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Dedicated to Joseph Sifakis

Abstract. We propose an abstract notion of an assembly theory that formal-
izes rudimentary requirements for systems of interacting components. Among
these are a composition operator for assemblies, a communication-safety pred-
icate to express the absence of communication errors, a refinement relation for
assemblies, and a packing operation to encapsulate assemblies into components
thus allowing hierarchical system constructions. We establish laws that must be
satisfied by any concrete assembly theory in order to support compositionality
of communication-safety, of encapsulation and of refinement. Moreover, refine-
ment must behave well w.r.t. communication-safety and encapsulation. As a con-
crete instance we investigate a modal assembly theory using modal I/O-interfaces
(MIOs) for modeling observable component behaviors and MIOs with possible
error states (indicating communication errors) for modeling assembly behaviors.
We show that all rules of an assembly theory are satisfied by modal assemblies,
in particular the compositionality requirements hold.

1 Introduction

In his recent article [20], Joseph Sifakis advocates “rigorous system design” to build
systems of guaranteed quality. The abstract principles of component-based design and
correctness-by-construction are two main ingredients of his approach. He writes that
“components are essential for enhanced productivity and correctness through reuse and
architectures” and aims at “theory and rules for building complex designs . . . by com-
posing properties of simpler designs.” As a concrete instance of these principles Joseph
and his research group at Verimag have developed the BIP component framework (see,
e.g., [3,20]). BIP allows the modeling of composite, hierarchically structured systems
from atomic components characterized by their behavior and their interface.

Several other approaches have been proposed for specifying structural as well as
behavioral aspects of components and their interfaces; an overview of a collection of

� This work has been partially sponsored by the European Union under the FP7-project AS-
CENS, 257414.
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component frameworks, that have been applied to a common component modeling ex-
ample, is given in [19]. The specification of networks of components with arbitrarily
(finitely) many members and their interactions is supported by BIP [3,13] as well as by
other formalisms for modeling distributed component systems, like CFSMs [7], team
automata [8], component-interaction automata [9], or modal assemblies [15].

Abstract principles for the construction of component-based concurrent systems have
been investigated and formalized as so-called interface theories by de Alfaro and Hen-
zinger [11,12]. As in Joseph’s approach, compositionality requirements are at the heart
of these formalisms expressing, e.g., the principles of incremental design and inde-
pendent implementability at an abstract level. Interfaces for complex components are
constructed from simpler ones by interface composition. The result of an interface com-
position yields again an interface which intuitively describes the visible (black-box) be-
havior of a composite component. However, in spite of their importance for distributed
component systems, there is no abstract formalization of the interaction behavior of
component networks with arbitrarily (finitely) many members.

In this work we investigate networks of interacting components in the spirit of
Joseph’s correctness-by-construction approach and de Alfaro’s and Henzinger’s inter-
face theories: we develop novel compositional principles for the safe interaction of net-
works and formalize them by the abstract notion of assembly theory; moreover, we
present so-called modal assemblies as a concrete instance of an assembly theory.

An assembly theory formalizes basic requirements for systems of interacting
components. In particular, an assembly theory comprises a composition operator for
assemblies, a communication-safety predicate for expressing the absence of commu-
nication errors, a refinement relation for assemblies, and a packing operation for en-
capsulating assemblies into components thus allowing hierarchical system construc-
tions. Any assembly theory must satisfy compositionality and compatibility laws for
communication-safety, encapsulation and refinement.

We instantiate our framework by a novel concrete assembly theory which uses an
extension of MIOs (modal I/O-transition systems; see [17]) to model interface and as-
sembly behaviors. Modal assemblies have already been considered in [15], but the new
approach is a significant enhancement. We consider now assembly composition, a new
definition of assembly behaviors which explicitly takes into account communication-
errors and a new, much more flexible refinement notion for modal assemblies. As a
consequence, we get novel results for compositionality of the communication-safety
property and for assembly refinement. Moreover, [15] does not define a rigorous, ab-
stract meta-theory for assemblies but provides only some first ideas in that direction.

Outline of the paper. In Sect. 2 we develop the general concepts and laws of an assem-
bly theory. Sect. 3 summarizes the basic notions of modal I/O-transition systems needed
in Sect. 4 to build a modal assembly theory as an instance of our abstract framework.
Finally, in Sect. 5, we finish with some concluding remarks.

Personal Note. The third author has known Joseph for several years and collaborates
with him and his Verimag research group since 2010. Initial ideas for the cooperation
started in 2008 at a workshop of the EC Coordinated Action INTERLINK. Joseph gave
a keynote speech on Rigorous System Design while MW was coordinating a Working
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Group on software-intensive systems and was giving a talk about Ensemble Engineer-
ing. Two years later both (together with Ugo Montanari, Rocco De Nicola, and others)
teamed up for planning a joint EU project on the systematic construction of autonomous
systems. The project proposal was successful: the FP7 Integrated Project ASCENS [2]
on “Autonomic Service-Component Ensembles” is coordinated by MW; Joseph and his
group are responsible for the work package on “Correctness of Service Components
and Service Component Ensembles”. Design techniques ensuring correctness-by-con-
struction play a main role in ASCENS; current results comprise an extension of BIP for
modeling dynamic architectures [6] and a novel implementation of the D-Finder tool
for compositional deadlock detection in concurrent systems [5].

