
- 1 -

UNIVERSITÄT AUGSBURG

A UML profile and transformation rules

for semantic web services

Florian Lautenbacher

Report 2006-20 September 2006

INSTITUT FÜR INFORMATIK

D-86135 AUGSBURG

- 2 -

Table of contents

1 Introduction .. 4
2 Comparison and short revision of existing standards..................................... 6

2.1 UML 2.0 .. 6
2.2 OWL-S: Semantic Markup for Web Services ... 10
2.3 WSMO: Web Service Modeling Ontology ... 13
2.4 WSDL-S: Web Service Semantics .. 16
2.5 SWSF: Semantic Web Services Framework ... 16
2.6 Other Semantic Web Services approaches .. 19
2.7 ODM: Ontology Definition Metamodel .. 19

3 A meta-model for semantic web services... 21
3.1 Overview ... 21
3.2 Packages .. 22

4 A UML 2.0 profile for our meta-model ... 27
5 Overall example ... 31
6 Transformation rules .. 36

6.1 Transformation to OWL-S .. 36
6.1.1 Generation of the ontology .. 36
6.1.2 Generation of WSDL code... 36
6.1.3 Generation of OWL-S code ... 39

6.2 Transformation to WSMO... 41
6.2.1 Generation of the ontology .. 41
6.2.2 Generation of the WSMO web service .. 41

6.3 Transformation to WSDL-S .. 42
6.4 Transformation to SWSF... 43

7 XPand transformation rules to OWL-S.. 44
7.1 XPand rules for OWL .. 44
7.2 XPand rules for WSDL .. 47
7.3 XPand rules for OWL-S... 49
8 Related Work.. 57
9 Conclusions and Future Investigations... 58
Appendix A: OWL-S meta-model ... 59
References.. 60

- 3 -

Table of figures:

Figure 1: Categorization of Semantic Web Service languages 6
Figure 2: UML Core: type system ... 7
Figure 3: UML Packages, Classes, Properties and Associations 8
Figure 4: UML Activity: Activity nodes.. 9
Figure 5: UML Activity: Constraints ... 10
Figure 6: OWL-S meta-model: Service ... 11
Figure 7: OWL-S meta-model: Service Model .. 11
Figure 8: OWL-S meta-model: Service Profile.. 12
Figure 9: OWL-S meta-model: Service Grounding ... 12
Figure 10: WSMO top level elements.. 14
Figure 11: WSMO ontology .. 14
Figure 12: WSMO web service.. 15
Figure 13: WSMO goals .. 15
Figure 14: WSDL-S meta-model ... 16
Figure 15: SWSF Meta-model: FLOWS Core... 18
Figure 16: SWSF meta-model: Other Constraints ... 18
Figure 17: ODM: ontology, classes and properties.. 20
Figure 18: Profile dependencies... 21
Figure 19: Package overview for our meta-model ... 22
Figure 20: SWS meta-model for the ontology ... 23
Figure 21: SWS meta-model for interfaces, operations and messages 24
Figure 22: SWS meta-model for a service provider... 25
Figure 23: SWS meta-model for the process flow ... 26
Figure 24: SWS meta-model for the functional description of an action............... 26
Figure 25: Stereotypes: Ontology .. 27
Figure 26: Stereotypes: ServiceProvider.. 28
Figure 27: Stereotypes: Interfaces.. 28
Figure 28: Stereotypes ProcessFlow and Functional ... 29
Figure 29: Example: CongoOntology .. 32
Figure 30: Example: Documents.. 32
Figure 31: Example: Messages .. 32
Figure 32: Example: Interfaces .. 33
Figure 33: Example: XSD-Types... 33
Figure 34: Example: ServiceProvider with processes.. 34
Figure 35: Example: ExpressCongoBuy atomic process 35
Figure 36: Example: FullCongoBuy composite process flow 35
Figure 37: OWL-S meta-model ... 59

- 4 -

A UML profile and transformation rules for semantic
web services

Florian Lautenbacher

Programming Distributed Systems
Institute of Computer Science, University of Augsburg, Germany

lautenbacher@informatik.uni-augsburg.de

Abstract. This report describes a meta-model and UML profile for modeling
semantic web services and the automatic generation of code. It includes a de-
tailed comparison of current approaches, defines an overall meta-model consid-
ering all different semantic web service standards and describes transformation
rules as well in an informal way as using the openArchitectureWare language
XPand. The profile has been integrated into the tool-suite MID innovatorAOX
where we modeled the well-known example CongoBuy which was first intro-
duced in the OWL-S standard.

Keywords: UML, MDA, Semantic Web Services, OWL-S, WSMO, WSDL-S,
SWSF, ODM, openArchitectureWare, XPand.

1 Introduction

As the number of available web services is steadily increasing, the interest companies
have in discovering web services and having an automatic composition is getting
higher, too. Several organizations have already proposed web service composition
and modeling languages (the most prominent one is WSBPEL [14], but there are
many others like XPDL [15] for business-oriented workflows, BPML [16], BPMN
[17], etc.), but these standards lack a semantic description of services which can be
automatically interpreted by machines and can not be used to make an automatic
discovery or composition. To solve these issues several organizations and companies
focus currently on the development of semantic-enabled web service technologies.
Starting with OWL-S [6] several approaches have been submitted to the World Wide
Web Consortium (W3C) such as WSMO [6], WSDL-S [7] and SWSF [9], – each one
focusing on different aspects as the other ones. As the number of “standards” is get-
ting higher, the need for an independent way of describing semantic web services
increases, too, because the learning curve for the average service developer can be
steep for such languages.

The leading organization for object-oriented programming, the Object Manage-
ment Group (OMG), promotes the model-driven architecture (MDA, [4]) approach
towards the analysis, design and implementation of systems. MDA provides an open,

- 5 -

vendor-neutral approach to the challenge of business and technology change. It con-
sists of several layers (mostly cited as CIM, PIM and PSM) to specify a system inde-
pendently of computation, independent of the platform that supports it, specifying the
platform itself, choosing a particular platform for the system and transforming the
system specification into one for a particular platform and finally into executable
code. The primary goals of MDA are portability, interoperability and reusability
through an architectural separation of concerns between the specification and imple-
mentation of software. One of the key aspects is the usage of the Unified Modeling
Language (UML, [2]) to model all kind of aspects. UML (currently version 2.1 is
under development) is established in the section of computer science, but also easily
understandable for business experts (e.g. business process models as activity dia-
grams, see e.g. [28]) and supports with its well-defined meta-model (building on
MOF, [3]) model transformation and code generation.

To fulfill the need of an independent way of describing semantic web services we
developed a meta-model and UML-profile for semantic web services. The advantage
of using a UML profile is clear: one can model a service now and generate code using
one of the existing standards and if it is foreseeable that another standard becomes
accepted one can simply generate code using the other language, too. Our profile
should serve the following requirements:

- easy-to-understand and easy-to-use
- be compatible with current standards
- enable code generation
- include the modeling of ontologies (and rules)

Additionally we developed informal transformation rules to generate code from the
meta-model and implemented these rules using the openArchitectureWare-language
XPand [13]. Our UML-profile has been implemented in the UML tool-suite innova-
torAOX 2006 [12]. InnovatorAOX 2006 is developed by MID Enterprise Software
Solutions GmbH, Nuremberg, and provides a holistic standard tool environment for
object- and function-oriented software development as well as business process and
data modeling to help customers solve costly and risk-ridden problems that arise from
inadequate tools, software production processes and operational systems manage-
ment.

This report is organized as follows: In the next chapter we describe the already ex-
isting meta-models which we use and give a short explanation about each standard,
after that we introduce our approach in chapter 3, define a meta-model and show in
chapter 4 how it can be mapped to UML. In chapter 5 we show a short example how
the profile can be used. Then we define an informal description for transformation
rules (chapter 6), before we specify our transformation rules using the XPand lan-
guage of openArchitectureWare in chapter 7. Related work, other profiles and their
shortcomings are described in chapter 8. The last chapter gives a short outlook to
possible extensions and concludes.

- 6 -

2 Comparison and short revision of existing standards

To realize our meta-model we build on existing standards which are established or
are likely to establish in the near future. First, we will give a short introduction into
some parts of UML, after that we will describe the current semantic web service ap-
proaches named OWL-S, WSMO, WSDL-S and SWSF (which have all been submit-
ted to the W3C) before we show shortly two other semantic web service approaches
and conclude this chapter with a short summary of the ontology definition meta-
model (ODM). Figure 1 shows how the semantic web service submissions can be
categorized.

Figure 1: Categorization of Semantic Web Service languages

WSDL-S does not force to use a specific ontology language and therefore it does not
define any specific logic. It is only usable for single-step processes whereas the other
standards can handle multi-step processes, too. OWL-S builds on OWL which is
based on description logic (OWL DL). SWSF uses first-order logic and rules lan-
guages to model the ontology in its underlying language SWSL and WSMO offers
both logic layers for the modeling of ontologies in WSML.

2.1 UML 2.0

The Unified Modeling Language (UML) is a standard modeling language for visual-
izing (using the standardized graphic UML notations) and specifying the static struc-
ture, dynamic behavior and model organization. UML consists of a notation for de-

WSDL-S

OWL-S WSMO SWSF

no ontology language and
logic pre-defined

describtion logic
(DL)

first-order logic /
higher order logic

(FOL / HOL)

si
ng

le
-s

te
p

pr
oc

es
se

s
m

ul
ti-

st
ep

pr
oc

es
se

s

WSDL-S

OWL-S WSMO SWSF

no ontology language and
logic pre-defined

describtion logic
(DL)

first-order logic /
higher order logic

(FOL / HOL)

si
ng

le
-s

te
p

pr
oc

es
se

s
m

ul
ti-

st
ep

pr
oc

es
se

s

- 7 -

scribing the syntax of the modeling language and a graphical notation and a meta-
model which describes the static semantics of UML. The UML specification consists
of the Infrastructure [1]) which defines foundational language constructs required for
UML and of the Superstructure [2] which defines user level constructs (diagrams).
UML in its current version 2.0 offers the modeling of 13 different types of diagrams,
six for the modeling of system structures and details of the static system and seven
diagrams to model the dynamic behavior of a system.

