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ABSTRACT
Social robots become increasingly important in the domain of
healthcare and maintenance. Nutrition is not an exception: research
robots are used in several experiments to teach people about healthy
nutrition. Moreover, robotic products, whose task is to keep track
of the user’s nutrition, to provide tips, reminders, and to recognize
anomalies in health-related behaviors are on the way to market.
To convince users of a robot’s recommendations, speech is an im-
portant interaction modality. However, automatically adapting a
robot’s spoken advise depending on users’ behaviors is still a chal-
lenge. We address this issue by building Drink-O-Mender, an inter-
active installation, which includes a Reeti robot augmented with
additional sensing and adaptation abilities. The robot is designed to
offer drinks in a social setting. It aims to convince users of consum-
ing healthy drinks while adapting its spoken advices depending on
the users’ selected beverage choices. The installation is equipped
with custom hardware including a smartscale to sense the type and
quantity of consumed drinks. We describe the interactive installa-
tion in detail and demonstrate feasibility of generating adaptive
spoken advices by reporting on insights gained from exhibiting the
installation during a public event and observing interactions of 78
users with the robot.
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1 INTRODUCTION
The popularity of health and well-being related applications in app
stores suggest that people are increasingly interested in integrat-
ing technological solutions to monitor their individual everyday
activities and to reflect on their overall health and well-being. A
variety of specialized apps and devices can already be utilized to
track personal and behavioral data, including apps which apply ma-
chine learning techniques to improve the quality of nutrition data
logging on smart watches [5]. These developments open up new
possibilities for healthier and more sensible diets, particularly with
regard to the problem of obesity among western populations and
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studies showing that, for example sugar contents in some drinks
marketed to children are unacceptably high [3].

While diets may be considered a personal choice, food and drink
consumption is often a social activity, celebrated in public and
private spaces. Thus, tips and recommendations with regard to
healthy nutrition in homes and public gatherings need to be pro-
vided through adequate and socially acceptable interfaces for mul-
tiuser settings.We believe that social companions, such as embodied
social robots or contemporary voice assistants may be appropriate
for the task. In order to explore the idea of an intelligent social ro-
bot as a nutrition adviser we have implemented a prototype whose
aims is two-fold, (i) to shed light on the actual nutritional value of
different drinks, and (ii) to learn from interactions with a hetero-
geneous multitude of people how to convince the user to select a
more healthy one.

Drink-O-Mender consists of a social robot, which is placed on a
table together with different fruit juices and iced tea, and custom
hardware, which allows to sense the user’s selected beverage and
quantity. This data is used to optimize the robot’s information pre-
sentation strategy with the aim of supporting the user’s healthy
nutrition. We use a Reeti robot with an expressive face and text-to-
speech output since it has been shown that a three-dimensional
embodied avatar has some advantages in a three-dimensional envi-
ronment when it comes to human decision making [29]. In addition,
initial insights on the adaptation approach, the user acceptance
and usability of the prototype are provided, which we gained from
exhibiting the system for four hours at a public scientific event in
the field and observing interactions with more than 70 users.

The paper is structured as follows: Section 2 presents related
work involving social robots in the nutrition context as well as
adaptation based on Reinforcement Learning (RL). Section 3 gives
an overview of the interaction, learning, hardware and implemen-
tation. Section 4 describes first insights drawn from a scientific
exhibition where the prototype was shown to the general public.

2 RELATEDWORK
We split up related work in two research areas: (1) research about
social robots in the nutrition context, where they are employed to
support the user’s health (awareness) (2) Reinforcement Learning
for personalization of social robots, which adapt their behaviors to
improve or facilitate Human-Robot Interaction (HRI). Both areas
summarize important research and technology trends, which are
combined by our work.

