Christian Seitz - Michael Berger - Bernhard Bauer

Towards a general approach to mobile profile

based distributed grouping

Abstract In this paper, we present a new kind of mobile
ad hoc application, which we call mobile profile based
distributed grouping (MoPiDiG), which is a combination
of mobile clustering and data clustering. In MoPiDiG,
each mobile host is endowed with a user profile and,
while the users move around, hosts with similar profiles
are found and a robust mobile group is formed. The
members of a group are able to cooperate with each
other or attain a goal together. In this article, MoPiDiG
is defined and compared with related approaches. Fur-
thermore, a modular architecture and algorithms are
presented to build arbitrary MoPiDiG applications.

1 Introduction

Tomorrow’s world will be intrinsically ubiquitous and
mobile. Ubiquitous computing is a new trend in com-
putation and communication. It is an intersection of
several technologies, including embedded devices,
service discovery, wireless networking, and personal
computing technologies. In an ad hoc network, mobile
devices can detach themselves completely from the fixed
infrastructure and establish transient and opportunistic
connections with other devices that are within commu-
nication range. The structure of an ad hoc mobile net-
work could be highly dynamic. The absence of a fixed

C. Seitz (B<) - M. Berger

Corporate Technology,

Information and Communication,
Siemens AG, 81730 Miinchen, Germany
E-mail: Christian.Seitz@mchp.siemens.de

B. Bauer

Institute of Computer Science,
University of Augsburg,
86135 Augsburg, Germany

network infrastructure, frequent and unpredictable
disconnections, and power considerations render the
development of ad hoc mobile applications a very
challenging task.

We present a new mobile ad hoc network application
area, which we call mobile profile based distributed
grouping (MoPiDiG). In MoPiDiG, each mobile host is
endowed with a user profile. A user profile (short: profile)
is a comprehensive data collection belonging to a specific
object (e.g., a person). A profile consists of a set of
parameters defining the configuration of a user-specific
application. While the users move around, mobile hosts
with similar profiles are found and a mobile group is
formed. The participants of a group are able to coop-
erate or attain a goal together.

The MoPiDiG framework can be applied in a variety
of domains. In the intelligent manufacturing area, often,
optimal teams must be found to create specialized
products. In order to determine these groups, each
worker is equipped with a profile with his/her skills as
profile entries, and MoPiDiG uses these profile entries to
determine the best team for a specific task.

Another possible application of the MoPiDiG
framework is to offer personalized guided tours in
museums or expositions. In museums or other cultural
facilities, guided tours are offered in which an expert tells
some background information about the exhibits.
Unfortunately, such guided tours are not customized to
the participants. With mobile grouping, the visitors can
be grouped according to their interests and preferences,
which allows the guide to make a more personalized tour.

In the public transport area, MoPiDiG could be ap-
plied in a taxi sharing scenario. If a train arrives at a
railway station or an aeroplane at an airport, the dif-
ferent passengers may have the same destination, e.g., a
hotel. This destination address is part of the users’
profiles and are stored on their mobile devices. While
people are waiting at the baggage terminal, the mobile
devices exchange profiles and try to find small groups of
people with similar destinations. This scenario can even
help people to get group rates in public transportation.

The rest of the paper is organized as follows. Section
2 gives an overview of related work of other clustering or
grouping problems. Section 3 formally defines a MoPi-
DiG problem. The next section presents the architecture
of a MoPiDiG application. Section 5 describes the used
algorithms in our approach to MoPiDiG and presents
simulation results. Finally, Sect. 6 concludes the paper
with a summary.

2 Problem classification and related work

In this section, we classify with which problems a
MoPiDiG application is confronted. Furthermore, we
show which other research areas are related and how
this new problem has already been discussed in the
literature.

2.1 Problem classification

In MoPiDiG, mobile hosts are equipped with wireless
transmitters, receivers, and a user profile. They are
moving in a geographical area and are forming an ad
hoc network. In this environment, hosts with similar
profiles have to be found. MoPiDiG in ad hoc envi-
ronments comprises three main problems that have to be
solved to accomplish a MoPiDiG application. The first
problem is the dynamic behavior of an ad hoc network,
where the number of mobile hosts and communication
links constantly changes. Secondly, a data structure for
the user profile has to be defined and a mechanism must
be created to compare the profile instances. Finally,
similar profiles have to be found in the ad hoc network
and the corresponding host needs to form a group, in
spite of the dynamic behavior of the ad hoc network.

