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1. Introduction

Power-law distributions (PLDs) are characteristic for complex systems [1-16]. Early
examples can be found in economics: for example, the Pareto distribution of wealth
reveals that the exponent f of the complementary cumulative distribution function
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p(x; > x)~x"" is in the range 1 < f§ <2 [2]. The corresponding probability density
function (PDF) reads p(x)~x~% with o« = f§ 4+ 1. More recent examples are the in-
come distribution of individuals in Japan 1998, showing a PLD with o =2.98 [3], and
the wealth distribution of the 400 richest people in the US 1996 with o = 2.36 [4].
Well-known cases of social networks comprise the actor collaboration network where
the number of links per actor follows a PLD with « =2.3 [1], and the science citation
network where the citation numbers of papers follow a PLD with o =3 [5]. Interest-
ingly, the size distribution of cities always follows Zipf’s law (i.e. a PLD with o =2)
quite exactly [6]. An interesting biological example is the PLD of the abundance of ex-
pressed genes (in more than 40 tissue samples of different species) where the exponent
is in the range 1.6 < o < 2 [7].

Two general mechanisms are discussed to account for the abundance of PLDs in
nonequilibrium systems: self-organized criticality [8] and stochastic multiplicative pro-
cesses [9]. Pure stochastic multiplicative processes do not generate PLDs [10], but
combined with transport processes [11], sources [12], boundary constraints [13], or
reset events [10] they actually do.

Although the dynamic processes leading to the observed PLDs certainly differ a lot in
detail, all the above-mentioned examples share one common feature: a finite resource is
distributed among the “agents”; e.g. wealth among individuals, citation numbers among
papers, inhabitants among cities, mRNA molecule numbers among genes, to name but
a few. In this paper we show that finite resources generically lead to PLDs. For that
purpose we study a minimal stochastic model, the normalization model. Its main feature
is as follows: if some agents collect more resources, others must get fewer, because
the sum remains fixed. The normalization procedure represents a new mechanism that
is sufficient for the underlying stochastic multiplicative process to produce stationary
PLDs.

As an application of the normalization model we expand in the second part of this
paper the scale-free (SF) model [1] that has been proposed for infinitely growing
networks. In particular, we include the fact that the maximum number of clicks to
web-sites is finite (eventually the number of people on earth, as well as the number of
clicks per person is finite). Technically, we have to generalize binary networks where
a link just exists or not to nonbinary networks with weighted connections between the
vertices.

In our network growth-saturation model the SF property only holds for the ini-
tial growth period; after long times a PLD of the number of clicks between differ-
ent web-sites arises being in agreement with the results of the general normalization
model.

2. The normalization model

Our system consists of a total number of n agents, each one possessing an amount
q; of some quantity (g; could be, for instance, the wealth of person i, or the number
of mRNA molecules of gene i). We deal with normalized values w; = ¢;/ Zj q;. At
each time step ¢, z agents (taken at random) obtain a new quantity w;(f) = x/n, an
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event which we term a “mutation” in the following. The stochastic variable x is taken
from an arbitrary distribution, in the following at first from the rectangular distribution
(x €[0,2a], a<n). After each time step the whole system is normalized again. Thus,
we study the stochastic, effectively multiplicative process:

Wi(t)/wie(t)  for z agents,

Wi(t+1)={ (1)

wi(t)/wi(t)  for the n — z remaining agents

with the stochastic normalization factor given by wy, () = Zj wit)+ 4 w;(¢). This
normalization of all quantities accounts for a complete relaxation of the disturbance
across the whole system.

After an initial time the system dynamics becomes independent of the initial condi-
tions w;(0). Let us assume that all ¢;(0) are taken from a uniform distribution (random
initial conditions). Then, we obtain for these normalized weights (w;(0)) ~ 1/n and
with large n, max w;(0) ~ 2/n. For a =1 this uniform distribution remains unchanged
for all z. However, for a < | the normalized weights which are not mutated grow larger
on average, and for a > 1 they decrease instead. For all distributions with (x) =a and
z<n it then follows that

(Wior) =(n —z + za)/n . (2)

In the following we first restrict ourselves to z=1, which means that the whole system
has been relaxed before a new change occurs. However, as we will show below, all
our results depend only very weakly on the value of z.

