
Modal Interface Theories for Communication-Safe
Component Assemblies�

Rolf Hennicker1 and Alexander Knapp2

1 Ludwig-Maximilians-Universität München
hennicke@pst.ifi.lmu.de

2 Universität Augsburg
knapp@informatik.uni-augsburg.de

Abstract. We propose an extension of the abstract rules for independent imple-
mentability of reactive components proposed in interface theories to take into
account interface assemblies. As a concrete instantiation we extend existing in-
terface theories for modal I/O-transition systems to support assemblies, (greybox)
assembly refinement and assembly encapsulation. We introduce a new notion of
communication-safety for N-ary assemblies which overcomes problems with pre-
vious definitions of interface compatibility. We show that communication-safety
can be checked incrementally. We also show that communication-safety is pre-
served by assembly refinement, that blackbox refinement of component interfaces
is compositional w.r.t. greybox refinement of assemblies and, conversely, that as-
sembly encapsulation maps greybox to blackbox refinement. The methodology
of our approach is illustrated by a small case study.

1 Introduction

Reactive software components are commonly understood as encapsulated units which
communicate with their environment via well-defined interfaces. Interface specifica-
tions provide a means to describe the visible behaviour of interacting components. They
serve, on the one hand, to express what is expected from the environment for a correct
functioning of a component, and, on the other hand, to specify what is offered by a
component. For the development of component systems on the basis of interfaces we
can identify three key issues: the ability to build larger specifications from smaller ones
(by composition), the (stepwise) refinement of interface specifications, and compati-
bility requirements ensuring safe communication of components. Of course, it is im-
portant that the different aspects fit properly together, i.e. that refinement is preserved
by composition and that compatibility of interfaces is preserved by refinement, thus
guaranteeing independent implementability of components.

1.1 Interface Languages

These crucial requirements, that any concrete interface theory should obey, are nicely
formulated by the rules of an interface language stated in [7]. It assumes a domain F
� This work has been partially sponsored by the Bavarian Ministry for Economics, Infrastruc-

ture, Traffic and Technology under the IuK-project RAJA, IUK-0805-0005 and by the Euro-
pean Union under the FP7-project ASCENS, 257414.

                                                                   
                                     



136                      

of interfaces, a partial composition operator ‖ : F × F → F , a binary compatibility
relation ∼ ⊆ F × F , and a refinement relation ≤ ⊆ F × F relating concrete and ab-
stract specifications. On this basis the principle of independent implementability reads
as follows:

Independent implementability: For all � ,� ′,� ,� ′ ∈ F ,
if � ∼ � and � ′ ≤ � , � ′ ≤ � , then � ′ ∼ � ′ and (� ′ ‖ � ′) ≤ (� ‖ �).1

Particular instances of interface theories satisfying these requirements are formulated
for interface automata in [7] and for modal I/O-transition systems (MIOs) in [10,2].

Following the ideas of an interface language, interfaces for complex components are
constructed from smaller ones by interface composition, following, e.g., a synchronous
communication scheme, like interface automata and MIOs, where shared actions of
complementary types (input/output) are synchronised. The result of an interface com-
position yields again an interface describing the visible (blackbox) behaviour of a com-
posite component. Hence, the architectural information behind interface composition
is hidden and it is not possible to specify architectural requirements, which are impor-
tant as well for the development of complex systems. In particular, the communication
behaviour of interacting components is abstracted away during interface composition
and can not be taken into account in further refinement, since interface refinement is
inherently a blackbox refinement. For instance, assume that an interface for a credit
card payment system is specified by composing an interface describing the customer’s
behaviour with another interface describing the clearing company’s behaviour, which is
responsible to verify the credit card. That the verification is really performed assumes a
communication between the customer with the clearing company. But during interface
composition this communication is made invisible and therefore the composite interface
could be refined, for instance, by a primitive interface which has the same observable
behaviour but which does not actually communicate with the clearing company.2

1.2 Interface Assemblies

As a consequence of this discussion, we claim that there is still a missing link in the
notion of an interface language and in its concrete instantiations. What is still missing
is the specification of architectural information and the explicit possibility to observe
communications between components. Only in a next step, if the necessary communi-
cations are established, it should be legal to abstract them away and to construct a new
interface specification by explicit encapsulation of the architectural one. To tackle this
issue the most obvious approach is to consider interface networks as a distinguished
concept. Interface networks are assemblies of connected interfaces thus providing ar-
chitectural requirements for the planned system. Such assemblies can be refined only
if the architectural requirements are respected. From the behavioural point of view this

1 It is assumed that the composition of compatible interfaces is defined. Interface languages
require also the property of incremental design which will be discussed later.

2 A way out could be to require that refinements of composite interfaces not only can but must be
performed piecewise; but this is not anchored in the formalism and anyway cannot be treated
with alternating simulation refinement of interface automata since, in contrast to modal I/O-
transition systems, abstract outputs can always be omitted there in a refinement.



                                                              137

means that not only the visible actions to the outside but also specified communications
between components within the assembly must be taken into account when assemblies
are refined. Following the terminology of [12] such refinements are also called grey-
box refinements. Hence, we can extend the abstract concept of an interface language
by introducing, additionally to the domain F of interfaces, a domain A of assemblies.
For the construction of assemblies we assume, for each natural number �, a partial
(overloaded) operator asm : F� → A. Concerning compatibility of components, we
extend the binary compatibility relation between interfaces to a communication-safety
predicate cs ⊆ A on assemblies, which expresses that the interfaces belonging to an
assembly can work together without communication errors. This could mean, e.g., that
the assembly is deadlock-free, or, in the context of the I/O-transition systems considered
below, that any output a component wants to issue to the remainder of the assembly is
indeed accepted.3 Concerning refinement, we distinguish between interface and assem-
bly refinement, expressed by the binary relations �intf ⊆ F × F and �asm ⊆ A ×A
resp. Finally, we introduce an operation pack : A → F which allows to express en-
capsulation of an assembly into an interface (by hiding the architectural information of
the assembly). The principle of independent implementability can now be rephrased as
follows:

Independent implementability: For all �� ,� ′
� ∈ F for � = 1, . . . ,�,

if cs(asm(�1, . . . ,�� )) and � ′
� �intf �� for � = 1, . . . ,�,

then cs(asm(� ′
1, . . . ,�

′
� )) and asm(� ′

1, . . . ,�
′
� ) �asm asm(�1, . . . ,�� ).

But obviously this does not suffice for extracting an interface from an assembly by en-
capsulation, i.e., by applying the pack operation. Then it must be ensured that packing
two assemblies which are in refinement relation leads to interfaces which are in refine-
ment relation again, which is expressed by the principle of refinement encapsulation:

Refinement encapsulation: For all �,�′ ∈ A,
if cs(�) and �′ �asm �, then pack(�′) �intf pack(�).