2.2 Related research areas

Grouping algorithms and their applications appear very
often in the literature. There are mainly two different
research areas associated with it; namely, mobile net-
works and databases and data mining. Grouping in
mobile networks describes the partitioning of a mobile
network in several, mostly disjoint, clusters [2, 14]. The
clustering process comprises the determination of a
cluster head in a set of hosts. A cluster is a group of
hosts, able to communicate with the cluster head. This
clustering takes place at the network layer and is used
for routing purposes.

In the following, we will have a closer look at these
two research areas. Clustering is also known in the
database or data mining area. A huge amount of data is
scanned with the goal to find similar data sets. This
research is also known as unsupervised learning. In the
surveys of Fasulo [8] and Fraley and Raftery [3], an
overview of many algorithms for that domain can be

91

found. Maitra [11] and Kolatch [6] examine data clusters
in distributed databases.

MoPiDiG combines the two aforementioned clus-
tering approaches and, in order to accomplish its
objective, the mentioned problems are to be solved. The
problems, arising by means of the motion of the hosts,
could be solved by methods used in the mobile network
area. Searching for similar profiles is based on algo-
rithms of data clustering. Both methods must be adap-
ted to MoPiDiG, e.g., while in the database area
millions of data sets must be scanned, in the MoPiDiG
application, at the utmost, 100 other hosts are present.
In contrast to data sets in databases, ad hoc hosts move
around and are active, i.e., they can publish their profile
by themselves.

2.3 Related work

There are other works that analyze ad hoc clustering or
grouping algorithms. Roman et al. [9] deal with consis-
tent group membership. They assume that the position
of each host is known by other hosts, and two hosts only
communicate with each other if it is guaranteed that,
during the message exchange, the transmission range
will not be exceeded. In our environment, obtaining
position information is not possible because such data is
not always available, e.g., inside of buildings. Hatzis
et al. [10] describe algorithms for mobile ad hoc net-
works, but they assume that the number of hosts does
not change during protocol execution. This assumption
appears as too strict because vanishing and appearing
hosts are an ad hoc networks characteristic.

Another related field is agreement or consensus
algorithms, where all hosts must agree on a binary value,
based on the votes of each host. They must all agree on
the same value, and that value must be the vote of at
least one process. This is almost what we want to
achieve, but in MoPiDiG, we have to agree on complex
profiles. Furthermore, not all hosts must agree in our
case—it is enough when a subset agrees. Badache et al.
[1] adapt agreement algorithms to a mobile environ-
ment, but they use fixed base stations and no real ad hoc
network without an infrastructure.

3 MoPiDiG definitions and assumptions

This section gives a formal introduction to MoPiDiG
and defines the used ad hoc network model. Finally,
some assumptions to the application are made.

3.1 The ad hoc network model
An ad hoc network is generally modeled as an undi-
rected graph G=(V, E).

Definition 1. Graph G(V, E) Let G=(V, E) be a graph
with the vertex set V={v;, vs,..., v,} and edges

(a) (b)

Fig. 1 a A graph and b a possible spanning tree
ECVxV (v, vpeE if the Euclidian distance
d(Vl', VJ) <)’tl.

A graph is depicted in Fig. la. The vertices v; of Gy
represent mobile hosts. Due to the motion of the verti-
ces, a graph Gy as shown in Fig. 1a is only a snapshot of
an ad hoc network, because, as a consequence of the
mobility of the hosts, G will constantly be changing.

Assumptions on the mobile nodes and network are:

— We do not rely on any central component.

— There is no location information available, e.g., GPS
data or cell information.

— Each mobile device has a permanent, constant unique
ID.

— The transmission range of all hosts is r. This also
guarantees a symmetrical communication behavior,
i.e., if host A can send messages to host B, then host B
can send messages to host A as well, even though,
physically, it is easy to envision circumstances in
which some hosts may be able to reach much further
than others.

— Each host knows all its neighbors” and its associated
ID. This service is accomplished by the ad hoc mid-
dleware.

3.2 Formal definition of MoPiDiG

In a MoPiDiG application, each host has a user profile.
A profile is a point in the profile space IT.

Definition 2. Profile space Let IN=IIx..xII,, be a
profile space with finite dimension m. A point P€IT with
P=(pi,..., p,) corresponds to a profile. The p; are
referred as profile entries.

Furthermore, let ¢ : V' — P be a function that maps
to each node v,€V to a profile P, i.e., ¢(v)=P;.

The algorithms in Sect. 5 distinguish between a local
group and a decentralized group, which are defined in
the following.