2.1 Social Robots and Nutrition
Providing nutrition information is one of the applications provided
by current health assistance devices. The recently-developed do-
mestic robot Pillo [32] acts as a health manager for its family. Its
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main purpose is to dispense pills to family members, who are identi-
fied by face recognition, and to ensure that none of them miss their
scheduled doses. It also manages health-related appointments such
as sports training and supports video communication with medical
professionals or emergency calls to family members. Furthermore,
it is supposed to answer questions about the amount of calories in
certain foods. Mabu is another commercial robot with similar goals
which is currently under development.

Kidd and Breazeal [15] presented a robotic coach, which assists
people with weight loss and maintenance for long-term, supportive
care. Their anthropomorphic robot with head and eye movement
is able to carry out a short conversation regularly to talk about
daily goals for diet and exercise. Within the conversation, the user
has to report about the nutritional intake and amount of exercises
conducted, while the robot gives feedback, advice or suggestions
and makes small talk to evaluate whether the user enjoys the in-
teraction or not. In [16], the authors compare the talking robotic
interface with a touch-screen computer (same software but neither
head nor voice) and a paper log for tracking a user’s calorie in-
take and amount of exercise. Their results show that the long-term
motivation of subjects who used the social robot was significantly
higher than that of the other two groups and they also formed the
strongest “working alliance” with their assistive device.

Rich et al. [25] developed an Always-On companion agent to
support elderly people living on their own. The activities which
could be initiated by the agent also include counseling the user for
diet and exercise, which is a very personal topic. Therefore, the
agent is not allowed to bring it up before the relationship to the user
has reached a certain stage. The appropriate stage for each activity
is defined by the authors of the content plug-ins, as is the increase
in closeness gained by completing them. The system’s relationship
manager then schedules health-related conversations for a time
after the bond has been strengthened by less sensitive activities.

Cruz-Maya and Tapus [4] evaluated the role of embodiment and
voice in a multimedia learning scenario about nutrition and healthy
eating tips. In their experiment, the authors investigate whether
the robot’s physical embodiment improves learning in comparison
with a tablet only. Information about healthy diet is presented with
text and images as slides on a tablet user interface embedded in
a Kompai robot, accompanied with synthesized or recorded voice.
Their results did not show an improvement in the user’s learning
performance when using a robot, which according to the authors
could be attributable to the fact that participants concentrated only
on the tablet with the presented content.

Similarly, results by Hammer et al. [9] showed equal persuasion
for health-related recommendations (including nutrition) presented
either by a robotic elderly assistant or a tablet PC. However, the
robot was perceived as more usable, less complex and easier to
learn. Participants felt slightly more confident and had a slightly
stronger willingness to use it at home.

Learning about healthy nutrition is also subject of the research by
Short et al. [30]. Results of their study with 26 first-grade children
show an increase in engagement and high levels of enjoyment
when interacting with a DragonBot robot. The authors conduct a
Wizard of Oz (WoZ) experiment, where a teleoperator provides
dialog selection while the overall interaction flow is controlled
autonomously. Three nutrition topics are part of different learning

sessions: “packing lunch boxes”, which also includes selection of
non-sugary drinks, “choosing after-school snacks” and “building
balanced meals”.

Kruijff-Korbayová et al. [20] investigated the role of off-activity
talk as part of a system designed for long-term support of dia-
betic children. Their results show that off-activity talk impacts the
motivation of participants to play again with a NAO robot.

All in all, social robots provide the opportunity to increase human
awareness about health and nutrition in a world with growing
number of digital assistants and companions. They can provide
important related information in an engaging, multi-modal manner
in a diversity of environments.

2.2 Adaptive Social Robots
Social robots, which adapt their behaviors to human users, are used
in a variety of settings. This section outlines existing works based
on Reinforcement Learning [31], an on-line, autonomous machine
learning framework. Similar approaches include for example the
TAMER framework [19] and POMDPs, which are also used for
assistance in healthcare [13].

There are multiple options to provide the RL feedback signal
(reward) in HRI scenarios. Apart from task-related information like
user performance (e.g. in exercises/games), human social signals
can be used, including smile and gaze [8, 12, 21], laughter [35],
tactile [2] or prosodic [17] feedback, interaction distance, gaze
meeting, motion speed timing [23], gesture and posture [24, 27], or
gaze direction [6]. Another option is to use physiological data from
ECG [22] or EEG [34].

