2004 International Workshop on Wireless Ad-Hoc Networks

moPiMine - Mobile Profile Mining

Christian Seitz and Michael Berger
Siemens AG, Corporate Technology
D-81730 Munich, Germany
Email: christian.seitz@mchp.siemens.de
Email: m.berger@siemens.com

Abstract— We present a new kind of mobile ad hoc appli-

cation, which we call Mobile Profile Mining (moPiMine), which .

is a combination of mobile clustering and data clustering. In
moPiMine each mobile host is endowed with a nser profile and
while the users move around, hosts with similar profiles are to
be found and a robust mobile group is formed. The members

" of a group are able to cooperate or attain a goal together. In
this paper moPiMine is defined and it is compared with related
approaches, Furthermore, a modular architecture and algorithms
are presented to build arbitrary moPiMine applications.

I. INTRODUCTION

Tomorrow’s world will be intrinsically ubiquitous and mo-
bile. Ubiquitous computing is a new trend in computation
and communication. It is an intersection of several technolo-
gies, including embedded devices, service discovery, wireless
networking and personal computing technologies. In an ad

_boc network, mobile devices can detach completely from the
fixed infrastructure and establish transient and opportunistic
connections with other devices that are in communication
range.

We present a new mobile ad hoc network application
area, which we call Mobile Profile Mining (moPiMine). In
moPiMine each mobile host is endowed with a user profile. A
user profile (short: profile) is a.comprehensive data collection
belonging to a specific object (e. g. a perscn). A profile
consists of a set of parameters defining the configuration of a
user specific application. While the usérs move around, mobile
hosts with similar profiles are to be found and a mobile group
is formed. The participants of a group are able to cooperate
or attain a goal together.

We apply the moPiMine framework in a taxi sharing sce-
nario. If an airplane arrives at an airport some passengers may
have the same final destinations e. g. a hotel or destinations
are on the route of another person. While people are walking
to the exit or waiting at the baggage claim the mobile devices
exchange the profiles of their users and try to find small groups
with similar destinations. This scenario can even help people
to get group rates in public transportation.

In the intelligent manufacturing area often optimal teams
must be found to create specialized products. In order to
determine these groups each worker is equipped with a profile,
with his skills as profile entries, and moPiMine uses the profile
entries to determine the best team for a specific task.

"Another possible application of the moPiMine framework
would be offering personalized guided tours in museums or

Bernhard Bauer
University of Augsburg
Institute of Computer Science
D-86150 Augsburg, Germany
Email: baver@informatik.uni-augsburg.de

expositions. In museums or other cultural. facilities guided
tours are offered, in which an expert tells some background in-
formaticn about the exhibits. With mobile grouping the visitors
can be grouped according to their interests and preferences,
which allow the guide to make a more personalized tour.
The rest of the paper is organized as follows. Section 1I
gives an overview of related work of other clustering or
grouping problems and the next section describes the grouping
mechanisms taken into account. Section IV describes the
used algorithms in our approach to moPiMine and presents
simulation results. Finally, section V concludes the paper with

a summary.
II. PROBLEM CLASSIFICATION AND RELATED WORK

In this section we classify with which problems a Dara
Mining in a Mobile Environment on User Profiles application
is confronted and we show which other research areas are
related to this new problem.

A. Problem Classification

Data Mining in a Mobile Environment on User Profiles
comprises three main problems which have to be solved to
accomplish a moPiMine application. The first problem is the
dynamic behavior of an ad hoc network, where the number of
mobile hosts and communication links permanently change.
Secondly, a data structure for the user profile has to be defined
and a mechanism must be created to compare profile instances.
Finally, similar profiles have to be found in the ad hoc network
and the corresponding host form a group, in spite of the
dynamic behavior of the ad hoc network.

B. Related Research Areas

Grouping algorithms and their applications appear very
often in literature. There are mainly two research areas as-
sociated with it, namely mobile networks, databases and data
mining. Grouping in mobile networks describes the partition-
ing of a mobile network in several, mostly disjoint, clusters
[1], [2]. This clustering takes place at the network layer and
is used for routing purposes.

