
Towards Semantically-Enhanced
Distributed Service Discovery

Raphael Romeikat, Bernhard Bauer
Institute of Computer Science

University of Augsburg
Augsburg, Germany

{romeikat|bauer}@informatik.uni-augsburg.de

Abstract�In this paper, we present a new approach for service
discovery combining semantic web and peer-to-peer techniques.
A reference ontology is used to describe and discover services in
our approach. We do not need a central point of control at any
time. All information required for service description and
discovery is completely distributed across the nodes of a peer-to-
peer overlay network. We describe the design of a Semantically-
enhanced Distributed Discovery System (SDDS) allowing
dynamic and efficient registration and discovery of services. We
also present performance analysis and discuss open issues of our
system.

Keywords-service; discovery; peer-to-peer; ontology

I. INTRODUCTION

Services computing has become a strategic research area of
information technology. Its scope covers the whole lifecycle of
services including service creation, service deployment, service
discovery and service composition, to mention just a few
aspects. Amongst those, service discovery is an important field
as before a service can be invoked, it has to be located first. In
the meantime, services have also found their way into Grid
technologies. The Open Grid Services Architecture (OGSA) [1]
represents an evolution towards a Grid architecture based on
web service concepts and technologies.

Common service description languages such as the Web
Service Description Language (WSDL) offer a way to describe
abstract and technical functionalities of a service. They do not
include semantic information, so two services can have totally
different intentions although having similar or even the same
descriptions. Regarding automated service discovery and
composition, more than syntactical and technical information is
required. This is where semantic techniques come into play.
The formal meaning of syntactical data is usually specified by
adding meta-data. In that area, OWL-S [2] and SAWSDL [3]
are recent techniques, which help annotating services with
semantic information.

The present scheme of service discovery is based on
directories designed in a centralized or hierarchical way, just as
Universal Discovery, Description and Integration (UDDI) [4]
or the Globus Monitoring and Discovery System (MDS) [5].
Due to their design, such systems have two shortcomings.
Firstly, there is a performance issue as all communication flows
through a single component, which may become a bottleneck
when a lot of inquiries have to be processed at the same time.

Secondly, any centralized system represents a single point of
failure. This might be evaded using redundant data on multiple
servers, but the fundamental issue still persists. With a large
number of services and a large number of participants in a
system, distributed service discovery is the way to be preferred.

In this paper, we present a new approach for service
discovery called Semantically-enhanced Distributed Discovery
System (SDDS). Our approach avoids any bottleneck or single
point of failure and makes use of semantic information for
service discovery at the same time. The design of SDDS is
based on a structured peer-to-peer (P2P) overlay network,
where knowledge about the services is completely distributed.
All information necessary is self-organized in a structured
Chord ring. Every node within that ring represents a service
provider or a service requestor or both at the same time. As a
service may comprise several operations, we actually refer to
service operations rather than to services. We annotate input
and output parameters of service operations on the basis of a
reference ontology. Service operations are described and
discovered on the basis of these annotations. We do realize that
semantic service descriptions actually include more details
such as preconditions and effects. For the time being, we focus
on input and output parameters as a first step; further aspects
are to be added later.

There have been some approaches for service discovery
which try to avoid a centralized architecture and make use of
semantic information when describing and discovering
services. An approach which uses semantic descriptions of
services combined with a P2P network topology is described in
[6]. A drawback of this method is a lot of communication
overhead due to the unstructured underlying architecture.
Another approach is undertaken by METEOR-S providing a
solution based on a P2P network of UDDI registries including
semantic annotations, as described in [7] and [8]. However, the
architecture envisioned in METEOR-S suffers from a single
point of failure as there is only one single entry point to enter
the network of registries. The approach described in [9] is
similar to our one, but uses an unstructured P2P network. By
contrast, we specially target a structured network architecture
in order to enable efficient service discovery.

The rest of this paper is organized as follows. In chapter II,
we give an introduction to ontologies and P2P systems. In
chapter III, we describe the design of SDDS. Finally, open
issues are discussed in chapter IV of this paper, and a summary
is given in chapter V.