Figure 2: UML Core: type system

The UML Core describes elements that are needed in most of the other packages
defined by the UML-Superstructure. An important feature is to have elements with a
type, which are called TypedElements in UML and where type can either be a
DataType or e.g. a Class (especially important in Class Diagrams for the modeling of
software systems).

- 8 -

Figure 3: UML Packages, Classes, Properties and Associations

The mostly used UML-elements and graphical notation are defined in the Classes
package. Class diagrams are widely common in software methodologies and are used
in the analysis (e.g. conceptual modeling of the domain) and design phase (platform
independent description as well as platform specific description) to describe classes
and interfaces with their attributes, operations and associations (including aggregation
and composition), but also generalization and dependencies among them. Class dia-
grams can be used for the definition of organizational models; in particular the static
aspects of the organizations, its associations and part-of relationships can be modeled.

- 9 -

Figure 4: UML Activity: Activity nodes

In the Activity-packages of UML the basic concepts for modeling a process flow are
defined. Activity modeling emphasizes the sequence and conditions for coordinating
lower-level behaviors. The actions coordinated by activity models can be initiated
because other actions finish executing, because objects and data become available or
because events occur external to the flow. Each action can have inputs and outputs
similar to the whole activity which can have parameters which can be grouped by
parameter sets.

- 10 -

Figure 5: UML Activity: Constraints

One can specify constraints, such as preconditions and effects, on an action as well as
on the whole activity. These constraints include expressions in a language such as the
Object Constraint Language (OCL).

2.2 OWL-S: Semantic Markup for Web Services

OWL-S (currently version 1.2 is developed) enables the discovery of services (that
meet particular requirements and adhere to specified constraints), invocation (by
agents or other services), interoperation (through specification of the needed vocabu-
laries), composition (automated service composition and synthesis to provide new
services) and verification (of service properties).

OWL-S builds on the formerly developed DAML-S and was one the first submis-
sion of a semantic web service to the W3C and currently gets a lot of support in
Northern America and Asia.

Each Semantic Web Service in OWL-S consists of a service profile, a service
model and a grounding (see Figure 6). The service profile describes what the service
does and is used to advertise the service. The service model answers the question
“how is it used?” and describes how the service works internally. Finally, the service
grounding specifies how to access the service (“how does one interact with it?”).

- 11 -

Figure 6: OWL-S meta-model: Service

To give a detailed perspective on how to interact with a service, it can be viewed as a
process. OWL-S distinguishes three kinds of processes: Atomic processes, Simple
processes and Composite Processes. Atomic processes are directly callable and corre-
spond to the actions a service can perform by engaging it in a single interaction; com-
posite processes correspond to actions that require multi-step protocols and/or multi-
ple server actions; finally, simple processes are not callable and not associated with a
grounding and only provide an abstraction mechanism to enable multiple views of the
same process.

Figure 7: OWL-S meta-model: Service Model

The service profile describes the functional and non-functional (e.g. service category)
parts of the process and has several parameters (such as Input or Output) and Expres-
sions like Precondition and Effect.

- 12 -

Figure 8: OWL-S meta-model: Service Profile

The grounding of a service specifies the details of how to access the service – details
having mainly to do with protocol and message formats, serialization, transport and
addressing. Only the service grounding deals with the concrete level of specification,
the service profile and model are only thought of as abstract representations. The
main aim of grounding is to concretely realize the inputs and outputs of an atomic
process as messages. These further carry the inputs and outputs in a specific defined
communicable form.

Figure 9: OWL-S meta-model: Service Grounding

OWL-S is based on the Web Ontology Language OWL and supplies web service
providers with a core set of markup language constructs for describing the properties
and capabilities of their web services in an unambiguous, computer-interpretable
form. For a detailed overview of the OWL-S meta-model, see appendix A.

- 13 -

2.3 WSMO: Web Service Modeling Ontology

Based on the Web Service Modeling Framework (WSMF) [26], the Web Service
Modeling Ontology Project (WSMO) [7] developed mainly by the Digital Enterprise
Research Institute (DERI) is a formal ontology and language that consists of four
different main elements for describing semantic web services:

- Ontologies: They provide the terminology used by other elements to describe
the relevant aspects of the domains of discourse.

- Goals: They state the intentions that should be solved by web services and are
representations of one or more objectives which need to be fulfilled.

- Web Services: A Web Service is a computational entity which is able to
achieve a part of or the complete goals a user seeks to fulfill. WSMO web ser-
vice descriptions describe various aspects of a service and consist of func-
tional, non-functional and the behavioral aspects of a web service.

- Mediators to resolve interoperability problems. They describe elements to
overcome interoperability and incompatibility problems between different ele-
ments on data (ooMediator), process (ggMediator, wgMediator) and protocol
level (wwMediator).

WSMO comes along with a modeling language (WSML) [27] and a reference im-
plementation (WSMX). WSML has four variants: WSML-Core which is based on the
intersection of Description Logic and Logic Programming and which is the least
expressive variant; WSML-DL which is an extension of WSML-Core and offers
similar expressive power as OWL-DL and is based on description logic, too. WSML-
Flight extends the Core (disjoint to WSML-DL) in the direction of Logic Program-
ming; WSML-Rule which extends WSML-Flight and thus offers the same kind of
conceptual modeling features and allows the use of function symbols and unsafe
rules. Finally WSML-Full is a superset of WSML-Rule and WSML-DL and can be
seen as a notational variant of First-Order Logic with non-monotonic extensions. All
WSML variants are specified in terms of a human-readable syntax with keywords
similar to the elements of the WSMO conceptual model. WSMO uses F-Logic syntax
to provide axioms and logical inference support. F-Logic was originally developed
for defining, querying and manipulating database schema. F-Logic combines the
advantages of typical frame based languages with the expressiveness, the compact
syntax and the well defined semantics from logics.

The EU-funded project WSMO also develops an execution environment (WSMX)
which enables discovery, selection, mediation, invocation and interoperation of se-
mantic web services. Besides the reference implementation WSMX, there is the
Internet Reasoning Service, IRS-III, which provides the representational and reason-
ing mechanisms for implementing the WSMO meta-model described below. It sup-
ports the developer at design time by providing a set of tools for defining, editing and
managing a library of semantic descriptions and also for grounding the descriptions to
a standard web service (e.g. described in the Web Service Description Language
WSDL).

- 14 -

Most of the elements in WSMO can be described with non-functional properties in
greater detail. This includes Quality-of-Service aspects, economic aspects and addi-
tional descriptions.

Figure 10: WSMO top level elements

The ontology in WSMO consists mostly of concepts, attributes and instances. Each of
them can be described using non-functional properties. Concepts can build a taxon-
omy and are linked to other concepts using attributes. There can be functions and
relations using these concepts as parameter and axioms which are logical expressions
together with their non-functional properties.

Figure 11: WSMO ontology

- 15 -

Each web service in WSMO builds on one or more ontologies and might use media-
tors to translate between several ontologies or web services. They are described using
interfaces and capabilities. The interface for a complex web service is characterized
using the web service orchestration or choreography which is built using an abstract
state machine (on states and transitions). The capability describes the functional pa-
rameters of the (one-step or multi-step) web service. It specifies the preconditions
(the information state of the web service before execution), assumptions (the state of
the world before execution), postconditions (the information state of the web service
after its execution) and effects (the state of the world after execution).

Figure 12: WSMO web service

WSMO goals enable the possibility to model the intentions that should be solved by
one or more web services. They describe an interface that should be implemented and
capabilities that need to be fulfilled. Therefore, ontologies and mediators might be
needed to achieve the goal.

Figure 13: WSMO goals

- 16 -

2.4 WSDL-S: Web Service Semantics

WSDL-S is another semantic web service approach submitted to the W3C in Novem-
ber 2005 and extends the WSDL standard with semantic information (using a new
attribute modelReference). Currently it only considers single-step services and there
is no specification how a composition of several web services should be handled.
However, there are already efforts to annotate web service choreography languages
like WS-BPEL similar to the annotations made in WSDL-S (see e.g. [29]). WSDL-S
uses the extensibility elements of WSDL and introduces new elements to describe the
semantics of a service, of its inputs and outputs and of preconditions and effects.

All input and output types can be annotated with semantic elements and additional
“mediators” (as they have been called in WSMO) can be defined using XSLT-
transformations. Each operation can have a semantic annotation and for each inter-
face categories can be defined (similar to OWL-S).

The advantages of this approach can be summarized as follows:
o it builds on existing web services standards
o it supports the user’s choice of the semantic representation language
o it allows the association of multiple annotations
o it supports semantic annotation of web services whose data types are de-

scribed in XML schema (therefore e.g. GRDDL [10] could be used)

Figure 14: WSDL-S meta-model

2.5 SWSF: Semantic Web Services Framework

Another W3C submission (from September 2005) beside OWL-S and WSMO is the
Semantic Web Services Framework (SWSF) [9] which represents an attempt to ex-
tend the work of OWL-S and consists of two major parts:

- 17 -

• the language SWSL as an underlying basis: The Semantic Web Service Lan-
guage has two sublanguages:

- SWSL-FOL which is based on first-order logic and primarily used to ex-
press the formal characterization of web service concepts and

- SWSL-Rules that is similarly to WSML-Rule based on logic program-
ming; and

• the ontology SWSO above. The Semantic Web Service Ontology presents a
conceptual model by which web services can be described and, again, which can
be divided in two forms:

- FLOWS, the first-order logic ontology for web services which has (fol-
lowing the high-level structure of OWL-S) three major components:
Service Descriptors, Process Model and Grounding. It adapts the key
concepts from the Process Specification Language PSL (ISO 18629)
which was originally developed to enable sharing of descriptions of
manufacturing processes. A fundamental building block of FLOWS is
the concept of an atomic process (similar to OWL-S). Associated with
an atomic process are zero or more parameters that capture the inputs,
outputs, preconditions and effects (simply called IOPEs)

- ROWS, the rules ontology for web services which enables implementa-
tions in reasoning and execution environments based on logic-
programming.