Application scenarios include for example learning of social
behavior [2], student tutoring [8], the assistive domain including
post stroke rehabilitation [33] and intervention for children with
autism spectrum disorder [22]. Similar to the scenario at hand,
which focuses on the adaptation of presented information through
speech, entertainment is one research area of social robots, where
speech and content presentation are of central importance, too.
Scenarios include Japanese Manzai [11], standup comedy [14, 18],
joke [35] and story telling [27], where presented contents or their
delivery (e.g. animation, sound or voice parameters) are optimized
in real-time for an individual user or a larger audience. RL is also
used to learn the best strategy for maintaining long-term user
engagement, for example when playing games [21].

Similar to the aforementioned examples, our adaptive approach
tries to assist the human with healthy nutrition. In contrast to Kidd
and Breazeal [15], we do not focus on tracking consumed food
but on optimizing the content of presented information via speech.
We use a social robot as interaction partner since additional social
behaviors expressed by the robot provide the ability to increase
the human’s interest [20] and embodied agents might also have
advantages in a three-dimensional environment particularly with
regard to human decision making [29].

To facilitate the process of sensing consumed drinks, we devel-
oped hardware which weighs the drinking vessel automatically
with a smartscale, so that it becomes no longer necessary to explic-
itly report this data via speech or text input. Moreover, the user’s
selected beverage is sensed by custom hardware, too. Both serve as
feedback signal in terms of reward for the adaptation process.
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3 AN ADAPTIVE ROBOTIC DRINK ADVISER
Social robots provide a range of possibilities for communication,
including speech, gaze or gestures. In the context of supporting the
user’s nutrition, the most obvious of them is speech. To convince
the human of healthy nutrition, our social robot does not only
present information, but is also equipped with an autonomous
learning process. It adapts the spoken content in terms of scripted
statements over time depending on the users’ selection of drinks.
Our prototype, which was shown at a public scientific exhibition,
optimizes the learned behavior not for individual users in terms
of personalization but for the average population. For this event,
the robot is equipped with a set of recommendations/statements in
different categories: they either put emphasis on the high amount
of calories in drinks with high nutritional value or draw attention
to those with the lowest amount of calories.

Figure 1 illustrates the general idea: a social robot presents in-
formation about several drinks to the user. Its overall goal is to
encourage healthy behavior by making the human aware of the nu-
tritional value. This information is stored in a database. It includes
the amount of calories, which is addressed in the robot’s utterances
presented to the human user. Moreover, it is used to calculate re-
wards for the learning process, which selects the robot’s statements
depending on the user’s beverage selection and quantity.

Custom hardware was developed to obtain this information and
to make Drink-O-Mender completely autonomous. It includes ves-
sel holders to identify the user’s selection and a smartscale, which
is able to act both as sensor and as actuator. While the ability to
light up and animate the built-in LED ring is mainly included for
facilitating the interaction to attract attention and to clarify the
internal state of the application, the sensor for weighing the cup is
essential for the adaptation process. Together with the information
from the vessel holders, this data serves as a basis to adapt the ro-
bot’s strategy (see Section 3.1). The approach was implemented in
a prototype, which combines the adaptive behavior and hardware
with a Reeti robot, including non-verbal behaviors.

3.1 Adaptation Process
Task of the robot is to convince the user of healthy nutrition by
exploring different formulations and their influence on the user’s
decision. For this purpose, a set of actions in the form of scripted
texts was prepared. Each of them has several alternatives with
the same semantic content, but different formulation to make the
interaction more varied. Goal of the adaptation process is to find
the most convincing action so that the user chooses a healthy drink.