II. TECHNICAL BACKGROUND

A. Ontologies

An ontology is a data model representing concepts of a
certain domain and relations between them, whereas concepts
are called classes and relations are called properties. By the use
of ontologies, knowledge of a certain domain can be shared and
reused. There has been a lot of research about ontologies due to
the Semantic Web initiative started by Tim Berners-Lee [10].
Ontologies are a powerful technology enabling interoperability
and mechanical reasoning over web content. In the meantime,
specification of ontologies has been standardized by the W3C
consortium by introducing the Web Ontology Language
(OWL) [11].

We now regard a simplified and slightly modified version
of W3C�s ontology example about wines. There is a class
called Wine with two object properties describing the wine�s
color and maker, represented by the two classes WineColor and
Winery. The latter one is equivalent to a class Vineyard, which
itself is derived from a more general class Producer. Fig. 1
shows a graphical representation of this example.

Trying to find out the producer of a wine, one might search
for a service operation offering Wine as input and Producer as
output parameter. Probably, no service offers an operation with
exactly the signature desired. This will be the case if there are
two services, ServiceA offering OperationA with Wine as input
and Winery as output parameter, ServiceB offering OperationB
again with Wine as input but WineColor as output parameter,
for example. Surely, ServiceB is not applicable for finding out a
vine�s producer. However, it is a different matter with
ServiceA. Although OperationA returns Winery instead of
Producer, the result does satisfy the initial request. Regarding
the semantic information represented by the ontology, one can
see that Winery is equivalent to Vineyard and Vineyard is a
subclass of Producer, so Vinery is a specialization of Producer.
It is the task of our Semantically-enhanced Distributed
Discovery System to perform semantic conclusions concerning
equivalence and subclass properties within an ontology as
described in the wine example above.

B. P2P Systems

We now summarize peer-to-peer systems, as the
architecture of our discovery system is based on recent work in
that area. According to Foster and Iajnitchi, peer-to-peer
systems are decentralized, self-organizing, distributed systems,
in which all or most communication is symmetric [12]. Peer-to-
peer systems usually involve a large number of participants,
also called nodes or peers. Such networks are useful for a lot of
purposes. Sharing content files containing audio, video or other
digital data has become very common, but applications

Figure 1. Simple ontology about wines

using P2P technology for passing real-time data such as
telephony traffic have also gained attraction.

Starting in the nineties, several peer-to-peer based file
sharing systems have been developed. One of the first systems
was Napster, designed especially for sharing MP3 files
amongst participants [13]. Although Napster became very
popular, it implied a big drawback as it used a central index
server for locating users' files. The approach had limited
scalability and contained a single point of failure, which made
it quite easy for jurists to shutdown Napster after several legal
proceedings. Gnutella is another early file sharing system [14].
In contrast to Napster, there is no central authority to organize
the Gnutella network. Instead, each node is connected to a
couple of other nodes resulting in an unstructured overlay
network. The structure of the network is highly dynamic as
nodes constantly join or leave; most nodes remain in the
network for less than 24 hours. Gnutella uses a flooding-based
approach to route queries. In order to avoid flooding the whole
network, a time-to-live field and the number of hops along the
routing path are used to limit further routing at a certain point.
Gnutella�s highly distributed design eliminates a single point of
failure. However, the approach makes search results
indeterministic and does not guarantee that a file desired can be
reached at all, even if it exists at some distant node of the
network.

In order to overcome the shortcomings of early P2P
systems concerning resource discovery, distributed hash table
(DHT) approaches were introduced such as Pastry [15] or
Chord [16]. They construct structured overlay networks with
all nodes having equal roles and responsibilities. Different
routing algorithms are utilized in order to forward messages
purposively instead of flooding the whole network. Thus,
benefits of distribution are preserved while efficient retrieval of
objects is guaranteed, resulting in good scalability, fault
tolerance and low maintenance cost. Search results are correct
and complete. Correctness implies that only relevant objects
are found; completeness implies that all relevant objects are
discovered. A key technique used to achieve these goals is the
fact that each node only coordinates with a few other neighbor
nodes, typically O(log n) in an n-node network. When nodes
join or leave the network, only a limited amount of work is
necessary to keep the overlay structure. Such systems can
finish a search operation in O(log n) hops using O(log n)
messages, depending on the exact routing algorithm used.