1.3 Modal I/O-Automata for Interface and Assembly Specifications

As a concrete instantiation of our approach we will build upon modal I/O-transition
systems (MIOs) introduced by Larsen et al. [10,11]. We have chosen MIOs as our
basic formalism since they allow us to distinguish between transitions which are op-
tional (may) or mandatory (must) for refinements. We extend the interface theory of
MIOs presented in [2] by introducing interface assemblies together with a new notion
of communication-safety and assembly refinement. In our approach, interface speci-
fications are simply MIOs with input and output actions only, while assemblies are
MIO networks formally presented by finitely indexed sets of (syntactically compos-
able) MIOs. To any assembly a greybox behaviour is associated which is again a MIO
having, additionally to input and output actions, distinguished communication actions.
It is computed by the synchronous composition of the interface MIOs contained in
the assembly, but synchronisations on complementary input and output actions are not

3 We will show in the technical part of the paper that this requirement is different from deadlock-
freedom.



138                      

hidden, as in the original MIO approach, but considered as visible communication ac-
tions. Our notion of communication-safety is inspired by the notion of weak modal
compatibility proposed in [2]. However, it goes beyond that because, first, it allows to
study the compatibility of arbitrarily many interfaces, and, secondly, it generalises sig-
nificantly the behavioural requirements of weak modal compatibility. The idea is that
whenever one component wants to send an output it finds the communication partner in
a state where it must eventually take the corresponding input. Before taking the input
the communication partner can still perform silent must-transitions and/or mandatory
communications with other components of the assembly and also outputs which are
a must and are directed outside of the assembly. The latter is a significant generali-
sation of weak modal compatibility needed in many practical applications. We show
that communication-safe assemblies can be built up in an incremental way, i.e., given a
communication-safe assembly � and an interface � which is compatible to �, the new
assembly extending � by � will be communication-safe again. This result is related to
the property of incremental design of an interface language [7].

Concerning refinement we distinguish, as explained above, between interface and
assembly refinement. Interface refinement has to respect blackbox behaviours, it is for-
malised in terms of weak modal refinement of MIOs based on a simulation relation
which abstracts from silent transitions (labelled with the invisible action τ ). Assembly
refinement has to respect the architectural requirements and the (greybox) behaviour of
assemblies. Therefore it is defined as structure preserving pairwise refinement of the
finitely indexed sets of interfaces which form the assemblies. The refinement of assem-
bly behaviours abstracts away silent transitions (which stem from inner components),
but transitions resulting from communications are considered as visible and therefore
they are respected by the simulation relation. Interface refinement is also called black-
box refinement and assembly refinement corresponds to greybox refinement.

As central results of our approach we obtain that the property of independent imple-
mentability (second version from above) is satisfied. Indeed we even get stronger re-
sults, called compositionality of refinement and preservation of communication-safety,
which read as follows and which obviously imply independent implementability:

Compositionality of refinement: For all �� ,� ′
� ∈ F for � = 1, . . . ,�,

if � ′
� �intf �� for � = 1, . . .�,

then asm(� ′
1, . . . ,�

′
� ) �asm asm(�1, . . . ,�� ).

Preservation of communication-safety: For all �,�′ ∈ A,
if cs(�) and �′ �asm �, then cs(�′).

Last but not least we consider the encapsulation of MIO assemblies into interfaces, i.e.
the pack operation, which moves the visible communications of assemblies into silent
transitions of interfaces. We show that encapsulation is compatible with assembly and
interface refinement, i.e., that the principle of refinement encapsulation stated above is
satisfied as well. Also in this case we can prove a stronger version which does not need
the communication-safety assumption of the abstract assembly. Our methodology and
our results will be demonstrated on a small, but detailed case study.

The paper is structured as follows: In Sect. 2 we summarise the basic notions of
modal I/O-transition systems and in Sect. 3 we introduce our running example. Then, in



                                                              139

Sect. 4, we consider formally interfaces, assemblies, their greybox behaviour and their
communication-safety; we also define interface and assembly refinement and prove our
central compatibility and compositionality results. Our methodology is illustrated by
our small case study in Sect. 5. Finally, in Sect. 6, we finish with some concluding
remarks.

2 Modal I/O-Transition Systems: Basic Definitions

Modal I/O-transition systems (MIOs) have been introduced by Larsen et al. [10,11] as
a formalism to specify the behaviour of reactive components. They allow to distinguish
between transitions which are optional (may) or mandatory (must) for refinements. We
will use MIOs for describing interface behaviours as well as assembly behaviours. Tech-
nically this is achieved by distinguishing not only input, output, and internal labels, but
also communication labels expressing synchronous communication. In contrast to [10]
internal actions are not explicitly named here but represented by the internal, invisible
action τ while communication labels are newly introduced here. In the following of
this section we recall the technical definitions used hereafter. These definitions will be
illustrated by our running example introduced in Sect. 3.

An I/O-labelling � = (��,��,	�) consists of pairwise disjoint sets of input labels
��, output labels ��, and communication labels 	�, such that τ /∈ �� ∪ �� ∪ 	�. We
write

⋃
� for �� ∪�� ∪ 	�.

A modal I/O-transition system (MIO) 
 = (�� ,�� , �0,� ,
�

,
�

) consists of
an I/O-labelling �� = (�� ,�� ,	� ), a set of states �� , an initial state �0,� ∈ �� ,
a may-transition relation

�
⊆ �� × (

⋃
�� ∪ {τ}) × �� , and a must-transition

relation
�

⊆
�

. 
 is called an implementation if
�

=
�

. For  ∈
⋃
��

we write � �̂
�

� ′ for � τ �
�

· �
�

· τ �
�

� ′ with �,� ≥ 0, and � τ̂
�

� ′ for
� τ �

�
� ′ with � ≥ 0 (and likewise for the must-transition relation). Furthermore, for

� ⊆
⋃
�� , we write � �̂

�
� ′ for � �̂1

�
· · · �̂�

�
� ′ with � ≥ 0 and 1, . . . , � ∈ � .

The reachable states of 
 are denoted by R(
 ) with � ∈ R(
 ) if, and only if there
is a finite sequence of may-transitions from �0,� to � in 
 .

The hiding of communication labels of a MIO 
 is given by 
 ξ = (�� ξ,�� ,

�0,� ,
�ξ ,

�ξ ) with �� ξ = (��� ,��� , ∅),
�ξ = {(� ,  , � ′) | � �

�
� ′,  ∈

�� ∪��} ∪ {(� , τ, � ′) | � �
�
� ′,  ∈ 	� } and likewise for

�ξ .
Two I/O-labellings � and � are composable if their labels overlap only on com-

plementary types, i.e.
⋃
� ∩

⋃
� ⊆ (�� ∩ ��) ∪ (�� ∩ �� ). The synchronous com-

position of two composable I/O-labellings � and � moves corresponding input/output
labels to the set of communication labels, i.e., it yields the I/O-labelling � ⊗sy � =
((�� \��)∪ (�� \�� ), (�� \ ��)∪ (�� \ �� ),	� ∪	� ∪ (�� ∩��)∪ (�� ∩�� )).

Two MIOs 
 and � are composable if their I/O-labellings are composable. The
synchronous composition of two composable MIOs 
 and � is denoted by 
 ⊗sy �

and defined as the usual product of automata with synchronisation on shared labels,
which are communication labels of the product; a synchronisation transition in 
 ⊗sy

� is a must-transition if, and only if both synchronising transitions are must-transitions.



140                      

Composability and synchronous composition are straightforwardly extended to
finitely indexed sets of I/O-labellings and MIOs: A finitely indexed set (�	 )1≤	≤� of
I/O-labellings with � ≥ 1 is composable if its I/O-labellings are pairwise composable.
The synchronous composition of a composable finitely indexed set (�	 )1≤	≤� of I/O-
labellings with � ≥ 1 is inductively given by

⊗sy
1≤	≤� �	 = �1 ⊗sy . . . ⊗sy �� .