Finding the most profitable action from a set of actions A over
a sequence of learning steps can be formalized as n-armed bandit
problem [31], a reduced form of Reinforcement Learning, as there is
no notion of state but only a set of actions to evaluate. For each time
step t , the bandit executes an action at ∈ A and receives a reward rt ,
which is used to calculate the action’s current value Qt (a). Actions
are selected by either choosing a random one (exploration) or the
greedy action a∗ (exploitation), which is the one with the highest
estimated value Qt (a

∗) = maxa∈AQt (a) at time t .
At the exhibition, content was focused on the amount of calories.

In our learning task, actions correspond to different categories of
scripted statements. Those in the first category try to discourage

Figure 1: Conceptual prototype setup.

the visitor from choosing drinks with high nutritional value by
explicitly highlighting this fact right away (e.g. “Grape juice has a
relatively high amount of calories. Apple and orange juice are in
the mid-field range.”). Conversely, the robot tries to draw attention
to those drinks with the lowest amount of calories in the second
category. More options can be included easily by adding more
statements or information about drinks for further experiments.

Each interaction starts with ϵ-greedy action selection, i.e. either
execution of a random action with probability ϵ or the greedy action
with probability 1−ϵ . After talking about the drinks, the user makes
his or her choice, selects a vessel, fills up a cup and drinks up. The
reward rt ∈ [0; 1] for learning is calculated based on the quantity
and drink properties from the database. It takes the quantity qt ,
maximum filling level qmax of the cup (both in milliliters) and
nutritional value kcalt of the drink into account, with kcalmax
being the maximum amount of kilo-calories of all drinks:

rt = 1 −
kcalt

kcalmax
·

qt
qmax

While the prototype optimizes with regard to the amount of calories
only (for example, drinking large quantities with high nutrient
concentration results in a low reward), reward calculation can be
easily adjusted for further experiments. At the end of the interaction,
the value Qt (a) of the selected action a is updated with ka being
the number of times that a has been executed so far:

Qt (a) =
ka − 1
ka

·Qt−1(a) +
1
ka

· rt

In general, adaptation allows to optimize behavior either for in-
dividual users which interact over a longer period of time, or for
multiple users. The prototype was presented in a non-laboratory
setting where people could not be identified and did not return to
the stand. Thus, we were interested in whether the robot adapts to
the rewards based on the data collected throughout all interactions
with a variety of persons (see Section 4.1).

3.2 Hardware Setup
In order to provide a reliable data source for reward calculation of
the adaptation process, custom sensor and actuator devices were
developed. A hardware overview is visible in Figure 2, details in 3.

3.2.1 Vessel Detection. First of all we needed a robust way to detect
which vessel was chosen by the user. For this taskwe 3D-printed five
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Figure 2: Hardware setup.

Figure 3: Electronics of the custom hardware prototypes.
Left / above two views of the scale: with and without the
3D-printed surrounding case. Below a top-view of themicro-
controller unit of the vessel holders with removed case top.

vessel holders, each containing an optical near-distance presence
sensor (APDS-99601). This type of sensor is also used in smart-
phones, for example to detect whether there is an object or ear in
front of the phone so that the display can be switched off.

The sensors are connected via five pin JST connectors to an
Arduino Pro Micro 3.3 V (ATmega32U4) micro-controller. Since all
sensors use the I2C bus and have the same address an I2Cmultiplexer
is required. We used the eight channel TCA9548A I2C multiplexer
breakout board from Adafruit2. The Arduino is connected via USB
to the PC. We implemented a firmware for the Arduino that is able
to switch between the sensors via the multiplexer and detects a
vessel with a maximum distance of about three centimeters. The
internal sample rate is reduced to about 10Hz. Whenever the state
of a vessel holder changes an event is sent to the PC using the USB
serial connection.

1https://www.broadcom.com/products/optical-sensors/
integrated-ambient-light-and-proximity-sensors/apds-9960
2https://learn.adafruit.com/adafruit-tca9548a-1-to-8-i2c-multiplexer-breakout/
overview

3.2.2 Smartscale. We developed a smartscale that is able to provide
information about the amount of fluid (weight) and the user pres-
ence in front of the system, which triggers or stops the interaction.
Additionally, it can be used as an actuator as it is possible to control
a RGB-LED (WS2812B) ring with 24 LEDs. It can be regarded as
an extended stationary version of the mobile smartscale presented
in [28].