III. THE DESIGN OF SDDS

In this chapter, we describe the design of our Semantically-
enhanced Distributed Discovery System. As mentioned
previously, we use a reference ontology to annotate parameters
of service operations. Each input and output parameter is
annotated with a class of the reference ontology. All semantic
annotations are stored decentralized in a Chord ring. One may
search for services at any peer by specifying one or more
classes as input or output parameters or both at the same time.
In our approach, the reference ontology is known to each
service provider and requestor. Like that, consistent usage of
terms is achieved. At the moment, the reference ontology is
used in a static way, so its structure and classes need to be
known at deployment time. We do not focus on a certain
language to specify service descriptions and semantic
annotations as our approach is a conceptual one.

Wine

WineColor

hasMaker

Producer

Winery

hasColor

Vineyard
equivalent

Class

isSubclassOf

A. Chord

The design of SDDS is based on the structured Chord
overlay network, which we describe now. In Chord, objects are
designated by a key, which may be a filename or any other
distinctive qualifier. Each node and each key is assigned a
unique m-bit identifier out of a circular identifier space
containing 2m identifiers. A node�s identifier is obtained by
hashing its IP address and port number; a key�s identifier is
obtained by hashing the key�s value itself. All nodes self-
organize into a ring topology in ascending order based on their
node identifiers in the circular space. Keys are assigned to
nodes using consistent hashing; i.e. key K is assigned to the
first node whose identifier is equal to or greater than the
identifier of K. This node is responsible for the resource with
key K and is called its successor node, signified by
successor(K). Please note that, due to the ring topology,
comparisons and calculations concerning identifiers are
performed modulo 2m. Chord�s consistent hashing mechanism
offers two benefits. Firstly, hash values created are evenly
spread with high probability. Secondly, only an O(1/n) fraction
of all keys are reassigned in case the responsible node leaves
the n-node network [17]. However, it is important to set m to a
value large enough in order to ensure that hash values of all
identifiers are disjoint. To simplify matters, we use the terms
node and key for their identifiers respectively.

Each Chord node basically maintains a set of successors,
called finger nodes. The finger nodes represent a node�s routing
information and are spaced exponentially around the identifier
space. The i-th finger of node N is the first node that succeeds
N by at least 2i-1 on the identifier circle, where 1 i m. The
first finger node (i = 1) is the immediate successor of N. Thus,
each node maintains at most m finger nodes in a so-called
finger table with size O(log n). Chord improves fault tolerance
and efficiency by additionally maintaining the predecessor and
a constant number of successors for each node. Fig. 2 shows a
Chord ring consisting of eight nodes storing three keys; the
finger nodes and finger table of node 38 are shown
exemplarily.

In order to lookup an object with key K, a node N will route
a lookup request to successor(K) as the latter one is the node
responsible for K. Based on its finger table, N forwards the
request to the finger node whose identifier most immediately

Figure 2. A Chord ring consisting of 8 nodes storing 3 keys

precedes K. By repeating this process, the request gets closer
and closer to successor(K). Finally, successor(K) receives the
lookup request for K and returns the respective object back to
node N. As finger nodes are spaced exponentially around the
identifier space, each hop clockwise from one node to the next
one covers at least half of the distance between N and
successor(K). This is why a lookup requires O(log n) routing
hops in an n-node network.