Definition 3. Communication relation a C, b: The rela-
tion a C, b indicates that a node ¢ can communicate
with a node b over a maximum of n vertices, i.e., a path

1A . .
ry=transmission radius.

The neighbors of a host / are all other hosts that reside within /s
transmission range ry.

{ei,..., ep} (m < n) from node a to node b with |{ey,...,
et < n exists.

Definition 4. Neighbor set Nt The neighbor set N% is
defined as N! = {x|v Cs x}. Thus, N* contains the set
of nodes that can communicate over k edges with the
node v.

Definition 5. Similarity operator ¢ Let IC be an r-tuple
of nodes V of the graph G and let v be an arbitrary node
of G. Thus, ¢ is defined as o: V"XV — {true, false}.

Definition 6. Local group G Let N} be the set of com-
munication partners of an arbitrary node v; over 1 edge
and let P(N!) be the power set of N, and let
K ={M € P(N})|o(v;, M) = true}. Then, a local group
G C Nle is defined as G = maxyyex |X|. The set of all n
local groups G is denoted with G.

The local group G of a vertex v consists of all the
direct neighbor hosts whose profiles are similar to the
profile of v.

In order to achieve a decentralized group, local
groups must be combined to get a new group. This is
done by a combination operator.

Definition 7. Combination operator 7y Let G; and G; be
two local groups and v be an arbitrary node in G. For
the combination y(G;, G;) =G UG,\M C G;UG;, the
following conditions must hold:

a(v, 7(Gi, Gj)) = true
Definition 8. Decentralized group Let N* be all the
neighbors of a node v. A decentralized group is obtained

if the local group of the node v is combined with the
local group of each element in N..

4 MoPiDiG application architecture

In this section, the architecture of a MoPiDiG applica-
tion is presented, which is depicted in Fig. 2. A MoPi-
DiG application consists of three essential parts: the

Domain Description Unit

Domain Group Profile

Definition Definition Definition
MoPiDiG Unit
MoPiDiG Meta Descriptions
RSP Meta Group| [Meta Profile
Algorithms %o 9.0
Description | | Description

Middleware (Agent Platform, JXTA, etc.)

Fig. 2 Components of a MoPiDiG application

middleware, the MoPiDiG unit and the domain
description unit.

The middleware establishes the basis for a MoPiDiG
application. It is in charge of detecting other hosts in the
mobile environment and provides a mechanism for
sending and receiving messages to other hosts which are
within transmission range. The central element of a
MoPiDiG application is the MoPiDiG unit. It is made
up of a MoPiDiG algorithm entity and a MoPiDiG
description entity.

The MoPiDiG algorithm entity distinguishes between
local grouping and decentralized grouping. In order to
obtain a decentralized group, a two-tier process is star-
ted. At first, each host selects from its neighbor hosts the
subset of hosts which ought to be in the group. This set
of hosts is called a local group. After each host has
determined its local group, these groups are exchanged
in a second step and a unique decentralized group is
acquired.

As the MoPiDiG unit is totally domain independent,
the structure of a profile or a group definition must be
defined. This is done by the meta profile description and
the meta group description, which are elements of the
MoPiDiG description entity. The meta group and meta
profile description define what a group or profile defi-
nition consists of and specify optional and mandatory
elements of a group or profile definition. In both meta
descriptions, there is a mandatory general part defining
the name of the profile or group. The meta profile
description encompasses a set of tags for profile entry
definitions and specifies the structure of rules that can be
declared in the profile definition in the domain descrip-
tion Unit. The meta group description comprises

Fig. 3 Profile definition in the
taxi sharing scenario

93

abstract tag definitions for the size of a group, how a
group is defined and the properties to become a group
member.

On top of the MoPiDiG unit, the domain description
unit is located. This unit adjusts the MoPiDiG unit to a
specific application domain. In the domain definition
entity, domain-dependent knowledge is described and in
the profile and group definition entities the domain-
specific profiles and group properties are defined. The
profile definition specifies the structure of the profile for
the domain, in accordance with the meta profile
description.

The profile is specified in XML and the structure is
defined by an XML schema. In Fig. 3, an example of a
profile definition is given for the taxi sharing scenario, as
explained in Sect. 1. After specifying personal data
(e.g., name) the application-dependent entries are
defined. The PROFILE part consists of a concatenation
of these entries in a name-value pair manner. For
the taxi sharing scenario, the x and y value in
the profile specify the destination of the user. The
<ENTRYNAME>maxTime simply specifies the time that
the user is willing to spend until his/her destination is
reached.