SWSF emerged from the work in service composition which might require more
expressivity than is available in OWL and is therefore based on logic programming,
first-order logic and policy research. It builds on DAML-S, OWL-S and WSMO and
provides rich semantics for greater automation of discovery, selection and invocation,
content transformation, composition, monitoring and recovery and verification. Lying
the focus on the messages similar to WSDL 2.0 (where several Message Exchange
Patterns (MEP) have been developed), it introduces the concepts of Channels and
Messages which can be created and modified using several specialized actions.

- 18 -

Figure 15: SWSF Meta-model: FLOWS Core

To compose several services in a multi-step process, it defines control constraints (in
the style of OWL-S) for alternatives, loops, parallel flows, choices, etc. Additionally,
it defines ordering constraints to allow the specification of activities defined by se-
quencing properties of atomic processes (OrderedActivity), Occurrence Constraints
to support the specification of nondeterministic activities within services (OccActiv-
ity), State Constraints (for activities which are triggered by states) and Exception
Constraints.

Figure 16: SWSF meta-model: Other Constraints

- 19 -

2.6 Other Semantic Web Services approaches

Another approach for enhancing web services with semantic information is the Web
Services Description Language Version 2.0: RDF Mapping (Working draft, 18 May
2006) [11] which defines mapping rules how the constructs from WSDL could be
transformed into an ontology using constructs defined in RDF and OWL (or other
languages). Another attempt is the W3C working draft “Semantic Annotations for
WSDL (SAWSDL)” [30] which introduces new WSDL elements “modelReference”,
“liftingSchemaMapping” and “loweringSchemaMapping” based on the extensibility
elements of WSDL 2.0. Because these approaches are comparable with WSDL-S and
are still work in progress, we will not go into further detail or consider them in our
meta-model.

SESMA [25] is another approach for a semantic web service description format
which allows a tight integration with existing web service standards like WSDL,
SOAP and WS-BPEL. It provides a precisely defined semantics and modeling con-
structs as logical variables and formulas. It claims to be truly complementary to exist-
ing standards and extensible for future requirements. Hence, it is neither widely dis-
tributed nor submitted to the W3C which is the reason why we will not consider this
approach in our meta-model.

2.7 ODM: Ontology Definition Metamodel

Based on the ideas and work of Stephen Cranefield, Dragan Gašević and others, the
Object Management Group (OMG) works on a specification for the interoperability
between ontologies (and its underlying description logic), UML diagrams, ER-
diagrams, Topic Maps and common logic. The Ontology Definition Metamodel
(ODM) [5] consists of four platform independent models (PIM: Common logic,
Topic Maps, RDF and OWL) and informative models like the one for Description
logic. It defines a meta-model and UML-profile for RDF(S) and OWL-ontologies and
mappings between the meta-model and these semantic web standards.

- 20 -

Figure 17: ODM: ontology, classes and properties

Each concept in an ontology is a RDFSResource (including the ontology itself).
There are classes and properties which can be connected and enable an easy modeling
of ontologies (see Figure 17 for a very short excerpt of the ODM draft).

- 21 -

3 A meta-model for semantic web services

Based on the above described standards and having the need for an independent way
of modeling semantic web services in mind, we designed a meta-model which can be
applied and transformed into all of the mentioned W3C submissions.

3.1 Overview

Our meta-model builds on existing semantic web service approaches, on the standard
ODM for the modeling of ontologies and, of course, on UML. Each semantic web
service standard builds on different languages: OWL-S on RDF and OWL, WSMO
on WSML, SWSF on SWSL. Only WSDL-S stays independent on any ontology
language.

Our semantic web service meta-model is based on the Ontology Definition Meta-
model for modeling ontologies (in form of a UML-profile) and on the above men-
tioned semantic web service submissions. WSDL-S is independent on the underlying
ontology modeling language, but OWL-S, WSMO and SWSF require a specific on-
tology language (OWL, WSML and SWSL).

Figure 18: Profile dependencies

It is difficult to integrate our meta-model into the layers of MDA. It is platform inde-
pendent in principal, but also includes constructs for each specific platform and se-
mantic web service language and one can directly generate code from the meta-
model. But, this matches to our own experiences that business users prefer one meta-
model avoiding model transformations where possible and use different views on a
meta-model instead. This also conforms to current discussions about the future of the
MDA at the OMG where e.g. Stan Hendryx, Chairman of the OMG Business Rules
Special Interest Group, pleaded for a weakening of the current layers.

- 22 -

3.2 Packages

Our profile consists of five packages which interact with each other. The Ontology-
package contains all concepts that are needed to model an ontology (similar to
ODM). The Interfaces-package provides all elements to model a WSDL service and
to describe it with semantics (like in WSDL-S). The ServiceProvider-package in-
cludes all aspects to model one or more semantic web services with non-functional
descriptions and using the elements of the ProcessFlow-package the functional ele-
ments and composition of multi-steps can be modeled. Every single step can be anno-
tated with functional descriptions as described in the Functional-package. The Inter-
faces-package, the ProcessFlow-package and the Functional-package access elements
of the ontology and therefore import the Ontology-package. The ProcessFlow-
package extends concepts defined in the ServiceProvider-package and therefore
merges this package. The Functional-packages extends some concepts of the Proc-
essFlow-package and therefore merges this, too.

Figure 19: Package overview for our meta-model

At the bottom of our meta-model are elements to model the constructs in an ontology
(whereby it doesn’t matter whether this ontology needs to be in OWL or in WSML).
To model all kind of syntactic and semantic data, the top-level element of our ontol-
ogy-package (compare Figure 20) is a DataElement. A DataElement can be a Syntac-
ticElement (e.g. an element specified in an XSD-file: XSDType) or it can be a Seman-
ticElement. This might be (referring to ODM) a RDFSResource which is part of an
ontology. A resource can either be a class (or concept as it is called in WSML) or a
property. RDFSClasses can be connected to other classed via RDFProperties which
contain the domain and range of the property. Every class (resp. property) can be
generalized and there exist specializations for OWL classes which are the mostly
used presentation form of current ontologies.

- 23 -

The DataElement and XSDType are necessities from OWL-S where it should be
possible to reference not only semantic elements as input or output, but also elements
which are not semantically described. The other classes are directly adapted from
ODM, where some of the classes in ODM have been neglected for the sake of sim-
plicity.

Figure 20: SWS meta-model for the ontology

To model the (syntactical) infrastructure of the services, the interfaces package can be
used (Figure 21). Every web service (as defined in WSDL) has an Interface which
includes a number of operations. An Operation is callable from other web services.
Every operation can have one input and output Message and zero or more fault mes-
sages. These messages are exchanged through channels between at least two services.
Each operation might be described with a semantic element from the ontology. A
message contains one or more Documents which can also be described with semantic
elements and which can be structured with several Attributes which might themselves
be documents again or simple data types (like String, int, etc.). Interfaces, Opera-
tions, Messages, Documents and Attributes are needed to generate WSDL code, the
dependencies to the SemanticElements have their origin in the WSDL-S approach.

- 24 -

Figure 21: SWS meta-model for interfaces, operations and messages

With these basic constructs for describing the interfaces, operations, messages and the
underlying ontology we can now start the modeling of one or more semantic web
services. A web service is a Process with a specified behavior. A ServiceProvider
(e.g. an institution, person or organizatrion) offers a number of processes which can
be executed. Every process can be categorized (according to OWL-S and SWSF)
with a categoryName, a path to a taxonomy, a specific value in the taxonomy and the
code associated to a taxonomy. Each processs can be additionally described with a
ServiceDescriptor which includes a serviceName (name), textDescription (descrip-
tion) and contactInformation (contact_info) as needed in OWL-S and additional in-
formation which are needed in SWSF such as the author of the service, the version,
releasedate, etc. Some more non-functional descriptions are defined in the WSMO-
approach which are covered in the properties of the class NonFunctionals. The whole
class and properties of NonFunctionals can be neglected, if the user can be sure that
he/she doesn’t want to generate WSMO code. Each process can communicate with
other processes via Channels (which is a requirement from SWSF) where the above
introduced messages are exchanged.

- 25 -

Figure 22: SWS meta-model for a service provider

Each process has an internal behavior which can be described using a ProcessFlow.
A process flow contains Nodes and Connections between these nodes. A node might
either be a control node like the ones known in UML activity diagrams (InitialNode,
ForkNode, JoinNode, DecisionNode, MergeNode, etc.) or an Action or a Composite-
Process which contains several other nodes. A CompositeProcess describes a multi-
step process whereas a ProcessFlow with only one node specifies a single-step proc-
ess. An Action can be either an AtomicProcess which calls an operation or a Call-
CompositeProcess which can start a new behavior or a CompositeProcess.

- 26 -

Figure 23: SWS meta-model for the process flow

Each action might require Inputs and produce Outputs which can be described more
detailed as DataElements as introduced above. Every action can also be described
with its Preconditions and Effects, which itself can be described in more detail with a
class or concept of the ontology. The Preconditions describe the necessary informa-
tion state and state of the world before an execution of the action is possible, the
Effects show how the state of the world and the information state have changed after
executing the action.

Figure 24: SWS meta-model for the functional description of an action

- 27 -

4 A UML 2.0 profile for our meta-model

To use the meta-model introduced above, we created a UML 2.0 profile and imple-
mented this profile in a UML tool suite. We shortly describe how each element of our
meta-model can be stereotyped from classes of the UML specification. Sadly, our
modeling tool didn’t support filled arrows for the specification of the stereotypes,
why we use generalizations in this chapter instead.

Figure 25: Stereotypes: Ontology

Stereotype Metaclass Description
Ontology Package An ontology-package describes all ele-

ments (classes or concepts and its rela-
tions) of the underlying ontology.

RDFSResource Class RDFSResource is every element in an
ontology.

RDFSClass Class RDFSClass is a class or concept in an
ontology.

OWLClass Class OWLClass is the class of an OWL-
ontology.

XSDType Class XSDType is an element of an XML
Schema document.