For z =1 it follows from (1,2) that nonmutated quantities approximately change
according to

wi(t)zwl-m)/(l -2 )

Fig. 1 depicts the evolution of all weights w;, i=1,...,n for the case with (a) a > 1,
and (b) a < 1. Note that a mutation at time step ¢ yields a discrete jump in the
dynamics of that specific weight. The case a > 1 leads to a situation that mimics a“red
queen world”, whereas a < 1 represents a “wu wei world” (in the kingdom of the red
queen one has to run as fast as possible to keep someone’s position [17], whereas a
wu wei world is just the counterpart: if one does nothing actively, everything is going
to be alright (in Chinese Taoism wu wei means nonaction)).

After an initial evolution a stationary distribution of the normalized weights w; arises
which is independent of the initial values. Fig. 2 depicts the complementary cumulative
distribution function p(w; > w) for different values of a.

Two different kinds of distributions are obtained for the two different “worlds”,
corresponding to ¢ > 1 and a < 1, respectively. The case with a > 1 yields a power-law
behavior for w; <1 and a cutoff at w. =2a/n, because for a > 1 and x € [0,2a] almost
no weight w; assumes a value larger than 2a/n. (It is only for the improbable situation
that one weight w; lies just below 2a/n with all remaining x-values being very small so
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Fig. 1. Evolution of the set of normalized weights in Eq. (1) w; with » = 100, z = 1, and random initial
conditions drawn from a box distribution with parameter (a) a=5 and (b) ¢ =0.5. The large dots depict the
evolution of three arbitrarily selected agents, the remaining small dots present the evolution of all remaining
ones. The three lines corresponding to the large dots exhibit the result of the approximation in (3) for these

selected three agents w;’s. The line that starts near 0.02 corresponds to the dynamics of an agent that is
prepared with an initial maximal weight w;(0) ~ 2/n.
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Fig. 2. Complementary cumulative distribution functions of the normalized weights w; for different values
of a, as indicated next to the corresponding lines. The small circles depict the distributions obtained with
the normalization model (7 = 1000; averaged over 500,000 mutations) after an initial time evolution of n?

mutations. The connecting lines denote the results of the nonlinear regression put forward with Egs. (5)
and (7).

that with the next step, due to normalization, a weight above 2a/n may be assumed.)
The simplest stationary PDF which obeys these features is constructed as follows:

Das1(w;)~w;* <2na - Wi) . 4)
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It then follows that the complementary cumulative distribution function (0 < o < 1) is
given by

1
Pa>1(Wi >w) :/ Pa>1(w;) dw;

w

_q_ w'=*Qa/n/(1 — o) — w/(2 — «)) 5)
Qa/ny=*(1)(1 =) = 1/(2 = 2)) -

Of course, the ultimate cutoff for all normalization systems is at maximal weight, i.e.

w = 1; thus (at least for large a) it could be important to add the factor (1 — w;)

in (4). Closer inspection shows that for marginal a-values (¢ =1+¢, ¢<1), or very

large values (a> 1) these cutoff-terms should be decorated with exponents # 1. Note,

however, that for all moderate a, such as the ones considered in Fig. 2, the simple

expression (4) already yields indeed very accurate results already, as can be deduced
from Fig. 2.

The case with a < 1 yields uniform distributions for w; < W := 2a/n and power-laws

for larger values with a cutoff at 1. The simplest corresponding PDF assumes the form

=c Yw; < W,
Pa<1(wi) (6)
- w1 —w)  Yw = W,
which in turn yields the complementary cumulative distribution function (o > 1)
cP< Yw < W,
Pa<i(Wi >w)= (7)
cP> Yw=W

with

wr o (1— Wi -
Po=(w- _
< ( W+1—W< -« 2o ))

P — w* l—wl_“_ 1 — w2
- 1—-w 1 —o 22—

we (1—wimr ]2\ \ !
¢ ( +1—W< I —a 2—ua )>

In order to determine the exponents o as a function of a, a nonlinear regression of
the complementary cumulative distribution functions based on (5) and (7) has been
invoked. Fig. 3 depicts that by setting o= f(a) excellent agreement can be obtained in
both cases, i.e. for both ¢ > 1 and a < 1, respectively, by use of the insightful ansatz:

o= f(a)=(1—a")’ expg(a,C) (8)

with g(a,C) = C/a for a > 1, and g(a,C)= (1 —a)¢ — 1 for a < 1.