To be able to measure the weight of a vessel placed on the scale
a loadcell with a maximum load of 5 kg is used. The loadcell is
connected to a HX711 analog-digital-converter with I2C. To detect
a user in front of the system we integrated an I2C Time-of-Flight
laser distance sensor breakout board from Pololu (VL53L0X3) which
is able to measure distances of up to 200 cm. The sensors and LED
ring are connected to a WeMos D1 mini ESP8266 micro-controller.
For this setup we did not require theWifi capability of the board but
as this controller provides much higher performance and memory
than an AVR-based Arduino it was easily possible to integrate
several LED color animations with a smooth refresh rate (30Hz)
while still being able to provide sensor data of the loadcell and
distance sensor of about 30Hz.

The brightness of the LEDs is reduced by software so that the
power (max. 500mA) of the USB 2 connection is enough to provide
a bright light of the LEDs which are easily visible even in a bright
environment. Short but high current peaks of the LEDs and micro-
controller are handled by an 1000 µF capacitor. WS2812B LEDs
require 5 V TTL logic so that a 3.3 V / 5 V level-shifter was required
to allow stable operation with the ESP8266.

The micro-controller is connected to the PC via USB and uses a
serial connection for communication. The LED color of the whole
ring and different animations can be set via the serial connection.

To provide good stability the loadcell was screwed between two
acrylic milk glass plates with a thickness of 3mm. A second acrylic
milk glass plate was glued with double-sided tape on top of the
upper plate so that the screws are hidden and the light of the RGB-
LEDs gets more diffused. The surrounding case of the lower part
was 3D-printed and the front plate, to which the distance sensor
is screwed to, has a slope of 30° so that a nearby human in front
of the smartscale can be detected. To protect the electronics from
accidentally spilled fluid a heightened rim out of an aluminum
profile was glued to the rim of the top plate.

3.2.3 Firmware. Sensor data processing is partly done by themicro-
controller but also by the sensors themselves. The calibrated weight
data is filtered with a moving average of four samples at a sample
rate of 30Hz by the ESP8266. A threshold is used to detect the
removal or reset of a vessel in the holders. Only state changes are
communicated by the ATmega32U4 firmware.

3.3 Data Processing and Interpretation
Further data processing and communication is done on the PC
which communicates with the sensors via serial connection. For
this task we developed a lightweight generic event stream proces-
sor called Eventerpretor. It allows the creation of multiple parallel
stream pipelines consisting out of threaded nodes which are con-
nected using LinkedBlockingQueues with timeouts to prevent locks.

3http://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html

https://www.broadcom.com/products/optical-sensors/integrated-ambient-light-and-proximity-sensors/apds-9960
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https://learn.adafruit.com/adafruit-tca9548a-1-to-8-i2c-multiplexer-breakout/overview
https://learn.adafruit.com/adafruit-tca9548a-1-to-8-i2c-multiplexer-breakout/overview
http://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
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The following abstract base node types exist: input, transform and
output. For this setup we used for example serial input nodes, mov-
ing average transform nodes, threshold transform nodes with delays
and postgresql and serial output nodes.

To communicate with a serial connection in both directions,
which is required for the smartscale, it is necessary to open just a
single connection. Multiple connections are usually not allowed by
the OS. To handle this problem a global manager was implemented
which is able to share the connections.

We added additional options to a threshold node, since, for ex-
ample, the distance sensor used for user detection should not imme-
diately switch to present and absent whenever the distance reached
or fell below a specific value. This node allows us to control the
delay for outputting the presence or absence. This was especially
required as it was expected that users just pass by the system or
shortly move out of the detection range of the distance sensor dur-
ing system interactions. Additionally, we used this node type to
prevent wrong weight values by shortly delaying the weight out-
put because the weight plate of the scale can slightly swing after
placing or removing a weight.

