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Abstract—Partial constraint satisfaction and soft constraints
enable to deal with over-constrained problems in practice. Con-
straint relationships have been introduced to provide a qualita-
tive approach to specifying preferences over the constraints that
should be satisfied. In contrast to quantitative approaches like
weighted or fuzzy CSPs, the preferences just rely on a directed
acyclic graph. The approach is particularly aimed at scenarios
where soft-constraint problems stemming from several indepen-
dently modeled agents have to be aggregated into one problem in
a multi-agent system. Existing transformations into weighted CSP
introduce unintended, additional preference decisions. We first il-
lustrate the application of constraint relationships in a case study
from energy management along with deficiencies of existing work.
We then show how to embed constraint relationships into the soft-
constraint frameworks of partial valuation structures and further
c-semirings by means of free constructions. We finally provide
a prototypical implementation of heuristics for the well-known
branch-and-bound algorithm along with an empirical evaluation.

I. CONSTRAINTS AND PREFERENCES

Constraint programming (CP) is a versatile paradigm for
efficiently modeling and solving various combinatorial prob-
lems such as scheduling, resource allocation [1], or fault diag-
nosis [2]. A constraint satisfaction problem (CSP) is formu-
lated in terms of variables that are assigned values from their
domains, and constraints that restrict the validity of assign-
ments. Traditionally, CSP treats hard constraints that must not
be violated. However, practical problems can become over-
constrained, i.e., no assignment satisfying all constraints (a
solution) exists. In order to handle such cases, soft constraints
do not express hard requirements but rather desired properties.

Several formalisms to grade solutions have been devised
(see, e.g., [3] for an overview): Partial constraint satisfaction
(PCSP [4]) allows that some constraints may be dropped if a
problem is infeasible. The goal is then to search for a relaxed
problem that is as close as possible to the original problem.
In particular, Max-CSP seeks to find a solution that satisfies
as many constraints of the original problem as possible. How-
ever, the search for a feasible problem is agnostic towards the
individual relevance of a dropped constraint. Users may be
reluctant to ignore an important constraint even if that forces
a higher number of violated constraints. Weighted CSPs [5]
allow to annotate constraints with weights for that purpose,
and hence take a quantitative approach. However, finding ap-
propriate weights is notoriously hard in practice, in particular
when composing constraint problems [6].

Alternatively, in constraint hierarchies [7], users put con-
straints into layers represented by a family of sets of con-
straints H = (Hi)i∈I where H0 contains hard constraints and
a constraint in layer Hj is considered less important than a
constraint in layer Hi if j > i. A lexicographic order is then
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Figure 1. Two assignments v1 and v2 satisfying white and violating grey
constraints. c→ c′ means that constraint c′ is more important to be satisfied
than c. Constraint hierarchies (with a locally predicate better comparator [7])
would deem v1 better since it satisfies the most important constraint, whereas
partial CSP (in particular Max-CSP) prefers v2 as it violates only c1.

established based on the satisfaction degree of more important
layers. An assignment v1 performs better than v2 if they are
equal up to some level k and v1 is strictly better with regard to
the constraints in level k. By definition, constraint hierarchies
ignore all constraints on levels greater than k, leading to a strict
evaluation for particular cases, as illustrated in Fig. 1. Such
a “hierarchical” evaluation seems reasonable when violating
important constraints is absolutely detrimental but might not
be adequate for problems requiring a more “egalitarian” stance.

We therefore argued that there ought to be more flexibil-
ity in specification and extended the idea of partial CSP in
[8] by introducing constraint relationships, i.e., qualitatively
specifying a set of preferences over constraints represented by
a directed acyclic graph (dag). This graph induces a partial
order on assignments such that less important constraints may
be dropped in favor of more important ones. Although a partial
order leads to a less decisive framework and reduces possible
pruning due to the existence of incomparable elements, it is
useful to leave indifference as an option during the elicitation
phase of constraints and preferences [9]. That way, users can be
informed about unspecified preferences if two solutions are not
comparable by the formalism and eventually add these pref-
erences explicitly. On the other hand, constraint relationships
can also express a subclass of constraint hierarchies [8].

Quantitative formalisms such as weighted or fuzzy CSP
share common features: A set of values reflects the quality of
an assignment which is graded by each constraint. The overall
grading of an assignment is then found by combining the con-
straints’ individual gradings. This very general principle has
been formalized in the frameworks of c-semirings [10] and
valued constraints [11] to abstract from concrete formalisms
and to provide a common ground for algorithms and theo-
retical considerations (see, e.g., [2], [12], [13]). Recently, [14]
proposes to use an even more general formalism, viz., partially
ordered monoids to represent soft constraints which are useful
for lexicographical combinations.

In this paper, we show how to construct a c-semiring
from a qualitative constraint relationship specification as an
algebraically free construction over the induced partial order.
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Therein, the notion of partial valuation structures [14] emerges
naturally, again as a free construction over partial orders. An
additional free construction from partial valuation structures
to c-semirings then enables compliance with existing c-semi-
ring based algorithms and proofs. In previous work [8], we
presented constraint relationships for specification along with
a mapping to weighted CSP. While this mapping allows us
to solve the resulting optimization problems with off-the-shelf
constraint solvers, it also totalizes the induced partial order, in-
troducing unintended extra preference relations. Additionally,
algorithmic techniques from soft constraints can already be
formulated on the level of partial valuation structures. The un-
derlying dag suggests efficient heuristics for computing max-
imum solution degrees.