As can be deduced from Fig. 3 the simple normalization model yields PLDs within
a wide range of power law exponents o. However, for most values a > 0 the resulting
exponents o are within the neighborhood of 1, which is also the case in the above

and
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Fig. 3. Nonlinear regression fit o = f(a) obtained with (5) for a > 1, see in the inset, and for
a<1, cf. (7). The circles (connected by solid lines) are simulation results of the normalization
model, the squares (connected by dashed lines) follow from nonlinear regression form using (8)
(@a>1:4=-096, B=47, C=43; a<1: 4=023, B=-09, C=14).

mentioned examples.! For a<1 and a>1 the exponent o approaches asymptotically
the value 1.

The qualitative results are nearly independent of the assumed distribution for x.
Generally, if only positive quantities (x > 0) are considered, “a < 1”’—characteristic

distributions are obtained if fol p(x)dx > floo p(x)dx. If x is taken from a Gaussian
distribution with (x¢) =a and o(xg)=a one obtains nearly the same function o= f(a)
as the one shown with Fig. 3. Interestingly enough, even quantitatively, the results
in Fig. 3 do depend only very weakly on the total number of agents n and mutation
number z. The relative deviations of the graphs o= f(a) are below 1% for, e.g., z=200
and 500, compared with the result for z =1 that is shown in Fig. 3. For z>1 p(w;)
resembles the rectangular distribution (o = 0).

As one application of our general normalization model let us draw the new value
of the mutated agents, x, as well as the number of mutated agents at a given time, z,
from two Gaussian distributions with (xg) = 6(xg)=0.15, and (z) = a(z) = 1000. For
this case one finds the mean Pareto exponent to read f=o — 1 = 1.5 [2]. Note here
the robustness of the result: with a rectangular distribution of x and z=1 we find for
a=0.15 «=2.3; i.e. a corresponding value for f=1.3. Thus, our normalization model is
indeed capable of explaining the main features of the underlying dynamical processes
that lead to the Pareto distribution of wealth: in short; if some people become richer,
others necessarily have to become poorer, and vice versa.

! Note that the power-law exponents o corresponding to a < 1 refer to the right branch of the comple-
mentary cumulative distribution function shown in Fig. 2. The exponents o corresponding to a > 1 refer to
the left branch. Therefore, in the limit case a = 1 we find two exponents: o = 0 (referring to the left, the
constant, branch, and o = oo, referring to the right, here the vertical branch.
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3. The network growth-saturation model

In this subsection yet another application of the normalization model procedure is
studied in greater detail. Many recent studies of network topology deal with non-
weighted links between the vertices (a link is either present or absent) as found,
for instance, in studies involving the internet [14], metabolic networks [15], or food
webs [16] and alike, [1]. Here we generalize the network consideration to a case with
weighted links (weight of a link €[0,1]). We take into account the fact that also the
resources which are distributed among the links of the network are finite. The cele-
brated SF model [1] which inherently considers infinitely growing undirected binary
networks is generalized accordingly. Our extension naturally comprises a saturation ef-
fect of the network growth at long times and even changes the network topology during
the network evolution dynamics. The original SF model works as follows: (i) Starting
with a small number (mg) of vertices, at every time step a new vertex with m(< my)
edges is added, and, (ii) the probability p that a new vertex will be connected to the
vertex i depends on the connectivity k; (i.e. the number of links of vertex i) of that
vertex and has the form: p(k;)=k;/>_ ;% The main result yields a linear growth of the
number of vertices N =m+¢ accompanied by a corresponding power-law connectivity
distribution [1].

We next add the following saturation mechanism: In real networks usually some
connections are stronger than others. In the WWW-example the vertices denote the
different web-sites and a connection between web-sites exists if there is a link between
them. The edges (links) can be weighted by the different number of the corresponding
clicks on the links (averaged over some time span). The quantity 7j; counts the number
of clicks from site i to site j in a fixed time interval (in contrast to the original SF
model we consider here directed links). With the total number of clicks 7; = Zij Ti
one obtains normalized values #; = T;;/T;. The nonbinary SF model now works as the
original binary one with the additional feature that the connections of the new vertex to
and from the old vertices assume a value #;;=x/N 2 (x uniformly distributed, x € [0, 2a]).
Note that we work with N? different weighted directed links between the N vertices,
including also the (return)-links to the individual vertex. After each addition of a new
vertex with its new connections we normalize all #; again. Thus, if N grows, (f;)
becomes smaller. Of course, during the growth evolution also 7; grows in reality and
thus during this time span the #;’s do not necessarily decrease. However, after some
initial transient time the normalized values f; necessarily do decrease. For the sake of
simplicity we assume the normalization procedure working from the beginning.

