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14.1 Introduction

A main obstacle for the experimental realization of a quantum computer is the unavoidable

coupling of the qubits to external degrees of freedom and the decoherence caused in that

way. A possible solution of this problem are error correcting codes. These, however, require

redundant coding and, thus, a considerably higher algorithmic effort.

Yet another route to minimize decoherence is provided by the use of time-dependent con-

trol fields. Such external fields influence the coherent and the dissipative behavior of a quan-

tum system and can extend coherence times significantly. One example is the stabilization of

a coherent superposition in a bistable potential by coupling the system to an external dipole

field [1, 2]. The fact that a driving field reduces the effective level splitting and therefore de-

celerates the coherent dynamics as well as the dissipative time evolution is here of cruical

influence. A qubit is usually represented by two distinguished levels of a more complex quan-

tum system and, thus, a driving field may also excite the system to levels outside the doublet

that forms the qubit, i.e., cause so-called leakage. While a small leakage itself may be tol-

erable for the coherent dynamics, its influence on the quantum coherence of the system may

be even more drastic. We demonstrate in this article that in a drivien qubit resonances with

higher states, which are often ignored, may in fact enhance decoherence substantially.

A related phemomenon has been found in the context of dissipative chaotic tunneling near

singlet-doublet crossings where the influence of so-called chaotic levels yields an enhanced

loss of coherence [3, 4].

14.2 The Model and its Symmetries

We consider as a working model the quartic double well with a spatially homogeneous driving

force, harmonic in time. It is defined by the Hamiltonian

H(t) =
p2

2m
− 1

4
mω2

0x2 +
m2ω4

0

64EB
x4 + Sx cos(Ωt). (14.1)

The potential term of the static bistable Hamiltonian, HDW, possesses two minima at x =
±x0, x0 = (8EB/mω2

0)1/2, separated by a barrier of height EB (cf. Fig. 14.1). The parameter

ω0 denotes the (angular) frequency of small oscillations near the bottom of each well. Thus,
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Figure 14.1: Sketch of the double well poten-

tial in Eq. (14.1) for D = EB/�ω0 = 2. The

horizontal lines mark the eigenenergies in the

absence of the driving; the levels below the bar-

rier come in doublets.

the energy spectrum consists of approximately D = EB/�ω0 doublets below the barrier and

singlets which lie above. As a dimensionless measure for the driving strength we use F =
S(8mω2

0EB)−1/2.

The Hamiltonian (14.1) is T -periodic, with T = 2π/Ω. As a consequence of this discrete

time-translational invariance of H(x, p; t), the relevant generator of the quantum dynamics is

the one-period propagator [2, 5–8]

U(T, 0) = T exp

(

− i

�

∫ T

0

dt HDW(t)

)

, (14.2)

where T denotes time ordering. According to the Floquet theorem, the Floquet states of the

system are the eigenstates of U(T, 0). They can be written in the form

|ψα(t)〉 = e−iǫαt/�|φα(t)〉, (14.3)

with

|φα(t + T )〉 = |φα(t)〉.

Expanded in these Floquet states, the propagator of the driven system reads

U(t, t′) =
∑

α

e−iǫα(t−t′)/�|φα(t)〉〈φα(t′)|. (14.4)

The associated eigenphases ǫα, referred to as quasienergies, come in classes, ǫα,k = ǫα+k�Ω,

k = 0,±1,±2, . . .. This is suggested by a Fourier expansion of the |φα(t)〉,

|φα(t)〉 =
∑

k

|φα,k〉 e−ikΩt,

|φα,k〉 =
1

T

∫ T

0

dt |φα(t)〉 eikΩt. (14.5)

                          
  

            
                        

        
                                 

                         
      

                                           
                                         

        
     

                      
      

                                 
 

                                                     
 

           



188 14 Decoherence in Resonantly Driven Bistable Systems

The index k counts the number of quanta in the driving field. Otherwise, the members of a

class α are physically equivalent. Therefore, the quasienergy spectrum can be reduced to a

single “Brillouin zone”, −�Ω/2 ≤ ǫ < �Ω/2.

