
Modeling the Car Crash Crisis Management System
Using HiLA

Matthias Hölzl1, Alexander Knapp2, and Gefei Zhang1

1 Ludwig-Maximilians-Universität München
{matthias.hoelzl, gefei.zhang}@pst.ifi.lmu.de

2 Universität Augsburg
knapp@informatik.uni-augsburg.de

Abstract. An aspect-oriented modeling approach to the Car Crash Crisis Man-
agement System (CCCMS) using the High-Level Aspect (HiLA) language is de-
scribed. HiLA is a language for expressing aspects for UML static structures
and UML state machines. In particular, HiLA supports both a static graph trans-
formational and a dynamic approach of applying aspects. Furthermore, it facili-
tates methodologically turning use case descriptions into state machines: for each
main success scenario, a base state machine is developed; all extensions to this
main success scenario are covered by aspects. Overall, the static structure of the
CCCMS is modeled in 43 classes, the main success scenarios in 13 base ma-
chines, the use case extensions in 47 static and 31 dynamic aspects, most of which
are instantiations of simple aspect templates.

1 Introduction

The UML has become the customary modeling language for many software develop-
ment projects; state machines are among the most popular techniques for describing
reactive and interactive systems [10]. Therefore, an approach based on UML state ma-
chines suggests itself for modeling the behavior of the Car Crash Crisis Management
System (CCCMS). However, experience shows that state machine models become com-
plex even for relatively simple systems. Often this complexity is not inherent in the
problem itself or even in its description as state-based system, but it is induced by a
lack of abstraction mechanisms in UML state machines. This becomes particularly ob-
vious for systems exhibiting mutually interacting use cases: many of the interrelations
between different use cases can only be modeled by introducing global state or by per-
vasive modifications of the state machine structure.

To address these problems, we have developed the HiLA approach: the HiLA lan-
guage is an extension of UML state machines with aspects; it supports both high-level
aspects which are based on the dynamic execution behavior of state machines, and low-
level aspects defined as graph transformations of the static structure of models. HiLA
allows the modeler to represent different use cases (or, more generally, different con-
cerns) as separate aspects operating on a single base state machine. This separation of
concerns is possible even if the different concerns interact, as long as the behavior of
the interaction can be expressed using high-level aspects.

 235

By closely aligning state machine models with use case descriptions, the HiLA lan-
guage not only reduces the complexity of the dynamic models, but also gives rise to a
modeling technique that is not easily applicable when working with standard UML state
machines: the state machine models can systematically be generated from the analysis
results, in particular from use cases. To achieve this, we model each base use case with
a state machine, and we model each use case extension as a set of aspects that are ap-
plied to one or more base machines. This is a similar technique to the one described by
Jacobson’s rendering of use case slices as aspects [15]. The development of the static
design model is more traditional, and takes into account both the analysis model and
the requirements of the dynamic models.

The systematic transition between analysis and behavioral design offers several ad-
vantages: it provides a concrete method to move from use cases to state machines;
the resulting state machines are easy to understand since they correspond directly to
requirements; and the approach provides excellent traceability from requirements to
behavioral model and vice versa, which simplifies the validation that all requirements
are addressed by the design and simplifies subsequent changes to system requirements.

While the part of the CCCMS we modeled is much smaller than most real applica-
tions, it is complex enough to demonstrate the advantages that HiLA models and the
HiLA approach offer over traditional UML-based approaches to behavioral modeling.
However, as we will further elaborate in Sect. 5, HiLA is designed to address certain
modeling problems, e.g., complex mutual exclusion requirements or history-dependent
behaviors, which are not needed to model the CCCMS case study.

For our exposition, we assume that the reader is familiar with the syntax and se-
mantics of UML in general (see [6] for an introduction). In particular, we make use of
UML’s template mechanism (see [23, Sect. 17.5] for its specification).

The remainder of this paper is structured as follows: Sect. 2 briefly reviews UML
state machines and gives an overview of the HiLA language. The modeling of the CC-
CMS in HiLA is detailed in Sect. 3; Sect. 4 demonstrates how the resulting HiLA model
can be validated. The method of applying HiLA to the CCCMS case study, and the
HiLA language itself are evaluated in Sect. 5. Related work is discussed in Sect. 6. We
conclude by summarizing our approach in Sect. 7.

2 A Brief Overview of HiLA

Our modeling language of choice is the UML [23], the lingua franca of object-oriented
analysis and design. The static structure of our CCCMS is modeled by class diagrams,
its dynamic behavior by state machines, enhanced with HiLA. In the following, we
review the basic concepts of UML state machines (see, e.g., [10]) and introduce HiLA.

2.1 UML State Machines

A UML state machine provides a behavioral view of its context. Figure 1 shows a state
machine of a process which contains two parallel threads. After creation, the process is
first initialized in the state Init, then the two threads run in parallel in the state Running,
until they receive the events astop and bstop while they are in the states A3 and B3,

236

respectively. In this case, each thread waits for the other to receive its stop signal in
waiting states A4 and B4, respectively, before the threads terminate conjointly.

In more detail, a UML state machine consists of regions which contain vertices and
transitions between vertices. A vertex is either a state, where the state machine may
dwell in and which may show hierarchically contained regions, or a pseudo state reg-
ulating how transitions are compound in execution. Transitions are triggered by events
and describe, by leaving and entering states, the possible state changes of the state
machine. The events are drawn from an event pool associated with the state machine,
which receives events from its own or from different state machines. The context of
a state machine, a UML classifier, describes the features, in particular the attributes,
which may be used and manipulated during execution.

A state of a state machine is simple, if it contains no regions (such as Init and all
states contained in Running in Fig. 1); a state is composite, if it contains at least one
region; a composite state is said to be orthogonal, if it contains more than one region,
visually separated by dashed lines (such as Running). Each state may show an entry
behavior (like actB2 in B2), an exit behavior (like actA2 in A2), which are executed on
activating and deactivating the state, respectively; a state may also show a do activity
(like in Init) which is executed while the state machine sojourns in this state. Transitions
are triggered by events (a12, a23), show guards (condB), and specify actions to be
executed when a transition is fired (actA23). Completion transitions (transition leaving
Init) are triggered by an implicit completion event emitted when a state completes all its
internal activities. Events may be deferred (as a12 in Init), i.e., put back into the event
pool, if they are not to be handled currently but only later on. By executing a transition,
its source state is left and its target state entered; transitions, however, may also be
declared to be internal to a state (b3 / actB3), thus skipping the activation–deactivation
scheme. An initial pseudo state, depicted as a filled circle, represents the starting point
for the execution of a region. A final state, depicted as a circle with a filled circle inside,
represents the completion of its containing region; if all regions of a state machine are
completed, the state machine terminates. Junction pseudo states, also depicted as filled
circles (see lower region of Running), allow for case distinctions. Transitions to and
from different regions of an orthogonal composite state can be synchronized by fork
and join pseudo states, presented as bars. For simplicity, we omit the other pseudo state
kinds (entry and exit points, shallow and deep history, and choice).

A1 A3 A4

B1 B4B3
b3 / actB3

b32

exit / actA2
a12 A2

a32

a23 / actA23

a31

aStop

Running

entry / actB2
b12 B2 b23

[condB][else]

do / init
a12 / defer

Init

bStop

Fig. 1. State machine of a process containing two parallel threads

 237

During runtime, a state gets active when entered and inactive when exited as a result
of a transition. The set of currently active states is called the active state configuration.
When a state is active, so is its containing state. The active state configuration is thus
a set of trees starting from the states in the top-level regions down to the innermost
active substates. The execution of a state machine consists in changing its active state
configuration in dependence of the current active states and a current event dispatched
from the event pool. We call the change from one state configuration to another an
execution step. First, a maximally consistent set of prioritized, enabled compound tran-
sitions is chosen. Transitions are combined into compound transitions by eliminating
their linking pseudo states; for junctions, this means to combine the guards on a transi-
tion path conjunctively, for forks and joins to form a fan-out and fan-in of transitions.
A compound transition is enabled if all of its source states are contained in the active
state configuration, its trigger is matched by the current event, and its guard is true.
Two enabled compound transitions are consistent if they do not share a source state;
an enabled compound transition takes priority over another enabled compound transi-
tion if its source states are below the source states of the other transition in the active
state configuration. For each compound transition in the set, its least common ancestor
(LCA) is determined, i.e. the lowest composite state containing all the compound tran-
sition’s source and target states. The compound transition’s main source state, i.e., the
direct substate of the LCA containing the source states, is deactivated, the compound
transition’s actions are executed, and its target states are activated.