RDFProperty Class RDFProperty is a property (or relation)
between two RDFSClasses.

OWLDatatypeProp-
erty

Class This describes attributes of an OWL class
which have a simple datatype.

OWLObjectProperty Class Describes attributes of an OWL class
which are themselves objects (classes) in
the ontology.

- 28 -

RDFType Association Specifies the type of a class or concept.
RDFSdomain Association Specifies the domain of a property.
RDFSrange Association Specifies the range of a property.
RDFSsubClassOf Generalization Declares that the first class is subclass of

the second.
RDFSsubPropertyOf Generalization Declares that the first property is sub-

property of the secnd.

Figure 26: Stereotypes: ServiceProvider

Stereotype Metaclass Description
ServiceProvider Component A collection of processes that are provided

by one institution.
Process Class A web service (either a single-step or

consisting of multiple steps, optional:
abstract or not)

ServiceCategory Class The category a web service can be allo-
cated.

ServiceDescriptor Class Additional information and descriptions
about a web service.

NonFunctionals Class More non-functional descriptions about a
web service.

Channel Class The physical connection between two
processes.

Behavior Behavior The internal behavior a web service has.

Figure 27: Stereotypes: Interfaces

Stereotype Metaclass Description
Interface Class A WSDL interface

- 29 -

Operation Class The operation where a web service can be
called.

Message Class Describes the messages that are exchanged
in channels between web services.

Document Class The content of messages.
Attribute Attribute Possibility to structure documents.

Figure 28: Stereotypes ProcessFlow and Functional

Stereotype Metaclass Description
ProcessFlow Activity The internal behavior of a proc-

ess.
Node ActivityNode Each step of a web service.
Connection ActivityEdge Describes the flow of two or

more steps.
CompositeProcess StructuredActivityNode An arrangement of more steps

which itself is a web service
again.

AtomicProcess CallOperationAction The invocation of another web
service (via a channel and mes-
sages).

CallCompositeProcess CallBehaviorAction The invocation of another com-
plex (multi-step) web service
which has been modeled, too.

Input InputPin The inputs each action needs to
be able to start.

Output OutputPin The data an action generates.
Precondition Constraint The information space and state

of the world that are necessary to

- 30 -

start the action.
Effect Constraint The state of the world after exe-

cuting the action.
InitialNode InitialNode Start point of the process flow.
FlowFinalNode FlowFinalNode End point of the process flow.
ProcessFinalNode ActivityFinalNode End point of the process flow.
ForkNode ForkNode Start of several parallel threads.
JoinNode JoinNode Join of several parallel threads.
DecisionNode DecisionNode Start of several alternative

threads.
MergeNode MergeNode Merging of several alternative

threads.

- 31 -

5 Overall example

As an overall example, to show that our profile meets the requirements to generate
automatically semantic web service code, we will introduce a well-known example
that has been created within the OWL-S specification. The example is called Con-
goBuy and is a B2C bookbuying example showing the OWL-S usage, illustrating a
simple use of the process model. The service described is a fictional book buying (or
selling, depending on your perspective) service from www.congo.com. The example
is divided in two parts: ExpressCongoBuy as a very small example with only one web
service invocation (single-step) and FullCongoBuy as a multi-step web service com-
position. Where appropriate we will model the ExpressCongoBuy to show the con-
cepts of our profile. In parts where the small example can’t explain concepts of our
profile, we switch to the FullCongoBuy-example.
First, the ontology for this example needs to be modelled (see Figure 29) to cover the
most important concepts that are needed in this example.

- 32 -

Figure 29: Example: CongoOntology

Afterwards, one needs to create all documents which are needed to exchange data
between processes. In the CongoBuy-example no documents have been specified,
therefore we only show the usage of two simple documents which have been nested.

Figure 30: Example: Documents

The messages which are exchanged between two services need to be modeled next.
The ExpressCongoBuy-example has two inputs and three outputs (creditCardNum-
ber, creditCardType and creditCardExpirationDate).

Figure 31: Example: Messages

The above modeled messages then can be used to model the interfaces and its opera-
tions. The ExpressCongoBuy-example only has one interface, the FullCongoBuy-
example has much more operations which were not modeled in fully detail here.

- 33 -

Figure 32: Example: Interfaces

Additional data types which are needed to model the inputs and outputs of the process
are modeled in an own diagram. These elements can be imported from existing XSD-
files or modeled from stretch.

Figure 33: Example: XSD-Types

The next diagram specifies the details about each web service (Process). A service
provider (here: Congo) can have multiple processes (ExpressCongoBuy and Full-
CongoBuy) which itself can be described with additional information. They can be
categorizes and described with functional and non-functional information (e.g. cost or
trust). Similar to the attribute “isAbstract” which has a concrete type and a standard
value, each of the attributes can be given a value which has been suppressed here for
the sake of simplicity.

- 34 -

Figure 34: Example: ServiceProvider with processes

Each process has a behavior and in the example of ExpressCongoBuy this behavior
consists of one simple action. This action has several inputs and one output and it can
be described in more detail with preconditions and effects. These can be specified in
OCL, KIF or SWRL, where the former is a language only used in UML diagrams
which needs to be transformed into a semantic web language and the latter two are
used in several semantic web service languages.

- 35 -

Figure 35: Example: ExpressCongoBuy atomic process

The FullCongoBuy-example does not only consist of one action, but of multiple ac-
tions (multi-step or CompositeProcess) which are coordinated using the control nodes
introduced above. These actions can be combined to composite processes themselves
again. To keep it simple we removed the more detailed description of each action
(meaning inputs, outputs, preconditions and effects) in Figure 36.

 Figure 36: Example: FullCongoBuy composite process flow

- 36 -

6 Transformation rules

The following sections describe the transformation from our meta-model and UML-
profile to each semantic web service standard. Starting with OWL-S which includes
the generation of the ontology in OWL, the WSDL code for the interface and the
semantic description in OWL-S, WSMO, WSDL-S and SWSF-code will be gener-
ated. The transformation rules are described in an informal way, only to show the
coherences between our meta-model and each SWS-language. For detailed transfor-
mation and code generation rules, please have a look at chapter 7.

6.1 Transformation to OWL-S

To generate OWL-S code the ontology in RDF and OWL needs to be generated first.
After that the WSDL-file including interfaces, operations, messages, etc. is produced,
before the semantic descriptions that are subject of the OWL-S submission are con-
sidered.

6.1.1 Generation of the ontology
The generation of the ontology in OWL from our meta-model confirms to the specifi-
cation of the Ontology Definition Metamodel ODM. Each OWLClass gets a class in
the ontology, each OWLDatatypeProperty a DatatypeProperty in OWL and every
OWLObjectProperty an ObjectProperty in OWL. For a more detailed description,
refer to [5].

6.1.2 Generation of WSDL code
The web service description itself is an interface with several operations that a web
service offers. Each operation contains a maximum of one input and output message
and zero or more fault messages.

A WSDL document consists of a number of definitions. The root of every WSDL
document is the element definitions, which contains all other definitions.

The rool element is created at the beginning of the transformation.

Data definition and messages:

A message is an abstract description of exchanged data and consists of one or more
logical parts. Every part of a message is connected to a datatype. Parts offer the flexi-
ble possibility to describe message contents in an abstract way. Classes with the
stereotype «Document» in our meta-model are transformed to elements from a type
definition in WSDL. For each «Document» an element and a complex type is gener-

<wsdl:definitions name=„Definition.Name“
targetNamespace=„http://www.mid.de/example/“>

 ….
</wsdl: definitions>

- 37 -

ated in WSDL. The name of the element and of the complex type is the name of the
Document. The type-attribute references the complex type. The «Attribute» of a
document gets an element of the complex type in WSDL. The name of the element is
the name of the attribute. The datatyp might either be another complex type or a stan-
dard type like String or int.

For each class with the stereotype «Message» a new message element in WSDL gets
created. A part of the message is pasted for each attribute of a message.

For example:

<wsdl:message name=„Message.Name“>
 <wsdl:part name=„Attribute.Name“ element=„tns:Document.Name“/>
 ...
</wsdl:message>

<wsdl: types>
 <xsd:schema>
 <complexType name=„Document.Name“>
 <all>
 <element name=„Attribute.Name“ type=„Attribute.Type“/>
 …
 </all>
 </complexType>
 <element name=„Document.Name“ type=„tns:Dokument.Name“/>
 …
 </xsd: schema>
</wsdl: types>

- 38 -

Interfaces and operations:

An operation is a abstract description of an action which can be executed from a
service. It receives input-messages and gives output-messages back to the requester.
Optionally when an error occurs it can send one or more fault-messages.
For each class from the stereotype «Interface» a WSDL portType is generated. The
name of the portType is the same as the name of the interface. For each operation of
an interface a new operation element in WSDL is created as part of the portType. For
each message (input, output or fault) a new definition as part of the WSDL-operation
is created. These definitions refer with the attribute message to a unique message
definition. There are several operation types for the definition of the message order:

• one-way: input

• request-response: input – ouput – fault*

• solicit-response: output – input – fault*

• notification: output

<wsdl:message name=„Message1“>
 <wsdl:part name=„part1“ element=„tns:Document1“/>
 <wsdl:part name=„part2“ element=„tns:Document2“/>
</wsdl:message>

<wsdl: types>
 <xsd:schema>
 <complexType name=„Document2“>

<all>
 <element name=„attribute3“ type=„string“/>
 </all>
 </complexType>
 <element name=„Document2“ type=„tns:Document2“/>
 <complexType name=„Document1“>
 <all>
 <element name=„attribute1“ type=„tns:Document2“/>
 <element name=„attribute2“ type=„int“/>
 </all>
 </complexType>
 <element name=„Document1“ type=„tns:Document1“/>
 </xsd: schema>
</wsdl: types>

- 39 -

Example:

The dependencies (from Operation and Document) to the semantic elements are not
needed to generate WSDL-code, they will only get used to generate WSDL-S code.

