Scenarios and Analysis

	7 Related Work and Conclusions
	References

	The Foundational Legacy of ASL
	1Introduction
	2Preliminaries
	3Specifications and Their Semantics
	3.1An Example

	4Implementations and Parameterization
	5Behavioural Specifications
	6Final Remarks
	References

	 Soft Agents: Exploring Soft Constraints to Model Robust Adaptive Distributed Cyber-Physical Agent Systems
	1Introduction
	2Desiderata for Soft Agents
	3Soft Agent Model Formalized in Maude
	3.1Networked Cyber-Physical Systems and Partially-Ordered Knowledge Sharing
	3.2Soft Agents in Maude
	3.3Rules

	4A Simple Packet Delivery System
	4.1The doAction and Handle Functions
	4.2Experiments

	5Conclusions and Future Directions
	References

	Structured Document Algebra in Action
	1Introduction
	2Structured Document Algebra
	2.1SDA Basics
	2.2Structural Properties of Modules

	3Additional SDA Operators
	3.1Subtraction
	3.2Overriding
	3.3Solving Module Equations
	3.4Transformations

	4Using the Algebra
	4.1Projecting Out
	4.2Introducing Wrappers

	5Small Case Study: Constructing Product Lines
	6Related Work
	7Conclusions and Outlook
	References
	Appendix

	From EU Projects to a Family of Model Checkers
	1Introduction
	2From Kandinsky to KandISTI
	3FMC: The Origin of Our On-the-Fly Model-Checking Approach
	4UMC: Support for State/Event-Based Models and Logics
	5CMC: Parametrized Logic Formulas for Expressing Data Correlations Among Actions
	6VMC: Behavioral Variability Analysis for Product Families
	7The Overall Structure of the Model Checkers
	8Discussion and Conclusions
	References

	Pragmatic Formal Specification of System Properties by Tables
	1 Introduction
	2 Many Sorted Algebra and Predicate Logic
	3 Value Tables
	4 Term Tables
	5 Syntax and Semantics of Formula Tables
	6 Schematic Formulae and Their Representation by Tables
	7 Readability of Formulae and Structuring of Tables
	8 Interaction Tables
	9 Combining Tables with Diagrams
	10 Concluding Remarks
	Appendix
	References

	Formal Modelling for Cooking Assistance
	1Introduction
	2Food, Drink and Health
	2.1Food Classification and Properties
	2.2Where the Food Comes From

	3Planning a Meal
	3.1Guests and Their Peculiarities
	3.2Relating Impairments to Allowed Foods
	3.3Meals, Courses, Dishes

	4Recipes
	4.1Recipe Structure
	4.2Generic Recipes, Recipe Development
	4.3 Refinement

	5Cooking Assistance
	5.1Software Assistants
	5.2The CookTop, the Cooking Desktop
	5.3Cooking Workflows, Processes

	6Conclusion
	7Dedication to Martin Wirsing's Health and Well-Being
	References

	A Framework for Defining and Comparing Modelling Methods
	1Introduction
	2A Modelling Method Framework
	3Definitional Part of a Method
	The Items
	The Notation and the Models
	The Eligible Models and the Modelling

	4Operational Part of a Method
	The Intended Use of Models
	User Guidance
	Tool Support

	5Relating Modelling Methods
	6Related Work
	7Conclusions and Future Work
	References

	A Theory Agenda for Component-Based Design
	1 Introduction
	2 Composing Components
	2.1 The Concept of Component
	2.2 Glue Operators
	2.3 Properties of Glue
	2.4 Expressiveness of Glue
	2.5 The BIP Component Model

	3 Connectors and Their Properties
	3.1 Simple Connectors
	3.2 Hierarchical Connectors
	3.3 Dynamic Connectors

	4 Achieving Correctness
	4.1 Compositional Verification
	4.2 Property EnforcementArchitectures
	4.3 Property Composability

	5 Architecture Specification
	5.1 Interaction Logics
	5.2 Configuration Logics

	6 Conclusion
	References

	Effective and Efficient Model Clone Detection
	1Introduction
	1.1Approach
	1.2Historical Background
	1.3Paper Outline

	2Defining Model Clones
	3Detecting Model Clones
	3.1Model Matching
	3.2Element Similarity (comparison and weighing)
	3.3Candidate Selection

	4Implementation
	5Evaluation
	5.1Samples
	5.2Method
	5.3Data
	5.4Observations
	5.5Interpretation of Findings
	5.6Threats to Validity
	5.7End User Evaluation

	6Related Work
	7Conclusion
	References

	Living Modeling of IT Architectures:Challenges and Solutions
	1 Introduction
	2 Challenges
	3 Solutions within the Living Modeling Environment Txture
	3.1 Modeling Framework
	3.2 Stakeholder-Centric Editors
	3.3 Dynamic Architecture Visualizations
	3.4 Efficient Querying of Large EA Models

	4 Related Work
	5 Conclusion and Outlook
	References

	A flow analysis approach for service-oriented architectures
	1 Introduction
	2 Related Work
	3 Adaptive Analysis Methodology for SOA
	3.1 Flow-Based Model Analysis
	3.2 Generic Meta Model
	3.3 Case Studies