2.2 HiLA

An initial version of the High-Level Aspects (HiLA) language, an aspect-oriented ex-
tension of UML state machines, was defined in [34]. This section contains an introduc-
tion to a further development of HiLA. We first illustrate the main features of HiLA
by means of use case 10 “Authenticate User” of the CCCMS, and then give a brief
overview of the general syntax and informal semantics of HiLA.

Our models consist of a UML basic static structure and a set of UML base state
machines. The basic static structure usually contains one or more classes; each base
state machine is attached to one of these classes and specifies its behavior.1

HiLA offers two kinds of aspects to modify such a model: Static (or low-level, trans-
formational) aspects directly specify a model transformation of the basic static structure
or of the base state machines. Dynamic (high-level) aspects only apply to state machines
and specify additional or alternative behavior to be executed at certain “appropriate”
points of time in the base machine’s execution. These points of time are when a transi-
tion is being fired with the state machine in certain state configurations, or if firing the
transition would lead to certain state configurations. The transitions are specified by the
pointcut of the dynamic aspect, the behavior to execute by its advice. Dynamic aspects
have been introduced in order to avoid certain intricacies arising when relying on model
transformations only, e.g., the notorious confluence problem [30] which is mitigated in
HiLA by the concurrent execution of all applying aspects [33].

1 In particular, all classes with state machines are active.

238

We illustrate the static and dynamic aspect language of HiLA by means of their
application to use case 10 of the CCCMS. The main success scenario of this use case
according to the case study specification [17] reads as follows:

1. System prompts CMSEmployee for login id and password.
2. CMSEmployee enters login id and password into System.
3. System validates the login information.

«signal» input(u: String, p: String)
«signal» ok

System

(a) Static structure for use
case 10 (simplified)

Prompt ok
/ userid = u; pwd = p

input(u, p)

userid: String
pwd: String

Validate

(b) Base state machine for System from
Fig. 2(a) (simplified)

Fig. 2. Use Case 10, main success scenario

Let us assume that the static structure for this use case looks as in Fig. 2(a) and
that the main success scenario is modeled by the state machine in Fig. 2(b).2 The class
System contains receptions for entering the user id and password and for accepting a
successful login attempt. The behavior of System is a direct reflection of the use case
description: first the user is prompted to input his credentials (state Prompt), which are
then validated (Validate). If the credentials are correct, a signal ok is created by the
validation mechanism (not modeled here), upon which the use ends in success.

The first extension is specified as follows:

2a. CMSEmployee cancels the authentication process. Use case ends in failure.

failure(): void
«signal» cancel

System
«transformation advice»

«transformation pointcut»
CancelLogin

«aspect»

System

(a) Static aspect

«pointcut»

«advice»
/ failure goto Final

«aspect»
WhilstOnDoGoto

«whilst»
{trigger = cancel}

*

(b) Dynamic aspect

Fig. 3. Aspects for extension 2a of Use Case 10

As is the general strategy in our modeling approach, this extension is represented by
aspects; in this case, a combination of one static and one dynamic aspect, as shown in

2 The real situation is given in Figs. 8 and 29.

 239

Fig. 3. The pointcut of the dynamic aspect in Fig. 3(b) matches �whilst�; the base state
machine is in any (*) state configuration and the event cancel occurs; it advises the base
state machine to execute the �advice�: perform failure as an effect and go to the Final
state of the base machine. The static aspect in Fig. 3(a) adds the reception cancel and
the operation failure (and also the implementation of failure) to System.

In fact, both the low-level static and the high-level dynamic aspects represent in-
stances of rather general patterns which occur widely in practice and in particular in the
CCCMS. To provide a more compact an conspicuous notation, we abstract these and
similar aspects into templates, employing the general UML mechanism to parameterize
constructs.

C

«transformation advice»

«transformation pointcut»
IntroduceOperation

«aspect»

Op

C

C
Op

(a) Extend class C with
operation Op

C

«transformation advice»

«transformation pointcut»
IntroduceProperty

«aspect»

C
Prop

C
Prop

(b) Extend class C with
property Prop

C

«transformation pointcut»
IntroduceClass

«aspect»

«transformation advice»

C

(c) Introduce class C to
the system

Fig. 4. Low-level (static) aspect templates

The templates used for low-level aspects are shown in Fig. 4. Template Introduce-
Operation in Fig. 4(a) introduces a new operation Op into an existing class C; template
IntroduceProperty in Fig. 4(b) introduces a property; and template IntroduceClass in
Fig. 4(c) represents the creation of a new class. (All these aspects have no effect when
the element to be introduced already exists.) The static aspect in Fig. 3(a) can therefore
be rendered simply as shown in Tab. 1.

Table 1. Use Case 10, extension 2a: Fig. 3(a) as template instantiations

Template Binding
IntroduceOperation C �→ System

Op �→ �signal� cancel
IntroduceOperation C �→ System

Op �→ failure(): void

Templates to abbreviate commonly used concepts are even more useful for high-level
aspects as illustrated by Fig. 5(a)–(c). These templates all adhere to the following form:
Whilst a certain state is active3, On occurrence of a certain trigger, If a certain condi-
tion holds, Do a specified action and then Goto a specified state. The regular naming

3 or Before a certain state becomes active, or After a certain state was active.

240

Whilst

WhilstOnGoto
«pointcut»

«aspect»

«advice»

«whilst»
{trigger = On}

goto Goto

Whilst
On
Goto

(a) When state Whilst is
active, if On is the current

event, go to state Goto

Before

«before»

{If}

«pointcut»

«advice»
/ Do goto Goto

«aspect»
BeforeIfDoGoto

Goto

Before
If
Do

(b) Before activating state
Before, if condition If is true,
execute the action Do and go

to state Goto

Whilst

«whilst»
{trigger = On}

«pointcut»

«advice»
/ Do goto Goto

«aspect»
WhilstOnDoGoto

Goto

Whilst
On
Do

(c) When state Whilst is
active, if the current event is
On, execute the action Do,

and go to state Goto

Fig. 5. High-level aspect templates

scheme ensures that the templates are easy to remember and to use; convenient variants
and variations are readily formed. Figure 3(b) is an instance of WhilstOnDoGoto with
Whilst �→ *, On �→ cancel, Do �→ failure and Goto �→ Final (instantiating a template
parameter X with * is meant as an abbreviation for instantiating X with all states in the
base machine).

The second and last extension of use case 10 is handling failed authentication at-
tempts:

3a. System fails to authenticate the CMSEmployee.
3a.1. Use case continues at step 1.

3a.1a. CMSEmployee performed three consecutive failed attempts.
3a.1a.1. Use case ends in failure.

Modeling such behavior requires the ability to track the execution history of the state
machine. For this purpose HiLA offers history properties.