A finitely indexed set (
	 )1≤	≤� of MIOs with � ≥ 1 is composable if the I/O-
labellings of its MIOs are pairwise composable. The synchronous composition of a
composable finitely indexed set (
	 )1≤	≤� of MIOs with � ≥ 1 is inductively given
by

⊗sy
1≤	≤� 
	 = 
1 ⊗sy . . . ⊗sy 
� . (Commutativity and associativity laws could

be obtained up to strong bisimulation.)

3 Modelling Component Systems with MIOs: Example

We introduce a running example to explain our notions of interface and assembly, its
greybox behaviour and encapsulation. We consider a simple cash desk application, in-
spired by [13]. Figure 1 shows the assembly CashDeskAssembly, which is a set of three
interfaces, CashDeskGUI, CashDeskController and ClearingCompany. Each interface has
input and output actions indicated by incoming and outgoing arrows on the frame of
the interface which shows the interface’s signature. Interfaces are connected by shared
actions of complementary types. For instance, newSale, itemReady and finish are the
shared actions of CashDeskGUI and CashDeskController where, e.g., newSale is an in-
put for CashDeskGUI and an output of CashDeskController. The assembly itself has also
a signature with communication actions given by the shared actions of the interfaces and

«interface» CashDeskGUI

newSale?
saleFinish?

finish!

item? itemReady!

«interface» CashDeskController

newSale!
finish?

printTotal!

cash?
creditCard?

verify!

verified?

itemReady? printItem!

«interface» ClearingCompany

verify?

verified!

newSale

finish

itemReady

verify verified

«assembly» CashDeskAssembly

item

saleFinish

cash

creditCard

printItem

printTotal

finish itemReady newSale verify verified

Fig. 1. Cash desk assembly with contained interfaces



                                                              141

newSale
saleFinish? finish

printTotal!

cash?
creditCard?

verify

verified

item?

itemReady

item?

printItem!

printItem!

printItem!

saleFinish?
B

A

grb(CashDeskAssembly)

item

saleFinish

cash

creditCard

printItem

printTotal

finish itemReady newSale verify verified

Fig. 2. Greybox behaviour of CashDeskAssembly in Fig. 1

with input/output actions given by the non-connected (open) actions of the interfaces.
The communication actions are indicated by bullets on the frame of the assembly.

Each interface has a behaviour specification represented by a modal I/O-transition sys-
tem with input/output labels but without communication labels. The I/O-labelling of the
MIO determines the signature of the interface (shown on its frame). There may also be
silent transitions labelled with τ , but those do not occur in the three example interfaces.
In the drawings of the MIOs, labels suffixed with ? indicate inputs, those suffixed with !
outputs of the interface. The CashDeskGUI interface behaviour waits for a newSale? from
the environment, then reacts to incoming item?s by issuing corresponding itemReady!s
until a saleFinish? arrives, upon which it signals finish!. The CashDeskController inter-
face behaviour starts each sale by issuing newSale! and then answers each itemReady?
by printItem! until a finish? arrives, upon which a printTotal! is issued and either cash? or
creditCard? is accepted. Only creditCard? is a may-transition, such that in a refinement of
CashDeskController it may be absent or turned into a must-transition. The ClearingCom-
pany waits for a verify? and then reacts with a verified!. For simplicity of presentation we
have only specified the positive case where a credit card is validated.

To each assembly we associate a behaviour which is presented as a MIO with input,
output, and communication labels. It is also called greybox behaviour since the com-
munication labels are still visible, only τ actions possibly occurring in the contained
interfaces of the assembly are hidden. Figure 2 shows the greybox behaviour of the
CashDeskAssembly. It is constructed by the synchronous composition (see Sect. 2) of
the three interface MIOs where communication happens if shared labels of complemen-
tary types match. The resulting communication labels are still visible but not usable for
further input or output; i.e., we follow the binary communication scheme of interface
automata and MIOs. Pictorially, the communication labels are drawn without a suffix on
the transitions. Note that the signature of an assembly is determined by the I/O-labelling
of its greybox view.



142                      

τ
saleFinish? τ

printTotal!

cash?
creditCard?

τ

τ

item?

τ

item?

printItem!

printItem!

printItem!

saleFinish?

«interface» pack(CashDeskAssembly)

item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 3. Interface resulting from packing CashDeskAssembly in Fig. 1

An assembly can be encapsulated by “packing” its greybox view, i.e. by hiding all
communication labels; see Sect. 2. Technically, this is achieved by replacing each tran-
sition with a communication label by a silent τ -transition. The result of assembly en-
capsulation yields an interface. Hence, assembly encapsulation is an important step for
hierarchical system development. In our example, packing of the greybox behaviour of
the CashDeskAssembly results in the interface shown in Fig. 3.

4 Interfaces and Assemblies

We now turn to a formal presentation of the notions of interface and assembly as mo-
tivated in the introduction and illustrated by the example. We discuss communication-
safe assemblies and the refinement of interfaces and assemblies. In particular, we justify
compositionality of refinement, preservation of communication-safety, and refinement
encapsulation in our approach. We build on the definitions of MIOs, their composabil-
ity and synchronous composition, as well as hiding of communication labels recalled in
Sect. 2. All claims are reduced to corresponding lemmas for MIOs and their refinement;
the proofs of these lemmas can be found in App. A.

The domain of interfaces F is constructed from all those MIOs whose I/O-labellings
do not show communication labels. We write � = intf (
 ) for an interface with un-
derlying MIO 
 with I/O-labelling �� = (�� ,�� , ∅). The signature of � is given
by the I/O-labelling �� and pictorially indicated in the examples on the frame of an
interface. The labelling restriction reflects the blackbox characteristics of interfaces ab-
stracting from communication. Two interfaces are composable if their underlying MIOs
are composable, and a finitely indexed set (�	 )1≤	≤� of interfaces is composable if the
�	 are pairwise composable.

The domain of assemblies A is constructed from the composable finitely indexed sets
of interfaces, and we write � = asm((�	 )1≤	≤� ) for an assembly consisting of the



                                                              143

interfaces �1, . . . ,�� . Each assembly � is assigned its greybox behaviour grb(�)
which is the synchronous composition of the MIOs underlying the constituting inter-
faces of the assembly, formally

grb(asm((intf (
	 ))1≤	≤� )) =
⊗sy

1≤	≤� 
	 .

In particular, such a greybox behaviour leaves communications visible. The signature
of an assembly � is given by the I/O-labelling

⊗sy
1≤	≤� �	 of the MIO

⊗sy
1≤	≤� 
	 .

We also construct an interface pack (�) from an assembly�which abstracts from the
communication labels in the greybox view. For this purpose we use the hiding operator
ξ on MIOs defined in Sect. 2:

pack (�) = intf (grb(�)ξ) .

According to the hiding operator in the signature of pack (�) all communication labels
of � have become τ .

4.1 Communication-Safe Assemblies

Our notion of communication-safe assembly is inspired by the notion of weak modal
compatibility in [2]. This compatibility notion, as well as the compatibility notions
in [6,7] and [10], relies on the assumption that outputs are autonomous and must be ac-
cepted by a communication partner while inputs are subject to external choice and need
not to be served. Hence the discrimination of inputs and outputs is essential here. For in-
stance, the two interfaces shown in the assembly in Fig. 4(a) are (strongly) compatible,
since the output x! issued by the interface on the left-hand side will be (immediately)
accepted by the input x? of the MIO on the right-hand side. However, if we consider the
assembly in Fig. 4(b), then the two interfaces are not compatible, since the interface on
the right-hand side can autonomously decide to output y! which cannot be accepted by
the interface on the left-hand side.