Working with Joseph is an excellent experience; we admire his deep insights and
technical precision, and are looking forward to many further inspiring exchanges.

2 Assembly Theories

We develop a general framework that is intended to capture and formalize rudimentary
properties that we believe should be satisfied by any concrete framework for distributed
component systems to form a reasonable assembly theory. For this purpose we will
consider some abstract domains, operators, relations and laws that altogether form a
meta-theory for assemblies. Our starting assumption is that an assembly consists of a
finite set of components which can interact. Since components are encapsulated units,
we represent them by interface specifications (shortly called interfaces). Therefore we
consider an assembly as a (non-empty) finite set of interface specifications which fit
syntactically together according to some composability criterion.1 In the following we
are interested to collect a number of general properties that must be satisfied by a con-
crete framework to form an assembly theory.

As a basis we assume given a class F of interface specifications together with a
reflexive and transitive interface refinement relation � ⊆ F × F. For two interfaces
F and G , F � G means that F is a refinement of the interface specification G . We
denote by ℘fin(F) the class of the finite subsets of F. In general, not all elements of
℘fin(F) form assemblies. Usually there are some syntactic composability conditions
required for the members of an assembly. Hence, any assembly theory must first define
a particular class A ⊆ ℘fin(F) whose elements form valid interface assemblies. We
require that any assembly must have at least one element, that any interface induces a
(singleton) assembly and that non-empty subsets of assemblies are assemblies as well.
These conditions are stated in the first item of Def. 1. In order to combine assemblies
to larger ones we require a partial assembly composition operator � which is defined,
if and only if, the union of two assemblies is an admissible assembly again. We require
that an assembly theory must offer a packing operation pack : A → F, which allows
us to encapsulate an assembly into a component interface by hiding the internals of the
assembly. Thus hierarchical assemblies can be constructed by using packed assemblies
as their components. To address behavioral compatibility of the interacting members of
an assembly, we introduce a communication-safety predicate cs ⊆ A on assemblies.

1 To be as abstract as possible, we deliberately take this simplified view not considering other
ingredients like ports, connectors etc.
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Similarly to interfaces, an assembly theory must also offer a reflexive and transitive
refinement relation for assemblies, denoted by # ⊆ A×A.

Some crucial properties relating composition, encapsulation, communication-safety,
and refinement are required for any concrete assembly theory. The properties (A1), (A2)
and (A3) specify in their (a) part straightforward rules for singleton assemblies.
Their (b) and (c) parts state compositionality requirements: (A1)(c) states that
communication-safe assemblies can be packed piecewise if the two components ob-
tained from packing A and B are communication-safe. At the end the still visible
boundary of the single packed assemblies must be hidden by applying another pack.

(A2)(b) deals with compositionality of communication-safety. If two commu-
nication-safe assemblies A and B are combinable, then for the result to be
communication-safe it suffices to check that the two components obtained from pack-
ing A and B are communication-safe. Hence, once A and B are locally “fine”, it
only remains to consider the interactions on the boundary between A and B . This im-
portant property supports also efficient communication-safety checking, since in con-
crete applications it is often possible to consider minimized versions of pack (A) and
pack (B). (A3)(b) and (c) formulate a compositionality requirement for refinement of
communication-safe assemblies. In part (b) local refinements are given and the other
assumptions are the same as for (A1)(c) and (A2)(b). (A4) is straightforward requiring
that encapsulation of communication-safe assemblies, which are in refinement relation,
leads to interfaces which are also in refinement relation. Another important property is
expressed by (A5) guaranteeing that refinements of communication-safe assemblies are
communication-safe.

Definition 1 (Assembly theory). An assembly theory (A,�, pack , cs ,#) over (F,�)
is given by

– a class A ⊆ ℘fin(F) of assemblies, such that
1. ∅ /∈ A,
2. for all F ∈ F, {F} ∈ A, and
3. A is closed under the formation of non-empty subsets,

i.e., if A ∈ A and ∅ �= B ⊆ A, then B ∈ A;
– a partial assembly composition operator� : A×A⇀ A defined by A�B = A∪B

if A ∪ B ∈ A, undefined otherwise;2

– an encapsulation operation pack : A → F,
– a communication-safety predicate cs ⊆ A (we will write cs (A) for A ∈ cs ), and
– a reflexive and transitive assembly refinement relation # ⊆ A×A,

such that for all F ,G ∈ F and A,B ,A1,A2,B1,B2 ∈ A the following holds:

A1. Compositionality of encapsulation:
(a) pack ({F}) = F .
(b) If A� B is defined, then {pack (A)}� {pack (B)} is defined.