«aspect»
: WhilstOnGoto

Whilst −> Validate
On −> fail
Goto −> Prompt

(a) Aspect fail

Validate [3]

[0]
f3 = #

ThreeFails
«aspect»

«history»
«aspect»

: BeforeIfDoGoto

Goto −> Final
Do −> failure()
If −> f3 >= 1
Before −> Prompt

(b) Aspect 3fail

Fig. 6. Dynamic aspects for extension 3a of Use Case 10

The dynamic aspect in Fig. 6(a) uses the template notation: a failed authentication
attempt leads back to state Prompt. (From here on we will employ template notation
whenever adequate.) However, the dynamic aspect in Fig. 6(b) is additionally equipped

 241

with a �history� property. The history variable f3 stores the number of such subse-
quences in the execution history in which state Validate was active three (multiplicity
[3]) times without the final state being active (multiplicity [0]). The history variable f3
is used in the enclosed aspect template instance to ensure that after three consecutive
failed authentication attempts (f3 >= 1) the machine terminates.

2.3 General Concrete Syntax and Informal Semantics of Dynamic Aspects

The general concrete syntax of high-level aspects is shown in Fig. 7; the oblique iden-
tifiers are place holders. State* is a set of states. The selector may be either �before�,
�after� or �whilst�. A pointcut labeled with �after� selects all transitions leaving any
state in State* while the state machine is in a state configuration containing all states in
State*. Similarly, a pointcut labeled with �before� selects each transition T entering
any state contained in State*, but only in active state configurations where after taking
T all states in State* will become active. A pointcut labeled with �whilst� always has
an annotation Trigger = e; conceptually it selects the compound transition from State*
to State* with trigger e, but if this transition does not already exist it is created by the
pointcut. Alternatively, the selector may be empty and a set of states and transitions
ST* may be specified. In this case, the pointcut matches all (existing) transitions in
ST*. Note that for any given event and environment, a �whilst� aspect is only enabled
when no existing transition is enabled for this event and environment; moreover, only
�whilst� aspects can cause transitions in situations where no originally existing tran-
sition reacts to the given event and environment. Pointcuts with selector �before� or
�after�, or with empty selector only match existing transitions. The pointcut may con-
tain a constraint. In this case, the advice is only executed when the constraint is satisfied
at the time of matching the pointcut.

The third case shown in Fig. 7(a) takes into account the active state configurations
of all state machines belonging to one of the specified Classes; Mult , selector and State
are functions of Class. If Mult is not specified, then Mult := *. In the case the selec-
tor is �before�, the pointcut selects a transition in the currently active state machine if
that transition would cause Mult instances of each specified Class to be in active state

State*
selector : Class

selector

State* [Mult]

ST*

«pointcut»

{Constraint}

«advice»

Label 1

Label 2
AdvBody

Label 3

Name
«aspect» Par2

Par1

(a) Class aspects

«history»
hs1 = op1 Pattern1
hs2 = op2 Pattern2

«history»
Name

Par2
Par1

(b) History properties

Fig. 7. Concrete syntax of HiLA aspects

242

configuration State* with satisfied Constraint . If the selector is �after�, then the point-
cut matches transitions that are about to be fired, while there are Mult instances of each
specified Class in active state configuration State* with satisfied Constraint .

In general, the advice of a dynamic aspect is a state machine, where the final states
may be labeled. When an advised transition is taken, the advices of all aspects that
advise this transition are executed concurrently. When all advices have reached a final
state, execution of the base machine is resumed, normally with a compound transition
from the final states of the advices to the target state of the advised transition. The labels
on final states can modify this resumption transition: if one or more final states are
labeled goto T and all other states are unlabeled the target of the resumption transition
is the state T; if concurrently active final states are labeled goto T and goto T’ with T �= T’
the state machine is erroneous. Note that this does not preclude final states with different
labels, but in an error-free state machine they may not be active simultaneously.

In HiLA, properties of the execution history are specified by history properties. The
basic idea behind history properties is that they provide a declarative way to specify
the value of a variable that depends on the execution history of the state machine; other
aspects can then use that value in their pointcut or advice to enable history-sensitive
behavior. History properties are defined in history aspects, which are identified by the
label �history�, as shown in Fig. 7(b). A history property contains a name, followed
by an operator and a pattern consisting of active state configurations and guards. The
pattern matches contiguous subsequences of the execution history. The value of the
history property is the result of applying the function defined by the operator to the
subsequences selected by the pattern. In particular, operator # (“number of”) returns
the number of matches of the pattern by the base machine’s execution history where the
guards evaluate to true. The pattern language is regular, as presented in [34], patterns
can be concatenated by an arrow (→), as presented in [32].

3 Modeling the CCCMS

We model the domain of the CCCMS in UML class diagrams and its behavior in UML
state machines, “the most popular language for modeling reactive components” [10].
The method that we follow in the modeling task of the state machines is to first derive
a base state machine from the main success scenarios of the use cases and then to
enrich these bases by HiLA aspects for all the extensions of the primary scenario. In
our description, we concentrate on use case 1 of the CCCMS.

Use case 1 “Resolve Crisis” (and its included use cases) describes the overall flow
of events in resolving a car crash crisis: On a crisis, a coordinator first gathers crisis
information; the CCCMS recommends missions based on this information and the co-
ordinator selects missions accordingly. For each mission, internal and external resources
are selected, and these resources execute their mission. When execution has finished,
the coordinator closes the crisis.

3.1 Overview and Static Structure

In our model, we directly represent this main course of actions by handling the differ-
ent phases of a car crash crisis resolution in a chain of separate objects which reflect

 243

1

findInfo(wi: Set<WitnessInfo>): Set<WitnessInfo>

PhoneCompany

request(md: MissionDescription, t: Type, sender: Request): void

ERS

CrisisType
«enumeration»

Location

CrisisInfo 0..* 1
cInfo

Checklist cl
0..1

WitnessInfo 0..*
wInfo

1

validateInfo(wi: Set<WitnessInfo>): void
createChecklist(): Checklist
createAdviser(Set<WitnessInfo>): Adviser
addCrisisInfo(ci: CrisisInfo): void
setEmergencyLevel(): void
«signal» wInfoFinished()
«signal» witnessInfo(wi: WitnessInfo)

«signal» locationAndType(loc: Location, t: CrisisType)

«signal» cInfoFinished()

«signal» phoneInfoOK()

«signal» crisisInfo(ci: CrisisInfo)

«signal» phoneInfo(pi: Set<WitnessInfo>)

addWitnessInfo(wi: WitnessInfo): void

getAvailableResources(): Set<Resource>

System

«signal» crisis()

createCrisis(): void

1

getCoordinator(): Coordinator
getPhoneCompany(): PhoneCompany

active: Boolean = false
emergencyLevel: Integer

Crisis1 0..*
type

createVideoFeed(loc: Location): VideoFeed

SurveillanceSystem

1

1

0..*

VideoFeed
0..*

pInfo: Set<WitnessInfo>

0..1

rcvRecommendations(recs: Set<MissionDescription>): void
rcvChecklist(cl: Checklist): void

newInfo(ci: CrisisInfo): void

«signal» operating(m: Mission)
«signal» inExecution(m: Mission)
«signal» waiting(m: Mission)
«signal» finished(m: Mission)

Coordinator

Fig. 8. Class diagram: around System

Expertise
«enumeration»

intlRequest 0..*
Type

«enumeration»

Mission

Report0..1
finalReportCrisis 0..*1

Change

External
1..* 1..*

1

1
resource

extlRequest 0..*

1

1
md0..*0..* md

0..*

1

selected 0..* recommendations

1

request(md: MissionDescription, sender: Assignment): void

MissionDescription1
md

Employee

Adviser
missions: Set<Mission>

getRecommendations(): Set<MissionDescription>
createMission(md: MissionDescription): void

getResource(): Set<Resource>
close(): void

«signal» change(c: Change)
«signal» newInfo(info: Info)

«signal» selectMissions(md: Set<MissionDescription>)

«signal» report(r: Report)
«signal» arrival(r: Resource)
«signal» departure(r: Resource)