«interface» F1

x!

«interface» F2

x? y?

x

y

«assembly» A

x y

(a) Compatible interfaces

«interface» F1

x?

«interface» F2

x! y!

x

y

«assembly» A

x y

(b) Incompatible interfaces

Fig. 4. Autonomy of outputs

Strong modal compatibility is based on the idea that whenever one component wants
to send an output it finds the communication partner in a state where it must take the
corresponding input immediately. Weak modal compatibility is more liberal since it is
sufficient if the communication partner must accept the message possibly after perform-
ing first some silent must-transitions. But simple examples show, see e.g. Ex. 1 below,



144                      

that this compatibility requirement is still too strong. Therefore we generalise weak
compatibility further and allow the communication partner to take the input only after
performing silent must-transitions and/or mandatory communications with other com-
ponents of the assembly and also outputs which are a must and are directed outside of
the assembly. This works well because, assuming communication-safe developments,
these (open) outputs are again guaranteed to be taken (possibly after a delay) when
an assembly is further extended. We show that communication-safe assemblies can in-
deed be built up in an incremental way. Moreover, our notion of communication-safety
goes beyond the compatibility notions because it allows to study the compatibility of
arbitrarily many interfaces within an assembly.

We base our definition of communication-safety on the corresponding notion of out-
put compatibility for MIO-families. Assume given a composable finitely indexed set
(
	 )1≤	≤� of MIOs and let 

 be an arbitrary MIO of the family. Then the rest of
the family after omitting 

 , let us call it �
 , plays the role of the environment for


 . We must ensure that in any reachable state of the product of the family, when-
ever 

 wants to send an output, then �
 must be able to take the corresponding input
possibly after some autonomous must-transitions of �
 which do not concern commu-
nication with 

 . These autonomous transitions can be silent must-transitions or must-
communication transitions or must-outputs of �
 which are not shared with the inputs
of 

 .

Definition 1. Let (
	 )1≤	≤� be a composable finitely indexed set of MIOs. For each
� with 1 ≤ � ≤ �, let �
 =

⊗sy
1≤	 =
≤� 
	 . The MIO-family (
	 )1≤	≤� is output

compatible if for each 1 ≤ � ≤ �, each (�1, . . . , �� ) ∈ R(
⊗sy

1≤	≤� 
	 ), and each
 ∈ ���

∩ ��� the following holds with �
 = 	�� ∪ (��� \ ���
).4

∃� ′
 ∈ ���
. �


�
��

� ′
 ⇒ ∃(� ′1, . . . , � ′
−1, �
′

+1, . . . , �

′
�) ∈ R(�
 ) .

(�1, . . . , �
−1, �
+1, . . . , ��) �̂�
��

· �
��

(� ′1, . . . , � ′
−1, �
′

+1, . . . , �

′
� ) .

An assembly � = asm((intf (
	 ))1≤	≤� ) is communication-safe, denoted by cs(�),
if the family of MIOs (
	 )1≤	≤� is output compatible .

Example 1. Consider the CashDeskAssembly in Fig. 1. To check communication-safety
we have to consider the assembly’s greybox behaviour shown in Fig. 2. Crucial states
are the states A and B. For instance, in state A the CashDeskGUI has reached its lowest
state in Fig. 1 where it wants to send out itemReady! and the CashDeskController has
also reached its lowest state in Fig. 1 where it can perform the open output printItem! to
the environment of the assembly. Only after this output it can input, as requested, item-
Ready?. This would not be allowed by weak compatibility since printItem! is not silent.
On the other hand, sending printItem! before accepting itemReady? is not a problem,
because we can expect that the whole assembly will only be put in a communication-
safe context, where we can again assume that the output printItem! will eventually be

4 Note that ��� is the set of communication labels of �� and (��� \ ��� ) is the set of output
labels of �� which are not shared with the input labels of �� , i.e. not used for communication

between �� and �� . The silent must-transitions are anyway subsumed in the notation
�̂�

��
;

see Sect. 2.



                                                              145

accepted. A similar situation concerns state B of the assembly, where the CashDeskCon-
troller accepts an output finish! of the CashDeskGUI only if it has performed an output of
printItem! before.

Let us still point out that communication-safety does not coincide with deadlock-
freedom. Indeed deadlock-freedom is neither necessary nor sufficient. For instance, the
assembly in Fig. 4(b) is not communication-safe but deadlock-free. On the other hand,
the assembly in Fig. 5 is communication-safe but does deadlock immediately since none
of the inputs is served which is not required by our notion of communication-safety. (Of
course one can also imagine other variants of communication correctness where inputs
must be served.)

«interface» F1

x?

«interface» F2

y?

x

y

«assembly» A

x y

Fig. 5. Deadlocking interfaces

Communication-safety of an assembly can be shown incrementally, i.e. by enlarging
the assembly by one interface at a time, each time checking that the assembly from the
packed assembly up to now and the additional interface is communication-safe:

Proposition 1. Let� = asm((�	 )1≤	≤�+1) be an assembly. If�′ = asm((�	 )1≤	≤� )
and asm(����(�′),��+1) are communication-safe, then � is communication-safe.

This claim follows immediately from a corresponding lemma for the underlying MIOs
ensuring incremental checking of output compatibility:

Lemma 1. Let (
	 )1≤	≤�+1 be a composable finitely indexed set of MIOs. If
(
	 )1≤	≤� and (

⊗sy
1≤	≤� 
	 ,
�+1) are output compatible, then (
	 )1≤	≤�+1 is out-

put compatible.

However, for guaranteeing communication-safety of an assembly asm((�	 )1≤	≤� )
it does not suffice to check pairwise communication-safety in the sense that each
asm(�	 ,�
 ) with 1 ≤ � �= � ≤ � is communication-safe. Consider the assembly A
in Fig. 6 consisting of three interfaces F1, F2, F3. The three assemblies asm(F1, F2),
asm(F1, F3), and asm(F2, F3) are communication-safe; but asm(F1, F2, F3) is not
communication-safe. For instance in the initial state of the whole assembly, F1 wants to
send x!, but the product of F2 and F3 does never take x? after autonomous actions which
are not shared with F1 (note that the output z! is shared).

4.2 Refinement of Interfaces and Assemblies

Refinement of interfaces and assemblies relies on the notion of weak modal refinement
for MIOs [9]. The basic idea of modal refinement is that required (must) transitions



146                      

«interface» F1

x! z?

«interface» F2

y! x?

«interface» F3

z! y?

x

yz

«assembly» A

x y z

Fig. 6. Communication-safety does not follow from pairwise communication-safety

of an abstract specification must also occur in the concrete specification. Conversely,
allowed (may) transitions of the concrete specification must be allowed by the abstract
specification. The refinement relation is weak, because it supports observational ab-
straction, i.e., silent τ -transitions can be dropped and inserted as long as the modalities
and the simulation relation are preserved. We first extend the notion of weak modal
refinement given in [9] in a straightforward way to MIOs with communication labels.
Like in [9], weak modal refinement abstracts from internal actions, but transitions with
communication labels must be respected in the same way as input/output actions.