Clustering is also known in the data mining area. A huge
amount of data is scanned with the goal to find similar data
sets. This research is also known as unsupervised learning. In
the surveys of Fasulo [4] or Fraley and Raftery [5] an overview

110

of many algorithms for that domain can be found. Maitra [8]
and Kolatch [7] examine data-clusters in distributed databases.

moPiMine combines the two aforementioned clustering ap-
proaches and in order to accomplish its objective the men-
tioned problems are to be solved. The problems, arising by
means of the motion of the hosts could be solved by methods
used in the mobile network area. Searching for similar profiles
is based on algorithms of data clustering. Both methods must
be adapted to moPiMine, ¢. g. while in the database area
millions of data sets must be scanned, in the moPiMine
application at the utmost one hundred other hosts are present.
In contrast to data sets in databases ad hoc hosts move around
and are active, i. e. they can publish their profile by their own.

III. GROUPING MECHANISMS

If you look at our daily life there are basically two main
reasons why people form groups. The first one is that people
cannot solve a problem without a group. Imagine a person
wants to play volleyball. A single person is unable to do this
kind of sport alone and needs other people. The other reason
for group formation is that people are benefiting by the group,
although they are also would be capable of solving the problem
alone. Examples are group rates in public transportation or
cultural facilities. If people join a group they benefit by a
lower entrance fee.

The first reason is named similarity based grouping, because
the resulting group consists of people with similar profiles
or at least of similar profile sections. The other approach is
called benefit based grouping because of the mentioned benefit
associated with the group membership.

In the following, for both mechanism it is explained how
they are addressed algorithmically.

A. Benefit based Grouping

The heart of the benefit based grouping is the profit function
. This function associates to each group constellation a
specific value.

Definition Group Profit Function 7:

Let P(V) be the power set of the nodes of a graph G(V, E)
and G a local group. The Group Profit function 7(G) :
PB(V) — R assigns a value to a group G € B(V). This value
reflects the benefit, which emerges from group formation. =
is domain dependent and differs form application scenario to
application scenario.

Let GG be a group and p a potential new group member. The
necessary condition for adding p to the group G is

m{GUp) > w(G). (n

Let P(G) the power set of the group G Then, the sufficient
condition for adding p to the group G is

YG; € B(G) : 1(GUp) > 7(Gy)

This condition is needed, because it may happen, although
condition one holds, partitioning the group in subgroups is
even more efficient than adding the new point to the existing
group.

Algorithmically, if a large number of new group members
are available benefit based grouping is an optimization prob-
iem. But, if we assume, there are only a few new members
(according to the upper velocity threshold) the grouping con-
sists only of a test of the necessary and sufficient condition.

B. Similarity based Grouping

This approach groups people with similar profile entries and
is a variation of the benefit based approach. The differences
are, that the number of groups & must be predetermined and

“that there is a special profit function is associated with each

group Gj.

Let the population P be the set of people that want to be
grouped in disjoint groups and G; the set of groups, P is split
up, so that Ule G; = P. Let k be the number of groups
the population P is split up and dx(z,y) a distance function
to express the similarity of two profile entries. The global
criterion for the most similar groups is

k IG:] |Gsl
min Z C(Gi), with C(Gi} = Z Z(dx (mrs ys)) 2~
i=1 o or=1 s=1

As distance functions

dp(z,y) = Y (zi —w)?

i=1

n
du(z,y) =Y o — il
i=1

are used. dg is the Euclidian distance and is the more intuitive
one. dps is the Manhattan distance and is easier to compute
and more robust against outliers.

With these changes of the benefit based grouping, the
similarity based grouping turns into the k-means algorithm,
which is well understood (see [4]).

C. Discussion

Both grouping approaches are rather complex according
to complexity. If a global optimum should be reached, both
methods are NP-hard. For that reason we concentrate on local
optimization in order to reduce the complexity. .

The first heuristic can be the analysis of the profit function.
If it is known where the profit function has its global or local
maximum, the search of new members can be restricted to a
certain area. For this heuristic a huge amount of mathemat-
ical work is needed, because analyzing functions cannot be
generalized.

The next way to reduce the complexity is to choose the
group members in an opportunistic way. If more potential
grouping partners are available that one is chosen, that in-
creases the profit function most. But this procedure must not
result in a global optimum. Simulation results show, that on
the average the profit function is 10 to 15 % less than the
optimum.

The last heuristic we apply is a kind of hierarchical grouping
if it becomes necessary. The grouping process is split up in a
local grouping and a decentralized grouping part. The specifics
are explained in a later section.