0..1

resource0..1
0..1

«signal» accept(r: Resource)

md: MissionDescription
t: Type

Request

generateReport(): Report
change(c: Change): void
description: MissionDescription

Resource

md: MissionDescription
Assignment

0..*
1..*
Assigner

m: MissionDescription
e: Employee

asmnt1
«signal» accept(r: Resource)
select(): Employee
createAssigner(): void

sd: Employee
exp: Expertise

Fig. 9. Class diagram: around Adviser

244

ex
ec

ut
e(

):
 v

oi
d

fin
dH

os
pi

ta
l(i

In
fo

: I
nj

ur
yI

nf
o)

: H
os

pi
ta

l
«s

ig
na

l»
 le

av
in

gC
ris

is
S

ite
()

«s
ig

na
l»

 v
ic

tim
D

ro
pp

ed
O

ff(
)

«s
ig

na
l»

 c
om

pl
et

ed
()

«s
ig

na
l»

 in
ju

ry
In

fo
(iI

nf
o:

 In
ju

ry
In

fo
)

R
es

cu
eM

is
si

on

se
ar

ch
H

is
to

ry
(v

id
: S

tr
in

g)
: v

oi
d

H
os

pi
ta

lR
es

ou
rc

eS
ys

te
m

H
os

pi
ta

l
C

ris
is

In
fo

cr
ea

te
T

as
k(

td
: T

as
kD

es
cr

ip
tio

n)
: v

oi
d

cu
rr

en
tT

as
k:

 T
as

kD
es

cr
ip

tio
n

ex
ec

ut
e(

):
 v

oi
d

ge
ne

ra
te

C
he

ck
lis

t(
):

 C
he

ck
lis

t
ge

ne
ra

te
T

as
ks

()
: S

et
<

T
as

kD
es

cr
ip

tio
n>

«s
ig

na
l»

 c
ris

is
In

fo
(in

fo
: C

ris
is

In
fo

)
«s

ig
na

l»
 ta

sk
(t

: T
as

kD
es

cr
ip

tio
n)

«s
ig

na
l»

 in
fo

(t
i:

T
as

kI
nf

o)
«s

ig
na

l»
 ta

sk
C

re
at

ed
()

«s
ig

na
l»

 ta
sk

S
uc

ce
ed

ed
()

«s
ig

na
l»

 s
oL

ef
t(

)

S
up

er
O

bs
er

ve
rM

is
si

on

T
as

k
T

as
kI

nf
o

T
as

kD
es

cr
ip

tio
n

ta
sk

s
0.

.*

E
m

pl
oy

ee
E

m
pl

oy
ee

cr
ea

te
A

ss
ig

nm
en

t(
m

d:
 M

is
si

on
D

es
cr

ip
tio

n,
 e

: E
xp

er
tis

e)
: A

ss
ig

nm
en

t
cr

ea
te

R
eq

ue
st

(m
d:

 M
is

si
on

D
es

cr
ip

tio
n,

 t:
 T

yp
e)

: R
eq

ue
st

ex
ec

ut
e(

):
 v

oi
d

re
so

ur
ce

S
uf

fic
ie

nt
()

: b
oo

le
an

«s
ig

na
l»

 a
rr

iv
al

(r
: R

es
ou

rc
e)

«s
ig

na
l»

 d
ep

ar
tu

re
(r

: R
es

ou
rc

e)

M
is

si
on

D
es

cr
ip

tio
n

C
he

ck
lis

t

R
ep

or
t

M
is

si
on

In
fo

H
el

ic
op

te
rT

ra
ns

po
rt

M
is

si
on

to
H

os
pi

ta
l(h

pt
: H

os
pi

ta
l):

 v
oi

d

fa
w 1

hr
s

1.
.*

In
ju

ry
In

fo
vi

d:
 S

tr
in

g
iIn

fo hp
t

V
ic

tim
H

is
to

ry
vi

d:
 S

tr
in

g

1.
.*

cI
nf

o
0.

.1

F
irs

tA
id

W
or

ke
r

re
qu

es
tIn

fo
(in

fo
: C

ris
is

In
fo

)
«s

ig
na

l»
 ta

sk
C

re
at

ed
()

«s
ig

na
l»

 ta
sk

S
uc

ce
ed

ed
()

«s
ig

na
l»

 r
cv

T
as

ks
(t

: S
et

<
T

as
kD

es
cr

ip
tio

n>
)

«s
ig

na
l»

 r
cv

C
he

ck
lis

t(
cl

: C
he

ck
lis

t)

S
up

er
O

bs
er

ve
r

1 so

as
si

gn
m

en
ts

: S
et

<
A

ss
ig

nm
en

t>
re

qu
es

ts
: S

et
<

R
eq

ue
st

>
re

so
ur

ce
s:

 S
et

<
R

es
ou

rc
e>

M
is

si
on

m
d

1 cl

R
em

ov
eO

bs
ta

cl
eM

is
si

on

F
ig

.1
0.

C
la

ss
di

ag
ra

m
:a

ro
un

d
M

is
si

on

 245

the respective states of the CCCMS. A crisis is reported to an instance of class System
which just represents the phase of waiting for an incident. A System then creates a Cri-
sis. In this Crisis, the coordinator gathers the necessary crisis information: the witness
reports and other crisis details. From this information, a Crisis creates an Adviser which
supervises the remainder of the crisis resolution. An Adviser recommends appropriate
missions to the coordinator, accepts a selection of these missions, creates Mission ob-
jects, allocates the necessary resources to each Mission, delegates mission execution to
the resources, and collects changes to the mission.

This division of labor has two driving factors: On the one hand, we take the stance
that each use case has a primary interaction object; this accounts in particular for mov-
ing from System, the primary interaction object for the overall use case 1 “Resolve
Crisis”, to Crisis that handles the included use case 2 “Capture Witness Report”. On the
other hand, inside use cases several tasks have to be done in parallel, where the neces-
sary degree of concurrency is not known up-front. This concurrency justifies, e.g., the
creation of several Mission objects which all have to be executed in parallel.

A domain model of the CCCMS can thus be derived from the use case descrip-
tions using rather conventional techniques (see, e.g., [5,26]) obeying both the use case
structuring and the required parallelism. The overall static structure, enriching the do-
main model by particular associations between the entities and operations as well as
receptions for these entities, again follows straightforwardly from an analysis of the
requirements;4 in both cases, it is mainly enough to concentrate on the primary (suc-
cess) scenarios. We, therefore, forego a detailed account of the design steps of the static
structure but merely show the resulting class diagrams in Fig. 8, Fig. 9, and Fig. 10.

3.2 Modeling the Main Success Scenario of Use Case 1

The main success scenario of use case 1 “Resolve Crisis” is modeled in the following,
where we first cite the textual description of each step from the case study report [17]
and then show how the step is modeled.

Idle

crisis / createCrisis()

Fig. 11. Class System: base machine

The starting point of a crisis management process is System; its behavior is modeled
in Fig. 11: a System is idle until it receives a crisis notification (event crisis), upon
which it creates a Crisis. The Crisis instance then assumes the responsibility to manage
the crisis by being the primary point of interaction with Coordinator, while the system
is ready for other crisis notifications. It is the transition from System to Crisis where the
handling of “Resolve Crisis” really starts.

4 As customary we do not make class constructors explicit.

246

1. Coordinator captures witness report (UC 2).

We do not detail the behavior of use case 2 “Capture Witness Report” here, which is
handled by Crisis; see Appendix A.1. In particular, after successful termination of this
step, the information of Crisis will be up to date and an Adviser being attached to the
Crisis for handling the remaining steps for crisis resolution will have taken over.

2. System recommends to Coordinator the missions that are to be executed based on
the current information about the crisis and resources.