For combining different sources into one constraint prob-
lem, as used in multi-agent systems (see, e.g., [1]), quantitative
approaches to preferences would have to aggregate gradings
that are possibly defined on different scales. By contrast, qual-
itative formalisms like CP-nets [15] avoid such explicit aggre-
gation and keep the underlying rationales behind the relative
importance settings of varying goals [16]. Constraint relation-
ships also follow this proposed research direction (see [17] and
more recently [9]) and offer an alternative approach to qual-
itative soft constraints since we showed in [8] that constraint
relationships are formally incomparable to CP-nets. Combining
constraint relationships from different sources just amounts to
taking the union of their dags.

In Sect. II, we illustrate the use of constraint relationships
for the constraint combination problem in multi-agent sys-
tems with a case study taken from energy management, high-
lighting the differences between quantitative and qualitative
approaches. After summarizing constraint programming with
constraint relationships formally in Sect. III, we present our
contributions for the connection of constraint relationships and
c-semirings: We give algebraically free constructions of, first,
a partial valuation structure from a dag that qualitatively spec-
ifies preferences over constraints without enforcing a total or-
der; and, second, of a c-semiring from a partial valuation struc-
ture (see Sect. IV). Then we present heuristics specific to con-
straint relationships that integrate with the well-known branch-
and-bound algorithm that calculates the maximum solution
degrees of a partial valuation structure-based soft-constraint
problem (see Sect. V). Moreover, we evaluate these heuristics
for constraint relationships in a prototypical solver with the
source code being available online (see Sect. VI). Finally, we
conclude with an outlook to future work.

II. CASE STUDY: POWER PLANT SCHEDULING

We illustrate the qualitative constraint relationships ap-
proach and its use in multi-agent systems with a simplified
example taken from scheduling power plants [1], showing is-
sues with quantitative approaches when it comes to comparing
unrelated soft constraints: Power plants are modeled as agents
that dynamically group to organizations, forming Autonomous
Virtual Power Plants (AVPP). The main task is to distribute the
energy demand to power plants. Feasible trajectories of power
plants are described by CSPs that consider hard constraints
like minimal and maximal productions or physically limited
rates of change as well as soft constraints such as economi-
cally better ranges or limited – yet technically feasible – rates

of change. We assume qualitative preferences over soft con-
straints: e.g., “produce more than 500 MW” is more important
than “change the output no faster than 5 MW in 15 minutes”
elicited from an operator’s experience. Both constraints may
be dropped if necessary.

An AVPP is then composed of a set of CSPs for each of its
subordinate power plants and has to create feasible schedules
to meet the given output demand as accurately as possible. In
addition, it should consider the individual preferences specified
by each power plant over its own decision variables. Assume,
e.g., an AVPP A composed of two physical power plants, p and
q. We regard the output of each plant for two time steps from
T = {1, 2} and thus have the variables {a[t] | a ∈ {p, q}, t ∈
T } with domains Dp = {0, 1, . . . , 10}, Dq = {0, 1, . . . , 20}
for t ∈ T , where we abbreviate Da[t] by Da since we have
identical domains for all time steps. Constraints include soft,
yet important, organizational constraints org[t] : p[t] + q[t] =
D[t] for each t ∈ T , where D[t] denotes the demand at time
step t which is given as a constant. Individual power plant
models provide additional constraints:

1) Power plants prefer economically better subranges.
2) Rates of change may be further limited.

Assume, for power plant p, that the best range was {7, 8},
followed by a good range {5, . . . , 9} and an acceptable range
{4, . . . , 10}. Values in {0, . . . , 3} are technically feasible but
less desirable for p. We denote constraints representing these
ranges by best[t], good[t], and acc[t] with t ∈ T . All qualita-
tive constraint preference statements are captured in the con-
straint relationship C of p: acc[t]→C good[t]→C best[t] for
t ∈ T . Here, c→C c′ indicates that constraint c “precedes” c′
in C, thus c′ is “more important” in C than c.

The other power plant, q, prefers to run either in a low
range {1, . . . , 5} (constraints low[t] for t ∈ T ) or in a high
range {15, . . . , 20} (constraints high[t]), but most importantly
wants to avoid high changes. This is reflected by the constraint
diff: |q[1]− q[2]| ≤ 5. There is however no preference among
the two subranges.

Enhancing Existing Soft Constraint Approaches

When combining a set of independently modeled prefer-
ences, i.e., p and q into A in our case study, we need to define
how to compare constraints originating from different power
plants to address questions like “Is a solution violating only
p’s constraints better than one violating only q’s constraints?”.
More concretely, if we take the union of the constraint rela-
tionships and map the resulting problem to weighted CSPs (or
any quantitative, totally ordered formalism), constraints from
different power plants become comparable even though no rel-
ative importance was specified between them. Figure 2 shows
this for the exemplary constraint relationships (constraints for
economical sub-ranges exist for both time steps and we con-
sider org[1] and org[2] to be more important than, e.g., best[1]
and best[2] individually). We highlight our analysis by focus-
ing on time step 1. Given that the demand is 14, we have
to violate high[1] (which would force q[1] ≥ 15) in order
to satisfy org[1]. Assume two assignments v1 = {p[1] �→
9, q[1] �→ 5} and v2 = {p[1] �→ 8, q[1] �→ 5}. Thus, v1 violates
{best[1], high[1]} and v2 violates {org[1], high[1]}, leading to
a preference of v1 as it violates a less important constraint.
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X = {a[t] | a ∈ {p, q}, t ∈ T }, D = 〈14, 14〉
Dp = {0, . . . , 10}, Dq = {0, . . . , 20}, DA = {0, . . . , 30}

org[1]4 org[2] 4

diff2

high[t] 1 low[t] 1

best[t] 3

good[t] 2

acc[t] 1

Power plant p Power plant q

• Organizational: org[t] : D[t] = p[t] + q[t]

• Power plant p: best[t] : p[t] ∈ {7, 8}
good[t] : p[t] ∈ {5, . . . , 9}
acc[t] : p[t] ∈ {4, . . . , 10}

• Power plant q: diff : |q[1]− q[2]| ≤ 5
low[t] : q[t] ∈ {1, . . . , 5}
high[t] : q[t] ∈ {15, . . . , 20}

Figure 2. Case study with domains, constraints and combined constraint
relationship C with annotated possible weights.