Since the quasienergies have the character of phases, they can be ordered only locally, not

globally. A quantity that is defined on the full real axis and therefore does allow for a complete

ordering, is the mean energy [2, 8]

Eα =
1

T

∫ T

0

dt 〈ψα(t)|HDW(t) |ψα(t)〉 (14.6)

It is related to the corresponding quasienergy by

Eα = ǫα +
1

T

∫ T

0

dt 〈φα(t)| i� ∂

∂t
|φα(t)〉. (14.7)

Without the driving, Eα = ǫα, as it should be. By inserting the Fourier expansion (14.5), the

mean energy takes the form

Eα =
∑

k

(ǫα + k�Ω) 〈φα,k|φα,k〉. (14.8)

This form reveals that the kth Floquet channel yields a contribution ǫα + k�Ω to the mean

energy, weighted by the Fourier coefficient 〈φα,k|φα,k〉. For the different methods to obtain

the Floquet states, we refer the reader to the reviews [2, 8], and the references therein.

The invariance of the static Hamiltonian under parity P : (x, p, t) → (−x,−p, t) is vi-

olated by the dipole driving force. With the above choice of the driving, however, a more

general, dynamical symmetry remains. It is defined by the operation [2, 8]

PT : (x, p, t) → (−x,−p, t + T/2) (14.9)

and represents a generalized parity acting in the extended phase space spanned by x, p, and

phase, i.e., time t mod T . While such a discrete symmetry is of minor importance in classical

physics, its influence on the quantum mechanical quasispectrum {ǫα(S, Ω)} is profound: It

devides the Hilbert space in an even and an odd sector, thus allowing for a classification

of the Floquet states as even or odd. Quasienergies from different symmetry classes may

intersect, while quasienergies with the same symmetry typically form avoided crossings. The

fact that PT acts in the phase space extended by time t modT , results in a particularity:

If, e.g., |φ(t)〉 is an even Floquet state, then exp(iΩt)|φ(t)〉 is odd, and vice versa. Thus,

two equivalent Floquet states from neighboring Brillouin zones have opposite generalized

parity. This means that a classification of the corresponding solutions of the Schrödinger

equation, |ψ(t)〉 = exp(−iǫt/�)|φ(t)〉, as even or odd is meaningful only with respect to a

given Brillouin zone.

14.3 Coherent Tunneling

With the driving switched off, S = 0, the classical phase space generated by HDW exhibits

the constituting features of a bistable Hamiltonian system: A separatrix at E = 0 forms the
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border between two sets of trajectories: One set, with E < 0, comes in symmetry-related

pairs, each partner of which oscillates in either one of the two potential minima. The other set

consists of unpaired, spatially symmetric trajectories, with E > 0, which encircle both wells.

Torus quantization of the integrable undriven double well implies a simple qualitative pic-

ture of its eigenstates: The unpaired tori correspond to singlets with positive energy, whereas

the symmetry-related pairs below the top of the barrier correspond to degenerate pairs of

eigenstates. Due to the almost harmonic shape of the potential near its minima, neighboring

pairs are separated in energy approximately by �ω0. Exact quantization, however, predicts

that the partners of these pairs have small but finite overlap. Therefore, the true eigenstates

come in doublets, each of which consists of an even and an odd state, |Φ+
n 〉 and |Φ−

n 〉, respec-

tively. The energies of the nth doublet are separated by a finite tunnel splitting ∆n. We can

always choose the global relative phase such that the superpositions

|ΦR,L
n 〉 =

1√
2

(

|Φ+
n 〉 ± |Φ−

n 〉
)

(14.10)

are localized in the right and the left well, respectively. As time evolves, the states |Φ+
n 〉, |Φ−

n 〉
acquire a relative phase exp(−i∆nt/�) and |ΦR

n 〉, |ΦL
n〉 are transformed into one another after

a time π�/∆n. Thus, the particle tunnels forth and back between the wells with a frequency

∆n/�. This introduces an additional, purely quantum-mechanical frequency scale, the tun-

neling rate ∆0/� of a particle residing in the ground-state doublet. Typically, tunneling rates

are extremely small compared to the frequencies of the classical dynamics.