2 � is commutative in the sense that for all A,B ∈ A, if A � B is defined then B � A is
defined and A � B = B � A. � is also associative in the sense that for all A,B ,C ∈ A,
if A � B and (A � B) � C are defined, then B � C and A � (B � C ) are defined and
(A� B)� C = A� (B � C ). This follows from the subset-closedness condition.
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(c) If A� B is defined, and if cs (A), cs (B) and cs ({pack (A)} � {pack (B)}),
then pack (A� B) = pack ({pack (A)}� {pack (B)}).

A2. Compositionality of communication-safety:
(a) cs ({F}).
(b) If A� B is defined, and if cs (A), cs (B) and cs ({pack (A)} � {pack (B)}),

then cs (A� B).
A3. Compositionality of refinement:

(a) If F � G , then {F} # {G}.
(b) If B1 � B2 is defined, and if Ai # Bi for i ∈ {1, 2}, then A1 � A2 is defined.
(c) If B1�B2 is defined, and if cs (B1), cs (B2), cs ({pack (B1)}� {pack (B2)}),

and if Ai # Bi for i ∈ {1, 2}, then A1 � A2 # B1 � B2.
A4. Preservation of refinement by encapsulation:

If A # B and cs (B), then pack (A) � pack (B).
A5. Preservation of communication-safety by refinement:

If A # B and cs (B), then cs (A).

From the laws of an assembly theory it follows that communication-safe assem-
blies can be constructed in an incremental manner, i.e. by enlarging the assembly by
one interface at a time, each time checking that the packed assembly up to now is
communication-safe with the additional interface.

Incremental design: Let A ∈ A be an assembly and let F ∈ F such that A∪ {F} ∈ A.
If cs (A) and cs ({pack (A),F}), then cs (A ∪ {F}).

Similarly, the following law of independent implementability is also a consequence
of the properties of an assembly theory.

Independent implementability: Let A,B ∈ A such that A # B and let F ,G ∈ F such
that F � G and B ∪ {G} ∈ A. If cs (B) and cs ({pack (B),G}), then A ∪ {F} #
B ∪ {G}.

The idea to consider assemblies as sets of components, automata, or interfaces is
present in many approaches in the literature; see e.g. CFSMs [7], the BIP frame-
work [3,13], team automata [8], component-interaction automata [9], and modal as-
semblies [15]. So it is an interesting question to what extent the concepts and laws from
above appear in the different frameworks. In [7] communication protocols are stud-
ied based on collections of communicating finite state machines. Communication is
asynchronous via queues and the focus there is particularly on communication prop-
erties, like specified reception (and how to check this), which could be used as a
communication-safety predicate in our sense. In the BIP framework systems of com-
ponents are considered together with particular interaction models, which are not (yet)
incorporated into our notion of an assembly. BIP provides, as required for an assembly
theory, a composition operator, it deals with certain properties of systems, like interac-
tion safety, and focuses on compositionality results much in the spirit of an assembly
theory. Compositionality results are also studied in [8] for systems of reactive transition
systems (playing the role of interfaces). Our notion of an assembly could be instantiated
by the concept of a composable system, and communication-safety by the notion of a
compatible system. Different synchronization strategies are applicable and interpreted
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via team automata. For the case of the synchronous product, [8] shows, in Cor. 9, a
compositionality result, which is very similar to property (A2) required for assembly
theories. In [9] systems of composable component-interaction automata are used as as-
semblies. [9] focuses merely on substitutability of components which is very much re-
lated to our principle of independent implementability. Communication-safety is not an
issue there. In [15] both communication-safety and refinement are studied using modal
I/O-transition systems (MIOs) as interfaces and systems of connectable MIOs as assem-
blies. We have defined there an ad hoc refinement relation for assemblies requiring that
the interfaces of abstract and concrete assemblies must be related by pairwise interface
refinements. This refinement relation is, however, far too restrictive and we will propose
a more flexible one in Sect. 4.3. We will see that the new assembly refinement relation
needs a reconsideration of the behavior model for assemblies indicating communication
errors such that the property (A5) for preservation of communication-safety is satisfied.

3 Modal I/O-Transition Systems and Weak Modal Refinement

We give a short introduction to modal I/O-transition systems (MIOs) and their refine-
ment. MIOs will be used hereafter as a basic framework to build a modal assembly the-
ory. Modal transition systems (MTS) have been introduced in [18] and later extended
by Input/Output alphabets in [17]. As a verification tool we use the MIO-workbench
presented first in [4]. We have chosen MIOs as our basic formalism since they allow
us to distinguish between transitions which are optional (may) or mandatory (must) and
thus support very well loose specifications and refinements. Like any labeled transi-
tion system also MIOs model actions by labels on the transitions. We distinguish four
kinds of actions and hence labels: input labels, output labels, communication labels and
the internal action τ . In contrast to Larsen et al. [17], internal actions are not explic-
itly named here but represented by the invisible action τ and communication labels are
added in our approach to model synchronous communication.

Each MIO is based on an I/O-labeling L = (IL,OL,TL) consisting of pairwise
disjoint sets of input labels IL, output labels OL, and communication labels TL, such
that τ /∈ IL ∪ OL ∪ TL. We write

⋃
L for the set IL ∪ OL ∪ TL of all labels of L.