6.1.3 Generation of OWL-S code
To generate OWL-S code from our meta-model we need the ServiceProvider-package
and the ProcessFlow-package. The ServiceProvider contains all processes which are
the semantic web services as specified in OWL-S. For each process one can declare
whether it should be abstract (isAbstract) or not. If the process should be abstract then
a SimpleProcess is generated, otherwise an AtomicProcess or CompositeProcess is
generated (depends on the process flow model as described below). The properties of
the OWL-S Service Profile like serviceName, textDescription and contactInformation
can be specified in the ServiceDescriptor (name, description and contact_info) and
the attributes serviceParameter, serviceProduct (e.g. a mapping to UNSPSC) or ser-
viceClassification (e.g. a mapping to NAICS) specify the quality guarantees that are
provided by a service. The ServiceCategory describes categories of services based on
the bases of some classification that may be outside OWL-S and possibly outside
OWL. CategoryName is the name of the actual category; taxonomy stores a reference
to the taxonomy scheme; value points to a value in the specific taxonomy and code
stores to each type of service the code which is associated to the taxonomy.

<wsdl:portType name =„Interface1“>
 <wsdl:operation name=„operation1“>
 <wsdl:input message=„Message1“ />
 <wsdl:output message=„Message2“ />
 </wsdl:operation>
 <wsdl:operation name=„operation2“>
 <wsdl:output message=„Message3“ />
 </wsdl:operation>
</wsdl:portType>

<wsdl:portType name =„Interface.Name“>
 <wsdl:operation name=„Operation.Name“>
 <wsdl:input message=„Message.Name“ />
 <wsdl:output message=„Message.Name“ />
 <wsdl:fault message=„Message.Name“ />
 …
 </wsdl:operation>
 …
</wsdl:portType>

- 40 -

To describe the functionality of the web service we take a closer look into the
ProcessFlow-package. Each Action has Inputs, Outputs, Preconditions and Effects
which can be found in the OWL-S member submission with the same names. If the
action is an AtomicProcess, then we generate an AtomicProcess, if it is a CallCompo-
siteProcess or consists in a CompositeProcess more than one AtomicProcess then we
create a CompositeProcess in OWL-S. Supporting the process flow in a Composite-
Process we use ForkNode and JoinNode to generate Splits and Split/Joins in OWL-S
and a combination of DecisionNode and MergeNode to generate a Choice or an If-
Then-Else in OWL-S. If there is a simple connection between two AtomicProcesses
then we generate a Sequence. Each AtomicProcess points to an operation in the Inter-
faces-package which allows us to generate the ServiceGrounding (to the WSDL-file).
The following table shows a short summary of the elements of our meta-model and
their corresponding part in the OWL-S standard. For a detailed transformation, have a
look at chapter 7 where the transformation rules have been specified in the openAr-
chitectureWare-language XPand.

Meta-model OWL-S
Process Simple/Atomic/CompositeProcess
isAbstract = true SimpleProcess
serviceClassification serviceClassification
serviceProduct serviceProduct
serviceParameter serviceParameter, sParameter
name serviceName
description textDescription
contact_info contactInformation
ServiceCategory ServiceCategory
categoryName categoryName
taxonomy taxonomy
value value
code code
Action Profile
Input Input
Output Output
Precondition Precondition
Effect Result/Effect
ForkNode, JoinNode Split / Split-Join
DecisionNode, MergeNode Choice, If-Then-Else
AtomicProcess AtomicProcess / Grounding
CallCompositeProcess CompositeProcess
Connection Sequence, Any-Order

Table 1: Correspondences between our meta-model and OWL-S

- 41 -

6.2 Transformation to WSMO

The following sections describe how WSMO code can be generated from our meta-
model. First the ontology needs to be generated using WSML and our Ontology-
package, after that we can generate the WSMO web service. Currently we don’t sup-
port the modeling of mediators and goals. Both might result in new packages of our
meta-model where the former might be more difficult to include and the latter is simi-
lar to the outputs and effects already modeled in our ProcessFlow-package.

6.2.1 Generation of the ontology
Each RDFSClass in our Ontology is a concept in the ontology in WSML. Both (our
meta-model and WSMO) order classes resp. concepts bottom-up using RDFSsub-
ClassOf in our meta-model (resp. hasSuperConcept in WSML). Each RDFProperty in
our ontology is an Attribute in the WSML ontology, whereby the domain of the at-
tribute is already specified. The range of the attribute can be found as RDFSrange-
parameter of the RDFProperty. It would also be possible to create a Relation for each
RDFProperty which has several parameters then. Each parameter has its own domain
and the relations can be ordered using hasSuperRelation (RDFSsubPropertyOf in our
meta-model). For a short overview about the corresponding elements, have a look at
Table 2. (Note: The non-functional properties for the elements in the ontology have
been neglected in the current version of our meta-model)

Meta-model WSMO
Ontology ontology
RDFSClass concept
RDFSsubClassOf hasSuperConcept
RDFProperty Attribute
RDFSsubPropertyOf hasSuperRelation

Table 2: Correspondences between our ontology and the WSMO-ontology

6.2.2 Generation of the WSMO web service
All web services in WSMO are described using their capabilities and interfaces. The
capabilities contain preconditions, assumptions, postconditions and effects. They
might include shared variables, mediators and ontologies. The interface describes the
choreography and orchestration of services building on abstract state machines. Each
choreography has states and guarded transitions. These states correspond to our nodes
in the ProcessFlow-package and the guarded transitions can be interpreted as our
connections. The orchestration is also state-based and consists of the same elements
as the choreography, whereby the guarded transitions might have the form if condi-
tion then mediator_uri. A more detailed description of choreography and orchestra-
tion is still missing, why we currently concentrate on the translation of single-step
processes. The capability in WSMO describes the functional elements of each ser-
vice. The inputs of our meta-model can be translated to shared variables which are
then used in the preconditions of WSMO, the preconditions of our meta-model are

- 42 -

the assumptions in the WSMO capabilities. The outputs are (similar to the inputs)
shared variables and used in the postconditions and the effects stay the effects.

The generation of WSMO-code is the only case where the class NonFunctionals of
our meta-model is needed. WSMO enables the user to specify much more non-
functional descriptions about a web service (or other elements) than the other submis-
sions. Table 3 shows non-functional properties (except for the attributes specified in
the class NonFunctional because the names there are identical to the names defined in
WSMO) and how they can be interpreted in the WSMO member submission.

Meta-model WSMO
node state
connection guarded transition
input shared variable and precondition
precondition assumption
output shared variable and postcondition
effect effect
name title
author creator
contact_info owner
contributor contributor
description description
url source
identifier identifier
version version
releasedate date
language language
trust trust
subject subject
reliability reliability
cost financial

Table 3: Correspondences between our meta-model and WSMO

6.3 Transformation to WSDL-S

To generate WSDL-S code we only need the Interfaces, ServiceProvider and the
ProcessFlow-package from our meta-model (no Ontology-package, because WSDL-S
stays independent from any ontology-language and therefore the ontology might have
been generated using one of the languages introduced above: OWL, WSML or even
UML).
WSDL-S uses the extensibility elements of WSDL and introduces two extension
attributes (modelReference and schemaMapping), two new elements (precondition
and effect) and an extension attribute of the interface element (category). Each opera-
tion can now be described with a semantic element (the dependency in our meta-
model from Operation to SemanticElement) and all types can be annotated using the

- 43 -

same way (Dependency between Document and SemanticElement). Each interface
can be described using a category which is bound to the process in our meta-model.
Each operation in WSDL is not only described using input and output values, but
additionally with preconditions and effects which themselves might have dependen-
cies on semantic elements again. These values from our ProcessFlow-package are
used to generate the extensibility elements in WSDL-S.

Meta-model WSDL-S
Interface interface
Operation operation
Dependency to SemanticElement modelReference
Message message
ServiceCategory category
categoryName categoryname
code taxonomyCode
taxonomy taxonomyURI
value taxonomyValue

Table 4: Correspondences between our meta-model and WSDL-S

6.4 Transformation to SWSF

Each service in SWSF contains a ServiceDescriptor, a Process model and a Ground-
ing. The ServiceDescriptor is the same as in our meta-model and includes all proper-
ties to describe the service in more detail. Each AtomicProcess consists of Inputs,
Outputs, Preconditions and Effects and might consist of more than one process. There
are special categories of processes which might be distinguished: Domain-Specific
Atomic process (every Process that is modeled using our meta-model), Produce-
Message, Read-Message and Destroy-Message (every AtomicProcess in our meta-
model either creates or reads a message) and Channel-Manipulation Atomic Proc-
esses (which might modify the properties of a channel). One process in our meta-
model corresponds with other processes using one or more channels and these chan-
nels deliver the messages to the partner.

Meta-model SWSF
ServiceDescriptor ServiceDescriptor
name name
author author
contact_info contact
contributor contributor
description description
url url
identifier identifier
version version
releasedate releaseDate

- 44 -

language language
trust trust
subject subject
reliability reliability
cost cost
Channel channel
AtomicProcess Domain-specific atomic process com-

bined with a Produce_Message,
Read_Message and eventually De-
stroy_Message

Input input
Output output
Precondition precondition
Effect effect
ForkNode, JoinNode Split
DecisionNode, MergeNode Choice, If-Then-Else
Connection Sequence, Unordered

Table 5: Correspondences between our meta-model and SWSF

7 XPand transformation rules to OWL-S

To use our profile to work with the standard OWL-S, we need to create transforma-
tion rules to the ontology in OWL, the web service in WSDL and the semantic web
service description in OWL-S. These transformation rules have been specified using
the openArchitectureWare-language XPand. For more details about XPand the inter-
ested user might refer to [13].