The driving in the Hamiltonian (14.1), even if its influence on the classical phase space

is minor, can entail significant consequences for tunneling: It may enlarge the tunnel rate by

orders of magnitude or even suppress tunneling altogether. For adiabatically slow driving, i.e.

Ω ≪ ∆0/�, tunneling is governed by the instantaneous tunnel splitting, which is always larger

than its unperturbed value ∆0 and results in an enhancement of the tunneling rate [9]. If the

driving is faster, the opposite holds true: The relevant time scale is now given by the inverse of

the quasienergy splitting of the ground-state doublet �/|ǫ1− ǫ0|. It has been found [9–11] that

in this case, for finite driving amplitudes, |ǫ1−ǫ0| < ∆0. Thus tunneling is always decelerated.

When the quasienergies of the ground-state doublet (which are of different generalized parity)

intersect as a function of F , the splitting vanishes and tunneling can be brought to a complete

standstill by the purely coherent influence of the driving — not only stroboscopically, but also

in continuous time [9–11].

So far, we have considered only driving frequencies much smaller than the frequency scale

ω0 of the relevant classical resonances. In this regime, coherent tunneling is well described

within a two-state approximation [11]. Near an avoided crossing, level separations may devi-

ate vastly, in both directions, from the typical tunnel splitting. This is reflected in time-domain

phenomena ranging from the suppression of tunneling to a strong increase in its rate and to

complicated quantum beats [12]. Singlet-doublet crossings, in turn, drastically change the

quasienergy scales and replace the two-level by a three-level structure.

Three-level Crossings

A doublet which is driven close to resonance with a singlet can be adequately described in

a three-state Floquet picture. For a quantitative account of such crossings and the associated
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Figure 14.2: Quasienergies (a) and mean energies (b) found numerically for the driven double well

potential with D = EB/�ω0 = 2 and the dimensionless driving strength F = 10
−3. Energies of

states with even (odd) generalized parity are marked by full (broken) lines; bold lines (full and broken)

correspond to the states (14.16) which are formed from the singlet |φ−

t 〉 and the doublet |φ±

d
〉. A driving

frequency Ω > 1.5 ω0 corresponds to a detuning δ = E−

t − E−

d
− �Ω < 0.

coherent dynamics, and for later reference in the context of the incoherent dynamics, we shall

now discuss them in terms of a simple three-state model, which has been discussed in the

context of chaotic tunneling [3, 13]. In order to illustrate the above three-state model and to

demonstrate its adequacy, we have numerically studied a singlet-doublet crossing that occurs

for the double-well potential, Eq. (14.1), with D = 2, at a driving frequency Ω ≈ 1.5 ω0 and

an amplitude F = 0.001 (Fig. 14.2).

Far outside the crossing, we expect the following situation: There is a doublet (subscript d)

of Floquet states

|ψ+
d (t)〉 = e−iǫ+

d
t/�|φ+

d (t)〉,
|ψ−

d (t)〉 = e−i(ǫ+
d

+∆)t/�|φ−

d (t)〉,
(14.11)

with even (superscript +) and odd (−) generalized parity, respectively, residing on a pair

of quantizing tori in one of the well regions. We have assumed the quasienergy splitting

∆ = ǫ−d − ǫ+d (as opposed to the unperturbed splitting) to be positive. The global relative

phase is chosen such that the superpositions

|φR,L(t)〉 =
1√
2

(

|φ+
d (t)〉 ± |φ−

d (t)〉
)

(14.12)

are localized in the right and the left well, respectively, and tunnel back and forth with a

frequency ∆/�.

As the third player, we introduce a Floquet state

|ψ−

t (t)〉 = e−i(ǫ+
d

+∆+δ)t/�|φ−

t (t)〉, (14.13)

                          
  

            
                        

        
                                 

                         
      

                                           
                                         

        
     

                      
      

                                 
 

                                                     
 

           



14.3 Coherent Tunneling 191

located mainly at the top of the barrier (subscript t), so that its time-periodic part |φ−

t (t)〉
contains a large number of harmonics. Without loss of generality, its parity is fixed to be

odd. Note that |φ±

d (t)〉 are in general not eigenstates of the static part of the Hamiltonian,

but exhibit for sufficiently strong driving already a non-trivial, T -periodic time-dependence.