A binary network is then obtained from this non-binary one in the following way:
if #;; > ¢* the link is counted, otherwise it is not counted (the case t* =0 corresponds
to the original SF mechanism). However, note that very small values for #; can be
neglected (e.g. one click in 100 years). We assume that each vertex with no inputs
dies out. Thus, after long times a steady state is reached for this corresponding binary
web.

Fig. 4 depicts the number of vertices (nodes) N = f(¢) for different values of the
parameter a and #*. For a= 10, t* = 10~*, for instance, different large growth-intervals
again and again alternate with decline-intervals.
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Fig. 4. The number of vertices N(#) of the networks for different parameters a and ¢*. The inset depicts the
results for the same set ¢ and ¢* up to asymptotic times ¢ = 10, 000.

During the initial time evolution the growth mechanism dominates and the dynamics
works essentially equivalent to the original SF model. It comes at no surprise that within
this growth regime a power-law connectivity distribution emerges as well. However,
later on the average number of vertices begins to saturate, and the network does not
grow any further. A corresponding analysis shows that within the saturation regime
the maximum of the connectivity distribution is shifted towards the right. This is in
accordance with Barabasi’s “Model B” [1], where it was shown that without network
growth the corresponding connectivity distributions exhibit a distinct maximum. In our
network growth-saturation model, after saturation is reached, the normalized weights #;
follow a power-law, cf. Fig. 2. Just as in the normalization model we obtain o« < 1 for
a=10 and o > 1 for @ = 0.1. This result corroborates the recent finding that today’s
Internet seemingly also reaches a saturation stage.?

4. Discussion

With this work we could demonstrate that power-law distributions naturally arise in
systems with finite resources. We thereby conjecture that the normalization mechanism
is central and at work in many processes with PLDs in different real life, complex
systems. A main finding is that the power law exponents o assume values in a large
regime within the neighborhood of one. Other exponents can be obtained only for a
small fraction of the parameter space. To our knowledge this is the first model that

2 CEO of Nortel J. Roth (July 2001): “Data transfer in the webdoes not grow anymore.”; Press officer of
Denic (organization that performs registration of German Internet addresses) K. Herzig (April 2002): “There
is a saturation effect—The big euphoria is over.”
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principally can yield any value for the power law exponents o > 0. The general result
is robust and quite independent of all the details of the mechanism.

As we have shown (Fig. 2, Egs. (4)—(7)), in steady state our normalization model
yields two different classes of complementary cumulative probability distributions. For
a > 1 we obtain a distribution function with a power-law part with o« < 1, and for
a < 1 another distribution function with a power-law part with o > 1. It is interest-
ing to note that the latter, without the cutoff term, can also well be described by a
function which is the complementary cumulative of a generalized power-law function,
the Zipf~Mandelbrot distribution p(x)=5/(c +x)* (b,c,a > 0), which can be normal-
ized for oo > 1. This function can be rewritten as the so-called g-exponential function
p(x) = poexp,(—Ax) = po[l — (1 — q’)Ax]l/(l_q,), where pg = bc™*, A = o/c, and
qg =1+1/o. For g — 1 exp,/(—x) reduces to the usual exponential function exp(—x).
The g-exponential function arises naturally in the context of generalized, nonextensive
statistical mechanics [18]. This theory has successfully been applied to many different
complex systems under nonequilibrium conditions. Recent examples deal with urban
agglomeration [19], and the Internet [20], which additionally contains further references
of successful applications of Tsallis statistics.

As an application of our normalization model we have elucidated that the normal-
ization mechanism can be utilized to extend the SF network model to cover the case
with a saturation stage, too. The resulting network growth-saturation model exhibits
a power-law connectivity distribution only during the growth period, at later times
it crosses over towards a PLD for the weights of the corresponding links. In short,
our model predicts a PLD of the number of clicks between web-sites (after saturation
of the Internet is reached), a fact that can be put to a crucial test of our prediction in
the future.
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