When using weighted CSPs [5], the constraints best[t] are
implicitly weighted higher than diff (since p needs to distin-
guish good[t] from acc[t]) even though both are modeled more
important than two other constraints and have no explicit no-
tion of importance relative to each other. With constraint hier-
archies, one could design a hierarchy level including high[t],
low[t], and best[t] with acc[t] on the next level. But there is no
obvious reason that high[t] or low[t] (stemming from power
plant q) should be considered more important than acc[t] (from
the other power plant, p). Alternatively, we could categorize
good[t] and acc[t] on the same hierarchy level and weigh them
accordingly on that level – forcing again a total order.

Consequently, we search a construction of a c-semiring that
only adds the required structure enforced by a preference dag
and nothing more – a free construction [18].

III. CONSTRAINT RELATIONSHIPS

Based on our case study, we now summarize constraint
programming with constraint relationships on a more formal
level. We restate the notion of constraint relationships origi-
nally given in [8], starting with classical constraint satisfaction.

A constraint domain (X,D) is given by a finite set X of
variables and a family D = (Dx)x∈X of variable domains
where each Dx is a finite set representing the possible values
for variable x. An assignment for a constraint domain (X,D)
is a dependent map v ∈ Πx ∈ X .Dx, i.e., v(x) ∈ Dx; we
abbreviate Πx ∈ X .Dx by [X → D]. A constraint c over a
constraint domain (X,D), or (X,D)-constraint, is given by a
map c : [X → D] → B. We also write v |= c for c(v) = tt .
In our case study, we have used the constraint domain (X,D)
with X = {a[t] | a ∈ {p, q}, t ∈ T } and Dx = Da for
x = a[t]. An assignment v = {p[t] �→ 5, q[t] �→ 0 | t ∈ T }
violates best[t], low[t], and high[t] for t ∈ T if D = 〈5, 5〉.

A directed acyclic graph, or dag, G = (|G|,→G) is given

by an underlying set1 |G| and a binary relation→G ⊆ |G|×|G|
such that→+

G is irreflexive. If x→G y, then x is a predecessor
of y, and y is a successor of x. We obtain a partial order
PO〈G〉 = (|G|,→∗

G) from G by taking the reflexive, transitive
closure of →G, and write g ≤PO〈G〉 h if g →∗

G h.

A constraint relationship over a constraint domain (X,D),
or (X,D)-constraint relationship, is given by a dag C, where
|C| is a finite set of (X,D)-constraints. We think of a con-
straint c′ ∈ |C| as more important than another constraint
c ∈ |C| if c →C c′. For two sets V,W ⊆ |C|, which we
think of being sets of violated constraints representing (X,D)-
assignments v and w (i.e., V = {c ∈ |C| | v 
|= c} and
similarly for W ), we want to express that W is worse than V
w.r.t. C. We describe two kinds of liftings of the partial order
induced by the dag C to an order over subsets of |C|, rep-
resented by two dominance properties π: single-predecessor
dominance (π = SPD) and transitive-predecessors dominance
(π = TPD, note that this dominance corresponds to the hier-
archical idea illustrated in Fig. 1); we write V �π

C W for “W
is worse than V for dominance property π over C”. Both dom-
inance properties share the following worsening rule, express-
ing that violating strictly more constraints is worse (V1 � V2

denotes the union of V1 and V2 simultaneously requiring that
V1 and V2 are disjoint):

V �π
C V � {c} if c ∈ |C| (W)

The remaining rules for SPD and TPD express which con-
straint violations can be “traded” under a ceteris paribus as-
sumption represented by �:

V � {c}�SPD
C V � {c′} if c→C c′ (SPD)

V � {c1, . . . , ck}�TPD
C V � {c′} if ∀i . ci →+

C c′ (TPD)

These worsening relations induce partial orders ≤π
C over

sets of (violated) constraints for π ∈ {SPD,TPD}, when
defining W <π

C V if, and only if, V (�π
C)

+ W (meaning
repeated sequential application of the rules); this is to be read
as “W is worse than V ”. Note that, by definition, the empty
set is the top element w.r.t. to these orderings, meeting the
intuition that “no violations” should be considered optimal.
By abuse of notation, for assignments we also write w <π

C v
if {c ∈ |C| | w 
|= c} <π

C {c ∈ |C| | v 
|= c}, again to be read
as “w is worse than v”.

In our example, this partial order does not introduce the
bias shown in Fig. 2 between best[t] and diff since there is no
edge between those two constraints. Consider two assignments
v and w with v 
|= diff and w 
|= best[1]. Using weights, v
would be valued with 2 and w with 3, and thus w <WCSP

v (meaning “w is worse than v” in weighted CSP) whereas
neither v <π

C w nor w <π
C v holds.

IV. FROM CONSTRAINT RELATIONSHIPS TO

C-SEMIRINGS

The embedding of constraint relationships into the estab-
lished soft constraint framework of c-semirings using the spe-
cial c-semiring of weighted CSP [8] has the drawback of forc-
ing a total order on the assignments. As illustrated in Sect. II,

1We write |G| in reminiscence of a forgetful functor, mapping an object G
in a concrete category to its underlying set.