For the quasienergy, we assume that ǫ−t = ǫ+d + ∆ + δ = ǫ−d + δ, where the detuning

δ = E−

t − E−

d − �Ω serves as a measure of the distance from the crossing. The mean energy

of |ψ−

t (t)〉 lies approximately by �Ω above the doublet such that |E−

d − E+
d | ≪ E−

t − E±

d .

In order to model an avoided crossing between |φ−

d 〉 and |φ−

t 〉, we suppose that there is a

non-vanishing fixed matrix element

b =
1

T

∫ T

0

dt 〈φ−

d |HDW|φ−

t 〉 > 0. (14.14)

For the singlet-doublet crossings under study, we typically find that ∆ � b ≪ �Ω. Neg-

lecting the coupling with all other states, we model the system by the three-state (subscript 3s)

Floquet Hamiltonian [3, 4]

H3s = ǫ+d +





0 0 0
0 ∆ b
0 b ∆ + δ



 (14.15)

in the three-dimensional Hilbert space spanned by {|φ+
r (t)〉, |φ−

d (t)〉, |φ−

t (t)〉}. Its Floquet

states are

|φ+
0 (t)〉 = |φ+

d (t)〉,
|φ−

1 (t)〉 =
(

|φ−

d (t)〉 cosβ − |φ−

t (t)〉 sinβ
)

, (14.16)

|φ−

2 (t)〉 =
(

|φ−

d (t)〉 sinβ + |φ−

t (t)〉 cosβ
)

.

with quasienergies

ǫ+0 = ǫ+d , ǫ−1,2 = ǫ+d + ∆ +
1

2
δ ∓ 1

2

√

δ2 + 4b2, (14.17)

and mean energies, neglecting contributions of the matrix element b,

E+
0 = E+

d ,

E−

1 = E−

d cos2 β + E−

t sin2 β, (14.18)

E−

2 = E−

d sin2 β + E−

t cos2 β.

The angle β describes the mixing between the Floquet states |φ−

d 〉 and |φ−

t 〉 and is an al-

ternative measure of the distance to the avoided crossing. By diagonalizing the matrix (14.15),

we obtain

2β = arctan

(

2b

δ

)

, 0 < β <
π

2
. (14.19)

For β → π/2, corresponding to −δ ≫ b, we retain the situation far right of the crossing, as

outlined above, with |φ−

1 〉 ≈ −|φ−

t 〉, |φ−

2 〉 ≈ |φ−

d 〉. To the far left of the crossing, i.e. for

                          
  

            
                        

        
                                 

                         
      

                                           
                                         

        
     

                      
      

                                 
 

                                                     
 

           



192 14 Decoherence in Resonantly Driven Bistable Systems

β → 0 or δ ≫ b, the exact eigenstates |φ−

1 〉 and |φ−

2 〉 have interchanged their shape [3, 12].

Here, we have |φ−

1 〉 ≈ |φ−

d 〉 and |φ−

2 〉 ≈ |φ−

t 〉. The mean energy is essentially determined by

this shape of the state, so that there is also an exchange of E−

1 and E−

2 in an exact crossing,

cf. Eq. (14.18), while E+
0 remains unaffected (Fig. 14.2b).

To study the dynamics of the tunneling process, we focus on the state

|ψ(t)〉 =
1√
2

(

e−iǫ+0 t/�|φ+
0 (t)〉 + e−iǫ−1 t/�|φ−

1 (t)〉 cosβ + e−iǫ−2 t/�|φ−

2 (t)〉 sinβ
)

.