	4 Analysis of Blocking Calls
	4.1 Analysis Specification
	4.2 Case Study

	5 Performance Analysis
	5.1 Analysis Specification
	5.2 Case Study

	6 Discussion and Conclusion
	References

	Service Composition for Collective Adaptive Systems
	1 Introduction
	2 Scenario: Travel in Munich
	3 Modelling
	4 Model
	5 Analysis
	6 The Optimisation Problem
	7 Conclusions
	References
	A PEPA Model

	The Evolution of Jolie
	1 Introduction
	2 Service-Oriented Programming with Jolie
	3 Managing Dynamic Adaptation with JoRBA
	4 Correct-by-Construction Development with Chor
	5 Correct-by-Construction Adaptive Applications
	6 Related Work
	7 Conclusions
	References

	Stochastic Model Checking of the Stochastic Quality Calculus
	1Introduction
	2Stochastic Quality Calculus
	3Stochastic Model Checking
	4Implementation of a Smart Meter
	5Conclusion
	References

	Software-Intensive Systems for Smart Cities: From Ensembles to Superorganisms
	1 Introduction
	2 From Ensembles to Urban Superorganisms
	2.1 Natural Superorganisms
	2.2 From Individual to Collective Behaviors
	2.3 The Complementary Role of Humans Agents and ICT Agents

	3 Emerging Application Scenarios
	3.1 Smart Mobility
	3.2 Improved Sustainability
	3.3 Taking Care
	3.4 Feeling Part of It

	4 Engineering Challenges
	4.1 Bringing Human and ICT Agents Together
	4.2 Collective Situation Awareness
	4.3 Reconfiguration and Self-adaptivity
	4.4 Bottom Up Self-organization vs Top-Down Design
	4.5 Predicting and Controlling Emergent Behaviors

	5 An Infrastructure for Urban Superorganisms
	5.1 Reference Architecture
	5.2 Addressing the Challenges

	6 Conclusion and Future Work
	References

	 A White Box Perspective on Behavioural Adaptation
	1Introduction
	2When Is a Software Component Adaptive?
	3Architectural Approaches to Adaptation
	3.1Reference Models for Adaptation
	3.2Reconfiguration-Based Approaches to Adaptation

	4Computational Models for Adaptation
	4.1Automata-Based Approaches to Adaptation
	4.2Rule-Based Models for Adaptation
	4.3Concurrency Models for Adaptation

	5Programming Paradigms for Adaptation
	5.1Context-Oriented Programming for Adaptation
	5.2Aspect-Oriented Programming for Adaptation
	5.3Policy-Oriented Programming for Adaptation

	6Related Work
	6.1On the Essence of Adaptation
	6.2The Facets of Adaptation

	7Conclusion
	References

	Rule-Based Modeling and Static Analysis of Self-adaptive Systems by Graph Transformation
	1Introduction
	2Running Example
	3Framework for Rule-Based Dynamic Adaptation
	4Modeling SA Systems by Graph Transformation
	5Static Analysis of Self-adaptive Systems
	6Related Work
	7Conclusion and Future Work
	References

	Formalization of Invariant Patterns for the Invariant Refinement Method
	1Introduction
	1.1Running Example

	2 Background
	2.1Invariant Refinement
	2.2Invariant Formalization

	3Invariant Patterns
	3.1Illustration of Invariant Patterns on the Running Example

	4Correctness by Construction
	4.1Basic Pattern Relations
	4.2Pipeline Decomposition
	4.3More Complex Types of Refinement

	5Discussion and Conclusions
	References

	On StocS: A Stochastic Extension of SCEL
	1Introduction
	2StocS: A Stochastic Extension of SCEL
	2.1Syntax
	2.2Informal Timed Semantics
	2.3Explanatory Example

	3Preliminary Definitions for Operational Semantics
	4Network-Oriented Operational Semantics
	4.1Operational Semantics of Processes
	4.2Operational Semantics of Components and Systems

	5StocS at Work
	6Conclusions and Future Work
	References

	Programming Autonomic Systems with Multiple Constraint Stores
	1Introduction
	2Semiring-Based Constraints
	3The ccSCEL Dialect
	3.1Syntax
	3.2Semantics

	4ccSCEL at Work
	4.1Point-to-point Interaction
	4.2Constraint Variables with Restricted Access
	4.3Group-Oriented Interaction
	4.4Towards Multiparty Negotiation

	5Extending ccSCEL with Ensemble-Wide Interaction
	6Concluding Remarks
	References

	Adaptive and Autonomous Systems and Their Impact on Us
	1 Introduction
	2 Technology Impacts: A Digital Storm
	3 Adaptive Systems
	3.1 Reflective Technology
	3.2 Reflective Use Cases

	4 Autonomous Systems
	4.1 ASCENS Technology
	4.2 ASCENS Use Cases

	5 Cyber Race
	6 Conclusion: Sunshine Breaks through Digital Fog
	References

	The KnowLang Approach to Self-adaptation
	1Introduction
	2eMobility: A Case Study of Self-adaptation
	3KnowLang
	3.1Modeling Self-adaptive Behavior
	3.2Converting Sensory Data to KR
	3.3KnowLang Reasoner

	4Knowledge Representation for eMobility with KnowLang
	4.1Specifying Self-adaptive Behavior

	5Related Work
	6Conclusion and Future Work
	References

	Author Index