455455455455455455455455455

                                                                                                                                            



assignments become comparable which would not be deemed
comparable considering solely the constraint relationships. To
overcome this bias, while still keeping the connection with c-
semirings, we search for the “most general” c-semiring that
preserves the orderings prescribed by the constraint relation-
ships. This c-semiring should not show more orderings than
are required by the constraint relationships and the c-semiring
axioms. This task amounts to constructing the free c-semiring
over a partial order (from a constraint relationship) in the sense
of universal algebra [18, Ch. 4] and category theory [19, Ch. 3].

Categorically speaking, given two categories A and B and
a functor U : B → A, the free object F (A) in B over an
object A of A is characterized by a unit morphism ηA : A→
U(F (A)) inA such that for everyA-morphism f : A→ U(B)
with B an object of B, there is a unique lifting B-morphism
f � : F (A) → B satisfying U(f �) ◦ ηA = f ; the free object
F (A) is unique up to isomorphism [19, Ch. 3].

It turns out to be advantageous to perform the free con-
struction from partial orders to c-semirings via an intermediate,
again freely constructed, type of algebraic structure, the partial
valuation structures by Gadducci et al. [14], where the total
ordering of valuation structures [11] is relaxed to a partial
ordering. We first recapitulate the notion of partial valuation
structures and describe the free partial valuation structure over
a partial order. Then we recall the notion of c-semirings and
describe the free c-semiring over a partial valuation structure.
By combining these free constructions, we obtain the free c-
semiring over a partial order and thus the connection to con-
straint relationships. The proofs that the free partial valuation
structure and the free c-semiring are indeed the correct notions
can be found in the accompanying technical report [20].

A. The Free Partial Valuation Structure Over a Partial Order

Like valuation structures, partial valuation structures [14]
capture essential operations for grading assignments: They
show an associative and commutative multiplication for com-
bining gradings, a partial ordering on gradings, such that the
multiplication is monotone w.r.t. this ordering, and a top ele-
ment w.r.t. the partial ordering capturing the best grade, i.e.,
total satisfaction, that simultaneously is the neutral element for
the multiplication. In contrast to valuation structures, the or-
dering is not forced to be total. In contrast to c-semirings, par-
tial valuation structures do, in general, not show the suprema
required by c-semiring addition.

Constraint relationships and the induced orderings of
Sect. III lifting the dag to sets of (violated) constraints appar-
ently fit quite naturally to such a monoidal structure, where the
multiplication should be the union. The empty set, representing
the fact that no constraints are violated, is the top element
and simultaneously the neutral element for the union. But set
union is idempotent. Consider the exemplary constraint rela-
tionship C in Fig. 2 including the constraints org[2] and diff
with diff →C org[2]. Then {org[2]} <SPD

C {diff}. Multiplying
on both sides with {org[2]}, i.e., taking the union, would result
in {org[2]} ≤SPD

C {org[2], diff} by the required monotonicity
of the multiplication. Hence, violating org[2] only would be
worse than violating both org[2] and diff , contradicting (W).
However, we can patch this defect by not considering sets and
their union but multisets and the multiset union; the disjoint-
ness assumptions in (SPD) and (TPD) indicate this necessity.

Incidentally, when equipping multisets with an appropriate or-
dering induced by the partial order from the constraint rela-
tionship, the free partial valuation structure is obtained.

Formally, a partial valuation structure M = (|M |, ·, ε,≤)
is given by an underlying set |M |, an associative and commu-
tative multiplication operation · : |M |× |M | → |M |, a neutral
element ε ∈ |M | for ·, and a partial ordering ≤ ⊆ |M | × |M |
such that the multiplication · is monotone in both arguments
w.r.t. to ≤, i.e., m1 ·m2 ≤ m′1 ·m′2 if m1 ≤ m′1 and m2 ≤ m′2,
and ε is the top element w.r.t. ≤. Requiring that ε is top
is equivalent to requiring that m1 · m2 ≤ m1. We add sub-
scripts to ·, ε and ≤ when different partial valuation structures
arise. A partial valuation structure morphism ϕ : M → N
is given by a structure-preserving function ϕ : |M | → |N |,
i.e., ϕ(m1 ·M m2) = ϕ(m1) ·N ϕ(m2), ϕ(εM ) = εN , and
ϕ(m1) ≤N ϕ(m2) if m1 ≤M m2.

Each partial valuation structure M induces a partial order
PO(M) = (|M |,≤M ) and each partial valuation structure
morphism ϕ : M → N induces a partial order morphism
(i.e., an ordering-preserving or monotone function) PO(ϕ) =
ϕ : PO(A) → PO(B). With this functor PO from partial
valuation structures to partial orders, we now consider the free
partial valuation structure PVS 〈P 〉 over a partial order P .

We denote the set of finite multisets over the underlying
set |P | of P by Mfin |P |, its elements by �p1, . . . , pk�, and
multiset union by ∪−. We define the upper or Smyth ordering on
Mfin |P | as the binary relation ⊆− P ⊆ (Mfin |P |)×(Mfin |P |)
given by the transitive closure of

T ⊆− U implies T ⊆− P U ,

p ≤P q implies T ∪− �p� ⊆− P T ∪− �q� .