7.1 XPand rules for OWL

«REM»
**

Transformation rules from our meta-model to OWL
using the language XPand from openArchitectureWare

(www.openarchitectureware.org)

Created by
Florian Lautenbacher

University of Augsburg
Programming distributed Systems

D-86135 Augsburg
www.informatik.uni-augsburg.de/ds

**
These transformations use the package Ontology from our meta-model.
«ENDREM»

«DEFINE Root FOR sytemModel::SWS»

- 45 -

 «LET “http://www.ds-lab.org/example” AS tns»

 «FILE Ontology.name + „.owl“»

<?xml version=”1.0”?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="«tns»#”>

<owl:Ontology rdf:about=””/>

 «EXPAND transformRDFSClass FOREACH RDFSClas»

 «EXPAND transformOWLClass FOREACH OWLClass»

 «EXPAND transformRDFProperty FOREACH RDFProperty»

 «EXPAND transformOWLDatatypeProperty FOREACH OWLDatatypeProperty»

 «EXPAND transformOWLObjectProperty FOREACH OWLObjectProperty»

</rdf:RDF>

 «ENDFILE»

 «ENDLET»

«ENDDEFINE»

«REM»

 R D F S C l a s s

«ENDREM»

«DEFINE transformRDFSClass FOR RDFSClass»

<rdfs:Class rdf:ID=”«RDFSClass.name»”>

«IF RDFSClass.generalization != null»

 <rdfs:subClassOf>

 <rdfs:Class

 rdf:about=”#«RDFSClass.generalization.general.name»”/>

 </rdfs:subClassOf>

</rdfs:Class>

«ENDDEFINE»

«REM»

 O W L C l a s s

«ENDREM»

«DEFINE transformOWLClass FOR OWLClass»

<owl:Class rdf:ID=”«OWLClass.name»”>

«IF OWLClass.generalization != null»

 <rdfs:subClassOf>

 <owl:Class

 rdf:about=”#«OWLClass.generalization.general.name»”/>

 </rdfs:subClassOf>

</owl:Class>

«ENDIF»

«ENDDEFINE»

- 46 -

«REM»

 R D F P r o p e r t y

«ENDREM»

«DEFINE transformRDFProperty FOR RDFProperty»

<rdf:Property rdf:ID=”«RDFProperty.name»”>

«IF RDFProperty.generalization != null»

 <rdfs:subPropertyOf

 rdf:resource=”«RDFProperty.generalization.general.name»”/>

«ENDIF»

 <rdfs:domain rdf:resource=”«RDFProperty.RDFSdomain.name»”/>

 <rdfs:range rdf:resource=”«RDFProperty.RDFSrange.name»”/>

</owl:DatatypeProperty>

«ENDDEFINE»

«REM»

 O W L D a t a t y p e P r o p e r t y

«ENDREM»

«DEFINE transformOWLDatatypeProperty FOR OWLDatatypeProperty»

<owl:DatatypeProperty rdf:ID=”«OWLDatatypeProperty.name»”>

«IF OWLDatatypeProperty.generalization != null»

 <rdfs:subPropertyOf

 rdf:resource=”«OWLDatatypeProperty.generalization.general.name»”/>

«ENDIF»

 <rdfs:domain rdf:resource=”«OWLDatatypeProperty.RDFSdomain.name»”/>

 <rdfs:range rdf:resource=”«OWLDatatypeProperty.RDFSrange.name»”/>

</owl:DatatypeProperty>

«ENDDEFINE»

«REM»

 O W L O b j e c t P r o p e r t y

«ENDREM»

«DEFINE transformOWLObjectProperty FOR OWLObjectProperty»

<owl:ObjectProperty rdf:ID=”«OWLObjectProperty.name»”>

«IF OWLObjectProperty.generalization != null»

 <rdfs:subPropertyOf

 rdf:resource=”«OWLObjectProperty.generalization.general.name»”/>

«ENDIF»

 <rdfs:domain rdf:resource=”«OWLObjectProperty.RDFSdomain.name»”/>

 <rdfs:range rdf:resource=”«OWLObjectProperty.RDFSrange.name»”/>

</owl:ObjectProperty>

«ENDDEFINE»

- 47 -

7.2 XPand rules for WSDL

«REM»
**

Transformation rules from our meta-model to WSDL 1.1
using the language XPand from openArchitectureWare

(www.openarchitectureware.org)

Created by
Florian Lautenbacher

University of Augsburg
Programming distributed Systems

D-86135 Augsburg
www.informatik.uni-augsburg.de/ds

**
These transformations use the package Interface from our meta-model (not
to be confused with the class Interface in the same package!). First,
all documents are generated, after that all messages and operations and
based on that, all interfaces are generated.
«ENDREM»

«DEFINE Root FOR sytemModel::SWS»

 «LET “http://www.ds-lab.org/example” AS tns»

 «FILE Interface.name + „.wsdl“»

<wsdl:definitions

 name=”«Interface.name»”

 targetNamespace=«tns»>

 <wsdl:types>

 <xsd:schema>

 «EXPAND transformDocument FOREACH Interface::Document»

 </xsd:schema>

 </wsdl:types>

 «EXPAND transformMessage FOREACH Interface::Message»

 «EXPAND transformPortType FOREACH Interface::Interface»

 «REM»

Transformation rules for the binding and description of the
services might be added here.

«ENDREM»

</wsdl:definitions>

 «ENDFILE»

 «ENDLET»

«ENDDEFINE»

«REM»

 D o c u m e n t

«ENDREM»

«DEFINE transformDocument FOR Document»

 <complexType name=”«Document.name»”>

 <all>

 «EXPAND transformAttribute FOREACH Document.attribute»

- 48 -

 </all>

 </complexType>

 <element name=“«Document.name»“ type=“tns:«Document.name»“/>

«ENDDEFINE»

«DEFINE transformAttribute FOR Attribute»

 <element name=“«Attribute.name»“

 «IF Attribute.type == “String”»

 type = “String”/>

 «ELSEIF Attribute.type == “Integer”»

 type = “int”/>

 «ELSEIF Attribute.type == “Boolean”»

 type = “Boolean”/>

 «ELSEIF Attribute.type == “Real”»

 type = “Real”/>

 «REM»

The primitive datatypes don’t need a namespace, only the
complex ones.

 «ENDREM»

 «ELSE»

 type=“«tns»:«Attribute.type»”/>

 «ENDIF»

«ENDDEFINE»

«REM»

 M e s s a g e

«ENDREM»

«DEFINE transformMessage FOR Message»

 <wsdl:message name=“«Message.name»“>

 «EXPAND transformMessageDocumentAttribute FOREACH

 Message.document»

 </wsdl:message>

«ENDDEFINE»

«DEFINE transformMessageDocumentAttribute FOR Document»

 <wsdl:part name=“«Attribute.name»“

 element=“«tns»:«Document.name»“/>

«ENDDEFINE»

«REM»

 P o r t T y p e

«ENDREM»

«DEFINE transformPortType FOR Interface»

 <wsdl:portType name=“«Interface.name»“>

«EXPAND transformOperation FOREACH Interface.operation»

- 49 -

 </wsdl:portType>

«ENDDEFINE»

«DEFINE transformOperation FOR Operation»

 <wsdl:operation name=“«Operation.name»“>

 «IF Operation.in != null»

 <wsdl:input message=”«Operation.in.name»”/>

 «ENDIF»

 «IF Operation.out != null»

 <wsdl:output message=”«Operation.out.name»”/>

 «ENDIF»

 «FOREACH Operation.fault AS fault»

 <wsdl:fault message=”«Operation.fault.name»”/>

 «ENDFOREACH»

 </wsdl:operation>

«ENDDEFINE»

7.3 XPand rules for OWL-S

«REM»
**

Transformation rules from our meta-model to OWL-S 1.2
using the language XPand from openArchitectureWare

(www.openarchitectureware.org)

Created by
Florian Lautenbacher

University of Augsburg
Programming distributed Systems

D-86135 Augsburg
www.informatik.uni-augsburg.de/ds

**
These transformations use all packages from our meta-model to generate
the service profile, service model and service grounding.
«ENDREM»
«DEFINE Root FOR sytemModel::SWS»

 «LET “http://www.ds-lab.org/example” AS tns»

 «FILE Process.name + „Service.owl“»

<rdf:RDF xml:base=”«tns»/«Process.name»Service.owl”>

 «EXPAND transformOntologyImport FOR Process»

 <service:Service rdf:ID=”«Process.name»”>

 <service:presents

 rdf:resource=”./«Process.name»Profile.owl”/>

 <service:describedBy

 rdf:resource=”./«Process.name»Process.owl”/>

 <service:supports

 rdf:resource=”./«Process.name»Grounding.owl”/>

 </service:Service>

</rdf:RDF>

 «ENDFILE»

- 50 -

 «ENDLET»

 «EXPAND transformProcess FOREACH Process»

 «EXPAND transformProfile FOREACH Process»

 «EXPAND transformGrounding FOREACH Process»

«ENDDEFINE»

«REM»

 P r o c e s s

«ENDREM»

«DEFINE transformProcess FOR Process»

 «FILE Process.name + „Process.owl“»

<rdf:RDF xml:base=”«tns»/«Process.name»Process.owl”>

 «EXPAND transformOntologyImport FOR Process»

 «REM»

If there is only one action modeled, then it is an AtomicProc-
ess (or Simple-AtomicProcess), if there are more nodes, then it
is a CompositeProcess (or a Simple-CompositeProcess)

 «ENDREM»

 «IF Process.hasBehavior.node.size > 1»

 «EXPAND transformAtomicProcess FOR Process»

 «ELSE»

 «EXPAND transformCompositeProcess FOR Process»

 «ENDIF»

</rdf:RDF>

 «ENDFILE»

«ENDDEFINE»

«REM»

 O n t o l o g y I m p o r t

«ENDREM»

«DEFINE transformOntologyImport FOR Process»

 <owl:Ontology rdf:about=””>

 <owl:imports>

 <owl:Ontology

 rdf:about=http://www.daml.org/services/owl-s/1.2/Service.owl/>

 </owl:imports>

 <owl:imports>

 <owl:Ontology

 rdf:about=http://www.daml.org/services/owl-s/1.2/Process.owl/>

 </owl:imports>

 <owl:imports>

 <owl:Ontology

 rdf:about=http://www.daml.org/services/owl-
s/1.2/ProfileHierarchy.owl/>

 </owl:imports>

 «REM»

- 51 -

 The following imports the OWL-ontology that has been

 generated before.