The I/O-labeling of a MIO will be pictorially shown on its frame. For easier readability,
input labels will be suffixed with “?” and output labels with “!” on the transitions.

A modal I/O-transition system M = (LM , SM , s0,M , M , M ) consists of an I/O-
labeling LM = (IM ,OM ,TM ), a set of states SM , an initial state s0,M ∈ SM , a may-
transition relation M ⊆ SM × (

⋃
LM ∪ {τ}) × SM , and a must-transition relation

M ⊆ M , i.e. any must-transition is also a may-transition. A MIO M is called an
implementation if all transitions are must-transitions, i.e. M = M . The set of the
reachable states from the initial state s0,M of M w.r.t. may-transitions is denoted by

R(M ). For l ∈
⋃
LM ∪ {τ}, we write s l

M s ′ for (s , l , s ′) ∈ M and s l
M s ′ for

(s , l , s ′) ∈ M . Since M ⊆ M , s l
M s ′ implies s l

M s ′.
We consider two operators on MIOs, synchronous composition and hiding of com-

munication labels.

Synchronous composition. Two MIOs M , N with labelings LM = (IM ,OM ,TM ) and
LN =(IN ,ON ,TN ) resp. are composable, if their labels overlap only on complementary
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types, i.e.
⋃
LM ∩

⋃
LN = (IM ∩ ON ) ∪ (IN ∩ OM ). Hence, whenever a label is

shared, then it is either an input label of the first MIO and an output label of the second or
conversely.The synchronous composition of two composable MIOsM andN is denoted
by M ⊗sy N and defined as the usual product of automata such that transitions with
shared actions are performed (only) simultaneously. After composition the shared labels
become communication labels. A synchronization transition in M ⊗sy N is a must-
transition only if both of the single synchronizing transitions are must-transitions.

Composability and synchronous composition are straightforwardly extended to finite
sets of MIOs: A non-empty finite set A = {M1, . . . ,Mn} of MIOs is composable, if the
single MIOs Mi are pairwise composable. Then labels of each Mi can only be shared
with at most one other MIO Mj (j �= i). Since the synchronous composition is commu-
tative and associative (up to a bijection between states) the synchronous composition of
A can be inductively defined by

⊗sy
A = M1 ⊗sy . . . ⊗sy Mn .

Hiding. Hiding is used to build abstractions of labeled transition systems. Usually, hid-
ing is obtained by considering a specified set of previously visible actions as invisible.
In the case of MIOs we use a simple, uniform hiding operator which makes communi-
cation (obtained by previous compositions) invisible.

Formally, the hiding of communication labels of an I/O-labeling L = (IL,OL,TL)
is given by Lξ = (IL,OL, ∅) and the hiding of communications labels of a MIO M ,
denoted by M ξ, is defined by moving all communication labels on the transitions of M
to τ .

Weak modal refinement. The basic idea of modal refinement is that required (must)
transitions of an abstract specification must also occur in the concrete specification.
Conversely, allowed (may) transitions of the concrete specification must be allowed
by the abstract specification, but can be omitted in the concrete one. We will use the
weak form of modal refinement introduced by Hüttel and Larsen in [16] which supports
observational abstraction, i.e., internal transitions can be dropped and inserted as long
as the modalities and the simulation relation are preserved. Their definition assumes
distinguished sets of external and internal actions; here, external actions are given by
the input, output and communication labels of MIOs and the internal actions are given
by the single label τ . Since communication labels are considered to be visible, they
must be respected in the same way as input/output labels. This is important when we
consider assembly refinement which should respect communications.

For denoting sequences of transitions that abstract from silent transitions, we use the
following notation. Let M be a MIO with I/O-labeling LM = (IM ,OM ,TM ).

1. We write s τ̂
M s ′ if there is a (possibly empty) sequence of may-transitions from

s to s ′ all labeled by τ , and likewise for must-transitions. For l ∈
⋃
LM , we write

s
̂l

M s ′ for s τ̂
M r l

M t τ̂
M s ′, and likewise for must-transitions.

2. To express that a sequence of transitions is obtained by an arbitrary order of single

transitions involving only labels of a given set X ⊆
⋃
LM or τ , we write s

̂X
M s ′

for s
̂l1

M · · · ̂ln
M s ′ with n ≥ 0 and l1, . . . , ln ∈ X .
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Let M and N be MIOs with the same I/O-labeling. A relation R ⊆ SM × SN is a
weak modal refinement relation between M and N if for all (sM , sN ) ∈ R and for all
l ∈

⋃
LM =

⋃
LN the following holds:

R1. sN
l
N s ′N ⇒ ∃s ′M ∈ SM . sM

̂l
M s ′M ∧ (s ′M , s

′
N ) ∈ R.

R2. sN
τ
A s ′N ⇒ ∃s ′M ∈ SM . sM

τ̂
M s ′M ∧ (s ′M , s

′
N ) ∈ R.