This relation is indeed a partial ordering on Mfin |P | and
it is easy to check that PVS 〈P 〉 = (Mfin |P |,∪−, ��,⊆− P ) is
a partial valuation structure. Moreover, PVS 〈P 〉 is the free
partial valuation structure over the partial order P : Define
the unit partial order morphism ηPVS

P : P → PO(PVS 〈P 〉)
by ηPVS

P (p) = �p�. Then every partial order morphism
ϕ : P → PO(M) for some partial valuation structure M
can be uniquely lifted into a partial valuation structure mor-
phism ϕ�PVS : PVS 〈P 〉 → M with ϕ�PVS(�p1, . . . , pk�) =
ϕ(p1) ·M · · · ·M ϕ(pk) such that PO(ϕ�PVS)(ηPVS

P (p)) = ϕ(p).
Thus, we have (for a detailed proof, see [20, §12]):

PROPOSITION. Let P be a partial order. Then PVS 〈P 〉 =
(Mfin |P |,∪−, ��,⊆− P ) is the free partial valuation structure
over P .

The upper ordering on finite multisets mimics the epony-
mous ordering used in powerdomain constructions [21, Ch. 9].
There, partial orders are lifted to semi-lattices where multipli-
cation is idempotent. On the other hand, our upper ordering,
when employed for sets, exactly corresponds to ≤SPD

C−1 for a
constraint relationship C: We need to invert C, i.e., consider
PVS 〈PO〈C−1〉〉, as violating more important constraints has
to lead to worse solutions – e.g., diff ≤PO〈C〉 org[2] but
�org[2]� should be worse than �diff�. Further reconsidering
our discussion based on the constraint relationship C presented
in Fig. 2 with diff →C org[2], we find that multiplying on both
sides with �org[2]� by now taking the multiset union, which
is not idempotent, results in �org[2], org[2]� ≤PVS〈PO〈C−1〉〉
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�org[2], diff�. This relation clearly holds, but the other di-
rection does not as �org[2], org[2]� does not worsen to
�org[2], diff� since we cannot “trade” the remaining occur-
rence of org[2] for diff . However, the transitive-predecessors
dominance presented in (TPD) can only be achieved by using
a more specialized ordering (see Sect. V-B).

The free partial valuation structure over a partial order P
does not show suprema of finite multisets, in general: Consider
the partial order P given by ({g, h, i, j}, {g < h, g < i, h <
j, i < j}), which has suprema. In PVS 〈P〉, however, we have

�g� ⊂− P �h� and �g� ⊂− P �i� ,

�h, i� ⊂− P �h� and �h, i� ⊂− P �i�

and no T ∈Mfin |P| exists with �g�, �h, i� ⊂− P T ⊂− P �h�, �i�
since, e.g., for �g� ⊂− P T , T can only be �� by the first rule
(with �g�, �h, i� ⊂− P ��), or �h�, �i�, or �j� by the second rule
(where �h�, �i� ⊂− P �j�); but �h� and �i� are incomparable
w.r.t. ⊆− P. We therefore need to introduce additional structure
to obtain a c-semiring which requires suprema.

B. The Free C-Semiring Over a Partial Valuation Structure

A c-semiring [10] A = (|A|,⊕,⊗,0,1) is given by an
underlying set |A|, a binary addition ⊕ : |A| × |A| → |A|, a
binary multiplication ⊗ : |A|× |A| → |A|, a zero 0 ∈ |A|, and
a one 1 ∈ |A| such that

1) ⊕ is associative and commutative, has 1 as annihilator and
0 as neutral element;

2) ⊗ is associative and commutative, has 0 as annihilator and
1 as neutral element;

3) ⊗ distributes over ⊕.

In particular, ⊕ is idempotent (since a⊕a = (a⊗1)⊕(a⊗1) =
a ⊗ (1 ⊕ 1) = a ⊗ 1 = a). Thus the relation ≤ ⊆ |A| × |A|
defined by a1 ≤ a2 iff a1 ⊕ a2 = a2 is a partial ordering
on |A|, i.e., reflexive, transitive, and antisymmetric. In fact,
a1 ⊕ a2 yields the supremum of a1 and a2 with respect to ≤.
Moreover, 0 is the least and 1 the greatest element in |A| w.r.t.
≤. A c-semiring morphism ϕ : A → B from a c-semiring A
to a c-semiring B is given by a structure-preserving function
ϕ : |A| → |B|, i.e., ϕ(a1⊕A a2) = ϕ(a1)⊕B ϕ(a2), ϕ(a1⊗A

a2) = ϕ(a1)⊗B ϕ(a2), ϕ(0A) = 0B , and ϕ(1A) = 1B .

An arbitrary c-semiring A gives rise to the partial valua-
tion structure PVS (A) = (|A|,⊗A,1A,≤A), and a c-semiring
morphism ϕ : A → B induces a partial valuation structure
morphism PVS (ϕ) = ϕ : PVS (A) → PVS (B). With this
functor PVS from c-semirings to partial valuation structures,
we now consider the free c-semiring cSRng〈M〉 over a partial
valuation structure M .

To obtain a valid ⊕-operation yielding suprema that do
not necessarily exist in a partial valuation structure, we move
from the set |M | to the finite subsets of |M | only containing
pairwise incomparable elements w.r.t. ≤M . We denote these
by I≤M

fin (|M |). Define cSRng〈M〉 = (I≤M

fin |M |, ∪̃M , ·̃M , ∅,
{εM}) with

I1 ·̃M I2 = Max≤M {m1 ·M m2 | m1 ∈ I1, m2 ∈ I2} ,

I1 ∪̃M I2 = Max≤M (I1 ∪ I2) .