111

Fig. . Architecture of the moPiMine Algorithm Entity

IV. moPiMine ALGORITHMS

In this section the architecture of the algorithm entity
is presented, the used network model is defined and the
algorithms for each layer are shown. The algorithm entity has a
. layered architecture and encompasses algorithms for initiator
determination, virtual topology creation, local grouping and
decentralized grouping. Finally, we show some simulation
results, in order to indicate how stable the generated groups
are. '

A, moPiMine Algorithm Entity

The most important part of a moPiMine application is the
Algorithm Entity (AE). The design of this essential entity is
shown in figure 1. The basis for the algorithm entity is an Ad
hoc Middleware. The middleware is needed by the AE in order
to send and receive messages in the dynamic environment.
Furthermore, the middleware has to provide a lookup services
to find new communication partners. As middleware, we use
a JXTA approach and for the future we try to migrate our
scenario (0 a Bluetooth application.

The lowest layer of the AE is the Initiator Detection Layer,

which assigns the initiator role to some hosts. An initiator is -

needed in order to guarantee, that the algorithm of the next
layer is not started by each host of the network. This layer
does not determine one single initiator for the whole ad hoc
network. It is sufficient, if the number of initiator nodes is
only reduced.

The Virtual Topology Layer is responsible for covering the
graph G with another topology, €. g. atree or a logical ring.
This virtual topology is necessary to reduce the number of
messages, that are sent by the mobile hosts. First experiences
show, that a tree is the most suitable virtual topology and
therefore we will only address the tree approach in this paper.

The next layer is the most important one, the Grouping
Layer, which accomplishes both, the local grouping and the
decentralized grouping. Local grouping comprises the selec-
tion of hosts which are taken into account for global grouping.
Decentralized grouping encompasses the exchange of the local
groups with the goal to achieve a well defined global group.

B. Initator Determination

Before the spanning tree is created, the initiators must be
determined who are allowed to send the first creation-

messages. Without initiators all hosts start randomly sending
messages with the result that a tree will never be created.
We are not in search of one single initiator, we only want to
guaraniee, that not all hosts start the initiation.

There are two ways to determine the initiator, an active and
a passive one. The active approach starts an election algorithm
(see Malpani er al. [9]). These algorithms are rather complex,
i. e. a lot of messages are sent which is very time consuming.
They guarantee that only one leader is elected and in case of
link failures that another host takes the initiator role. Such a

: procedure is not appropriate and not necessary for moPiMine,

because the initiator is only needed once and it matters little if
more than one initiator is present. Therefore, we decided for
the passive determination method, which is similar to Gafni
and Bertsekas [6]. By applying the passive method no message
is sent in the beginning to determine an initiator. Since each
host has an ID and knows all neighbor IDs, we only allow
a host being an initiator, if it§ ID is larger than all IDs of
its neighbors. The initiator is in charge of starting the virtual
topology algorithm, described in the next section.

C. Virtual Topology Creation

Having confined the number of initiators, an ad hoc graph
(G can be covered with a virtual topology (VT). Simulations
showed that a spanning tree is a promising approach for a VT
and therefore we will only describe the spanning tree VT in
this paper.

A spanning tree spT(G) is a connected, acyclic subgraph
containing all the vertices of the graph G. Graph theory
guarantees, that for every G a spT{(G) exists.

1) The Algorithm: Each host keeps a spanning tree sender
list (STSL). The STSL contains the subset of a host’s neigh-
bors belonging to the spanning tree. The initiator, determined
in the previous section, sends a create-message furnished
with its ID to all its neighbors. If a neighbor receives a
create-message for the first time, this message is forwarded
to all neighbors except for the sender of the create-message.
The host adds each receiver to the STSL. If a host receives
a message from a host which is already in the STSL, it is
removed from the list.

To identify a tree, the ID of the initiator is always added
to each message. It may occur that a host already belongs to
another tree. Under these circumstances the message is not
forwarded any more and the corresponding host belongs to
two (more are also possible) trees.

In order to limit the tree size a hop-counter ¢, is enclosed
to each message and is each time decremented, the message
is forwarded. If the counter is equal to zero, the forwarding
process stops. Note, with an increasing cj, the time for building -
a group also increases, because cp is equivalent to the half
diameter dg of the graph G.