3. Coordinator selects one or more missions recommended by the system.

WaitFor
Changes

Report
Received

do / recommendations =
getRecommendations(System.getAvailableResources()))

GenerateRecommendations

missions.add(createMission(md))
do / ForEach md In selected

CreateMissions

selectMissions(ml)
/ selected = ml

newInfo(info)

/ ForEach r In getResources()

change(c)

/ System.getCoordinator().
r.change(c) newInfo(info)

close

/ finalReport = r
report(r)

rcvRecommendations(recommendations)

SendRecommendations
do / System.getCoordinator().

Fig. 12. Class Adviser: base machine

For these steps, it is the Adviser who represents the System. The Adviser, see Fig. 12,
generates a set of recommendations (in state GenerateRecommendations where we
omit the details of how getRecommendations proceeds) and passes the recommenda-
tions on to the Coordinator (in state SendRecommendations). An event selectMissions
causes the Adviser to store the descriptions of the selected missions in selected. In Cre-
ateMissions, it creates a new Mission for the description of each selected mission, and
adds it to the set missions. (We abstract from the detail of how to decide whether a
“super observer mission”, a “rescue mission”, a “helicopter transport mission”, or a
“remove obstacle mission” should be created for a given mission description, but hide
this in the operation createMission.)

The base state machine for Mission is shown in Fig. 13. The next steps from 4 to 11
are executed for each mission in parallel:

 247

do / ForEach r in md.intlRequest
assignments.add(createAssignment(md, r))

CreateAssignments

do / ForEach r in md.extlRequest
requests.add(createRequest(md, r))

CreateRequests

/ System.getCoordinator().
finished(this)

finished

Listening

arrival(res) / resources.add(res)

departure(res) / resources.remove(res)

entry / execute();
Execute

«create»
init(mdes: MissionDescription)
/ md = mdes

arrival(res) / resource.add(res)

entry / System.getCoordinator().inExecution(this);
InExecution

Fig. 13. Class Mission: base machine

4. For each internal resource required by a selected mission, System assigns an inter-
nal resource (UC 3).

5. For each external resource required by a selected mission, System requests an ex-
ternal resource (UC 4).

Each Mission creates first Assignment objects (in state CreateAssignments) and then
Request objects (in state CreateRequests) to allocate internal and external resources,
respectively.

6. Resource notifies System of arrival at mission location.
7. Resource executes the mission (UC 5).
8. Resource notifies System of departure from mission location.

Upon arrival of a resource, the Mission starts execution (InExecution). The details of
how a Mission executes (asynchronously calling its abstract method execute) depend on
the type of Mission; see Appendices A.5 and A.6. Meanwhile, the mission also keeps
track of the arrived and departed resources: in state Listening it waits for the resources
to report their arrivals and departures, and updates its attribute resources accordingly.
We suppose some resource sends (according to its mission description) to the Mission a
finished signal to stop its execution when the mission is accomplished.

9. In parallel to steps 6–8, Coordinator receives updates on the mission status from
System.

Each Mission continuously informs the coordinator when it is in execution or finished.
Note that the missions are now the representatives of the overall CCCMS, i.e., the
System.

248

10. In parallel to steps 6–8, System informs Resource of relevant changes to mis-
sion/crisis information.

This part of informational action is done by the Adviser (see Fig. 12). After creating the
missions, the adviser gets ready for change notifications (WaitForChanges), and simply
passes received change information onto the resources.

11. Resource submits the final mission report to System.

If the Adviser receives a final report (by the event report), it stops waiting for change
notifications, and waits for the coordinator to close this crisis resolution session. (We
assume here that there is exactly one such final report, although there may be many
resources.)

12. In parallel to steps 4–8, Coordinator receives new information about the crisis from
System.

When the Adviser receives any new information (by newInfo), it passes the information
onto the coordinator.

13. Coordinator closes the file for the crisis resolution.

After receiving the final report, the adviser waits for the coordinator to close the file (in
state ReportReceived), and then terminates (final state).

3.3 Modeling the Extensions of Use Case 1

We model extensions of use case 1 “Resolve Crisis” by HiLA aspects. Several times
we not only have to extend the behavioral part of the CCCMS, but also have to extend
first the underlying static structure. As for the main success scenario, we start with a
citation of the extension from the case study report [17] and then describe the model. In
fact, most of the extensions require only rather simple aspects and we will make ample
use of instantiations of the templates given in Fig. 5 for state machines and in Fig. 4
for static structures. We mainly use a tabular format for presenting these instantiations
succinctly; in these tables x �→ y stands for �bind� x -> y.

1a. Coordinator is not logged in.
1a.1. Coordinator authenticates with System (UC 10).
1a.2. Use case continues with step 1.

Table 2. Use Case 1, extension 1a: Introducing a new operation to class System

Template Base Binding
IntroduceOperation Fig. 8 C �→ System

Op �→ validateCoordinator(u: String, i: String): void

When the coordinator is not logged in, use case 10 has to be executed. We therefore add
dynamic aspect CoordinatorLogin (see Fig. 14) and its static counterpart (see Tab. 2):

 249

Idle

«before»
«pointcut»

«aspect»
CoordinatorLogin

{coordinator == null}
«advice»

Op −> validateCoordinator()
: Login

Fig. 14. Use Case 1, extension 1a: Ensuring the Coordinator is logged in

Before the Idle state of System becomes active, the system checks whether the coor-
dinator is not logged in (coordinator == null). If this is the case, the Login sub-state
machine is triggered and use case 10 “Authenticate User” (see App. A.9) steps in.

4a. Internal resource is not available after step 4.
4a.1. System requests an external resource instead (i.e., use continues in parallel

with step 5).

We have to expect a signal assignmentFailed in state Listening of class Mission (see
Fig. 13) and to create a new request for an external resource on reception of this signal.
We assume that for each kind of expertise there is a type of external resources as sub-
stitution, and call this type the externalType of the expertise. The necessary extensions
can be completely covered by instantiating our templates, see Tab. 3.

Table 3. Use Case 1, extension 4a: Template instantiations

Template Base Binding
IntroduceOperation Fig. 10 C �→ Mission

Op �→ �signal� assignmentFailed
IntroduceOperation Fig. 10 C �→ Mission

Op �→ createRequest(t: Type)
IntroduceProperty Fig. 10 C �→ Mission

Prop �→ externalType: Type[1]

WhilstOnDoGoto Fig. 13 Whilst �→ Listening
On �→ assignmentFailed
Do �→ createRequest(exp.externalType)
Goto �→ Listening

5a. External resource is not available after step 5.
5a.1. Use continues in parallel with step 2.

The fact that an external resource is unavailable is determined by the extensions of
UC 4 “Request External Resource”, where two exceptional responses of the external
resource are introduced: partial approval or denial, see App. A.3. We define an instance
of aspect WhilstOnDoGoto for (the state machine of) the main success scenario of UC 4,
which is given in Fig. 25, to inform the Mission and the System that the resource is
unavailable (event denial), as well as to ask the Crisis object to create another Adviser

250

instance for the use case to “continue in parallel with step 2”. The new adviser will
have the knowledge of the unavailable resource and will recommend different missions
to the coordinator than the current one did, details are hidden in the static operation
System.getAvailableResources.

Table 4. Use Case 1, extension 5a: Template instantiations

Template Base Binding
IntroduceOperation Fig. 10 C �→ Mission

Op �→ �signal� resourceUnavailable
IntroduceOperation Fig. 8 C �→ System

Op �→ �signal� missionFailed(m: Mission)

WhilstOnDoGoto Fig. 25 Whilst �→ WaitForAcceptance
On �→ denial
Do �→ mission.resourceUnavailable;

System.missionFailed(mission); md.adviser.crisis.createAdviser()

6a. System determines that the crisis location is unreachable by standard transporta-
tion means, but reachable by helicopter.
6a.1. System informs the Coordinator about the problem.
6a.2. Coordinator instructs System to execute a helicopter transport mission (UC

9).
6a.3. Use case continues with step 6.