It can be shown that cSRng〈M〉 is indeed a c-semiring (see
[20, §29]). Moreover, it is the free c-semiring over M : We
have the partial valuation structure morphism ηcSRng

M : M →
PVS (cSRng〈M〉) with ηcSRng

M (m) = {m}, serving as a unit,
such that if A is an arbitrary c-semiring and ϕ : M → PVS (A)
some partial valuation structure morphism, then there is the
unique lifting c-semiring morphism ϕ�cSRng : cSRng〈M〉 → A
defined by ϕ�cSRng({m1, . . . ,mk}) = ϕ(m1)⊕A · · ·⊕Aϕ(mk)
such that ηcSRng

M ◦ PVS (ϕ�cSRng) = ϕ is satisfied. We thus
obtain (for a detailed proof, see [20, §29])

PROPOSITION. Let M be a partial valuation structure. Then
cSRng〈M〉 = (I≤M

fin |M |, ∪̃M , ·̃M , ∅, {εM}) is the free c-
semiring over M .

This construction of the free c-semiring over a partial valu-
ation structure shares the definition of addition and multiplica-
tion with the set-based encoding of “preference degree struc-
tures” as a semiring by Fargier et al. [22, Sect. 4.3]. However,
in order to obtain a c-semiring proper (rather than a plain
semiring), we had to rely on the neutral element being the
top element for the ordering. A similar construction has been
suggested by Bistarelli et al. [23], although starting from a c-
semiring. The freeness of the resulting (c-)semiring (which cor-
responds to the lower or Hoare powerdomain construction [21,
Ch. 9]) has not been considered by either previous works.

Reconsidering our previous counterexample for the exis-
tence of suprema in partial valuation structures, no supremum
for �g� and �h, i� exists in PVS 〈P〉 but in the free c-semiring
cSRng〈PVS 〈P〉〉, the supremum of {�g�} and {�h, i�} is
{�g�, �h, i�}. Indeed, {�g�, �h, i�} ≤cSRng〈PVS〈P〉〉 {�x�}
holds for both x = h and x = i. Considering {�h�}, we

get {�g�, �h, i�}∪̃cSRng〈PVS〈P〉〉{�h�} = Max⊆−

P

({�g�, �h, i�,
�h�}) = {�h�} since �g� ⊂− P �h� and �h, i� ⊂− P �h� – analo-
gously for {�i�}.

The composition of two free constructions again yields a
free construction [19]. Thus we obtain the free c-semiring over
a partial order P as cSRng〈PVS 〈P 〉〉. For a constraint rela-
tionship C this means to consider cSRng〈PVS 〈PO〈C−1〉〉〉.

V. SOLVING CONSTRAINT RELATIONSHIP PROBLEMS

Solving a c-semiring based soft constraint satisfaction
problem generally results in a set of several optimal solutions
due to the partiality of the induced order. We show how to
apply the well-known branch-and-bound algorithm (see, e.g.,
[24], [12]) to soft-constraint problems specified using partial
valuation structures as this algorithm does not rely on the ⊕-
operation of a c-semiring (such as, e.g., dynamic programming
based approaches [10]) but works directly with the induced
order. Consequently, we can use the free partial valuation
structure from a constraint relationship to obtain a solver for
constraint relationship problems.

An M -soft constraint over a constraint domain (X,D) for
a partial valuation structure M , or (X,D)-M -soft constraint,
is given by a map μ : [X → D] → |M |. For a constraint
relationship C over (X,D) and a partial valuation structure
M , we convert each c ∈ |C| into an M -soft constraint via an
embedding partial order morphism ϕ : PO〈C−1〉 → PO(M):
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We define cM,ϕ : [X → D]→ |M | by

cM,ϕ(v) =

{
ϕ(c) if v 
|= c

εM otherwise
,

We leave ϕ as a parameter of cM,ϕ to allow for differ-
ent (monotonic) representations of a constraint as element
of |M | (e.g., a violated constraint could embed itself along
with its predecessors to accommodate alternative assignment
orderings). Inverting the constraint relationship C is moti-
vated by the upper (Smyth) ordering used in the free par-
tial valuation structure (see Sect. IV-A). In particular, we can
define the embedding of C into the free partial valuation

structure PVS 〈PO〈C−1〉〉 = (Mfin |C|,∪−, ��,⊆− PO〈C−1〉) by
ϕ(c) = ηPVS

PO〈C−1〉(c) = �c� – corresponding to the single-
predecessor dominance lifting.

Let M be a finite set of (X,D)-M -soft constraints. For an
assignment v ∈ [X → D] the solution degree for M of v,
written as M(v), is obtained by combining the gradings with
respect to ·M , i.e., M(v) =

∏
M{μ(v) | μ ∈ M}. Then the

maximum solution degrees of M are given by

M∗ = Max≤M {M(v) | v ∈ [X → D]} .

A. Branch and Bound

For the branch-and-bound algorithm for computing the
maximum solution degrees over a partial valuation structure,
we now move from assignments to partial assignments. For a
constraint domain (X,D) we fix an extended constraint do-
main (X,D?) setting D? = (D?

x)x∈X with D?
x = Dx � {?},

where ? is fresh, to represent a partial assignment which is a
dependent map p ∈ Πx ∈ X .D?

x = [X → D?]. The domain
of definition def(p) of a partial assignment p for (X,D) is the
set {x ∈ X | p(x) 
= ?}. For p, q ∈ [X → D?], we write
p � q if x ∈ def(p) implies x ∈ def(q) and q(x) = p(x) for
each x ∈ X; by p↑ we denote the set {v ∈ [X → D] | p � v}
of (X,D)-assignments. The scope of a constraint c over a
constraint domain (X,D) is given by the set of variables it
depends on, i.e.,

sc(c) = {x ∈ X | ∃v ∈ [X → D], d1 
= d2 ∈ Dx .

c(v{x �→ d1}) 
= c(v{x �→ d2})} .

For a partial assignment p ∈ [X → D?], we write p 
|= c if
sc(c) ⊆ def(p) and v 
|= c for some v ∈ p↑ (which is well
defined, since then c only depends on variables that are in the
domain of definition of p).