To communicate with other programs we decided to utilize the
postgresql database connection which is used to send notifications
and receive them without polling since the database was already
used to store drink data. This mechanism also offers an easy way
to add logging of the exchanged data in the future.

3.4 Interaction
The interaction itself was created with Visual SceneMaker [7], which
allows modeling agent behavior as parallel, hierarchical finite state
machines. It communicates with the hardware via postgresql notifi-
cations to trigger animations on the smartscale and to receive user
presence, current weight as well as the state of the vessel holders. A
specialized software module translates the SceneMaker’s command
messages for speech and animation actions to the Reeti API and
reports their execution status back to the application.

Reeti’s behavior is split up in two main states: idle and interac-
tion. The former triggers random comments, animations and gaze
behavior on the robot when no visitor is present. When a person
stands in front of the setup, the latter handles both low-level dialog
behavior (pronouncing and interrupting planned utterances) and
the procedure of small talk, presentation of drinks/offering them,
instructions, handling user inputs, hardware actuation and learning.

Figure 4 shows the part of the state machine which models
the high-level interaction flow. The interaction with the visitor
is grouped into several sections, each of which is represented by
a super-node containing the fine-grained actions. Most of these
super-nodes are executed in a linear manner, but we also included
branches for error handling. For example, we did not allow the
users to mix different juices because this would interfere with the
reward calculation for the learning process. Therefore, if the visitor
happened to pick up more than one juice vessel at the same time,
the robot would tell them to use only one.

After the greeting phase, Drink-O-Mender chooses a recommen-
dation strategy based on what has been learned from previous
interactions. According to the chosen strategy, Reeti either draws
attention to the two juices with the lowest amount of calories or to

Figure 4: Simplified state machine of the high-level interac-
tion flow.

Figure 5: Examples for Reeti’s facial expressions.
Left: happy. Right: confused.

the one with the highest amount, before informing the visitor that
the remaining two juices have a medium amount of calories). This
phase (labeled talk / RL action in Figure 4) has to take place before
the user picks up a juice vessel because otherwise the recommen-
dation would not be able to influence their choice.

3.5 Nonverbal Signals
To make the interaction with the robot more natural, we made use
of Reeti’s movable head and expressive face. The Reeti robot has
three degrees of freedom in the neck which enables it to look at
different points of interest, such as the scale or the visitor. During
the idle phase, the gaze target is chosen at random. In the interaction
phase, it is set explicitly at certain points in the dialog in order to
show Reeti’s attention focus. For example, Reeti looks at the visitor
when greeting him or her to show that it is aware of their presence.
However, when it tells the visitor to pick one of the juice vessels,
it turns its head down in order to draw attention to the items in
question. These movements are executed in parallel to the dialog
by means of a separate gaze state machine.

Furthermore, we use emotional facial expressions to illustrate
Reeti’s mood. For this purpose, we play back predefined animation
sequences for the servo motors in Reeti’s face. These motors then
move Reeti’s ears and eyelids or deform the robot’s silicon skin
around the mouth. During the interaction phase Reeti is mostly
smiling in order to make the visitor feel welcome and respected.
In case of error handling it would switch to a confused expression.
Its emotional state is more varied in the idle phase in order to
attract curious passers-by. During that phase, Reeti makes various
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Figure 6: Prototype setup at the exhibition with Reeti robot,
vessels, vessel holders and smartscale (front).

comments about the situation to express excitement, nervousness
or impatience about its upcoming performance, surprise about the
number of visitors, or neutral musings about colleagues who might
visit as well. The commands for the matching facial expressions are
embedded in the script for Reeti’s speech and executed while the
sentence is being spoken. Two expressions are shown in Figure 5.