Definition 2. Let 
 and � be MIOs with the same I/O-labelling. 
 weakly modally
refines � , written 
 ≤∗

m � , if there exists a relation � ⊆ �� × �� containing
(�0,� , �0,� ) such that for all (�� , �� ) ∈ �:

1. ∀ ∈
⋃
�� , � ′� ∈ �� . ��

�
�
� ′� ⇒ ∃� ′� ∈ �� . ��

�̂
�
� ′� ∧ (� ′� , � ′� ) ∈ �

2. ∀� ′� ∈ �� . ��
τ

� ′� ⇒ ∃� ′� ∈ �� . ��

τ̂
�
� ′� ∧ (� ′� , � ′� ) ∈ �

3. ∀ ∈
⋃
�� , � ′� ∈ �� . ��

�
�
� ′� ⇒ ∃� ′� ∈ �� . ��

�̂
�
� ′� ∧ (� ′� , � ′� ) ∈ �

4. ∀� ′� ∈ �� . ��
τ
�
� ′� ⇒ ∃� ′� ∈ �� . ��

τ̂
�
� ′� ∧ (� ′� , � ′� ) ∈ �

A MIO 
 co-simulates a MIO � , written 
 =∗
m � , if 
 ≤∗

m � and � ≤∗
m 
 .

Note that ≤∗
m is reflexive and transitive. If all transitions of 
 are must-transitions co-

simulation corresponds to weak bisimulation; if all transitions of
 are may-transitions
it is classical co-simulation.

Since interface refinement has to respect blackbox behaviours, and since interfaces
do not show any communication labels, the notion of weak modal refinement is directly
applicable to define interface refinement. An interface� = intf (
 ) refines an interface
� = intf (� ), written as � �intf � , if 
 ≤∗

m � . The interfaces � and � are
equivalent, written � ≈intf � , if � �intf � and � �intf � , i.e., 
 =∗

m � .

Example 2. The interface pack (CashDeskAssembly) in Fig. 3 was obtained by hid-
ing the communication labels from the greybox behaviour of the CashDeskAssem-
bly. Figure 7 shows an equivalent but “smaller” interface behaviour. For this pur-
pose one has to prove two refinement relations pack (CashDeskAssembly) �intf

min(pack (CashDeskAssembly)) and vice versa. Indeed both directions have been ver-
ified with the MIO-Workbench [2]. Note that for the first direction observational ab-
straction w.r.t. τ -transitions on the refinement side, i.e. on pack (CashDeskAssembly),



                                                              147

saleFinish?
printTotal!

cash?

creditCard?

item?
printItem!

item? printItem!

saleFinish?
printItem!

«interface» min(pack (CashDeskAssembly))

item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 7. Interface equivalent to the result from packing CashDeskAssembly in Fig. 3

is necessary which would not work for alternating simulation of interface automata.
We believe that the interface min(pack (CashDeskAssembly)), as the name suggests, is
minimal. However, whether minimal behaviours for equivalent interfaces exist and how
they can be computed is an open issue for future research.

Assembly refinement has to respect the architectural requirements and the greybox
behaviour of assemblies. The first requirement amounts to relate the interfaces of as-
semblies pairwise by interface refinement; the latter amounts to relate the greybox be-
haviours of assemblies by means of weak modal refinement, which abstracts away silent
transitions (which stem from inner interfaces), but transitions resulting from commu-
nications are considered as visible and indeed they are respected by our generalised
notion of weak modal refinement. In summary, an assembly � = asm((�	 )1≤	≤�)
refines an assembly � = asm((�	 )1≤	≤� ), written as � �asm � , if (1) � = � and
�	 �intf �	 for all 1 ≤ � ≤ � and (2) grb(�) ≤∗

m grb(�). In fact, the first condition
implies already the second one which is a consequence of the following lemma:

Lemma 2. Let (
	 )1≤	≤� and (�	 )1≤	≤� be composable finitely indexed sets of MIOs
such that 
	 ≤∗

m �	 for all 1 ≤ � ≤ �. Then
⊗sy

1≤	≤� 
	 ≤∗
m

⊗sy
1≤	≤� �	 .

Moreover, the lemma shows that our claim of compositionality of refinement in Sect. 1.3
— refinements of the interfaces constituting assemblies induce assembly refinements —
is indeed valid in our approach:

Proposition 2. Let (�	 )1≤	≤� and (�	 )1≤	≤� be finitely indexed sets of interfaces with
�	 �intf �	 for all 1 ≤ � ≤ �. Then asm((�	 )1≤	≤� ) �asm asm((�	 )1≤	≤� ).

The rule of preservation of communication-safety stated in Sect. 1.3 requires that each
refinement of a communication-safe assembly is again communication-safe. Indeed,
also this rule is valid here. The proof relies on the fact that must-transitions are preserved
by refinements.

Proposition 3. If cs(�) and � �asm � , then cs(�).

The proof of this proposition is reduced to a corresponding lemma for the preservation
of output compatibility w.r.t. weak modal refinements.



148                      

Lemma 3. Let (
	 )1≤	≤� and (�	 )1≤	≤� be composable finitely indexed sets of MIOs
such that 
	 ≤∗

m �	 for all 1 ≤ � ≤ �. If (�	 )1≤	≤� is output compatible, then also
(
	 )1≤	≤� is output compatible.

Finally, we also obtain the (strong) version of refinement encapsulation discussed in
Sect. 1.3 that assembly refinements induce interface refinements of their packings:

Proposition 4. If � �asm � , then pack (�) �intf pack (�).

The proof of this proposition relies on Lem. 2 and the following simple observation that
hiding preserves weak modal refinement:

Lemma 4. If � ≤∗
m �, then � ξ ≤∗

m �ξ.

5 Case Study

We will illustrate how our techniques work in terms of a (small) top-down develop-
ment of the cash desk application. Figure 8 gives an overview of the different steps
and their proof obligations. We start by an abstract requirements specification of the
whole system which is given by the interface CashDesk in Fig. 9. The specification is
rather loose having only a single must-transition requiring cash payment to be possible
in any system implementation whenever a printTotal! has been performed before. The
other transitions are may-transitions. At the start of a sale arbitrarily many items may
be taken and printed; note that only as many printItem!s should be performed as item?s
have been taken before, but this cannot be specified with finite state. Also a saleFin-
ish? request may be accepted, possibly followed by printing items (that have not been
printed yet) and then printing the total. Instead of cash payment, payment by credit card
may be allowed by an implementation.

«interface»
CashDeskGUI

«interface»
CashDeskController

«interface»
ClearingCompany

«assembly» CashDeskAssembly

«interface»
CashDeskGUI

«interface»
CashDeskControllerRef

«interface»
ClearingCompany

«assembly» CashDeskAssemblyRef

 a
sm(2)

�−→pack «interface»
pack(CashDeskAssembly)

�−→pack «interface»
pack(CashDeskAssemblyRef)

 i
n
tf

(3)

«interface»
CashDesk

 i
n
tf

(1)

Fig. 8. Overview of top-down development of the cash desk application



                                                              149

saleFinish?
printTotal!

cash?

creditCard?

item?

printItem! printItem!