R3. sM
l
M s ′M ⇒ ∃s ′N ∈ SN . sN

̂l
N s ′N ∧ (s ′M , s

′
N ) ∈ R.

R4. sM
τ

M s ′M ⇒ ∃s ′N ∈ SN . sN
τ̂

N s ′N ∧ (s ′M , s
′
N ) ∈ R.

Recall that any must-transition is also a may-transition. Hence, by (R3) and (R4),
must-transitions in M must be allowed by corresponding may-transitions in N .

M is a weak modal refinement of N , written M ≤∗
m N , if there exists a weak

modal refinement relation R between M and N such that (s0,M , s0,N ) ∈ R. If all
transitions of M and N are must-transitions, weak modal refinement coincides with
weak bisimulation. Obviously, weak modal refinement is reflexive and transitive. Two
MIOs M and N are equivalent, written M ≈∗

m N , if M ≤∗
m N and N ≤∗

m M , i.e. M
co-simulates N .

Weak modal refinement is preserved by synchronous composition and by the hiding
operator. The first statement extends the compositionality result of [16] to the case of
products with visible communication labels. The second statement follows from the
fact that any weak modal refinement relation witnessing M ≤∗

m N is also a weak
modal refinement relation witnessing M ξ ≤∗

m N ξ.

Proposition 1 (Preservation of weak modal refinement).
1. For i = 1, 2, let Mi ,Ni be MIOs such that Mi ≤∗

m Ni and let M1 and M2 (and
hence N1 and N2) be composable. Then M1 ⊗sy M2 ≤∗

m N1 ⊗sy N2.
2. Let M ,N be MIOs such that M ≤∗

m N . Then M ξ ≤∗
m N ξ.

4 A Modal Assembly Theory

4.1 Modal Interfaces and Modal Assemblies

A modal interface F is given by a modal I/O-transition system (MIO), whose I/O-
labeling LF = (IF ,OF , ∅) does not show communication labels. The labeling restric-
tion to the empty set of communication labels reflects the blackbox characteristics of
modal interfaces abstracting from communication. The class of all modal interfaces is
denoted by Fm. The notion of weak modal refinement (see Sect. 3) is directly appli-
cable to define refinement for modal interfaces. A modal interface F refines a modal
interface G , written F �m G , if F ≤∗

m G .3

We will now build a modal assembly theory over (Fm,�m). Only those (finite) sets
of modal interfaces are allowed to form a modal assembly, whose members are pairwise
composable; see Sect. 3.

3 The notation distinguishes between �m and ≤∗
m (Sect. 3), since �m is only applicable if the

labelings do not show communication labels.
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Definition 2 (Modal assemblies). The class Am ⊆ ℘fin(Fm) of modal assemblies
consists of all non-empty, composable (and hence finite) subsets A ⊆ Fm.

This satisfies the requirements of Def. 1, since (1) ∅ /∈ Am, (2) {F} ∈ Am for
all F ∈ Fm, and (3) Am is closed under non-empty subsets. The composition of two
modal assemblies A and B is denoted by A �m B . Hence A �m B = A ∪ B if
A ∪ B ∈ Am and undefined otherwise. Fig. 1 show the pictorial representation of a
modal assembly consisting of three pairwise composable interfaces F1, F2, and F3.

�interface� F1

x! z?

�interface� F2

y! x?

�interface� F3

y? z!

�assembly� A

x

yz

Fig. 1. A communication-safe modal assembly

4.2 Communication-Safety and Encapsulation of Modal Assemblies

In this work we define a communication-safety notion which is equivalent to the one
in [15]. We will, however, use a different technical definition based on the explicit in-
troduction of MIOs with error states. With this new definition we can generalize weak
modal refinement to take into account errors states, which will lead to a new and pow-
erful refinement notion for modal assemblies such that communication-safety is pre-
served. Our notion of communication-safe assembly is inspired by the notion of weak
modal compatibility in [4]. This compatibility notion, as well as the compatibility no-
tions in [10,12] and [17], rely on the assumption that outputs are autonomous and must
be accepted by a communication partner while inputs are subject to external choice
and need not to be served. Hence the discrimination of inputs and outputs is essential.
Strong modal compatibility is based on the idea that whenever one component wants to
send an output it finds the communication partner in a state, in which it must take the
corresponding input immediately. Weak modal compatibility is more liberal, since it is
sufficient if the communication partner must accept the message possibly after perform-
ing first some silent must-transitions. But in practice this compatibility requirement is
still too strong. Therefore we generalize weak compatibility further and allow the com-
munication partner to take the input only after performing silent must-transitions and/or
mandatory communications with other components of the assembly and/or outputs on
must-transitions which are directed outside of the assembly. This works well because,
assuming communication-safe developments, these (open) outputs are again guaranteed
to be taken, possibly after a delay, when an assembly is further extended.