As nodes may join and leave the network, some effort is
necessary to maintain the ring topology. For this purpose, each
Chord node periodically runs a stabilization protocol in the
background ensuring each node�s successor pointer is up to
date. Basically, each node N asks for the predecessor of its
immediate successor N� at regular intervals. N itself will
usually be the response of such a query, of course. In case a
new node N�� joins the network between N and N�, N will
realize the change at the next run of its stabilization protocol.
Now, successor and predecessor pointers are updated and all
keys K with N < K N�� are reassigned from N� to N��. There
are two scenarios for a node leaving the network. If a node
leaves the network on purpose, it will first reassign all keys and
objects it is responsible for to its successor and inform its
successor and predecessor about being neighbors from now on.
The breakdown of a node is handled by the stabilization
protocol which again updates predecessor and successor
pointers. However, Chord does not provide fault tolerance for
the objects stored on a broken node; this data may be lost when
a node fails.

B. Ontology Managers

The underlying DHT mechanism of the Chord system
offers distributed lookup based on exact matches for a given
key. However, Chord does not support several types of queries
that are desirable in the field of services computing such as
multi-attribute queries or queries allowing for richer data
structures. Therefore, we extend the Chord system by putting
an additional management layer on top. This layer consists of
one Ontology Manager (OM) per peer and undertakes tasks the
basic Chord system cannot cope with. The Ontology Managers
collaboratively perform service discovery and deal with
registration of new service operations as well as deregistration
of existing ones at runtime. Appropriate interfaces are provided
by each OM. Fig. 3 shows the basic system model of SDDS.

The discovery mechanism of SDDS is not limited to exact-
match queries for input and output parameters as equivalence
and subclass properties within the reference ontology are taken
into account as well, as mentioned in chapter II.A. In order to
properly handle them, we need to be aware which classes can
be substituted by other ones when searching for service
operations. A class can obviously be substituted by another one

Figure 3. Basic system model of SDDS

OM

Chord

Node1

OM

Chord

Node2

OM

Chord

Node3

N1

N14

N21

N38

N46

N55

N32
K32

K8

K60

Finger Table
N38+1 N46
N38+2 N46
N38+4 N46
N38+8 N46
N38+16 N55
N38+32 N8

+32

+1
+2
+4

+8

+16

expressly specified as equivalent class, no matter if it is about
input or output. However, classes can be substituted by
subclasses or superclasses as well, depending if an input or
output parameter is desired. In the following, we use a set input
containing desired input parameters of the search and a set
output for output parameters respectively. Assume a search
with input = {C}, which means we are looking for service
operations accepting C as input parameter. A service operation
offering a superclass C� of C as input also satisfies the query,
because C� is more general than C and thus can be passed an
object of type C just as well. In object orientated programming,
this principle of substitution is known as contravariance. With
output parameters, it is just the other way round. Given a
search with output = {C}, another service operation offering a
subclass C�� of C as output also satisfies the query, because a
more special object is returned, which is even more information
than requested. This principle is also known as covariance. For
these purposes, we introduce the concept of substitutional sets.
substI(C) contains classes which can substitute an input
parameter C; substO(C) contains classes which can substitute an
output parameter C. Formal definitions of substI and substO are
given in (1) to (6).

C substI(C) (1)
C� equivalent to C C� substI(C) C� substI(C) (2)

C�� superclass of C� C� substI(C) C�� substI(C) (3)

C substO(C) (4)
C�� equivalent to C� C� substO(C) C� substO(C) (5)
C�� subclass of C� C� substO(C) C�� substO(C) (6)

Let us once more regard the example given in chapter II.A,
where a search for input = {Wine} and output = {Producer} is
performed. Instead of only searching for Wine and Producer
respectively, all classes in substI(Wine) as possible input and all
classes in substO(Producer) as possible output parameters are
considered. OperationA of ServiceA is a satisfying answer to
the query as its input parameter Wine is included in
substI(Wine) = {Wine} and its return parameter Winery is
included in substO(Producer) = {Producer, Vineyard, Winery}.