The group term varies from application to applica-
tion. A group can be a few people with similar properties
(the same hobby, profession, age, etc.), but it also can be
a set of machines with totally different capabilities. For
that reason, the group definition that comprises the
characteristics of the group ought to be found. Figure 4
shows an example of a profile description, also for the
taxi sharing scenario. In the <ENTRIES> section, the
tags are defined, which are the basis for the grouping. In

<?xml version="1.0" standalone="yes" 7>
<DOCUMENT>

<USERPROFILE>
<NAME>John Smith</NAME>
<PROFILE>
<PROFILEENTRY>
<ENTRYNAME>xValue</ENTRYNAME>
<ENTRYVALUE>190</ENTRYVALUE>
</PROFILEENTRY>
<PROFILEENTRY>
<ENTRYNAME>yValue</ENTRYNAME>
<ENTRYVALUE>251</ENTRYVALUE>
</PROFILEENTRY>
<PROFILEENTRY>
<ENTRYNAME>maxTime</ENTRYNAME>
<ENTRYVALUE>25</ENTRYVALUE>
</PROFILEENTRY>
</PROFILE>
</USERPROFILE >

</DOCUMENT>

94

<?xml version="1.0" standalone="yes" 7>
<DOCUMENT>
<GROUPDESCRIPTION>
<ENTRIES>
<ENTRYNAME>xValue</ENTRYNAME>
<ENTRYNAME>yValue</ENTRYNAME>
</ENTRIES>
<GROUPSIZE>
<LOWERLIMIT>0</LOWERLIMIT>
<UPPERLIMIT>3</UPPERLIMIT>
</GROUPSIZE>
</GROUPDESCRIPTION>
</DOCUMENT>

Fig. 4 Group description in the taxi sharing scenario

this application, there is the xValue and the yValue,
which is the destination. Furthermore, the group size is
defined, which is in the range from 0 to the upper value
of 3. The user can add further constraints to that
description, e.g., whether the other passengers should be
a smoker or non-smoker, male or female etc.

5 MoPiDiG algorithms

In this section, the architecture of the algorithm entity is
presented, the used network model is defined and the
algorithms for each layer are shown. The algorithm
entity has a layered architecture and encompasses
algorithms for initiator determination, virtual topology
creation, local grouping and decentralized grouping.
Finally, we show some simulation results in order to
indicate how stable the generated groups are.

5.1 MoPiDiG algorithm entity

The most important part of a MoPiDiG application is
the algorithm entity (AE). The design of this essential
entity is shown in Fig. 5. The basis for the algorithm
entity is an ad hoc middleware. The middleware is needed
by the AE in order to send and receive messages in the
dynamic environment. Furthermore, the middleware has
to provide a lookup service to find new communication
partners.

The lowest layer of the AE is the initiator detection
layer, which assigns the initiator role to some hosts. An
initiator is needed in order to guarantee that the algo-
rithm of the next layer is not started by each host of the
network. This layer does not determine one single initi-
ator for the whole ad hoc network. It is sufficient if the
number of initiator nodes is only reduced.

The virtual topology layer is responsible for covering
the graph G with another topology, ¢.g., a tree or a
logical ring. This virtual topology is necessary to reduce
the number of messages that are sent by the mobile
hosts. First experiences show that a tree is the most

MoPiDiG Algorithms

Clustering Layer

Local
Grouping

Decentralized
Grouping

Virtual Topology Layer

Initiator Determination Layer

Ad hoc Middleware

Fig. 5 Architecture of the MoPiDiG algorithm entity

suitable virtual topology and, therefore, we will only
address the tree approach in this paper.

The next layer is the most important one, the
grouping layer, which accomplishes both the local
grouping and the decentralized grouping. Local group-
ing comprises the selection of hosts that are taken into
account for global grouping. Decentralized grouping
encompasses the exchange of the local groups, with the
goal to achieve a well defined global group (see the
definitions in Sect. 4).

5.2 Initiator determination

Before the spanning tree is created, the initiators must be
determined, i.e., who is allowed to send the first creation
messages. Without initiators, all hosts would start ran-
domly sending messages with the result that a tree will
never be created. We are not in search of one single
initiator; we only want to guarantee that not all hosts
will start the initiation.