For the technical definition of communication-safety we will first introduce a formal
definition of the behavior of a modal assembly, which will be represented by a MIO
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extended by explicit error states in the case that communication errors occur during ex-
ecution of the assembly. Let A = {M1, . . . ,Mn} be a composable set of MIOs and let
Mj ∈ A. Then the rest A \ {Mj } plays the role of the environment for Mj . We must
ensure that in any reachable state of the product

⊗sy A, whenever Mj wants to send an
output l , then Envj =

⊗sy
A \ {Mj} must be able to take l as an input possibly after

some autonomous must-transitions which do not concern the communication with Mj .
These autonomous transitions can be silent must-transitions of Envj or must-commu-
nication transitions of Envj obtained from communication inside A \ {Mj }, but also
must-outputs of Envj are admitted which are not shared with the inputs of Mj . If such
a sequence of autonomous actions cannot be performed by Envj there is a communi-
cation error.

Definition 3 (Communication errors). Let A = {M1, . . . ,Mn} be a composable set
of MIOs (with n ≥ 1). If n = 1 there is no communication error. Otherwise, for each
1 ≤ j ≤ n , let Envj =

⊗sy
A \ {Mj}. The communication errors E (A) are given

by the set of pairs ((s1, . . . , sn), l) such that (s1, . . . , sn) ∈ R(
⊗sy A) and there is

1 ≤ j ≤ n with l ∈ OMj ∩ IEnvj , a state s ′j ∈ SMj with sj
l
Mj

s ′j but there are no
transitions

(s1, . . . , sj−1, sj+1, . . . , sn)
̂X j

Envj
· l

Envj
(s ′1, . . . , s

′
j−1, s

′
j+1, . . . , s

′
n)

with Xj = TEnvj ∪ (OEnvj \ IFj ).
4

Note that only communication errors occurring in the reachable part of the syn-
chronous product of A are considered.

Definition 4 (MIOs with error states). A MIO with error states (EMIO) is a pair
(M ,E ) consisting of a MIO M and a set of error states E ⊆ SM .

The error composition of MIOs is obtained by taking their synchronous product en-
riched by error states (if there are any) which are then reached by the un-accepted
communication labels l . The idea is similar to the consent operator introduced in [1] to
compose languages by indicating communication errors in traces.

Definition 5 (Error-composition of MIOs). Let A = {M1, . . . ,Mn} be a compos-
able set of MIOs and let P =

⊗sy
A. The error-composition of A is given by the EMIO⊗err

A = ((LP , SP ∪ E (A), s0,P , , P ), E (A))

with may-transition relation = P ∪ {(p, l , (p, l)) | (p, l) ∈ E (A)} .

The behavior of a modal assembly is given by the error composition of the modal
interfaces of the assembly. It may also be considered as the semantics of the assem-
bly. If no communication-error state appears in the assembly behavior, the assembly is
communication-safe.

4 Recall that TEnvj are the communication labels of Envj and (OEnvj \ IMj ) the output labels
of Envj unshared with the input labels of Mj , i.e., not used for communication between Envj

and Mj . The silent must-transitions of Envj are anyway subsumed in the notation
̂Xj

Envj
; see

Sect. 3.
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Definition 6 (Behavior of a modal assembly and communication-safety). Let A =
{F1, . . . ,Fn} ∈ Am be a modal assembly. The behavior of A is given by beh(A) =⊗err

A. A is communication safe, written as csm(A), if E (A) = ∅.

As an example, consider the assembly A in Fig. 1 and its (reachable) behavior shown
in Fig. 2. The assembly is communication-safe since there is no error state. In fact all
interfaces will be able to send their messages, possibly after a delay. For instance, F1

can send x to F2 after F2 has communicated the message y to F3.

y x z

x y z

Fig. 2. Behavior of the assembly A in Fig. 1

Consider now a slight variation of the assembly in Fig. 1 such that the order of the
input y? and output z! in F3 is reversed. Let us call this assembly A′; see Fig. 3. The
EMIO representing the (reachable) behavior of A′ is shown in Fig. 4; it contains three
error states. These are induced by the cyclic wait of the single interfaces in A′. Hence
the assembly A′ is not communication-safe. This example shows also that one cannot
deduce from pairwise communication-safety of the interfaces of an assembly that the
whole assembly is communication-safe. Indeed all pairs of interfaces in A′ would form
a communication-safe assembly.

�interface� F1

x! z?

�interface� F2

y! x?

�interface� F′
3

z! y?

�assembly� A’

x

yz

Fig. 3. Communication-safety does not follow from pairwise communication-safety

x y z

x y z

Fig. 4. Behavior of the assembly A′

The encapsulation of a modal assembly A by means of the modal pack operator is
simply defined by hiding communication labels (see Sect. 3) in the behavior of A and
forgetting the explicit discrimination of error states.
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y! x z?z y

x

(a) Behavior of assembly Ā

y! τ z?z y

x

(b) Modal interface packm(Ā)

y τ z

y z

(c) Behavior of assembly C̄

Fig. 5. Modal behaviors for assembly A in Fig. 1

Definition 7 (Encapsulation of modal assemblies). The modal pack operator packm :
Am → Fm is defined by packm(A) = M ξ with (M ,E ) = beh(A).