«interface» CashDesk
item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 9. Interface CashDesk

In the next step we specify an architecture for the intended system, which is given by
the CashDeskAssembly known from Sect. 3, Fig. 1. As a first proof obligation, we have
to show that the behaviour induced by the proposed assembly fits to the abstract require-
ments specification of the system. Formally this means that the interface of the encapsu-
lated assembly is an interface refinement of CashDesk, i.e., that (1) in Fig. 8 is satisfied.
For the proof it is obviously sufficient (cf. Sect. 4.2) to consider the minimised version
of the interface shown in Fig. 7 and to prove min(pack (CashDeskAssembly)) �intf

CashDesk. We have verified this statement with the MIO-Workbench.5

The CashDeskAssembly introduces architectural requirements and behavioural re-
quirements in terms of the greybox behaviour of the assembly shown in Fig. 2. In
our third step this assembly is refined by the assembly CashDeskAssemblyRef where
the interface CashDeskController is replaced by the interface CashDeskControllerRef.
The latter has the same behaviour specification as CashDeskController (see Fig. 1) but
the previous may-transition for creditCard? is turned into a must-transition. Obviously,
CashDeskControllerRef �intf CashDeskController and therefore, by compositionality
of refinement as stated in Sect. 4.2, we get the proof obligation (2) in Fig. 8. Since
CashDeskAssembly is communication-safe, (2) implies that CashDeskControllerRef is
communication-safe as well; cf. Sect. 4.2. Moreover, encapsulation of assemblies turns
assembly (greybox) refinement into interface (blackbox) refinement (cf. Sect. 4.2), and
therefore we obtain (3) in Fig. 8. Now we can utilise that interface refinement is transi-
tive to be sure that the visible behaviour of the encapsulated assembly CashDeskAssem-
blyRef is conform to the system’s interface specification.

Finally, we would like to emphasise the significance of proper assembly refine-
ment, i.e. the importance of respecting communications during assembly refine-
ment. Imagine that we would use instead of CashDeskAssemblyRef an assembly
CashDeskAssemblyRef’ where the interface CashDeskControllerRef is replaced by the
interface CashDeskControllerRef’ shown in Fig. 10. This interface accepts creditCard?
without initiating a subsequent verification of the card with the clearing company. Ob-
viously, CashDeskControllerRef’ is not an interface refinement of CashDeskController
and also CashDeskAssemblyRef’ is not an assembly refinement of CashDeskAssem-
bly since the required communications with the clearing company, see Fig. 2, do not

5 It may be interesting to remark, that the refinement would not hold, if at least one of the
remaining inputs of the CashDesk interface would be a must-transition; hence we could also
not get an alternating simulation relation here.



150                      

newSale!
finish?

printTotal!

creditCard?

cash?

itemReady? printItem!

«interface» CashDeskControllerRef’

item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 10. Interface CashDeskControllerRef’

τ
saleFinish? τ

printTotal!

creditCard?

cash?

item?

τ

item?

printItem!

printItem!

printItem!

saleFinish?

«interface» CashDeskAssemblyRef’

item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 11. Interface resulting from packing CashDeskAssemblyRef’

happen. However, if we would not check the assembly refinement but hide immedi-
ately all communications, which happens in approaches based on interface composition,
then we obtain the interface pack (CashDeskAssemblyRef’) shown in Fig. 11 which is
obviously an interface refinement of pack (CashDeskAssembly); cf. Fig. 3. Thus the as-
sembly CashDeskAssemblyRef’ with no credit card verification could be used for the
implementation of the system, which is certainly not intended.

6 Conclusion

Our study is motivated by an extension of the abstract rule of independent imple-
mentability of interface languages [7] to take into account architectural information
given by interface assemblies. We have deliberately kept our approach to assemblies
simple, not involving further constructs like connectors, but we believe that our fun-
damental research can be successfully applied to component models as well. As a con-
crete formalism we have chosen modal I/O-transition systems which we have adopted to
take into account not only interface specifications and interface (black-box) refinement
but also interface assemblies and assembly (grey-box) refinement. To our knowledge
such an extension of the interface theory of MIOs did not exist yet. Also our notion
of communication-safe assembly is an extension of previous work on compatibility of



                                                              151

interfaces which we claim is strongly needed in practical examples. Of course many
approaches in the literature support assemblies, i.e. networks of interface specifications
and hierarchical constructions, in one or the other way. Among those based on labelled
transition systems we want to mention interaction automata [5], pNets [1], symbolic
transition systems (STS) [8], PADL [3], and communicating finite state machines (CF-
SMs) [4]. CFSMs are based on asynchronous communication and introduce a notion
of unspecified reception which is related to (a stronger version of) communication-
safety not allowing “open” outputs. Otherwise usually deadlock checks are performed
for assemblies which, however, are neither sufficient nor necessary for communication-
safety, at least in our sense. Assembly refinement, however, is not a concern in these
approaches. Most closely related to our result on compositional refinement is the in-
teraction automata approach which studies substitutability of components w.r.t. a be-
havioural equivalence which can be tuned, e.g., to keep communications visible. In
future work we want to investigate to what extent our notion of assembly refinement
can be relaxed such that architectures can change in a controlled way. We are also in-
terested to transfer our results to asynchronous communication, hybrid systems, and
interfaces for components with data states.

Acknowledgements. We want to thank Sebastian Bauer for checking the examples with
the MIO-Workbench, and Stephan Janisch for fruitful discussions on communication-
safety.

References

1. Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural models
for distributed Fractal components. Ann. Télécom. 64(1-2), 25–43 (2009)

2. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refine-
ment, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

3. Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting families of software systems with
process algebras. ACM Trans. Softw. Eng. Methodol. 11(4), 386–426 (2002)

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342
(1983)

5. Cerná, I., Vareková, P., Zimmerova, B.: Component substitutability via equivalencies of
component-interaction automata. Electr. Notes Theor. Comput. Sci. 182, 39–55 (2007)

6. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. 9th ACM SIGSOFT Ann. Symp.
Foundations of Software Engineering (FSE 2001), pp. 109–120 (2001)

7. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer, J., Harel, D.,
Hoare, C.A.R. (eds.) Engineering Theories of Software-intensive Systems. NATO Science
Series: Mathematics, Physics, and Chemistry, vol. 195, pp. 83–104. Springer, Heidelberg
(2005)

8. Fernandes, F., Royer, J.-C.: The STSLib project: Towards a formal component model based
on STS. Electr. Notes Th. Comp. Sci. 215, 131–149 (2008)

9. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic. In: Meyer,
A.R., Taitslin, M.A. (eds.) Logic at Botik. LNCS, vol. 363, pp. 163–180. Springer, Heidel-
berg (1989)



152                      

10. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and product line
theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidel-
berg (2007)

11. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proc. 3rd Ann. Symp. Logic in Com-
puter Science (LICS 1988), pp. 203–210. IEEE Computer Society, Los Alamitos (1988)

12. Plášil, F., Višňovský, S.: Behavior protocols for software components. IEEE Trans. Software
Eng. 28(11), 1056–1076 (2002)

13. Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.): The Common Component Model-
ing Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

A Proofs

Proof (of Lem. 1). For each 1 ≤ � ≤ � + 1 let �
 =
⊗sy

1≤	 =
≤�+1 
	 . For each 1 ≤
� ≤ � let � ′


 =
⊗sy

1≤	≤
≤� . Let (�1, . . . , ��+1) ∈ R(
⊗sy

1≤	≤�+1
	 ) and �

�
��

� ′

for  ∈ ���

∩ ��� .
Let � = � + 1. Then �
 =

⊗sy
1≤	≤� 
	 , and the claim follows since ��+1 and


�+1 are output compatible by assumption. Now let 1 ≤ � ≤ �.