We introduce two additional transitions to Fig. 13 by instantiating WhilstOnDoGoto
twice: one instance passes on the request to the coordinator (System.getCoordinator().
needHelicopter()) that the resource is requiring a helicopter (helicopterRequired) when
the mission is waiting for the resources to arrive at the mission location (state Wait-
ForArrival). The other reacts to the coordinator’s instruction startHelicopterMission and
creates a new instance of HelicopterCall to start the helicopter transport mission.

hmd: MissionDescription
createHelicopterMissionDescription(rs: Set<Resource>): MissionDescription
createMission(md: MissionDescription): Mission

HelicopterCall

(a) Class diagram

createMission(hmd)

«create» init (rs)
/ hmd = createHelicopterMissionDescription(rs);

(b) State machine

Fig. 15. Class HelicopterCall

The class HelicopterCall is modeled in Fig. 15. A HelicopterCall objects create a
mission description, in which a helicopter transport mission to transport a set of re-
sources to a certain location is described, and creates a mission according to this de-
scription. The necessary signals and properties are introduced in Tab. 5.

All the remaining extensions of UC 1 follow the same patterns. We summarize the
necessary instantiations in Table 6. In particular, the fact that a resource is “unable to

 251

Table 5. Use Case 1, extension 6a: Template instantiations

Template Base Binding
IntroduceOperation Fig. 8 C �→ Coordinator

Op �→ �signal� needHelicopter(r: Resource)
IntroduceOperation Fig. 10 C �→ Mission

Op �→ �signal� helicopterRequired(r: Resource)
IntroduceOperation Fig. 10 C �→ Mission

Op �→ �signal� startHelicopterMission(r: Set〈Resource〉)
IntroduceClass Fig. 10 C �→ HelicopterCall (Fig. 15)

WhilstOnDoGoto Fig. 13 Whilst �→ WaitForArrival
On �→ helicopterRequired(r)
Do �→ System.getCoordinator().needHelicopter(r)
Goto �→ WaitForArrival

WhilstOnDoGoto Fig. 13 Whilst �→ WaitForArrival
On �→ startHelicopterMission(r: Set〈Resource〉)
Do �→ createHelicopterCall(r)
Goto �→ WaitForArrival

contact System” (in extensions 6b and 8a) is not explicitly modeled, we simply model
the consequence of this fact, i.e., that “SuperObserver notifies System”. The use case
continuing “in parallel with step 2” is modeled by asking the Crisis object to create a
new Adviser. If parallelism is not required (like in extension 7b), we simply go to state
RecommendMissions to generate new missions to recommend to the coordinator.

Table 6. Use Case 1: other extensions

Ext. Template Base Binding
6b IntroduceOperation Fig. 9 C �→ c, c ∈ {Assignment, Request}

Op �→�signal� soNotifyArrival(r: Resource)
WhilstOnDoGoto Fig. 13 Whilst �→ WaitForArrival

On �→ soNotifyArrival(r)
Do �→ arrived.add(r)
Goto �→ OneArrived

6c IntroduceOperation Fig. 9 C �→ Resource
Op �→�signal� updateRequired()

WhilstOnDoGoto Fig. 13 Whilst �→ WaitForArrival
On �→ after t time
Do �→ resource.updateRequired()
Goto �→ WaitForArrival

7a IntroduceOperation Fig. 9 C �→ Adviser
Op �→ �signal� moreMissionsRequired

WhilstOnDoGoto Fig. 12 Whilst �→ WaitForChanges
On �→ moreMissionsRequired
Do �→ crisis.createAdviser()
Goto �→ WaitForChanges

7b IntroduceOperation Fig. 9 C �→ Adviser
Op �→ missionFailed(m: Mission)

WhilstOnGoto Fig. 12 Whilst �→ WaitForChanges
On �→ missionFailed(m)
Goto �→ RecommendMissions

8a IntroduceOperation Fig. 9 C �→ c, c ∈ Assignment, Request}
Op �→�signal� soNotifyDeparture(r: Resource)

WhilstOnDoGoto Fig. 13 Whilst �→ WaitForDeparture
On �→ soNotifyDeparture(r)
Do �→ left.add(r)
Goto �→ OneLeft

252

Table 6. (continued)

Ext. Template Base Binding
8b IntroduceOperation Fig. 9 C �→ c, c ∈ {Assignment, Request}

Op �→�signal� delayReasonRequired
WhilstOnDoGoto Fig. 13 Whilst �→ WaitForDeparture

On �→ after t time
Do �→ resource.delayReasonRequired()
Goto �→ WaitForDeparture

9a, 12a IntroduceOperation Fig. 9 C �→ Adviser
Op �→ �signal� changeRequired

WhilstOnDoGoto Fig. 12 Whilst �→ WaitForChanges
On �→ changeRequired
Do �→ crisis.createAdviser
Goto �→ Final

11a WhilstOnGoto Fig. 12 Whilst �→ WaitForChanges
On �→ after t time
Goto �→ Final

3.4 Modeling System Monitoring

In a crisis management system like the CCCMS, monitoring is often indespensible.
HiLA, with its support for aspect-oriented modeling of history-based and cross-state-
machine features, provides valuable help in high-level modeling of system monitoring.
In the following, we demonstrate how HiLA simplifies monitoring modeling by means
of two examples, derived vom Use Case 9 “Execute Remove Obstacle Mission”. This
use case is originally not specified in [17]. We concretize it for illustration purposes as
follows:

Use Case “Execute Remove Obstacle Mission”

1. Tow truck notifies System of arrival at mission location.
2. Tow truck informs System that the obstacle has been removed.
3. Use case ends in success.

The static structure of the class RemoveObstacleMission is given in Fig. 16(a), the
state machine for the above main success scenario in Fig. 16(b). The mission keeps
track of the tow trucks currently on-site in towTrucks, and is either Operating or Waiting
depending on if these are sufficient to pull the obstacle (towTrucks.size() >= towTrucks-
Needed).

History-based Monitoring. Monitoring features often require reactions on some special
run of the system. HiLA’s history properties, in particular, their concatenations, can be
very helpful for this purpose. For example, the aspect modeled in Fig. 17 introduces
a monitoring feature to the base machine defined in Fig. 16(b): if a mission switches
too frequently between Operating and Waiting resources are arriving and leaving too
frequently to allow smooth execution of the allocated tasks. This indicates a problem
and therefore the management system should be alerted.

To achieve this, a history property a is defined as the number of the occurrences
of the pattern containing four transitions between Operating and Waiting (as indicated

 253

Mission

pull(): void
«signal» finished()

TowTruck

External

RemoveObstacleMission towTrucks
0..*towTrucksNeeded: int

(a) Class diagram

Operating

arrival(res)

Waiting

[else] departure(res)

/ towTrucks.remove(res) / towTrucks.add(res)

/ towTrucks.add(res)

departure(res) arrival(res)

/ towTrucks.remove(res)

[else]
[towTrucks.size() >=
towTrucksNeeded]

[towTrucks.size() >=
towTrucksNeeded]

(b) Base machine

Fig. 16. Class RemoveObstacleMission

by the arrow between these states and the multiplicity 4). The pointcut of the aspects
matches points of time just before Operating gets active; if such an occurrence can be
found in the execution history (a>=1), an alarm is raised.

Operating Waiting

Operating

«before»

{a >= 1}

Alarm

«pointcut»

«advice»

«history»

a = # [4]

MissionAlarm
«aspect»

Fig. 17. Aspect raising an alarm if the Mission switches very often between Operating and Waiting,
to be applied to Fig. 16(b)

Cross-object Monitoring. There are also many situations where we are more concerned
with the interaction between multiple objects than with the behavior of a single object.
For example, it may be required that if there are too many tow trucks, an alarm should
be raised. We first define a state machine for tow trucks, see Fig. 18: it first approaches
to the obstacle to remove, and then pulls it. The static structure of tow trucks was given
in Fig. 16(a).