4 LESSONS LEARNED
The prototype was presented in May 2018 at the “Lange Nacht der
Wissenschaft” (“Long Night of Science”), a popular scientific exhi-
bition in Augsburg, Germany, which took place for the very first
time with more than 2000 visitors (see Figure 7). Due to the non-
laboratory setting with noise and poor lighting (which precluded
the use of speech recognition or face tracking), the time limit, huge
rush and many factors beyond our control, this demonstration was
not intended as a formal evaluation. It did not include a question-
naire about the visitors’ background or their detailed perception
of our system. The interaction itself was designed to be relatively
short to accomodate the busy schedule of the visitors. We used this
opportunity to gain first subjective insights about the acceptance
and usability of the system.

4.1 Adaptation Results
Five drinks with different nutritional value were selected for the
exhibition (see Figure 6): tomato juice and iced tea (least calories),
apple and orange juice (medium calories) as well as grape juice
(most calories). In four hours, 78 visitor interactions were logged.
While the actual amount of people interacting with the robot was
higher, some of these interactions were not recorded because people
went away without finishing the interaction. Moreover, some of the
recorded interactions were not consistent or successful. For exam-
ple, some people did not understand the robot completely because
of noise or they did not wait until it completed its instructions and
mixed them up. Sometimes several people tried to interact at the
same time, which was not identifiable for the robot.

Figure 7: A visitor interacts with the robot.

Figure 8 plots the drink quantities and rewards for 78 recorded
interactions. It illustrates the connection between drink type, quan-
tity and reward, which is the measurement of “success” from the
algorithmic perspective: the higher the nutritional value, the lower
the reward. When looking at the robot’s “success” in terms of per-
suasion, i.e. whether the user selected a drink with low nutritional
value, the results are as following: tomato juice and iced tea were
chosen 21 times, apple and orange juice 25 times and grape juice
32 times. This indicates that spoken information about the calorie
intake alone might not be sufficient.

Ten of the interactions were not carried out in the intended
form, for example, some people put the much heavier vessel on the
smartscale instead of the cup, which is attributable to intentional
or unintentional misuse of the system (see Section 4.3). This can be
seen in the plot at any learning step where the measured quantity
exceeds the maximum capacity of the cup (100 milliliters), i.e. in
interaction 0, 2, 14, 15, 32, 43, 53, 58, 67 and 71. Depending on the
drink type, this caused the minimum reward value zero for grape
juice in interaction 14, 15 and 58 (see Section 3.1), since this was
the drink with the largest amount of calories.

During the exhibition, the exploration rate of the n-armed bandit
was set to ϵ = 0.2. As a result of the adaptation process, the robot’s
favored action was the one which explicitly emphasized the high
amount of calories of grape juice. The experiment showed that the
data from the hardware can serve as a reliable source for reward
calculation of the adaptation process, however, the argumentation
of the robot must be improved to assess whether the adaptation
approach really works.

4.2 Misleading Affordances
Most visitors assumed that the robot was capable of speech recog-
nition, which was not implemented because we had anticipated
that there would be too much background noise in this setting. One
reason for this expectation could be that the robot addressed them
using speech, so they tried to respond in kind. Another may be that
the robot appeared as a social being with a face, and therefore the
visitors tried to interact in a natural manner. For similar reasons,
many visitors expected the robot to use the eye cameras for face
tracking or tried to use gestures for indicating their selected bever-
age. These observations show that the robot needs to make better
use of human-like communication behavior in the future.
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Figure 8: Consumed drinks and rewards for all interactions.

There was also confusion about the scale: some users tried to
place the selected juice pack on it. One possible explanation could
be that we did not allow the cup to be filled on top of the scale
in order to avoid damage by spilled liquids. Therefore, the scale
was not occupied when a visitor picked up the juice pack, while
its prominent position and LED animation implied that something
needed to be placed on it. Since this affordance was visible long
before the cup was to be placed on the scale, it appears that the
visitors chose to interact with the scale using the only movable
item at that time.