If  ∈ ���
∩ ���+1 , then ��+1

�̂
��+1

· �
��+1

� ′�+1 with � =
	��+1 ∪ (���+1 \ ���+1) since ��+1 and 
�+1 are output compatible. Thus

(�1, . . . , �
−1, �
+1, . . . , ��+1) �̂
��

· �
��

(�1, . . . , �
−1, �
+1, . . . , �
′
�+1) and � ⊆

	�� ∪ (��� \ ���
), since 	��+1 ⊆ 	�� , ���+1 \ ���+1 ⊆ ��� , and (���+1 \

���+1) ∩ ���
= ∅ for all 1 ≤ � ≤ �.

If  ∈ ���
∩ (

⋃
1≤	 =
≤� �	 ), then (�1, . . . , �
−1, �
+1, . . . , ��)

�̂ ′
�

� ′
�

· �
� ′
�

(� ′1, . . . , �
′

−1, �

′

+1, . . . , �

′
�) with � ′


 = 	� ′
�
∪ (�� ′

�
\ ���

) by the output compatibil-

ity of (
	 )1≤	≤� . Let (� ′′1 , . . . , � ′′
−1, �
′′

+1, . . . , �

′′
� ) �′

� ′
�

(� ′′′1 , . . . , � ′′′
−1, �
′′′

+1, . . . , �

′′′
� )

with  ′ ∈ ���
∩ ���+1 for some 1 ≤ � ≤ � be the first transition to occur in

this sequence. Then ��+1
�̂
��+1

· �′
��+1

� ′�+1 with � = 	��+1 ∪ (���+1 \
���+1) since ��+1 and 
�+1 are output compatible. As argued in the previous case

(� ′′1 , . . . , � ′′
−1, �
′′

+1, . . . , ��+1) �̂

��
· �′

��
(� ′′1 , . . . , � ′′
−1, �

′′

+1, . . . , �

′
�+1) and thus

inductively (�1, . . . , �
−1, �
+1, . . . , ��+1)
�̂�
��

· �
��

(� ′1, . . . , �
′

−1, �

′

+1, . . . , �

′
�+1)

with �
 = 	�� ∪ (��� \ ���
).

Proof (of Lem. 2). We show that if 
 , � , and � are MIOs such that � and � are
composable and 
 ≤∗

m � , then 
 ⊗sy � ≤∗
m � ⊗sy �. Then the claim follows by

induction and symmetry.
Let such 
 , � , and � be given, let 
� = 
 ⊗sy �, �� = � ⊗sy �, and let ���

be a relation witnessing 
 ≤∗
m � with (�0,� , �0,� ) ∈ ��� . Let

� = {((�� , ��), (�� , ��)) | (�� , �� ) ∈ ���} .

Then ((�0,� , �0,�), (�0,� , �0,�)) ∈ �. Let ((�� , ��), (�� , ��)) ∈ �; we check the
conditions of weak modal refinement for �:



                                                              153

(1) Let  ∈ ��� ∪��� ∪	�� and (�� , ��) �
��

(� ′� , � ′�). If  ∈ (�� \��)∪ (�� \
��) ∪ 	� , then ��

�
�
� ′� and �� = � ′�. By (1) for ��� there is an � ′� ∈ �� with

��
�̂
�

� ′� and, in particular, (�� , ��) �̂
��

(� ′� , ��); thus ((� ′� , ��), (� ′� , ��)) ∈
�. — If  ∈ (�� \ �� ) ∪ (�� \ �� ) ∪ 	�, then �� = � ′� and ��

�
�
� ′�. Thus

(�� , ��) �
��

(�� , � ′�) and hence ((�� , � ′�), (�� , � ′�)) ∈ �. — If  ∈ (�� ∩ ��) ∪
(�� ∩ ��), then ��

�
�
� ′� and ��

�
�
� ′� for some � ′� ∈ �� and � ′� ∈ ��. By (1)

for ��� there is an � ′� ∈ �� with ��
�̂
�

� ′� and, in particular, (�� , ��) �̂
��

(� ′� , � ′�); thus ((� ′� , � ′�), (� ′� , � ′�)) ∈ �.

(2) Let (�� , ��) τ
��

(� ′� , � ′�). If ��
τ
�
� ′� and �� = � ′�, then ��

τ̂
�

� ′� for

some � ′� ∈ �� by (2) for ��� ; in particular, (� ′� , ��) τ̂
��

(� ′� , ��) and hence

((� ′� , ��), (� ′� , ��)) ∈ �. — If �� = � ′� and ��
τ
�
� ′� then (�� , � ′�) τ̂

��
(�� , � ′�)

and hence ((�� , � ′�), (�� , � ′�)) ∈ �.

(3) Let  ∈ ���∪���∪	�� and (�� , ��) �
��

(� ′� , � ′�). If  ∈ (�� \��)∪(�� \
��) ∪ 	� , then ��

�
�
� ′� and �� = � ′�. By (3) for ��� there is an � ′� ∈ �� with

��
�̂
�

� ′� and, in particular, (�� , ��) �̂
��

(� ′� , ��); thus ((� ′� , ��), (� ′� , ��)) ∈
�. — If  ∈ (�� \ �� ) ∪ (�� \ �� ) ∪ 	�, then �� = � ′� and ��

�
�
� ′�. Thus

(�� , ��) �
��

(�� , � ′�) and hence ((�� , � ′�), (�� , � ′�)) ∈ �. — If  ∈ (�� ∩ ��) ∪
(�� ∩ ��), then ��

�
�

� ′� and ��
�
�
� ′� for some � ′� ∈ �� and � ′� ∈ ��. By (3)

for ��� there is an � ′� ∈ �� with ��
�̂
�

� ′� and, in particular, (�� , ��) �̂
��

(� ′� , � ′�); thus ((� ′� , � ′�), (� ′� , � ′�)) ∈ �.

(4) Let (�� , ��) τ
��

(� ′� , � ′�). If ��
τ
�

� ′� and �� = � ′�, then ��
τ̂
�

� ′�
for some � ′� ∈ �� by (4) for ��� ; in particular, (� ′� , ��) τ̂

��
(� ′� , ��) and hence

((� ′� , ��), (� ′� , ��)) ∈ �. — If �� = � ′� and ��
τ
�
� ′� then (�� , � ′�) τ̂

��
(�� , � ′�)

and hence ((�� , � ′�), (�� , � ′�)) ∈ �.

Proof (of Lem. 3). Let �1, . . . ,�� be the weakly modal refinement relations witness-
ing 
1 ≤∗

m �1, . . . ,
� ≤∗
m �� , respectively. Let �
 =

⊗sy
1≤	 =
≤� 
	 and

�
 =
⊗sy

1≤	 =
≤� �	 for all 1 ≤ � ≤ �. Let (�1, . . . , ��) ∈ R(
⊗sy

1≤	≤� 
	 ) and

let  ∈ ���
∩ ���

for some 1 ≤ � ≤ � such that �

�
��

� ′′
 for some � ′′
 ∈ ���
.