 «ENDREM»

 <owl:imports>

 <owl:Ontology

 rdf:about=«tns»/«Ontology.Ontology.name».owl”/>

 </owl:imports>

 </owl:Ontology>

«ENDDEFINE»

«REM»

 A t o m i c P r o c e s s

«ENDREM»

«DEFINE transformAtomicProcess FOR Process»

«IF Process.isAbstract == ”true”»

 <process:SimpleProcess rdf:ID=”«Process.name»”>

«ELSE»

 <process:AtomicProcess rdf:ID=”«Process.name»”>

«ENDIF»

 «EXPAND transformInput FOREACH

 Process.hasBehavior.node.first.input»

 «EXPAND transformOutput FOREACH

 Process.hasBehavior.node.first.output»

 «EXPAND transformPrecondition FOREACH

 Process.hasBehavior.node.first.localPrecondition»

 «EXPAND transformEffect FOREACH

 Process.hasBehavior.node.first.effect»

«ENDIF»

«ENDDEFINE»

«REM»

 I n p u t

«ENDREM»

«DEFINE transformInput FOR Input»

<process:hasInput>

 <process:Input rdf:ID=”«Input.Name»”>

 <process:parameterType

 rdf:datatype=http://www.w3.org/2001/XMLSchema#anyURI>

 «Input.depends.type»”

 </process:parameterType>

 </process:Input>

</process:hasInput>

«ENDDEFINE»

«REM»

- 52 -

 O u t p u t

«ENDREM»

«DEFINE transformOutput FOR Output»

<process:hasOutput>

 <process:Output rdf:ID=”«Output.Name»”>

 <process:parameterType

 rdf:datatype=http://www.w3.org/2001/XMLSchema#anyURI>

 «Input.depends.type»”

 </process:parameterType>

 </process:Output>

</process:hasOutput>

«ENDDEFINE»

«REM»

 P r e c o n d i t i o n

«ENDREM»

«DEFINE transformPrecondition FOR Precondition»

<process:hasPrecondition>

«REM»

Preconditions and Effect currently need to be specified in a form
that they can be processed by OWL-S (e.g. directly in SWRL). There-
fore, at the moment, we only copy the content of the Expressions
here.

«ENDREM»

«Precondition.expression.content»

</process:hasPrecondition>

«ENDDEFINE»

«REM»

 E f f e c t

«ENDREM»

«DEFINE transformEffect FOR Effect»

<process:hasEffect>

«REM»

Preconditions and Effect currently need to be specified in a form
that they can be processed by OWL-S (e.g. directly in SWRL). There-
fore, at the moment, we only copy the content of the Expressions
here.

«ENDREM»

«Effect.expression.content»

</process:hasEffect>

«ENDDEFINE»

«REM»

 C o m p o s i t e P r o c e s s

- 53 -

For the transformation of composite processes, one needs several Java
methods to get from one node to the next one. More detailed, one needs
the methods getFirstElement(), getNextElement(), etc.
«ENDREM»

«DEFINE transformCompositeProcess FOR Process»

«IF Process.isAbstract == ”true”»

 <process:SimpleProcess rdf:ID=”«Process.name»”>

«ELSE»

 <process:CompositeProcess rdf:ID=”«Process.name»”>

«ENDIF»

«EXPAND transformSequence FOR Process.getFirstElement()»
«ENDDEFINE»

«REM»

 S e q u e n c e

Sequence: Ablauf von Prozessen, die bereits in einer Sequenz enthalten
sind. transformSequence wird nur aufgerufen, wenn der momentane Knoten
eine Aktion oder ein InitialNode ist.
«ENDREM»
«DEFINE transformSequence FOR Node»

«LET Process.getNextElement(Node) AS nextelem»
«IF Node.Type == Action.Type»
 «EXPAND transformAction FOR Node»
«ENDIF»
«IF nextelem.Type == Action.Type»
 «EXPAND transformSequence FOR nextelem»
«ELSEIF nextelem.Type == MergeNode.Type»
 «EMPTY»
«ELSEIF nextelem.Type == JoinNode.Type»
 «EMPTY»
«ELSEIF nextelem.Type == ForkNode.Type»
 «EXPAND transformFlow FOR nextelem»
 «EXPAND transformSequence FOR nextelem»
«ELSEIF nextElem.Type == DecisionNode.Type»
 «EXPAND transformFlow FOR nextelem»
 «EXPAND transformSequence FOR nextelem»
«ELSE»
 «EXPAND transformFlow FOR nextelem»
«ENDIF»
«ENDLET»

«ENDDEFINE»

«REM»

 F l o w
«ENDREM»
«DEFINE transformFlow FOR Node»

«IF Node.Type == Action.Type»
 <sequence>
 «EXPAND transformSequence FOR Node»
 </sequence>
«ELSEIF Node.Type == FinalNode.Type»
 «EXPAND transformTerminate FOR Node»
«ELSEIF Node.Type == ForkNode.Type»
 <flow>

«EXPAND transformFlow FOREACH
Process.getNextElements(Node)»

- 54 -

 </flow>
«ELSEIF Node.Type == DecisionNode.Type»
 <switch>
 «EXPAND transformCase FOREACH DecisionNode.outgoing»
 </switch>
«ELSEIF Node.Type == MergeNode.Type»
 «EXPAND transformFlow FOREACH

Process.getNextElement(Node)»
«ELSEIF Node.Type == JoinNode.Type»
 «EXPAND transformFlow FOREACH

Process.getNextElement(Node)»
«ENDIF»

«ENDDEFINE»

«REM»

 C a s e

«ENDREM»
«DEFINE transformCase FOR Connection»

<case condition=”«ProcessFlow.getGuard(Connection)»”>
«EXPAND transformFlow FOR

ProcessFlow.getNextElement(Connection)»
</case>

«ENDDEFINE»

«REM»

 T e r m i n a t e

«ENDREM»
«DEFINE transformTerminate FOR Node»

<terminate/>
«ENDDEFINE»

«REM»

 A c t i o n

«ENDREM»
«DEFINE transformAction FOR Action»
 «IF Action.Type == AtomicProcess»

 «EXPAND transformAtomicProcess FOR Action.target»

 «ELSEIF Action.Type == CallCompositeProcess»

 «EXPAND transformCompositeProcess FOR Action.behaviour»

 «ENDIF»

«ENDDEFINE»

«REM»

 P r o f i l e

«ENDREM»

«DEFINE transformProfile FOR Process»

 «FILE Process.name + „Profile.owl“»

<rdf:RDF xml:base=”«tns»/«Process.name»Profile.owl”>

 «EXPAND transformOntologyImport FOR Process»

<service:presentedBy rdf:resource=”./«Process.name»Service.owl”/>

<profile:has_process rdf:resource=”./«Process.name»Process.owl”/>

- 55 -

<profile:serviceName>

 «Process.serviceDescriptor. name»

</profile:serviceName>

<profile:textDescription>

 «Process.serviceDescriptor.description»

</profile:textDescription>

<profile:contactInformation>

 «Process.serviceDescriptor.contact_info»

</profile:contactInformation>

«EXPAND transformInputProfile FOREACH

 Process.hasBehavior.node.first.input»

«EXPAND transformOutputProfile FOREACH

 Process.hasBehavior.node.last.output»

«EXPAND transformPreconditionProfile FOREACH

 Process.hasBehavior.node.first.precondition»

«EXPAND transformEffectProfile FOREACH

 Process.hasBehavior.node.last.effect»

</rdf:RDF>

 «ENDFILE»

«ENDDEFINE»

«REM»

 I n p u t P r o f i l e

«ENDREM»

«DEFINE transformInputProfile FOR Input»

 <profile:hasInput rdf:resource=

 ”./«Process.name»Process.owl#«Input.name»”/>

«ENDDEFINE»

«REM»

 O u t p u t P r o f i l e

«ENDREM»

«DEFINE transformOutputProfile FOR Output»

 <profile:hasOutput rdf:resource=

 ”./«Process.name»Process.owl#«Output.name»”/>

«ENDDEFINE»

«REM»

 P r e c o n d i t i o n P r o f i l e

«ENDREM»

«DEFINE transformPreconditionProfile FOR Precondition»

 <profile:hasPrecondition rdf:resource=

 ”./«Process.name»Process.owl#«Precondition.name»”/>

«ENDDEFINE»

- 56 -

«REM»

 E f f e c t P r o f i l e

«ENDREM»

«DEFINE transformEffectProfile FOR Effect»

 <profile:hasResult rdf:resource=

 ”./«Process.name»Process.owl#«Effect.name»”/>

«ENDDEFINE»

«REM»

 G r o u n d i n g

Each interface, operation, message and document needs to be grounded to
the generated WSDL-file.

«ENDREM»

«DEFINE transformGrounding FOR Process»

 «FILE Process.name + „Grounding.wsdl“»

 <?xml version=”1.0”?>

 <definitions name=”«Process.name»_WSDL”

 targetNamespace=”«tns»/«Process.name»Grounding.wsdl”

 xmlns:owl-s-wsdl=”http://www.daml.org/services/owl-s/wsdl”

 xmlns=”http://schemas.xmlsoap.org/wsdl/”>

 «EXPAND transformMessageGrounding FOREACH Operation»

 «EXPAND transformInterfaceGrounding FOREACH Interface»

 </definitions>

 «ENDFILE»

«ENDDEFINE»

«REM»

 M e s s a g e G r o u n d i n g

«ENDREM»

«DEFINE transformMessageGrounding FOR Operation»

 «IF Operation.input != null»

 <message name=”«Operation.name»_Input”>

 <part name=”«Operation.input.name»”

 owl-s-wsdl:owl-s-parameter=”«Process.name»:#Input”/»

 </message>

 «ENDIF»

 «IF Operation.output != null»

 <message name=”«Operation.name»_Output”>

 <part name=”«Operation.output.name»”

 owl-s-wsdl:owl-s-parameter=”«Process.name»:#Output”/»

 </message>

 «ENDIF»

«ENDDEFINE»

- 57 -

«REM»

 I n t e r f a c e G r o u n d i n g

«ENDREM»

«DEFINE transformInterfaceGrounding FOR Interface»

 <portType name=”«Interface.name»_PortType”>

 «EXPAND transformOperationGrounding FOREACH Operation»

 </portType>

«ENDDEFINE»

«REM»

 O p e r a t i o n G r o u n d i n g

«ENDREM»

«DEFINE transformOperationGrounding FOR Operation»

 <operation name=”«Operation.name»_operation

 owl-s-wsdl:owl-s-process=”«Process.name»:#«Operation.name»>

 «EXPAND transformInputGrounding FOREACH Input»

 «EXPAND transformOutputGrounding FOREACH Output»

 </operation>

«ENDDEFINE»

«REM»

 I n p u t G r o u n d i n g

«ENDREM»

«DEFINE transformInputGrounding FOR Input»

 <input message=”tns:«Operation.input.name»_Input”/>

«ENDDEFINE»

«REM»

 O u t p u t G r o u n d i n g

«ENDREM»

«DEFINE transformOutputGrounding FOR Output»

 <output message=”tns:«Operation.output.name»_Output”/>

«ENDDEFINE»

8 Related Work

There are several efforts to create a UML profile for Semantic Web Services. How-
ever, to our knowledge none of the existing approaches tries to consider every exist-
ing W3C submission of semantic web services (meaning OWL-S, WSMO, WSDL-S
and SWSF).