For our algorithm, we use a “best case/worst case” bound-
ing pair that maps to the best (worst) possible solution de-
gree of a partial assignment. In branch-and-bound, we usually
only need a best case to compare it to already found solution
degrees. If, however, a worst-case estimation of extending a
p ∈ [X → D?] by p{x �→ d1} is better than the best-case
estimation for p{x �→ d2}, we should prune the path following
p{x �→ d2} before finding a (complete) assignment.

Formally, a bounding pair (α, ζ) for a finite set of (X,D)-
M -soft constraints M is given by two maps α, ζ : [X →
D?] → |M |, with α representing the worst case and ζ the
best case estimate satisfying

1) α(p) ≤M M(v) ≤M ζ(p) for all p ∈ [X → D?] and
v ∈ p↑;

2) M(v) = ζ(v) for all v ∈ [X → D].

Concretely, for a constraint relationship C and an embedding
ϕ, we define αM,ϕ, ζM,ϕ : [X → D?]→ |M | by

αM,ϕ(p) =
∏

M{ϕ(c) | c ∈ |C|, sc(c) ⊆ def(p), p 
|= c} ·M∏
M{ϕ(c) | sc(c) 
⊆ def(p)} ,

ζM,ϕ(p) =
∏

M{ϕ(c) | c ∈ |C|, sc(c) ⊆ def(p), p 
|= c} .

Intuitively, αM,ϕ represents the worst case by assuming all
partially defined constraints to be violated, and thus satisfies
the first part of condition (1) for bounding pairs. Analogously,
ζM,ϕ idealizes that no additional constraints will be violated,
thus satisfying the second part of (1) and (2).

The following branch-and-bound algorithm for partial val-
uation structures using bounding pairs finds the maximum so-
lution degrees of a soft constraint problem given a partial as-
signment and a set of known lower bounds:

Assume: – (X,D) constraint domain
– M partial valuation structure
– M finite set of (X,D)-M -soft constraints
– (α, ζ) bounding pair for M

In: – p ∈ [X → D?] partial valuation for (X,D)
– L ⊆ |M | finite and pairwise incomparable w.r.t. ≤M

Return: Max≤M (L ∪ {M(v) | v ∈ p↑})
maxSolDegs(α,ζ)(p, L) ≡

if ∀x ∈ X . p(x) 
= ? — Is p already an assignment?
then return Max≤M (L ∪ {M(p)}) fi
x← choose {x ∈ X | p(x) = ?}
— Add worst-case estimates
L← Max≤M (L ∪ {α(p{x �→ d}) | d ∈ Dx})
for d ∈ Dx — Test against best-case estimates
do if ¬∃l ∈ L . ζ(p{x �→ d}) ≤M l

then L← maxSolDegs(α,ζ)(p{x �→ d}, L) fi od
return L

Starting the algorithm with a partial assignment mapping
all variables to ? and the empty set of known lower bounds,
we get from the return assertion that

maxSolDegs(α,ζ)(λx ∈ X . ?, ∅) =
Max≤M {M(v) | v ∈ [X → D]} = M∗ .

The correctness proof can be found in [20, §34, §36].

B. Extensions to the Free Partial Valuation Structure

Practice suggests additional structure to the free partial val-
uation structure. First, constraint relationships only consider
soft constraints by design. The free partial valuation structure
PVS 〈PO〈C−1〉〉 does not offer an element for complete dis-

satisfaction, i.e., ⊆− PO〈C−1〉 has no smallest element.

Using the terminology of [14], a partial valuation structure
M is bounded if |M | has a smallest element w.r.t. ≤M ; we
denote this element by ⊥M if it exists. In a bounded partial
valuation structure M it holds that m·M⊥M = ⊥M for all m ∈
|M |, i.e., ⊥M is an absorbing element. Each partial valuation
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structure M which is not bounded can be lifted into a bounded
partial valuation structure [14].

Consequently, we can use ⊥M to represent the violation
of hard constraints in a bounded partial valuation structure M
by using csM,ϕ = cM,ϕ for all soft constraints and chM,ϕ for

the conversion of hard constraints defined as chM,ϕ(v) = ⊥M

if v 
|= c and chM,ϕ(v) = εM otherwise.

Furthermore, for a subclass of constraint hierarchies [8],
we also consider the transitive-predecessors dominance lifting
�TPD

C ⊆ (Mfin |C|)× (Mfin |C|) of C to the finite multisets
Mfin |C| over the elements of C, given by

T �TPD
C T ∪− �c� ,

c1, . . . , cn →+
C c implies T ∪− �c1, . . . , cn��TPD

C T ∪− �c� ,

which is in one-to-one correspondence to the rules (W)
and (TPD) in Sect. III. Writing ≤TPD

C for ((�TPD
C )∗)−1 and

using the fact that ≤TPD
C is monotonic w.r.t. multiset union,

we have that (Mfin |C|,∪−, ��,≤TPD
C ) is a partial valuation

structure. Using the same embedding ϕ leaves us with a TPD-
constraint relationship problem.

C. Variable Ordering and Local Consistency Heuristics

It is well known that the success of systematic tree search
methods is greatly influenced by the variable and value or-
dering and several heuristics have been devised for classical
constraint problems [25]. This not the case for weighted CSPs
or soft constraint problems in general. Successful heuristics
typically take into account the domain cardinality or the effect
assignments make [26]. We propose heuristics for the investi-
gated soft-constraint problems over constraint relationships:

1) Most important first (MIF) variable ordering: A topological
ordering of a constraint relationship lists most important
constraints first and assigns values to their variables first.