Now we model the monitoring feature. Because of the importance of synchronization
and mutual exclusion behaviors, such as needed for monitoring tow trucks, HiLA sup-
ports them with a compact notation: Fig. 19(a) shows an aspect template that recognizes
situations immediately before M or more objects of type C are about to be simultane-
ously in state A with the condition If being true. The condition If may be specific in each

254

Approaching finishedPulling
do / pull()

Fig. 18. Class TowTruck: base machine

instance of M, which we call N. If this situation was about to happen, the transitions
that would lead into the undesirable state are not taken and instead transitions into a
new state Alarm are executed. The instantiations needed to implement the monitoring
feature are given in Fig. 19(b).

A [M..*]

Alarm
«advice»

«pointcut»

N : C
«before»

«aspect»
MutexObj

{If}

A: State
C: Class
N: String
M: Integer
If: Boolean

(a) Template for coordinating
multiple state machines

«aspect»
: MutexObj

A −> Pulling
C −> TowTruck

M −> tt.towTrucksNeeded
N −> tt

If −> tt.md.equals(this.md)

(b) Instantiations for monitoring tow
trucks

Fig. 19. HiLA modeling of monitoring

There are several noteworthy points about these kinds of pointcuts:

– The change into the undesirable state configuration with at least M active instances
of type C may be caused by a single object or by multiple objects transitioning in a
synchronized way; all these cases are covered by the pointcut in Fig. 19.

– The semantics of this pointcut is rather difficult to express in traditional UML,
even when using OCL constraints. OCL does not offer access to the event queue
and therefore it is not possible to easily specify the situation that would happen if
the next event was dispatched without aspects being applied.

– While HiLA specifies the semantics of aspects between state machines it does not
force a particular implementation strategy on users. For example, a simulated sys-
tem might rely on knowledge of global state to check whether the pointcut applies,
while a distributed system might use semaphores or other synchronization primi-
tives to implement these constraints.

4 Validation of the Model

The use of UML state machines for modeling reactive and interactive systems has led
in particular to a considerable amount of work on their formal analysis, be it by theorem

 255

proving (like PVS [3] or KIV [4]) or model checking (like UMC [12] or Hugo/RT [18]).
Through its weaving process, HiLA inherits these formal methods: The application
of aspects to a UML state machine results in another UML state machine which can
be analyzed by standard tools. We exemplify the possible validation of (the weaving
of) HiLA models by means of the (simplified) Use Case 10 “Authenticate User,” see
Sect. 2.2, and the model checking component of Hugo/RT.

According to our method, we start out with the base state machine in Fig. 2(b) that
just reflects the basic login steps of the main success scenario: prompting for user
id/password, accepting an input, and validating it; only a successful validation result-
ing in an ok signal is reflected in this model (in the following we ignore how the input
provided by the user is stored). The Use Case extensions, represented by the aspects in
Figs. 3 and 6, require the possibility of canceling the login procedure and the handling
of a failing validation. In particular, it has to be possible to attempt to login at least, but
also at most, three times unsuccessfully. Thus, the (woven) state machine should exhibit
the following property, stated in linear temporal logic (LTL):

F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt))))))

The temporal modality F is to be read as “eventually” or “it is the case in the future”;
thus, it should be possible that the state machine first goes to state Prompt, then to some
other state, then to Prompt again, then to some other state, and finally to Prompt again.
Note that the property only refers to states in the base state machine. Obviously, the
desired behavior is not possible in the original base state machine in Fig. 2(b), and this
is also confirmed by Hugo/RT: Hugo/RT translates the state machine and the assertion
into the input language of a back-end model checker, in this case SPIN [14]. SPIN then
verifies that there is no possible run of the state machine with the prescribed sequence
of being in Prompt and being not in Prompt.

Prompt input(userid, pwd)

cancel / failure()

cancel / failure()

Validate

fail

ok

Fig. 20. Weaving result for sub-machine login from Fig. 2(b) and the aspects in Fig. 3(b), Fig. 6(a)

The result of weaving in the aspects in Fig. 3(b) and Fig. 6(a) is shown in Fig. 20.
Canceling a login process and the failing of a login attempt are represented rather
straightforwardly by additional transitions (triggered by cancel and fail). In this result-
ing state machine the property stated above is possible, as confirmed by Hugo/RT and
SPIN; the following property, however, stating the possibility to try to login four times,
is also satisfied:

256

F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt))))))))

By employing a history property, the aspect in Fig. 6(b) ensures that at most three
failing attempts in a row can be made. The weaving result is shown in Fig. 21. The
history property f3 needs an additional counter variable v counting the failing valida-
tions in a row. This counter v is reset on canceling and also on a successful login. If
three failing login attempts have been counted, the history property f3 is set, and on
every possible entry into Prompt this history property is checked, prohibiting entry if it
is set. Now, Hugo/RT and SPIN confirm that on the one hand it is possible to have three
unsuccessful attempts to login, but no more attempts are then possible.

Prompt

[f3] / gt2 = final;

[else]

BeforePrompt2
entry / gt2 = null;

[f3] / gt1 = final;

[else]

entry / gt1 = null; input(userid, pwd) Validate ok
entry / v = 0;

cancel / failure()

cancel / failure()

fail

[gt2 == null]

[gt1 == null]

[gt2 == final]

[gt1 == final]
entry / if (v < 3) v++;

if (v == 3) f3 = true;

BeforePrompt1

Fig. 21. Weaving result for sub-machine login from Fig. 2(b) and Figs. 3(b) and 6

It is in general not only useful to check that certain properties are indeed enforced
by applying aspects, but also, conversely, that certain properties are being preserved. A
rather simple example for preservation of properties is that the base state machine can
terminate:

F (inState(Final))

Hugo/RT and SPIN verify that this property also holds for the woven state machine (in
fact this could also be checked by inspection; however, here more is true: all executions
of the woven state machine inevitably lead to the Final state).

As demonstrated for the authentication use case, we can currently only check the
result of the weaving process; it would be desirable to compositionally validate the
base state machine and the aspects in a dynamic fashion, without take into account the
weaving result which can be rather complex and sometimes slightly unintuitive.

5 Evaluation of the HiLA Approach

In the following sections, we will evaluate how well the HiLA approach to modeling
worked for the CCCMS case study, which language features of HiLA we used in the
modeling task, and how well they addressed the issues presented by the domain.

 257

5.1 The HiLA Approach to Modeling

In our opinion, one of the main advantages of aspect-oriented methods is that they allow
a closer correspondence between requirements, model and executable code. Therefore,
one important criterion for evaluating HiLA is how well our proposed approach could
be applied to the requirements specified in the CCCMS case study and how directly
individual state machines and aspects can be traced to use cases and use case extensions.

Overall, we were pleasantly surprised how well our proposed approach worked for
the CCCMS case study, in particular since the use cases were developed without special
consideration for, and most likely even without knowledge of, HiLA. In general, each
base state machine corresponds to a single use case and each use case extension is
modeled by one or more aspects; each aspect belongs to a single use case, and the
behavior of most use case extensions could be modeled with high-level aspects. This
affords excellent traceability from requirements to design, albeit at a certain increase in
the number of interacting model elements. In practical applications less strict adherence
to this method might be advisable since it can reduce the composition complexity. Tool
support for interactively switching on and off aspect weaving would be rather helpful.