There are two ways to determine the initiator; an
active and a passive one. The active approach starts an
election algorithm (see Malpani et al. [12]). These algo-
rithms are rather complex, i.e., a lot of messages are
sent, which is very time consuming. They guarantee that
only one initiator is elected and, in case of link failures,
that another host takes on the initiator role. Such a
procedure is not appropriate and not necessary for
MoPiDiG because the initiator is only needed once and
it matters little if more than one initiator is present.
Therefore, we decided to use the passive determination
method, which is similar to Gafni and Bertsekas [5]. By
applying the passive method, no message is sent in the
beginning to determine an initiator. Since each host has
an ID and knows all its neighbor IDs, we only allow a
host being an initiator if its ID is larger than all the IDs
of its neighbors. The initiator is in charge of starting the
virtual topology algorithm, which is described in the
next section.

Unfortunately, fairness of the initiator determination
process is not guaranteed. Thus, it could happen that a
mobile device never takes the initiator position. At this
time, it cannot be said whether it is an advantage being
the initiator or not.

5.3 Virtual topology creation

Having confined the number of initiators, graph G, can
be covered with a virtual topology (VT). Simulations
showed that a spanning tree is a promising approach for
a VT and, therefore, we will only describe the spanning
tree VT in this paper.

A spanning tree spT(G) is a connected, acyclic sub-
graph containing all the vertices of the graph G. Graph
theory (e.g., Diestel [13]) guarantees that, for every G, a
spT(G) exists. Figure 1b shows a graph together with
one possible spanning tree.

5.3.1 The algorithm

Each host keeps a spanning tree sender list (STSL). The
STSL contains the subset of a host’s neighbors belong-
ing to the spanning tree. The initiator, as determined in
the previous section, sends a create message furnished
with its ID to all its neighbors. If a neighbor receives a
create message for the first time, this message is for-
warded to all the other neighbors except for the sender
of the create message. The host adds each receiver to the
STSL. If a host receives a message from a host that is
already in the STSL, it is removed from the list. The
pseudocode notation of this algorithm is shown in
Fig. 6.

To identify a tree, the ID of the initiator is always
added to each message. It may occur that a host already
belongs to another tree. Under these circumstances, the
message is not forwarded any more and the corre-
sponding host belongs to two (or more) trees.

In order to limit the tree size, a hop counter ¢, is
enclosed in each message and is decremented each time
the message is forwarded. If the counter is equal to zero,
the forwarding process stops. Note that, with an
increasing ¢, the time for building a group also
increases because ¢y, is equivalent to the half-diameter dg
of the graph G.

By using a hop counter, it may occur that a single
host does not belong to any spanning tree because all the
surrounding trees are large enough, i.e., ¢, is reached.
The affiliation of that host is not possible because tree
nodes do not send messages in case the hop counter’s
value is zero. When time elapses and a node does notice

95

that it still does not belong to a tree, an initiator deter-
mination is started by this host. Two cases must be
distinguished. In the first case, the host is surrounded
only by tree nodes; in the other case, a group of isolated
hosts are existing. In both cases, the isolated host con-
tacts all its neighbors by sending an init message, and, if
a neighbor node already belongs to a tree, it answers
with a join message. If no non-tree node is around, the
single node chooses arbitrarily one of the neighbors and
joins the tree by sending a join-agree message; to the
other hosts, a join-refuse message is sent. If another
isolated host gets the init message, a init-agree message is
returned and the host sending the init message becomes
the initiator and starts creating a new tree.

5.3.2 Evaluation

The main reason for creating a virtual spanning tree
upon the given topology is the reduction of messages
needed to reach an agreement. Let n be the number of
vertices and e be the number of edges in a graph G.
Then, there are 2e—n+ 1 messages necessary to create
the spanning tree. If no tree would be built and a host
receives a message, this message must be forwarded to
all its neighbors, which again results in 2e—n+ 1 mes-
sages for distributing the message through the graph.
Overlaying a graph with a virtual spanning tree, the
number of forwarded messages is reduced to n—1.
Determining the factor when a tree becomes more
profitable leads us to 4 = fé:ﬁﬂ) . If, on average, e=2n,

3n+1
2n+27

1.5 for the amortization factor 4 with increasing n.