(14.20)

It is constructed such that at t = 0, it corresponds to the decomposition of |φR〉 in the basis

(14.16) at finite distance from the crossing. Therefore, it is initially localized in the right well

and follows the time evolution under the Hamiltonian (14.15). From Eqs. (14.12), (14.16), we

find the probabilities for its evolving into |φR〉, |φL〉, or |φt〉, respectively, to be

PR,L(t) = |〈φR,L(t)|ψ(t)〉|2

=
1

2

(

1 ±
[

cos
(ǫ−1 − ǫ+0 )t

�
cos2 β + cos

(ǫ−2 − ǫ+0 )t

�
sin2 β

]

+

[

cos
(ǫ−1 − ǫ−2 )t

�
− 1

]

cos2 β sin2 β

)

, (14.21)

Pt(t) = |〈φt(t)|ψ(t)〉|2 =

[

1 − cos
(ǫ−1 − ǫ−2 )t

�

]

cos2 β sin2 β.

At sufficient distance from the crossing, there is only little mixing between the doublet and the

resonant states, i.e., sin β ≪ 1 or cos β ≪ 1. The tunneling process then follows the familiar

two-state dynamics involving only |φ+
d 〉 and |φ−

d 〉, with tunnel frequency ∆/�. Close to the

avoided crossing, cos β and sin β are of the same order of magnitude, and |φ−

1 〉, |φ−

2 〉 become

very similar to one another. Each of them has now support at the barrier top and in the well

region, they are of a hybrid nature. Here, the tunneling involves all the three states and must

be described at least by a three-level system. The exchange of probability between the two

well regions proceeds via a “stop-over” at hte top of the barrier.

14.4 Dissipative Tunneling

The small energy scales associated with tunneling make it extremely sensitive to any loss of

coherence. As a consequence, the symmetry underlying the formation of tunnel doublets is

generally broken, and an additional energy scale is introduced, the effective finite width at-

tained by each discrete level. As a consequence, the familiar way tunneling fades away in the

presence of dissipation on a time scale tcoh. In general, this time scale gets shorter for higher

temperatures, reflecting the growth of the transition rates. However, there exist counterintu-

itive effects: in the vicinity of an exact crossing of the ground-state doublet, coherence can be

stabilized with higher temperatures [1] until levels outside the doublet start to play a role.

                          
  

            
                        

        
                                 

                         
      

                                           
                                         

        
     

                      
      

                                 
 

                                                     
 

           



14.4 Dissipative Tunneling 193

As a measure for the coherence of a quantum system we employ in this work the Renyi

entropy [14]

Sα =
ln tr ρα

1 − α
. (14.22)

In our numerical studies we will use S2 which is related to the purity tr(ρ2). It possesses a

convenient physical interpretation: Suppose that ρ describes an incoherent mixture of n states

with equal probability, then tr(ρ2) reads 1/n and one accordingly finds S2 = ln n.

Floquet-Markov Master Equation

To achieve a microscopic model of dissipation, we couple the driven bistable system (14.1)

bilinearly to a bath of non-interacting harmonic oscillators [8, 15, 16]. The total Hamiltonian

of system and bath is then given by

H(t) = HDW(t) +

∞
∑

ν=1

(

p2
ν

2mν
+

mν

2
ω2

ν

(

xν − gν

mνω2
ν

x

)2
)

. (14.23)

Due to the bilinearity of the system-bath coupling, one can eliminate the bath variables

to get an exact, closed integro-differential equation for the reduced density matrix ρ(t) =
trBρtotal(t). It describes the dynamics of the central system, subject to dissipation.

In the case of weak coupling, such that the dynamics is predominatly coherent, the re-

duced density operator obeys in good approximation a Markovian master equation. The Flo-

quet states |φα(t)〉 form then a well-adapted basis set for a decomposition that allows for an

efficient numerical treatment. If the spetral density of the bath influence is ohmic [8, 16], the

resulting master equation reads [17, 18]

ρ̇αβ(t) = − i

�
(ǫα − ǫβ)ραβ(t) +

∑

α′β′

Lαβ,α′β′ρα′β′ . (14.24)

The time-independent dissipative kernel

Lαβ,α′β′ =
∑

k

(Nαα′,k + Nββ′,k)Xαα′,kXβ′β,−k

−δββ′

∑

β′′,k

Nβ′′α′,kXαβ′′,−kXβ′′α′,k (14.25)