- 58 -

In [18, 19] Roy Grønmo et al. define transformations between UML and OWL-S
and a web service composition based on these information. The developed profile
uses the UML Ontology Profile (defined by Duric for UML 1.5 class diagrams) to
model the concepts of the ontology. They use a UML activity to describe a web ser-
vice and attaching inputs and outputs which makes it difficult to use control nodes for
the composition of several web services later. Their profile supports the generation of
OWL-S and WSMO code (hence, there are no transformation rules for the generation
of WSMO), but doesn’t consider SWSF and WSDL-S.

In [20] (which received a best student paper award) a model-driven approach for
specifying semantic web services has been developed. However, the UML-profile
only considered AtomicProcesses in OWL-S, not including the collaboration of sev-
eral processes. It is only applicable to OWL-S and misses transformation rules for
WSMO, SWSF and WSDL-S.

[21] describes how OWL-S services can be modeled, but in a proprietary format
not using the UML-profiling mechanism. [22] develops an MDD annotation method-
ology for semantic enhanced SOAs, but does not develop a UML profile for semantic
web services in greater detail. [23] describes a case study with a methodological
framework for the development of semantic web information systems (MIDAS-S)
building on WSMO. In [24] (and other talks) E. Kendall promotes the integration of
OWL-S and SWSF within the ODM. We completely agree and support this initiative,
if the meta-model considers the other approaches of semantic web services named
WSMO and WSDL-S, too.

9 Conclusions and Future Investigations

Using our meta-model and UML-profile one can simply model a semantic web ser-
vice and then generate code in one of the currently proposed SWS-languages. Our
profile provides independency from each single SWS standard and can easily be
adapted in the future. We integrated our profile into a UML CASE-tool and modeled
a well-known example. Additionally, we showed how code can be generated using an
informal description as well as the openArchitectureWare format XPand.

Our meta-model fulfills the following requirements:
- it is easy-to-understand and easy-to-use
- it is compatible with all of the current W3C SWS-submissions and

builds on the OMG specification draft
- is enables a code generation through a well-defined meta-model
- it includes the modeling of ontologies

However, rules are still missing. To make it easier to model preconditions and effects
we will include rules (based on SWRL and WRL) in upcoming versions of our pro-
file. We are also interested on semantic business process models and how to combine
these business processes with the developed meta-model for semantic web services.

- 59 -

Appendix A: OWL-S meta-model

Figure 37: OWL-S meta-model

- 60 -

References

1. Object Management Group (OMG): “Unified Modeling Language (UML) Specification:
Superstructure, Version 2.0, Final Adopted Specification”, July 2005, available online at
http://www.omg.org/docs/formal/05-07-04.pdf

2. Object Management Group (OMG): “Unified Modeling Language (UML) Specification:
Infrastructure, Version 2.0, Final Adopted Specification”, July 2005, available online at
http://www.omg.org/docs/formal/05-07-05.pdf

3. Object Management Group (OMG): “Meta Object Facility (MOF) Core Specification,
Version 2.0”, January 2006, available online at http://www.omg.org/docs/formal/06-01-
01.pdf

4. Object Management Group (OMG): “MDA Guide Version 1.0.1”, June 2003, available
online at http://www.omg.org/docs/omg/03-06-01.pdf

5. Object Management Group (OMG): “Ontology Definition Metamodel (ODM), Fifth
Revised Submission to OMG/RFP ad/2003-03-40”, January 2006, available online at
http://www.omg.org/docs/ad/06-01-01.pdf

6. Martin, D. et al: “OWL-S: Semantic Markup for Web Services”, November 2004, W3C
Member Submission, available online at http://www.w3.org/Submission/OWL-S/

7. Lausen, H., Polleres, A. and Roman, D. (Eds.): “Web Service Modeling Ontology
(WSMO)”, June 2005, W3C Member Submission, available online at
http://www.w3.org/Submission/WSMO/

8. Akkiraju, R. et al.: “Web Service Semantics – WSDL-S”, November 2005, W3C Member
Submission, available online at http://www.w3.org/Submission/WSDL-S/

9. Battle, S. et al.: “Semantic Web Services Framework (SWSF) Overview”, September
2005, W3C Member Submission, available online at
http://www.w3.org/Submission/SWSF/

10. Hassael-Massieux, D. and Connolly, D.: “Gleaning Resource Descriptions from Dialects
of Languages (GRDDL)”, May 2005, W3C Team Submission, available online at
http://www.w3.org/TeamSubmission/grddl/

11. Kopecky, J. and Parsia, B.: “Web Service Description Language (WSDL) Version 2.0:
RDF Mapping”, May 2006, W3C Working Draft, available online at
http://www.w3.org/TR/wsdl20-rdf/

12. MID Enterprise Software Solutions: InnovatorAOX 2006, information online at
http://www.mid.de/

13. Efftinge, S. and Kadura, C.: “OpenArchitectureWare 4.1 Xpand Language Reference”,
available online at http://www.eclipse.org/gmt/oaw/doc/4.1/r20_xPandReference.pdf

14. Alves, A. et al.:” Web Services Business Process Execution Language Version 2.0”,
Committee Draft, May 2006, available online at http://www.oasis-
open.org/committees/download.php/18714/wsbpel-specification-draft-May17.htm

15. Workflow Management Coalition Specification: “XML Process Definition Language”,
WFMC-TC-1025, October 2005, available online at
http://www.wfmc.org/standards/docs/TC-1025_xpdl_2_2005-10-03.pdf

16. van der Aalst, W.M.P. and Dumas, M. and ter Hofstede A.H.M. and Wohet, P.: “Pattern
Based Analysis of BPML (and WSCI)”, FIT Technical Report, 2002, available online at
http://xml.coverpages.org/Aalst-BPML.pdf

17. Business Process Management Initivative (BPMI.org): “Business Process Modeling Nota-
tion (BPMN)”, Version 1.0, May 2004, available online at
http://www.bpmn.org/Documents/BPMN V1-0 May 3 2004.pdf

- 61 -

18. Skogan, D. and Gronmo, R. and Solheim, I.: “Web Service Composition in UML”, pre-
sented at the 8th International Enterprise Distributed Object Computing Conference
(EDOC), Monterey, September 2004

19. Gronmo, R. and Jaeger, M. and Hoff, H.: “Transformations between UML and OWL-S”,
presented at the European Conference on Model Driven Architecture – Foundations and
Applications (ECMDA-FA), Nuremberg, November 2005

20. Timm, J. and Gannod, G.: “A Model-Driven Approach for Specifying Semantic Web
Services”, presented at the 3rd IEEE International Conference on Web Services (ICWS
2005), July 2005

21. Scicluna, J. and Abela, C. and Montebello, M.: “Visual Modeling of OWL-S Services”,
Proceedings of the second Computer Science Annual Workshop (CSAW’04) at the Uni-
versity of Malta, September 2004.

22. Pondrelli L.: “An MDD annotation methodology for Semantic Enhanced Service Oriented
Architectures”, Proceedings of the Open Interop Workshop on Enterprise Modelling and
Ontologies, Porto, June 2005.

23. Acuna, C. and Marcos, E.: “Modeling semantic web services – a case study”, Proceedings
of the 6th International conference on web engineering (ICWE06), Palo Alto, CA, USA,
2006.

24. Kendall, E.: “MDA and Semantic Web Services: Integrating OWL-S & SWSF with the
Ontology Definition Metamodel (ODM)”, SOA, MDA and Web Services Workshop,
OMG, March 2006.

25. Peer, J.: “Semantic Service Markup with SESMA”, Web Service Semantics Workshop
(WSS’05) at the World Wide Web Conference ’05, 2005.

26. Fensel, D. and Bussler, C.: “The Web Service Modeling Framework WSMF”, Electronig
Commerce: Research and Applications, 2002

27. de Bruijn, J. and Lausen, H. and Polleres, A. and Fensel, D.: “WSML – a Language
Framework for Semantic Web Services”, W3C Workshop on Rule Languages for Interop-
erability, Washington DC, USA, 2005.

28. Lautenbacher, F. and Bauer, B.: “Semantic Reference and Business Process Modeling
Enables an Automatic Synthesis”, Semantics for Business Process Management (SBPM)
at European Semantic Web Conference (ESWC06), Budva, Montenegro, June 2006.

29. Pistore, M. and Spalazzi, L. and Traverso, P.: “A Minimalist Approach to Semantic Anno-
tations for Web Processes Compositions”, European Semantic Web Conference
(ESWC06), Budva, Montenegro, June 2006.

30. Farell, J. and Lausen, H.: “Semantic Annotations for WSDL (SAWSDL) – W3C Working
Draft 28 September 2006”, available online at http://www.w3.org/TR/sawsdl/.