4.3 Acceptance of the Robot
Overall, the visitors appeared to like the robot. Many of them called
Reeti cute (mostly women, but also at least two men), making
excited comments like “this one’s adorable. Oh god!” or “oh, there’s
a little robbie! Oh, that’s cute.” One person stated “I’ll take him with
me now, he’s funny”. A third visitor pointed out that Reeti appeared
non-threatening and rather submissive. These observations are in
line with the findings reported by Wu et al. [36]. According to
them, elderly people who were interviewed about assistive robots
preferred robot models which were small and discrete, especially
those they described as “lovely”, “cute” or “funny”, with a creature-
like appearance that was not too close to that of a human.

At least one visitor saw potential in asking Reeti for nutrition
information as opposed to manually searching via smartphone app,
and another one stated their desire to have something like that in
their own home. However, others were less enthusiastic about the
idea. One visitor said it would be “weird to set up such a thing”, and
another one believed that nobody would listen to the robot’s advice
because it was merely “a toy” without authority. Yet another chose
to interact with Reeti despite hating robots, but was more interested
in messing with the system to test its reaction. The latter two
observations may be caused by Reeti’s submissive appearance and
interaction style. To avoid patronizing the user, we had decided that
Reeti would only make polite suggestions, but would not criticize
the user for making a suboptimal choice. Furthermore, although
many people liked Reeti for its cute and non-threatening appearance
(see above), this factor may have contributed to its lack of authority,
leading them to take the robot less seriously.

In order to motivate the users, the robot needs to be both ap-
pealing and persuasive. Besides the physical appearance, finding
the proper balance between politeness and persuasiveness is still
an open challenge, since it depends on a multitude of situational

and individual factors [10]. It is likely that this aspect of our pro-
totype can be improved by adapting not only the content of the
recommendation, but also the manner in which it is presented.

Some users also wished for more information regarding the
drinks. One criticized the choice of juices, complaining about the
conventional farming methods used in their production, and stated
“he’s not informed enough for my liking, unfortunately.” Others
expected more detailed information about the actual content of the
filled cup. This implies that the user’s acceptance of the application
can be greatly improved by taking more than just the calories into
account. For example, the system could reason about vitamins or a
user’s preference for organic farming, and adding a speech interface
would enable Reeti to answer questions about those properties of
the available drinks.

5 CONCLUSION
We have outlined that a social robot capable of speech and facial
expression would be a promising interface to provide spoken nutri-
tion advice. To explore our assumption, we built Drink-O-Mender,
an adaptive system, consisting of a Reeti robot and additional sens-
ing hardware which enables the robot to adapt its spoken advice to
the type and quantity of drinks consumed by human users.

We have described the integrated adaptation mechanism to re-
ward or punish the robot’s behavior, which is based on a reduced
form of Reinforcement Learning. Our motivation for the specific
mechanism was to have the robot learn advising users in a manner
which would result in users choosing more healthy drinks, for ex-
ample, through steering the user away from high-calorie drinks and
drawing their attention to those with fewer calories. The presented
approach has several benefits, including (1) real-time adaptation in
the background, which allows to adapt the robot behavior immedi-
ately after each interaction, (2) easy to use hardware and robotic
interface, as the user only picks up the vessel and fills up the cup,
which is weighed automatically, and (3) a small footprint of the
smartscale and vessel holders. Furthermore, the system implements
a sensing option for consumed drinks based on custom hardware
instead of video or audio processing, which may be apt for privacy
sensitive studies including “in the wild” studies.

We have also provided valuable insights gained from observ-
ing users interacting with the robotic drink adviser during a public
event, such as how the robot’s (perceived) cuteness aroused interest,
but its lack of (attributed) authority was problematic. In our future
work, we aim to address the prototype’s learning process, which
should be expanded to explore and learn about different kinds of
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robot behaviors and their influence on the users’ drink selection.
One option is to incorporate politeness strategies for recommenda-
tions [10] or an interactive dialog system with different states of
information presentation [26] to optimize the robot’s strategy. We
also plan to explore alternative sensing techniques for the tracking
of different drink vessels, such as computer vision. Furthermore, we
intend to conduct a formal evaluation to measure the performance
of the learning algorithm and to confirm the subjective observations
made during this first public presentation.
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