Then there are � ′1 ∈ ��1 , . . . , �
′
� ∈ ��� with (�1, � ′1) ∈ �1, . . . , (�� , � ′� ) ∈ �� and

(� ′1, . . . , �
′
�) ∈ R(

⊗sy
1≤	≤� �	) by conditions (3) and (4) of weakly modal refine-

ment relations. Moreover, � ′

�
��

� ′′′
 for some � ′′′
 ∈ ��� by condition (3). Thus,

(� ′1, . . . , �
′

−1, �

′

+1, . . . , �

′
�) �̂�

��
· �

��
(� ′′′1 , . . . , � ′′′
−1, �

′′′

+1, . . . , �

′′′
� ) with �
 =

	�� ∪(��� \��� ) by output compatibility of (�	)1≤	≤� . Now�
 = 	��
∪(���

\���
).

From conditions (1) and (2) of weakly modal refinement relations it follows that

(�1, . . . , �
−1, �
+1, . . . , ��) �̂�
��

· �
��

(� ′′1 , . . . , � ′′
−1, �
′′

+1, . . . , �

′′
� ).

Proof (of Lem. 4). Let � be a relation witnessing � ≤∗
m �. Then � is also a relation

witnessing � ξ ≤∗
m �ξ.


	Title
	Preface
	Organization
	Table of Contents
	Virtual Time and Timeout in Client-Server Networks
	Introduction
	Background
	Causal Model of Virtual Time
	Simulation Model of Virtual Time
	Contributions of This Work

	References

	The Use of Mathematics in Software Development
	References

	Infinitely Often Testing
	Axiomatizing Weak Ready Simulation Semantics over BCCSP
	Introduction
	Preliminaries
	Weak Simulation
	Ground-Completeness for Weak Simulation
	-Completeness for Weak Simulation

	Weak Ready Simulation
	Axiomatizing RS When A Is Infinite
	Axiomatizing RS When A Is Finite

	Conclusion
	References

	Symbolic Worst Case Execution Times
	Introduction
	Related Work
	Numeric Path Analysis
	Parametric Path Analysis

	Longest Paths in Singleton-Loop-Graphs
	Preliminaries
	The Algorithm
	While-Loop-Graphs

	Conclusion
	References

	Selecting Good a Priori Sequences for Vehicle Routing Problem with Stochastic Demand
	Introduction
	The a Priori Strategy for VRPSD
	Previous Results
	Our Model
	Our Results

	Non-split VRPSD on Trees
	Non-split VRPSD on Cycles
	VRPSD on Cactus Graphs
	Non-split VRPSD on General Graphs
	Discussion
	Conclusion
	References

	On Characterization, Definabilityand $\omega$-Saturated Models
	Introduction
	Basic Definitions
	Characterization
	Definability
	Conclusions and Further Work
	References

	On the Complexity of Szilard Languages of Regulated Grammars
	Introduction
	SZLs of RCGs - Prerequisites
	On the Complexity of SZLs of RCGs
	Remarks on SZLs of RCGs with PS Rules
	On the Complexity of SZLs of Other Regulated Rewriting Grammars
	References

	Energy Games in Multiweighted Automata
	Introduction
	Multiweighted Automata and Games
	Relationship to Petri Nets
	Reductions among Energy Games
	Summary of Complexity Results
	Parameterized Existential Problems
	Extension to Timed Automata
	Conclusion and Future Work
	References

	Intersection Types for the Resource Control Lambda Calculi
	Untyped Resource Control Calculi
	Resource Control Lambda Calculus $\rcl$
	Resource Control Sequent Lambda Calculus $\llG$

	Intersection Type Assignment Systems for Resource Control
	Intersection Types for $\rcl$
	Intersection Types for $\llG$

	Typability $\Rightarrow$ SN in Both Systems
	Typeability $\Rightarrow$ SN in $\rcl \cap$
	Typeability $\Rightarrow$ SN in $\llG \cap$

	SN $\Rightarrow$ Typability in Both Systems
	SN $\Rightarrow$ Typability in $\rcl \cap$
	SN $\Rightarrow$ Typability in $\llG \cap$

	Conclusions
	References

	Modal Interface Theories for Communication-Safe Component Assemblies
	Introduction
	Interface Languages
	Interface Assemblies
	Modal I/O-Automata for Interface and Assembly Specifications

	Modal I/O-Transition Systems: Basic Definitions
	Modelling Component Systems with MIOs: Example
	Interfaces and Assemblies
	Communication-Safe Assemblies
	Refinement of Interfaces and Assemblies

	Case Study
	Conclusion
	References

	WP Semantics and Behavioral Subtyping
	Introduction
	The Programming Language: Java
	A WP Semantics for Java
	The Assertion Language: OOSL
	The WP Semantics
	Properties
	Soundness and Completeness

	Behavioral Subtyping
	Method Specification and Refinement
	Object Invariant
	Behavioral Subtyping

	Related Work and Conclusion
	References

	Computing Preconditions and Postconditions of While Loops
	Introduction: Preconditions and Postconditions of Loops
	Mathematical Background
	Elements of Relations
	Refinement Ordering
	Lattice Properties

	Invariant Relations
	Loop Semantics
	Invariant Relations

	Weakest Preconditions
	A Relational Formula
	Invariant Relations and Weakest Preconditions
	Illustration: A Larger Example

	Strongest Postconditions
	Relational Definition
	Invariant Relations and Strongest Postconditions
	Illustration: A Larger Example

	Computing Invariant Relations
	Mathematical Foundations
	Scaling Up

	Conclusion: Summary, Comparison and Prospects
	Summary
	Related Work
	Prospects

	References

	A Framework for Instantiating Pedagogic mLearning Objects Applications
	Introduction
	Related Work
	Mobile Learning (MLearning)
	MLearning Objects
	Traditional Learning Theories and MLearning
	The Global eLearning Framework
	MLearning Objects Frameworks

	Methodology
	Results and Discussions
	Raising Awareness of the Problem and Making Suggestions for MoLODUF Dimensions
	Developing the MoLODUF
	Evaluating the MoLODUF

	Instantiating MLearning Objects Deployment and Utilization Applications
	Conclusion and Future Work
	References

	Emulating Primality with Multiset Representations of Natural Numbers
	Introduction
	Encoding Finite Multisets with Primes
	Ranking/Unranking of Sets and Finite Sequences
	Encoding Multisets

	A Bijection between Finite Multisets and Natural Numbers
	Exploring the Analogy between Multiset Decompositions and Factoring
	A Multiset Analog to Multiplication
	Multiset Analogues for div, gcd and lcd
	Multiset Primes
	An Analog to the ``rad'' Function
	Emulating the Möbius and Mertens Functions

	Deriving Automorphisms of N
	Related Work
	Conclusion and Future Work
	References

	Formal Verification of a Lock-Free Stack with Hazard Pointers
	Introduction
	The Hazard Pointers Method
	A Lock-Free Stack with Hazard Pointers
	The Lock-Free Stack
	The Extended Stack

	The Verification Framework
	Interval Temporal Logic
	Symbolic Execution and Induction

	The System Model and the Decomposition Theory
	Verifying the Stack with Hazard Pointers
	Central Properties of Hazard Pointers
	Verification Conditions for the Stack
	The Main Proofs

	Related Work and Comparison
	Summary and Discussion
	References

	Ambiguity of Unary Symmetric Difference NFAs
	Introduction
	Background
	Definition of -NFAs
	Analysis of -NFA Behaviour
	Ambiguity

	Ambiguity of Unary -NFAs
	Other Ambiguity Results
	Conclusion and Future Work
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