We have to verify that the required properties (A1) and (A2) of an assembly
theory are satisfied. First, we check (A1): (a) packm({F}) = F holds by defini-
tion. (b) Let A and B be modal assemblies such that A �m B is defined; then
{packm(A), packm(B)} ∈ Am since the MIOs underlying beh(A) and beh(B)
are composable and since hiding preserves composability. (c) Now let additionally
csm(A), csm(B), and csm({packm(A), packm(B)}) hold. Let (MA,EA) = beh(A),
(MB ,EB ) = beh(B), (MAB ,EAB ) = beh({MAξ,MBξ}), and (MA∪B ,EA∪B ) =
beh(A ∪ B); then ∅ = EA = EB = EA∪B = EAB and MA =

⊗sy
A, MB =

⊗sy
B ,

MA∪B =
⊗sy

(A ∪ B) = MA ⊗sy MB , and MAB = MAξ ⊗sy MBξ by the re-
quired communication-safety of A, B , and {packm(A), packm(B)}, and the resulting
communication-safety of A �m B using (A2)(b). Thus

packm(A �m B) = MA∪Bξ = MABξ = packm({packm(A)} �m {packm(B)}) .

We now check (A2): (a) csm({F}) is obvious since no communication errors
arise from a single modal interface. (b) Let A and B be modal assemblies such that
A �m B is defined; then {packm(A), packm(B)} ∈ Am follows from (A1)(b).
Now let additionally csm(A), csm(B), and csm({packm(A), packm(B)}) hold. Then
csm(A �m B) holds, since any communication error in A �m B would show up either
in A or in B or at the boundary of A and B which would be captured by a communica-
tion error of {packm(A), packm(B)}.

Let us demonstrate how the principle of incremental design (see Sect. 2) works for
the example assembly in Fig. 1. We start with the assembly Ā = {F1,F2}. The behavior
of this assembly is shown in Fig. 5(a). Obviously, Ā is communication-safe. We now
want to add the interface F3 to Ā. First, we pack the assembly Ā which yields the
modal interface packm(Ā) shown in Fig. 5(b). Then we consider the assembly C̄ =
{packm(Ā),F3} whose behavior is shown in Fig. 5(c). Obviously C̄ is communication-
safe and therefore, by the law of incremental design, the assembly A = {F1,F2,F3}
is also communication-safe. The incremental communication-safety check would, in
general, be much more efficient if we would minimize packed assemblies w.r.t. silent
transitions.
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Consider once more the assembly A′ in Fig. 3 and assume that we want to construct
it in an incremental way. Then we could start again with the assembly Ā = {F1,F2}
which is communication-safe. But now, for adding the interface F′

3, we have to con-
sider the assembly C̄′ = {packm(Ā),F′

3} and to check communication-safety. The
behavior of C̄′ is shown in Fig. 6; it has two error states. Hence, the incremental design
step would not succeed and anyway, as we know from before, the assembly A′ is not
communication-safe.

y z

y z

Fig. 6. Behavior of assembly C̄′

Conversely, we can not deduce from the communication-safety of an assembly
A �m B that (i) {packm(A), packm(B)} is communication-safe and we can also not
deduce that (ii) the sub-assemblies A, B are communication-safe. Hence the converse
direction of (A2)(b) does not hold. A counter-example for (i) is shown in Fig. 7(a).
We can observe that the assembly Q is communication-safe; its (reachable) behavior,
see Fig. 7(b), contains no error states. If we pack the sub-assembly {G,H} we obtain
the modal interface shown in Fig. 7(c). But the assembly {F, packm({G,H})} is not
communication-safe. The reason is that packm({G,H}) has an output b! in its initial
state, but the interface F can never accept this particular output as an input. It can only
perform an a communication with packm({G,H}) and then accept “another” b! output
of packm({G,H}) issued in another state.

�interface� G

b!

�interface� F

a! b?

�interface� H

a?

�assembly� Q

b a

(a) Modal assembly Q

a b

a b

(b) Behavior of assembly Q

b! a?

a? b!

a b

(c) Modal interface packm({G,H})
Fig. 7. Counter-example for (i)

A counter-example for (ii) is shown in Fig. 8. The whole assembly R is commu-
nication-safe, but the sub-assembly {G,F′} is not. The reason is that G has an output
b! in its initial state, but F′ has an open input a? before it can accept b? which is not
allowed. (Inputs are not subject to internal choice and we cannot be sure that an envi-
ronment will serve this input.)
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�interface� G

b!

�interface� F′

a? b?

�interface� H′

a!

�assembly� R

b a

Fig. 8. Counter-example for (ii)

4.3 Refinement of Modal Assemblies

For the refinement of modal assemblies we compare their behaviors. Since assembly
behaviors are MIOs with error states, we first extend the weak modal refinement notion
for MIOs (defined in Sect. 3) to EMIOs, such that error states are respected by the
refinement relation.