In the above equation, the tree maintenance costs are
not taken into account. If a new host comes into the
transmission range or another host leaves, this is rec-
ognized by the ad hoc agent platform and the host is
added to or removed from the neighbor list. If the
neighbor list has changed, the tree has to be updated. A
vanishing host is worse than an appearing one, and
could have more negative effects on the tree. If a host is
added to the tree, attention should be paid to cycles,
which could appear. Therefore, the host is added only
once into the STSL to guarantee that no cycle is formed.
If a host leaves the ad hoc network, all its neighbors are
affected and the vanished host must be deleted from each
neighbor host’s STSL.

the amortization A4 results in

which converges to

Initialization for a node:

Receipt of a CREATEMESSAGE from host p:

STSL = null; if(not sent)

initiator = false; root = p;

sent = false; STSL += p;

root = null; if (++visitedHops < HOPS)
visitedHops = 0; send CREATEMESSAGE to NEIGHBORS;

sent = true;
Start (initiator node): fi;

initiator := true; fi;

send CREATEMESSAGE to NEIGHBORS;

else STSL -= p;

96
5.4 Local grouping—optimizing the local view

In this section, algorithms are presented that determine
the subset of neighbor hosts which initially belong to a
host’s group, called a local group. In order to guarantee
that groups are not formed arbitrarily but bring a benefit
to its members, a group profit function is defined.

Definition 9. Group profit function fgp Let P(V) be
the power set of the nodes of a graph G(V, E) and G
be a local group. The group profit function
fer(G) : P(V) — R assigns a value to a group G € P(V).
This value reflects the benefit that emerges from group
formation.

If a new node v; is added to the group G, fgp must
increase: fgp(GU ;) > fop(G) in order to justify the
addition of v;.

The algorithm adds in each step exactly one new local
group member. Initially, a host scans all the known
profiles and adds the one with the smallest distance to
him. If the group with two points will bring a greater
benefit, the points are added to the point. The group
now has two members. It may be that only one point is
added in one step because otherwise the shape of a
group gets beyond control. A host A can add another
host B in exactly the opposite direction to host D being
added by host C. If more than one point should be ad-
ded, coordination is needed.

The points already belonging to the group form a line
because, at all times, only one point is added. In order to
sustain this kind of line, we only allow the two endpoints
to add new points. To coordinate these two points, the
endpoints of the line may add new points alternately. If
the right end has added a new point in step #n, in step
(n+1), it is the left side’s turn to add a point. The
alternating procedure stops when one side is not able to
find a new point. In such a case, only the other side

(&)

Fig. 7 The local grouping y
algorithm

continues to add points until no new point is found. If a
host is allowed to add a point and there is also one to
add, it is not added automatically. The new point must
bring a benefit, according to definition 9.

Figure 7 illustrates the process of finding a local
group and Fig. 8 contains the pseudocode of the algo-
rithm.

In Fig. 7, a two-dimensional profile space can be
seen. The points are the profiles of some users. The dark
black point is the point that the local view is to be ob-
tained for. In image (a), the grouping starts. In (b) and
(d) on the right side of the line and in (c) and (e) on the
left side of the line, new points are added. The last pic-
ture (f) represents the complete group. In (f), last point
was added on the left side, although it would have been
the right side’s turn, but there are no points within
range, so the left side has to find one.

5.5 Decentralized grouping—achieving the global view

In the previous section, each host has identified its
neighbor hosts that belong to its local group g;. These
local groups must be exchanged in order to achieve a
global group.

The algorithm presupposes no special initiator role.
Each host may start the algorithm and it can even be
initiated by more than one host contemporaneously.
The core of the used algorithm is an echo algorithm,
see [7].

Initially, an arbitrary host sends an EXPLORER
message with its local group information enclosed to its
neighbors, which are element of the spanning tree (the
STSL, see Sect. 5.3). If a message arrives, the enclosed
local group is taken and is merged with its current local
view of the host to get a new local view. The merging

(a)

1)

(d)

(e) ®

97

Fig. 8 Pseudocode of the local

: . firstReferenceNode := currentPoint;
rouping algorithm ’
g puig alg secondReferenceNode := currentPoint;

nextPoint := null;
localGroup := currentPoint;

currentProfit

profit_function(localGroup);

while((nextPoint:=getNearestProfilePoint (firstReferenceNode))

!=null)

futureProfit := profit_function(localGroup + nextPoint);
if (futureProfit > currentProfit) then

localGroup += nextPoint;

neighbors -= nextPoint;

currentProfit futureProfit;

firstReferenceNode secondReferenceNode;

secondReferenceNode := nextPoint;
fi;

elihw;

function tries to maximize the group profit function, i.e.,
if two groups are merged, from each group, these
members become a member of the new group which
together draw more profit than each single group.