We now have a closer look onto how the Ontology
Managers perform service discovery. There are several steps
performed collaboratively by the peers. First of all, a query for
more than one parameter is split up into subqueries and each
parameter is processed separately. In our example, there would
be a subquery for Wine as input and another one for Producer
as output. For each input and output parameter desired, the
respective substitutional set is determined next, resulting in
substI(Wine) and substO(Producer). For each substitutional set,
service operations amongst all services are determined that
have a parameter matching with a class in the substitutional set
considered. Finally, the results of the subqueries are collected
and analyzed in order to filter those service operations that
require at most the input parameters provided and return at
least the output parameters requested.

Two major tasks are to be solved in order to realize this
approach in a distributed and efficient way. For both tasks, the
Ontology Managers take advantage of the underlying Chord
system. Firstly, the substitutional set is determined for each

parameter requested. As the reference ontology remains static
in our approach, we only calculate the substitutional sets for
each class of the reference ontology once at deployment time
and store them for later usage. Storage is performed in a
distributed way using Chord�s consistent hashing mechanism.
The keys to be hashed are the names of the classes; the objects
to be stored are the substitutional sets. Like that, each class C
of the reference ontology is assigned to a certain node that is
responsible for C and stores substI(C) and substO(C). This
structure is also called inverted vertically partitioned index
[18]. Such an index minimizes the cost of searches by ensuring
that no more than m nodes are responsible for answering a
query containing m classes. Like that, it takes O(log n) hops to
determine a substitutional set of one class in an n-node
network. Fig. 4 shows how substI(Producer) and
substO(Producer) are stored in a Chord ring, assuming
consistent hashing assigns the class Producer to node 1.

Secondly, starting from a substitutional set for a certain
parameter requested, matching service operations are
determined. Depending on the reference ontology�s size, the
substutional sets can become rather large, so processing each
class within a substutional set separately would not be a good
idea. Therefore, we store mappings of whole substitutional sets
onto service operations. Substitutional sets are not disjoint and
parameters usually occur in several substitutional sets, so this
approach requires more space for storage. However, this is a
good tradeoff as a lot of efficiency is gained for discovery. The
mappings described are again stored in a distributed way using
Chord�s consistent hashing mechanism. The keys to be hashed
are the substitutional sets; the objects to be stored are
references to appropriate service operations. Like that, each
substitutional set subst is assigned to a certain node that is
responsible for subst and able to return references to
appropriate service operations. Please note that it is not
necessary to distinguish between substI and substO at this point;
now the only task is to match the substitutional sets onto input
and output parameters of service operations. We also refer to
such matches as input and output matches, matchI and matchO.
Equations (7) and (8) give formal definitions of matchI and
matchO, where paramsI(Op) are the input and paramsO(Op) are
the output parameters of operation Op.

matchI(S) = {Op | PI paramsI(Op) . PI S} (7)
matchO(S) = {Op | PO paramsO(Op) . PO S} (8)

Given a substitutional set S, it takes O(log n) hops to
determine input matches matchI(S) and output matches
matchO(S), n being the number of nodes in the network. Fig. 5
shows how input and output matches of the set {Producer,
Vineyard, Winery} are stored at a certain node of a Chord ring,
assuming consistent hashing assigns S to node 32. We refer to
an operation Op of a service S as S.Op.

Figure 4. Storage of substitutional sets in a Chord ring

N1

C substI(C) substO(C)
Producer {Producer} {Producer,

Vineyard,
Winery}

Figure 5. Mapping of substitutional sets onto service operations
in a Chord ring

After determining input and output matches for each
parameter, the resulting service operations are filtered in such a
way that only those operations remain which require at most
the input classes provided and which return at least the output

classes desired. In other words, an operation is allowed to have
more output parameters than requested but must not have more
input parameters than specified. The result of the overall
discovery process is formally defined in (9) to (11). A
discovery for service operations on the basis of m classes in an
n-node network takes O(m log n) hops altogether, which lets
the system scale well, even if the number of nodes becomes
very high. Fig. 6 shows the steps that are performed in the
example about wines when searching operations with Wine as
input and Producer as output parameter, as described in
chapter II.A.

resultI = {Op | PI paramsI(Op) CI input . PI substI(CI) (9)
resultO = {Op | CO output PO paramsO(Op) . PO substO(CO) (10)

result = resultI resultO (11)