Definition 8 (Refinement of MIOs with error states). Let (MA,EA) and (MB ,EB)
be two EMIOs. (MA,EA) is a weak modal refinement of (MB ,EB), if MA ≤∗

m MB is
a weak modal MIO refinement witnessed by a refinement relation R ⊆ ((SMA \ EA)×
(SMB \ EB )) ∪ (EA × EB ) with (s0,MA , s0,MB ) ∈ R.

Definition 9 (Refinement of modal assemblies). A modal assembly A refines a modal
assembly B , written as A #m B , if beh(A) is a weak modal refinement of beh(B).

To get a modal assembly theory it remains to check that the conditions (A3), (A4)
and (A5) of an assembly theory are satisfied. We will provide a short proof for each.

(A3): (a) That F �m G implies {F} #m {G} is obvious. (b) Now let B1 �m

B2 be defined and let Ai #m Bi for i ∈ {1, 2}. Then A1 �m A2 is defined,
since Ai and Bi have the same I/O-labeling for i ∈ {1, 2}. (c) Let csm(B1),
csm(B2), and csm({packm(B1), pack

m(B2)}) hold additionally; then csm(B1 �m

B2) by (A2)(b). Let (MAi ,EAi ) = beh(Ai) and (MBi ,EBi ) = beh(Bi) for i ∈ {1, 2},
(MA1∪A2 ,EA1∪A2) = beh(A1 ∪ A2), and (MB1∪B2 ,EB1∪B2) = beh(B1 ∪ B2).
By the communication-safety of B1 �m B2, EB1∪B2 = ∅ and hence MB1∪B2 =⊗sy

(B1 ∪ B2) =
⊗sy

MB1 ⊗sy
⊗sy

MB2 . From the assumptions Ai #m Bi , we ob-
tain from (A5), to be proved momentarily, that csm(A1) and csm(A2). Hence, MAi =⊗sy

Ai and EAi = ∅ for i ∈ {1, 2}. By Prop. 1(1), we have
⊗sy

A1 ⊗sy
⊗sy

A2 ≤∗
m⊗sy

B1 ⊗sy
⊗sy

B2. It remains to ensure, that EA1∪A2 = ∅, i.e., MA1∪A2 =⊗sy A1 ⊗sy
⊗sy A2. But if (p, l) ∈ E (A1 ∪A2), then p ∈ R(

⊗sy A1 ⊗sy
⊗sy A2)

and there would be an output may-transition labeled l in one of the interfaces in A1∪A2,
say in an interface of A1. Then either l ∈ O⊗

sy A1
or l ∈ T⊗

sy A1
. By A1 ≤∗

m B1,
such a transition also would have to be available in B1. If l ∈ O⊗sy A1

, then the out-
put would be accepted using a series of must-transitions in B2 which do not affect B1,
since csm({packm(B1), pack

m(B2)}); this series of must-transitions would also have
to be present in A2 (up to must-τ ’s), as A2 ≤∗

m B2, and hence (p, l) /∈ E (A1 ∪ A2).
If l ∈ T⊗

sy A1
, then the l would be accepted using a series of must-transitions in A1

with possible outputs to A2, since csm(A1), and this series would be present also in B1

by A1 ≤∗
m B1. Again, these outputs are eventually accepted by B2 by must-transitions,

and thus by A2; hence (p, l) /∈ E (A1 ∪ A2).

                             



                                                     159

(A4): Let A #m B and let csm(B) hold. Let (MA,EA) = beh(A) and (MB ,EB ) =
beh(B). Then csm(B) implies EB = ∅, and thus, by (A5), EA = ∅ since A #m B .
MA ≤∗

m MB implies MAξ ≤∗
m MBξ by Prop. 1(2), i.e., packm(A) �m packm(B).

(A5): Let A #m B and let csm(B) hold. Let (MA,EA) = beh(A) =
⊗err A and

(MB ,EB ) = beh(B) =
⊗err

B . If an error state in EA would be reachable in MA,
then A #m B would imply that some error state in EB is also reachable in MB since
error states must be related to error states by a bisimulation. Thus csm(A) holds.

5 Conclusions

Our study is motivated by an extension of the abstract concepts of interface theories and
interface languages, introduced by de Alfaro and Henzinger, to take into account inter-
face assemblies. As a concrete formalism we have chosen modal I/O-transition systems
which we have adapted to take into account not only blackbox interface behaviors but
also assembly behaviors with distinguished (synchronous) communication actions. We
have shown that the compositionality and compatibility requirements of an assembly
theory are satisfied by modal assemblies.

In future work we are interested to study more instantiations of assembly theories, in
particular assemblies which rely on asynchronous and multi-cast communication, and
dynamic assemblies which may dynamically change the number of components and
their connections. A concrete assembly theory using asynchronous communication via
channel places can already easily be derived from the results for modal I/O-Petri nets
in [14]. In this approach communication-safety is expressed by the property of a “nec-
essarily consuming” Petri net. This property is compositional, decidable and preserved
by refinement. We also plan to extend the MIO-workbench [4] to check not only MIOs
but also modal assemblies and their communication-safety.
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