The new local view is forwarded to all neighbors
except for the sender of the received message. If a
node has no other outgoing edges and the algorithm
has not terminated, the message is sent back to the
sender. If more than one host initiates the algorithm
and a host receives several EXPLORER messages, then
only the EXPLORER message from the host that has
the high ID (message extinction) is forwarded. The
pseudocode of the group distribution is shown in
Fig. 9. But if the algorithm in Fig. 9 has terminated, it
is still not yet guaranteed that each node has the same

Fig. 9 Pseudocode of the echo algorithm, including the group
merging process

global view. In the worst case, only the initiator node
has a global view. For that reason, the echo algorithm
has to be executed once more. In order to save mes-
sages, in the second run, the echo messages need not
be sent because no further information gain is
achieved.

A critical point is to determine the termination of the
grouping process. The algorithm terminates in at most
2dg=4cy, steps and, because the echo messages in the
second run are not sent, this is reduced to 3¢;. If a host
receives this amount of messages, the grouping is fin-
ished. But, due to the mobility, nodes come and go.
Currently, the algorithms stops if a node gets from all its
neighbors the same local group information. This local
group information is supposed to be the global group
information.

To make sure that all group members have the same
global view, the corresponding hosts check this with
additional confirmation messages. But currently, this
part is considered to be optional.

Start (only if not ENGAGED):

An EXPLORER message from host p is received:

initiator := true: if (not ENGAGED) then
o ’ ENGAGED := ;
ENGAGED := true; . (_;=Go_ true
LounlGroup = gotLocaltroup(); PRED i- P
ocastroup = getLocaltroupt/; localGroup := getLocalGroup()
EXPLORER.add(localGroup);
localGroup := merge(localGroup,

send EXPLORER to STSL;

Receipt of an ECHO message:

EXPLORER.getLocalGroup());
EXPLORER. setLocalGroup(localGroup) ;
send EXPLORER to STSL-PRED;

fi;
N := N+1; N o= N41;
localGroup := merge(localGroup, if (N = |STSL|) then
. ECHO.getLocalGroup()); ENGAGED := false;
if N = |STSL| then if (initiator) then finish;
ENGAGED := false; else
1Z§S:n1t1ator) then finish; localGroup := merge(localGroup,

ECHO.setLocalGroup(localGroup);
send ECHO to PRED;
fi;
fi;

EXPLORER.getLocalGroup());
ECHO.setLocalGroup(localGroup) ;
send ECHO to PRED;

fi;

fi;

98

5.6 Group stability

In this subsection, the stability of the groups is evalu-
ated. By “‘stability,” we mean the time that a group does
not change, i.e., no other host is added and no group
member leaves the group. This stability duration is very
important for our algorithms because, in this time, the
group formation must be finished.

We developed a simulation tool to test for how long
the groups are stable. The velocity of the mobile hosts is
uniformly distributed in the interval [0, 5.2], the average
velocity of the mobile hosts is 2.6 km/h. This speed
seems to be the prevailing speed in pedestrian areas.
Some people do not walk at all (they look into shop
windows, etc.), other people hurry from one shop to the
other and, therefore, walk faster. Moreover, we assume
a radio transmission radius of 50 m.

The left picture in Fig. 10 shows this dependency.
The picture shows that the time in which a group is
stable decreases rapidly. A group with two people exists
for, on average, 30 s, whereas a group with five people is
only stable for 9 s. Nevertheless, a group that is stable
for 9 s is still sufficient for our algorithms.

The stated times for groups are the times for the
worst case scenario, i.e., no group member leaves the
group and no other joins the group. But, for the algo-
rithms, it does not matter if a group member leaves
during the execution of the algorithm. The only problem
is that this person cannot be informed about its potential
group membership. In case a person joins the group, the
profile information of this point must reach every other
point in the group, which, of course, must also occur in
the time the group is stable. Unfortunately, we do not
have simulation results for groups with 10-20 members.

The group stability is, furthermore, affected by the
speed of the mobile hosts. The faster the mobile hosts
are, the more rapidly they cross the communication
range. In our simulation environment, we analyzed the
stability of the groups in relation to the speed, which is
shown in the right picture of Fig.10. In this simulation,
we investigated for how long a group of three people is
stable when different velocities are prevailing. For the

timeins
90 4
80 - .
70 .
60
50 4
40 - .
30 1 .
20 - M
10 -
0

**

41

:‘.
""t’: .

o e o @

A Y2 TN

6 group
size

0 1 2 3 4 5

Fig. 10 Graph depicting the time that a group is stable in relation
to the group size

simulation, again the chain algorithm is used and the
transmission radius is 50 m.