By using a hop-counter it may occur that a single host
does not belong to any spanning tree, because all tree around
are large enough, i. €. ¢ is reached. The affiliation of that
host is not possible, because tree nodes do not send messages
in case the hop-counter’s value is zero. When time elapses

112

A —e—v=0.45 km/h
o —e—v=1.35 km/h
120 —a—-v=2.25 kmh

Fig. 2. Virtual topology stability

and a node does notice it does still not belong to a tree,
an initiator determination is started by this host. Two cases
must be distinguished. In the first one the host is surrounded
only by tree nodes, in the other case a group of isolated
hosts are existing. In both cases, the isolated host contacts
all its neighbors by sending an init-message, and if a
neighbor node already belongs to a tree it answers with a
join-message. If no non-tree node i$ around, the single node
chooses arbitrarily one of the neighbors and joins the tree
by sending an join-agree-message, to the other hosts a
join-refuse-message is sent. If another isolated host gets
the init-message, a init-agree-message is returned and
the host sending the init-message becomes the Initiator starts
creating a new tree.

2) Stability of the Virtual Topology: Due to the mobility
of the nodes a created virtual topology is not stable. Figure 2
envisages the stability time of a virtual topology for different
velocities. The picture shows the stability for a virtual tree
topology.

The more members a virtual topology has, the less stable is
it, because the probability that a member leaves the topology
increases. As it can be seen int the picture the tree topology
is more stable with a small number of topology members but
decreases more rapidly than the ring topology. With a large
number of members both topologies behave equally.

The essence of figure 2 is, that a virtual topology for a
huge amount of members and for high velocities cannot be
maintained.

D. Local Grouping - Optimizing the Local View

In this section algorithms are presented that determine the
subset of neighbor hosts, which initially belong to a host’s
group, called a local group. In order to guarantee, that groups
are not formed arbitrarily, but bring a benefit to its members
we use the group profit function, defined in section IE-A.

If a new node v; is added to the group the necessary
condition of equation 1 in section IIT must hold. ‘

The algorithm adds in each step exactly one new local group
member. Injtially, a host scans all known profiles and adds that
one, with the smallest distance to him, If the group with two
points will bring a greater benefit, the points is added to the

firstReferenceNode := currentPoint;
secondReferenceNode := currentPoint;
nextPoint := null;

localGroup := currentPoint;

currentProfit = profit_function{ localGroup };

while((nextPoint :=
getNearestProfilePoint (firstReferenceNede)) != null)
futureProfit:=profit_function(localGroups+nextPoint }:
if(futureProfit » currentProfit) then
localGroup += nextPoint;
neighbors -= nextPoint;
currentProfit = futureProfit;
firstReferenceNode := secondReferenceNcde;
secondReferenceNode := nextPoint;
iEalg
elihw;

Fig. 3. PseudoCode of the Local Grouping Algorithm

point. The group now has two members. It may only one point
be added in one step, because else the shape of a group gets
beyond conirol A host A can add another host B in the exactly
opposite direction than a host D is added by hest C. If more
than one points should be added, coordination is needed.

The points already belong to the group form a fractional
line, because at all times only one point is added. In order to
sustain this kind of line, we only allow the two endpoints to
add new points. To coordinate these two points, the endpoints
of the line may add new points, alternately. If the right end
has added a new point in step n, in step (n+1) the left side is
on turn to add a point. The alternating procedure stops, when
one side is not able to find a new point. In such a case, only
the other side continues to add points, until no new point is
found. If a host is allowed to add a point and there is also
one to add, it is not added automatically. The new point must
bring a benefit, according to the aforementioned definition.
The pseudocode of the local grouping process is shown in
figure 3

E. Decentralized Grouping - Achieving the Global View

In the previous section each host has identified its neighbor
hosts that belong to its local group g;. These local groups must
be exchanged in order to achieve a global group.

The algorithm presupposes no special initiator role. Each
host may start the algorithmn and it can even be initiated by
more than one host contemporaneously. The core of the used
algorithm is an echo-algorithm, see [3].

Initially, an arbitrary host sends an EXPLORER-message
with its local-group information enclosed to its neighbors
which are element of the spanning tree (the STSL, see section
IV-C.1). If a message arrives, the enclosed local-group is taken
and it is merged with its current local view of the host to get
a new local view. The merging function tries to maximize
the group profit function, i. e. if two groups are merged, from
each group these members become a member of the new group
which together draw more profit than each single group.

The new local view is forwarded to all neighbors except

113

g
“ T .,
R0 ¢ e, ..,

tee gee +

[}] = N
1 4 gloup
o 2 3 5 s oo

Fig. 4. Group stability time

for the sender of the received message. If a node has no
other outgoing edges and the algorithm has not terminated,
the message is sent back to the senderIf more than one hosts
initiate the algorithm and a host receive several EXPLORER-
messages, then only the EXPLORER-message from that host
are forwarded, which has the higher ID (message extinction).