−δαα′

∑

α′′k

Nα′′β′,kXβ′α′′,−kXα′′β,k

is given by the Fourier coefficients of the position matrix elements,

Xαβ,k =
1

T

∫ T

0

dt e−ikΩt〈φα(t)|x|φβ(t)〉〉 = X∗

βα,−k (14.26)

and the coefficients

Nαβ,k = N(ǫα − ǫβ + k�Ω), N(ǫ) =
mγǫ

�2

1

eǫ/kBT − 1
(14.27)

which consist basically of the spectral density times the thermal occupation of the bath.
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Figure 14.3: Time evolution of the state |φL〉 at the center of the singlet-doublet crossing found for

D = 2, F = 10
−3, and Ω = 1.5 ω0. The full line depicts the return probability and the broken line the

occupation probability of the state at the top of the barrier. The dotted line marks the Renyi entropy S2.

Panel (b) is a blow-up of the marked region on the left of panel (a).

Dissipative Time Evolution

We have studied dissipative tunneling at the particular singlet-doublet crossing introduced in

Sec. 14.3 (see Fig. 14.2). The time evolution has been computed numerically by integrating

the master equation (14.24). As initial condition, we have chosen the density operator ρ(0) =
|φL〉〈φL|, i.e. a pure state located in the left well.

In the vicinity of a singlet-doublet crossing, the tunnel splitting increases and during the

tunneling, the singlet |φt〉 at the top of the barrier becomes populated periodically with fre-

quency |ǫ−2 − ǫ−1 |/�, cf. Eq. (14.21) and Fig. 14.3b. The large mean energy of this singlet

results in an enhanced entropy production at times when it is well populated (dashed and

dotted line in Fig. 14.3b). For the relaxation towards the asymptotic state, also the slower

transitions within doublets are relevant. Therefore, the corresponding time scale can be much

larger than tcoh (dotted line in Fig. 14.3a).

To obtain quantitative estimates for the dissipative time scales, we approximate tcoh by the

growth of the Renyi entropy, averaged over a time tp,

1

tcoh
=

1

tp

∫ tp

0

dt′Ṡ2(t
′) =

1

tp

(

S2(tp) − S2(0))
)

. (14.28)

Because of the stepwise growth of the Renyi entropy (Fig. 14.3b), we have chosen the propa-

gation time tp as an n-fold multiple of the duration 2π�/|ǫ−2 − ǫ−1 | of a tunnel cycle. For this

procedure to be meaningful, n should be so large that the Renyi entropy increases substantially

during the time tp (in our numerical studies from zero to a value of approximately 0.2). We

find that at the center of the avoided crossing, the decay of coherence, respectively the entropy

growth, becomes much faster and is essentially independent of temperature (Fig. 14.4a). At a

temperature kBT = 10−4
�ω0 it is enhanced by three orders of magnitude. This indicates that

transitions from states with mean energy far above the ground state play a crucial role.
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Figure 14.4: Decoherence time (a) and Renyi entropy S2 of the asymptotic state (b) in the vicinity of

the singlet-doublet crossing for D = 2, F = 10
−3, and Ω = 1.5 ω0. The temperature is given in units

of �ω0.

As the dynamics described by the master equation (14.24) is dissipative, it converges in

the long-time limit to an asymptotic state ρ∞(t). In general, this attractor remains time de-

pendent but shares the symmetries of the central system, i.e. here, periodicity and generalized

parity. However, the coefficients (14.25) of the master equation for the matrix elements ραβ

are time independent and so the asymptotic solution also is. The explicit time dependence of

the attractor has been effectively eliminated by the use of a Floquet basis.

To gain some qualitative insight into the asymptotic solution, we focus on the diagonal

elements

Lαα,α′α′ = 2
∑

n

Nαα′,n|Xαα′,n|2, α 
= α′, (14.29)

of the dissipative kernel. They give the rates of direct transitions from |φα′〉 to |φα〉. Within a

golden rule description, these were the only non-vanishing contributions to the master equa-

tion to affect the diagonal elements ραα of the density matrix.