Figure 6. Discovery mechanism on the basis of the wine example

C substI(C) substO(C)
Producer {Producer} {Producer,

Vineyard,
Winery}

S matchI(S) matchO(S)
{Producer,
Vineyard,
Winery}

 {ServiceA.OpA}

S matchI(S) matchO(S)
{Producer}
{WineColor} {ServiceB.OpB}

S matchI(S) matchO(S)
{Vineyard,
Winery}

 {ServiceA.OpA}

{Wine} {ServiceA.OpA,
ServiceB.OpB}

C substI(C) substO(C)
Winery {Producer,

Vineyard,
Winery}

{Vineyard,
Winery}

WineColor {WineColor} {WineColor}

C substI(C) substO(C)
Vineyard {Producer,

Vineyard,
Winery}

{Vineyard,
Winery}

Wine {Wine} {Wine}

input={Wine},
output={Producer}

1: substI(Wine)?
2: substI(Wine) = {Wine}
3: matchI({Wine})?
4: matchI({Wine}) =

{ServiceA.OpA, ServiceB.OpB}
5: substO(Producer)?
6: substO(Producer) =

{Producer, Vineyard, Winery}
7: matchO({Producer, Vineyard, Winery})?
8: matchO({Producer, Vineyard, Winery}) =

{ServiceA.OpA}
9: result = {ServiceA.OpA}

N1

N14

N21

N38

N46

N55

N32

1

2

5

6

4 3

7 8

9

N32

S matchI(S) matchO(S)
{Producer,
Vineyard,
Winery}

 {ServiceA.OpA}

New service operations may be registered at runtime by any
peer, and existent ones may be unregistered as well. In both
cases, the substitutional sets are not affected as the reference
ontology remains the same. However, input and output matches
need to be updated. If a new service operation is registered, an
input match will be added wherever a substitutional set
contains a class corresponding to an input parameter of the
operation; output matches will be added for output parameters
respectively. With the design presented so far, all nodes would
have to be checked, so this would take O(m n) hops for an
operation containing m parameters in an n-node network. In
order to improve efficiency, additional knowledge is stored
telling which substitutional sets contain a certain class. Like
that, the number of hops required can be reduced to O(m log n).
Deregistration of existent service operations is performed
analogously.

IV. SUMMARY AND OPEN ISSUES

In this chapter, we summarize a couple of important
characteristics of SDDS before discussing open issues. First of
all, our system works completely decentralized avoiding any
central component that could become a bottleneck or single
point of failure. All nodes have equal roles and tasks. At the
same time, good scalability is achieved as the number of nodes
participating in the network may change without bounds. Even
with a very large number of nodes, discovery is performed
efficiently due to logarithmic number of hops necessary
compared to the number of nodes in the network. Furthermore,
our discovery mechanism guarantees correctness and
completeness of search results. Node failures do not impact the
structure of the system as they are resolved by Chord�s
stabilization protocol. Thus, SDDS offers attractive properties
of self-organization.

There are some open issues to be discussed. Firstly, our
approach assumes that service operations are fully specified.
However, it is worth to think about partly specifications and
smooth queries based on incomplete information. As
mentioned before, the structure of the system is resistant to
node failures. However, information stored at a failed node
may be lost. An appropriate replication mechanism would be a
desirable feature. Concerning the ontology involved, only
classes and hierarchical relations between them have been
regarded so far. More details need to be considered for fully-
fledged service discovery, such as properties, preconditions and
effects. Furthermore, our system is designed on the basis of a
static reference ontology. It would be desirable to allow each
peer having its own, possibly incomplete ontology, which is
completed by knowledge distributed over the network, as
proposed in [19], for example. Besides that, security issues
have not yet been addressed. In some environments,
information about service location could be considered
sensitive, so communication would require authentication and
authorization. Next, we will create a prototype implementation
of our system and perform measurements about performance
and scalability on the basis of a significant test series.