In order to determine when the algorithm has finished
we need a termination criterion, because we do not know
how many messages need to be sent to reach an agreement.
Currently, a host stops sending messages if the local views
of all direct neighbors do not differ from its own local view.
This can be determined if equal local views are received from
_these neighbors.

F. Group Stability

In this subsection the stability of the groups is evaluated.
With stability we mean the time a group does not change, i. e.
no-other host is added or no group member leaves the group.
This time is very important for our algorithms, because in this
time the group formation process must be finished.

We developed a simulation tool to test, how long the groups
are stable. In the simulation environment the assumptions are:

o We do not rely on any central component.

« There is no location information available, ¢. g. GPS-data
or cell-info.

¢ Each mobile device has a permanent, constant unique ID.

« The transmission range r; of all hosts is equal.

¢ Each host knows all its neighbors and its associated ID.

« The communication is done in pure ad hoc mode, no base
station are needed.

The velocity of the mobile hosts is uniformly distributed
in the interval .[0;5.2], the average velocity of the mobile
hosts 2.6 kTm This speed seems to be the prevailing speed
in pedestrian areas. Some people do not walk at all (they
look into shop windows etc.), other people hurry from one
shop to the other and therefore walk faster. Moreover we
assume a transmission radius of 50 meters. Figure 4 shows this
dependency. It shows, that the time a group is stable, decreases
extremely. A group with 2 people exists on the average for 30
seconds, whereas a group with 5 people is only stable for 9
seconds, Nevertheless, a group that is stable for 9 seconds is

still sufficient for our algorithms. In order to investigate the
dependencies numerous simulations were carried out.

To express the result, let r, be the transmission radius
and T be the average speed of the mobile peers, then these
simulations show, that 7= = const. This expression leads to
the following formula for the stab111ty-t1me t, of a group with
n members:

T 1
B ===
20 n-—-1
With this formula for ¢, we have an upper threshold for the
time in which the grouping process must be finished.

V. CONCLUSION

In this paper we presented a kind of ad hoc applications
called Mobile Profile mining, also called moPiMine). Each
mobile host is endowed with its user’s profile and while
the user walks arcund clusters are to be found, which are
composed of hosts with similar profiies.

Our approach deals with two kinds of groups. The first one
is benefit based grouping, where only groups are formed when
the members gain a profit by the group. The other approach is
a similarity based grouping, where people with similar profiles
form a group.

The algorithms of a moPiMine application are explained.
This entity is responsible for ad: hoc network partitioning
as well as local grouping and distributed grouping. At first,
each host has to find its local group, which consists of all
neighbor hosts with similar profiles. Finally, the local groups
are exchanged and a global group is achieved. Simulation
results show that the groups are stable long enough to run
the algorithms.

We apply the moPiMine framework in a taxi sharing sce-
nario, where people with similar destinations share a taxi and
therefore save money. For the future we will apply moPiMine
in other domains, ¢. g. the intelligent manufacturing area.

REFERENCES

[1] S. Banerjee and S. Khuller. A clustering scheme for hierarchical control
in multi-hop wireless networks. Technical report, Univ. of Maryland at
College Park, 2000.

[2] S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of
the IEEE International Symposium on Parallel Architectures, Algorithmns,
and Networks (I-SPAN), Perth., pages 310-315, 1999,

[3] E.). H. Chang. Echo algorithms: Depth parallel operations on general
graphs. IFEE Transactions on Software Engineering, SE-8(4):391-401,
July 1982,

[4] D. Fasulo. An analysis of recent work on clustering algorithms. Technical
report, University of Washington, 1999,

[51 C. Fraley and A. E. Raftery. How many clusters? Which clustering
method? Answers via model-based cluster analysis. The Computer
Journal, 41(8):578-588, 1998.

[6} E. M. Gafni and D, P. Bertsekas, Dlstnbuled algorithms for generating

loop-free routes in networks with frequently changing topology. IEEE

Transactions on Communications, COM-29(1):11-18, January 1981.

E. Kolatch. Clustering algorithms for spatial databases: A survey. Tech-

nical report, Department of Computer Science, University of Maryland,

College Park, 2001.]

[8] R. Maitra. Clustering massive datasets. In statistical computing at the
1998 joint statistical meetings., 1998,

{91 N. Malpani, J. Welch, and N. Vaidya. Leader election algorithms for
mobile ad hoc networks. In Proc. of the Fourth Int. Workshop on Discrete
Algorithms and Methods for Mobile Compulmg and Communications,
pages 96-103, 2000.

[7

—

114