2) Local consistency (LC): We improve lower and upper
bounds inspired by soft-arc consistency [27]. For each par-
tially assigned (binary) constraint, we include constraints
that are violated irrespective of the value of the remaining
variable into the best-case ζ and exclude those that are
certainly true from the worst-case α.

VI. EVALUATION

In a first test-bed, we implemented the branch-and-bound
algorithm presented in Sect. V in Java. For replicability of our
experiments, the source code is available online.2 The solver
is only in a prototypical state and serves to investigate the
influence of the proposed heuristics and modeling aspects in-
stead of being directly applied to the (in reality more complex)
problems presented in our case study. In particular, we wanted
to compare our heuristics to a naïve branch-and-bound imple-
mentation that is intractable for a larger number of variables.

We test several parameters regarding algorithmics (variable
orderings, local consistency, and bounding pairs) and modeling
(using SPD or TPD semantics) on randomly generated CSP
instances and measure running time as well as the number
of recursive branch-and-bound calls. Constraints are simple

2https://github.com/Alexander-Schiendorfer/constraint-relationships-
csemiring

Table I. Modeling influence: Comparison of mean runtimes in seconds
and recursive calls for SPD vs. TPD and weighted CSP vs. constraint
relationship-based CSP with standard deviations given in parentheses.

WCSP-RT WCSP-RC CRCSP-RT CRCSP-RC

SPD 0.86 (2.79) 7183.78
(22617.88)

2.08 (5.77) 13323.36
(32050.35)

TPD 0.83 (2.81) 6888.38
(22622.73)

2.00 (5.73) 12721.54
(31996.98)

arithmetical expressions including +, −, ∗, /, and <, ≤, =,
≥, > as relational operators. In each experiment, n random
problems were solved by differently parametrized solvers.

A. Modeling Influence

First, we investigate how the selected dominance prop-
erty and choice of partial valuation structure (using constraint
relationships directly or weights according to [8]) affect the
solver’s efficiency in order to select the formalism for which
to evaluate the proposed heuristics in more detail. We fixed
the used bounding pairs (as defined in Sect. V-A), the variable
ordering to use MIF (most important first), and the usage of
a local consistency check (LC). We compare weighted CSPs
(WCSP) and constraint relationship-based CSPs (CRCSP) with
regard to runtime (RT) and recursive calls (RC). The concrete
weights for a constraint relationship C are computed recur-
sively, as suggested in [8], by

wSPD
C (c) = 1 +max{wSPD

C (c′) | c′ ∈ C : c′ →C c} ,

wTPD
C (c) = 1 +

∑
c′∈|C|:c′→Cc(2 · wTPD

C (c′)− 1) .

This experiment consists of 50 runs with 7 variables having
domains of 5 to 15 values and 10 constraints arranged in a
random constraint relationship.

As expected, Table I shows that weighted CSPs require
less runtime and recursive calls to find the maximum solution
degrees. This is mostly due to the presence of incomparable
elements in constraint relationships which reduce the possible
pruning and to the more complicated evaluation of the upper
(Smyth) ordering. However, the stronger dominance property
TPD only improved the pruning by about 5% in the constraint
relationship case and 4% in the weighted CSP case. This is
still a considerable gain but does not completely rule out SPD
in terms of performance. Consequently, we focus on weighted
CSP instances to examine the proposed solver heuristics.

B. Algorithmic Efficiency

With a weighted CSP based on constraint relationships and
TPD semantics, we investigate how variable ordering using
the most-important-first heuristic, bounding pairs, as well as
local consistency affect the performance. The CSPs for this
experiment had 6 variables, 10 constraints and domains with 10
to 30 values, and 150 runs were made. We compare values for
random order (RO) vs. most-important-first (MIF) with flags
for worst-case boundaries (WCB) and local consistency (LC).

For clarity, we discuss the number of recursive calls to
measure the pruning performance of the algorithm. Table II
clearly shows that using the most-important-first heuristic sig-
nificantly improves the performance. Similar improvements
can be achieved using local consistency checks for improved

459459459459459459459459459

                                                                                                                                            



Table II. Algorithmic efficiency: Comparison of mean number of
recursive calls (·103) for different combinations of using bounding pairs,

local consistency and the most-important-first variable heuristic for a fixed
weighted CSP with standard deviations given in parentheses.

¬ WCB + ¬ LC ¬ WCB + LC WCB + ¬ LC WCB + LC

RO 1,914 (1,359) 472 (993) 1,914 (1,359) 472 (993)
MIF 1,264 (1,290) 218 (649) 1,264 (1,289) 217 (649)

boundaries. Using a worst-case boundary only does not lead
to better results in our experiments. These results hint that
variable ordering heuristics using “important” variables should
be researched further in conjunction with traditional ordering
heuristics based on, e.g., the cardinality of the domains.

VII. CONCLUSIONS AND FUTURE WORK

We have motivated constraint relationships to qualitatively
specify soft constraint preferences. In a case study, abstracted
from a realistic scenario, we have illustrated the benefits for
decision making in multi-agent systems. We have also provided
a connection of constraint relationships to c-semirings via free
constructions, first from the dag over constraints to partial val-
uation structures, second from partial valuation structures to c-
semirings. This connection suggests partial valuation structures
as a direct means for soft constraints and we have evaluated
different heuristics for finding the maximum solution degrees.

Partial valuation structures offer lexicographical prod-
ucts [14] with which we plan to revisit the encoding of con-
straint hierarchies as c-semirings [28]. Due to the conceptual
simplicity constraint relationships offer towards users, we also
plan to use this formalism for preference elicitation and pref-
erence learning. A process of asking preference decisions over
solutions to elicit constraint relationships is envisioned.
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