In the case of zero driving amplitude, the Floquet states |φα〉 reduce to the eigenstates of

the undriven Hamiltonian HDW. The only non-vanishing Fourier component is then |φα,0〉,
and the quasienergies ǫα reduce to the corresponding eigenenergies Eα. Thus Lαα,α′α′ only

consists of a single term proportional to N(Eα − Eα′). It describes two kinds of thermal

transitions: decay to states with lower energy and, if the energy difference is less than kBT ,

thermal activation to states with higher energy. The ratio of the direct transitions forth and

back then reads

Lαα,α′α′

Lα′α′,αα
= exp

(

−Eα − Eα′

kBT

)

. (14.30)

We have detailed balance and therefore the steady-state solution is

ραα′(∞) ∼ e−Eα/kBT δαα′ . (14.31)
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In particular, the occupation probability decays monotonically with the energy of the eigen-

states. In the limit kBT → 0, the system tends to occupy mainly the ground state.

For a strong driving, each Floquet state |φα〉 contains a large number of Fourier compo-

nents and Lαα,α′α′ is given by a sum over contributions with quasienergies ǫα − ǫα′ + k�Ω.

Thus, a decay to states with “higher” quasienergy (recall that quasienergies do not allow for a

global ordering) becomes possible due to terms with k < 0. Physically, it amounts to an inco-

herent transition under absorption of driving-field quanta. Correspondingly, the system tends

to occupy Floquet states comprising many Fourier components with low index k. According

to Eq. (14.8), these states have a low mean energy.

The effects under study are found for a driving with a frequency of the order ω0. Thus, for

a quasienergy doublet, not close to a crossing, we have |ǫα−ǫα′ | ≪ �Ω, and Lα′α′,αα is dom-

inated by contributions with n < 0, where the splitting has no significant influence. However,

except for the tunnel splitting, the two partners in the quasienergy doublet are almost identical.

Therefore, with respect to dissipation, both should behave similarly. In particular, one expects

an equal population of the doublets even in the limit of zero temperature in contrast to the

time-independent case.

In the vicinity of a singlet-doublet crossing the situation is more subtle. Here, the odd

partner, say, of the doublet mixes with the singlet, cf. Eq. (14.16), and thus acquires compo-

nents with higher energy. Due to the high mean energy E−

t of the singlet, close to the top

of the barrier, the decay back to the ground state can also proceed indirectly via other states

with mean energy below E−

t . Thus, |φ−

1 〉 and |φ−

2 〉 are depleted and mainly |φ+
0 〉 will be

populated. However, if the temperature is significantly above the splitting 2b at the avoided

crossing, thermal activation from |φ+
0 〉 to |φ−

1,2〉, accompanied by depletion via the states be-

low E−

t , becomes possible. Asymptotically, all these states become populated in a cyclic

flow.

In order to characterize the coherence of the asymptotic state, we use again the Renyi en-

tropy (14.22). According to the above scenario, we expect S2 to assume the value ln 2, in a

regime with strong driving but preserved doublet structure, reflecting the incoherent popula-

tion of the ground-state doublet. In the vicinity of the singlet-doublet crossing where the dou-

blet structure is dissolved, its value should be of the order unity for temperatures kBT ≪ 2b
and much less than unity for kBT ≫ 2b (Fig. 14.4b). This means that the crossing of the

singlet with the doublet leads asymptotically to an improvement of coherence if the temper-

ature is below the splitting of the avoided crossing. For temperatures above the splitting, the

coherence becomes derogated. This phenomenon compares to chaos-induced coherence or

incoherence, respectively, found in Ref. [3] for dissipative chaos-assisted tunneling.

14.5 Conclusions

For the generic situation of the dissipative quantum dynamics of a particle in a driven double-

well potential, resonances play a significant role for the loss of coherence. The influence of

states with higher energy alters the splittings of the doublets and thus the tunneling rates. We

have studied decoherence in the vicinity of crossings of singlets with tunnel doublets under

the influence of an environment. As a simple intuitive model to compare against, we have

constructed a three-state system which in the case of vanishing dissipation, provides a faithful
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description of an isolated singlet-doublet crossing. The center of the crossing is characterized

by a strong mixing of the singlet with one state of the tunnel doublet. The high mean energy of

the singlet introduces additional decay channels to states outside the three-state system. Thus,

decoherence becomes far more effective and, accordingly, coherent oscillations fade away on

a much shorter time scale.
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