V. CONCLUSIONS

In this paper, we presented a new approach for service
discovery in a distributed and semantically-enhanced way. Our
system uses a reference ontology to annotate input and output
parameters of service operations. All information is completely

distributed over a structured peer-to-peer overlay network. We
illustrated the core algorithm and explained how it enables our
system to discover the service operations desired, even if there
is no service operation whose signature exactly matches the
parameters desired. This has been achieved by mapping the
structure of the reference ontology and the signatures of the
service operations onto a Chord ring. Furthermore, we
presented performance analysis of our system and showed that
the number of hops required to answer a query is logarithmical
compared to the number of nodes in the network, offering good
scalability for large networks. Based on our results, we think
the ideas presented in this paper will be useful for service
discovery in future services computing environments.

REFERENCES
[1] I. Foster, H. Kishimoto, A Savva et al, �The Open Grid Services

Architecture, Version 1.5,� GFD.80, Open Grid Forum, July 2006

[2] D. Martin et al, �OWL-S: Semantic markup for web services,� W3C
Member Submission, November 2004

[3] J. Farrell, H. Lausen, �Semantic annotations for WSDL,� W3C Working
Draft, September 2006

[4] L. Clement, A. Hately, C. v. Riegen, T. Rogers, �UDDI Version 3.0.2,�
OASIS Technical Committee Draft, October 2004

[5] The Globus Alliance, �GT Information Services: Monitoring &
Discovery System (MDS),� http://www.globus.org/toolkit/mds

[6] M. Paolucci, K. P. Sycara, T. Nishimura and N. Srinivasan, �Using
DAML-S for P2P discovery,� Proceedings of the 1st International
Conference of Web Services, Las Vegas, June 2003, pp. 203-207

[7] A. A. Patil, S. A. Oundhakar, A. P. Sheth and K. Verma, �METEROR-S
Web Service Annotation Framework,� Proceedings of the 13th
International World Wide Web Conference, New York, May 2004, pp.
553-562

[8] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar and J.
Miller, �METEOR-S WSDI: A scalable P2P infrastructure of registries
for semantic publication and discovery of web services,� Journal of
Information Technology and Management, January 2005

[9] F. Banaei-Kashani, C.-C. Chen and C. Shahabi, �WSPDS: Web Services
Peer-to-Peer Discovery Service,� Proceedings of the 5th International
Conference on Internet Computing, Las Vegas, June 2004, pp. 733-743

[10] T. Berners-Lee, J. Hendler and O. Lassila, �The semantic web,�
Scientific American, May 2001, pp. 34-43.

[11] M. K. Smith, C. Welty, D. L. McGuinness, �OWL Web Ontology
Language Guide,� W3C Recommencation, February 2004

[12] I. Foster and A. Iamnitchi, �On death, taxes, and the convergence of
Peer-to-Peer and Grid Computing,� 2nd International Workshop on
Peer-to-Peer Systems, Berkely, February 2003

[13] Napster, LLC, �Napster,� http://www.napster.com

[14] OSMB, LLC, �Gnutella.com,� http://www.gnutella.com

[15] A. Rowstron and P. Druschel, �Pastry: scalable, decentralized object
location and routing for large-scale peer-to-peer systems,� Proceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms, November 2001, pp. 329-350

[16] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek and H. Balakrishnan,
�Chord: a scalable peer-to-peer lookup service for internet applications,�
Proceedings of the ACM SIGCOMM Conference, San Diego, August
2001, pp. 149-160

[17] K. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin and R.
Panigrahy, �Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,� Proceedings of
the 29th Annual ACM Symposium on Theory of Computing, May 1997,
pp. 654-663

[18] P. Reynolds and A. Vahdat, �Efficient peer-to-peer keyword searching,�
Proceedings of the 4th International Middleware Conference, Rio de
Janero, June 2003, pp. 21-40

[19] F. Heine, M. Hovestadt and Odej Kao, �Towards ontology-driven p2p
grid resource discovery,� Proceedings of the 5th International Workshop
on Grid Computing, Pittsburgh, November 2004, pp. 76-83