The right picture of Fig. 10 shows that the group is
stable for more than 40 s when the members have a
speed of 1 km/h. The situation changes when the speed
increases. If all members walk fast (speed =5 km/h), the
group is only stable for approximately 10 s.

Let r be the transmission radius and 7 be the average
speed of the mobile peers. Then, the simulations show
that:

r
— = constant
20

This expression leads to the following formula for the
stability time 7, of a group with n members:

t_nr 1
ST won—1

6 Conclusion

In this paper, we presented a group of ad hoc applica-
tions called mobile profile based distributed groupings
(MoPiDiGs). Each mobile host is endowed with its
user’s profile and, while the user walks around, clusters
are found, which are composed of hosts with a similar
profile.

The architecture of a MoPiDiG application is shown,
which basically is made up of a MoPiDiG description
entity that makes the MoPiDiG unit domain indepen-
dent and an algorithm entity, which is responsible for
local grouping and distributed grouping. At first, each
host has to find its local group, which consists of all
neighbor hosts with similar profiles. Finally, the local
groups are exchanged and a global group is achieved.
Simulation results show that the groups are stable for
long enough to run the algorithms.

We simulated an initial MoPiDiG application, a taxi
sharing scenario, where potential passengers with similar
destinations form a group [4].

References

1. Badache N, Hurfun M, Macédo R (1997) Solving the consensus
problem in a mobile environment. Technical report no 1146,
IRISA, Rennes, France, available at http://citeseer.ist.psu.edu/
badache97solving.html

2. Basagni S (1999) Distributed clustering for ad hoc networks.
In: Proceedings of the IEEE international symposium on
parallel architectures algorithms and networks (ISPAN’99),
Fremantle, Australia, June 1999, pp 310-315

3. Fraley C, Raftery AE (1998) How many clusters? Which clus-
tering method? Answers via model-based cluster analysis.
Comput J 41(8)578-588

4. Seitz C, Berger M (2003) Towards an approach for mobile
profile based distributed clustering. In: Proceedings of the
international conference on parallel and distributed computing
(Euro-Par 2003), Klagenfurt, Austria, August 2003

10.

. Gafni EM, Bertsekas DP (1981) Distributed algorithms for

generating loop-free routes in networks with frequently
changing topology. IEEE Trans Commun 29(1):11-18

. Kolatch E (2001) Clustering algorithms for spatial databases: a

survey. Department of Computer Science, University of
Maryland, available at http://citeseer.ist.psu.edu/436843.html

. Chang EJH (1982) Echo algorithms: depth parallel operations

on general graphs. IEEE Trans Software Eng 8(4):391-401

. Fasulo D (1999) An analysis of recent work on clustering

algorithms. Technical report no 01- 03-02, Department of
Computer Science and Engineering, University of Washington,
available at http://citeseer.ist.psu.edu/fasulo99analysi.html

. Roman G-C, Huang Q, Hazemi A (2001) Consistent group

membership in ad hoc networks. In: Proceedings of the inter-
national conference on software engineering (ICSE 2001),
Toronto, Canada, May 2001, available at http://
citeseer.ist.psu.edu/roman0lconsistent.html

Hatzis KP, Pentaris GP, Spirakis PG, Tampakas VT, Tan RB
(1999) Fundamental control algorithms in mobile networks.
In: Proceedings of the 11th ACM symposium on parallel

11.

12.

13.

14.

99

algorithms and architectures (SPAA’99), Saint-Malo, France,
June 1999, pp 251-260, available at http://citeseer.ist.psu.edu/
hatzis99fundamental.html

Maitra R (1998) Clustering massive datasets. In: Proceedings of
the section on statistical computing at the 1998 joint statistical
meetings, Dallas, Texas, August 1998, available at http://
citeseer.ist.psu.edu/maitra98clustering.html

Malpani N, Welch J, Vaidya N (2000) Leader election algo-
rithms for mobile ad hoc networks. In: Proceedings of the 4th
international workshop on discrete algorithms and methods for
mobile computing and communications (DIALM 2000), Bos-
ton, Massachusetts, August 2000. available at http://
citeseer.ist.psu.edu/malpaniO0leader.html

Diestel R (2000) Graph Theory. In: Graduate texts in mathe-
matics, vol 173, 2nd edn. Springer, Berlin Heidelberg New
York

Banerjee S, Khuller S (2000) A clustering scheme for hierar-
chical control in multi-hop wireless networks. Technical report
CS-TR 4103, University of Maryland, available at http://
citeseer.ist.psu.edu/banerjee00clustering.html