Many structural patterns repeatedly appear in different use case extensions of the CC-
CMS case study, e.g., “while waiting in some state S, if event e happens, do something
not foreseen in the base use case.” Since HiLA provides a highly expressive template
language for defining aspects, most of the extensions can be concisely summarized in
tabular form (see Tables 2–6). We employ a regular naming scheme for templates and
reuse these templates in most of our HiLA models. With some experience, it becomes
therefore easy to see which behavioral modifications are required by the listed exten-
sions. In effect, we use the template language of HiLA for tailoring aspects to different
contexts and base state machines, and thereby achieve a high degree of aspect reuse.

While modeling the CCCMS we sometimes had to deviate from the simple, system-
atic approach described in the previous paragraph. These deviations were necessary to
accommodate the unbounded parallelism that is present throughout the case study: state
machines themselves can only provide a statically fixed number of parallel regions, the
dynamic “spawning” of new parallel regions cannot be represented in the state ma-
chine formalism. Therefore, we have to model dynamically created concurrent regions
as concurrent objects; each object corresponds to one parallel “thread” of execution, the
behavior of the thread is given by the object’s state machine. Note, however, that even
in the case of unbounded parallelism HiLA still provides the necessary expressiveness
of composition by featuring cross-object pointcuts, as demonstrated in Sect.3.4.

This pattern for managing unbounded parallelism is the reason why the active part
of the system is represented by different objects over time and, consequently, some
base use cases are modeled by several state machines. For example, the single System
instance creates a new instance of Crisis for every crisis report received by the system,
the state machines of the concurrently executing Crisis instances are the responsibles
for handling all simultaneously active crises.

A similar situation presents itself for use case extensions. Except for a certain pat-
tern of extensions for UC 1, each extension is described by a set of aspects that can
be modeled without modification to the base state machine and without knowledge of
other extensions. However, the case is not so simple for extensions 5a.1, 7a.1, 7b.1, 9a.1

258

and 12a.1 of UC 1: step 2 of the base use case (“system recommends missions to coor-
dinator”) is specified as a straightforward, serial part of the main work flow and would
therefore be modeled as part of the base state machine. In contrast to the sequential be-
havior of the base use case, the extensions specify “use case continues in parallel with
step 2” and thereby lead to unbounded parallelism in the base state machine. We there-
fore have to model the recommendation, selection and change monitoring of missions
in a new class Adviser and start a concurrent Adviser instance every time new missions
have to be created.

We point out one other potential pitfall that did not arise in the CCCMS scenario:
some modeling shortcuts, such as replacing several linearly connected states with a
single default transition, are not applicable when working with the proposed HiLA ap-
proach. For example, in UC 2, step 2a.3 (“system validates information received from
the phone company”), which is represented by the transition from Validate to OK in
Fig. 29, it is tempting not to use an explicit event phoneInfoOK and a transition into
the subsequent state OK, but to model success by a completion transition from Validate
to the join (as we are focusing on the main success scenario). However, indulging this
temptation greatly complicates the aspect that introduces the additional possibility that
the phone company does not match the witness info, as required by extension 5a.

The success of an approach that relates behavioral design models as closely to use
cases as HiLA depends heavily on the quality of the requirements analysis. The CCCMS
illustrates that it is not necessary to develop requirement models in a specialized manner
in order to profit from the abstraction mechanisms provided by the HiLA language:
for large parts of the CCCMS the relation between HiLA models and requirements
is immediately apparent, and even the necessary deviations from a “pure” approach
exhibit a large degree of regularity and are easy to understand; the application of these
patterns to other use cases is straightforward. Nevertheless, the correspondence between
requirements and design models could have been further improved by writing use cases
in a way that takes into account the limitations that state machines place on parallelism,
i.e., by separating all situations exhibiting unrestricted parallelism into separate use
cases.

Another issue that arises when going from an informal description, such as use cases,
to an executable formalism like state machines is that there may be imprecisions or
possibilities for misunderstandings in the informal text. The CCCMS case study was
for the most part free from such imprecisions, which shows the care that went into its
creation. Nevertheless, there were a few isolated examples, where the descriptions of
different use cases do not seem to match exactly, e.g., UC 1, extension 5a is triggered
when an external “resource is not available after step 5.” UC 4, which is referenced
by step 5, may either end “in success,” “in degraded success,” or “in failure.” It is,
however, not made clear whether any of these conditions is the same as a resource not
being available, and if so, how “degraded success” should be handled in UC 1.

5.2 The HiLA Language

The requirements of the CCCMS could be satisfied with relatively basic language fea-
tures of HiLA: we used a number of high-level aspects and aspect templates for state

 259

machines, as well as some low-level aspects to either introduce new classes or to add
operations or properties to existing classes.

HiLA was developed with particular emphasis on concurrent systems that require
complex synchronization and mutual exclusion [34]. The original CCCMS scenario re-
lies on central control. We therefore supplemented one of the under-specified use cases,
UC 9 “Execute Remove Obstacle Mission,” in order to demonstrate HiLA’s expressiv-
ity of composition, in particular its features to control and limit parallelism. In addition,
the CCCMS exhibits only very simple history-based behavior; again HiLA is designed
to efficiently cope with scenarios that require more sophisticated handling of execution
histories and we have provided examples in Sect. 2.2 and 3.4.

The HiLA language allows modelers to easily define templates that represent com-
monly used aspects for their scenarios. This can be seen in Sect. 3: roughly 80% of the
aspects needed to model the use case extensions of the CCCMS can be expressed as
instantiations of a small number of aspect templates. This expressivity of the modeling
language is not without risks: it is tempting to overuse templates which can quickly lead
to inscrutable models, in which (parameterized) aspects no longer correspond to single
requirements, and where changes to a single aspect template may have unforeseen con-
sequences throughout the model.

Certain aspects, e.g., aspects that need to introduce new guards into existing transi-
tions, can only be modeled by graph transformations of state machine models. No such
example is necessary for the CCCMS, but had we modeled UC 2 as described above (in
Sect. 5.1 on p. 258) such an introduction would have been necessary. Applying several
graph transformations to a base state machine raises concerns about the confluence of
the transformations and therefore the well-formedness of the final result [30]. This is
a problem that our approach shares with all other approaches that make use of graph
transformations. However, as can be seen in this case study, we can model many sce-
narios without resorting to this mechanism. Note that we use static aspects for class
diagrams, but only to introduce new classes, methods or properties. In these cases, con-
fluence is normally not problematic and well-formedness of the result easily checked.

When only high-level aspects are applied to state machines, the problem becomes
much less pressing: in most cases, the concurrent execution of advices reduces the
number of spurious conflicts between aspects; in particular, there are no conflicts when
several mutually independent aspects are applied to the same transition. Cases where
several aspects interfere in HiLA generally represent a real conflict between different
behaviors that has to be resolved by the modeler. Moreover, conflicting modifications
of control flow by several concurrently active aspects can faithfully be detected at run
time and a conservative static approximation can point out all potential conflicts of this
kind at design time. Still, there are interactions which we currently do not detect reli-
ably, e.g., consumption of an event that is deferred by the base state machine or another
aspect. While these situations appear much less frequently than (spurious) interactions
between graph transformations, it is our intention to improve the HiLA tools to detect
and warn about this last class of indeterministic behavior.

The HiLA language is amenable to testing and verification. Templates allow us to test
the behavior of aspects by applying them to simple base state machines, and by applying
compositions of several aspects simultaneously. Monitors, see Sect. 3.4, can be used to

260

specify test goals in the same language in which the model is written. Moreover, since
HiLA is integrated with the Hugo/RT model translation tools for state machines, it is
straightforward to apply model-checking techniques to HiLA models, and therefore to
validate models against behavioral specifications. Currently, this is only possible after
weaving is done and therefore not compositional. Independent verification of individual
aspects remains a challenge and is a subject for future research.

HiLA can easily be extended, for example, by allowing the modeler to distinguish
between applying advice at the start of the transition execution, i.e., before the effect of
the transition takes place, or at the end of the transition (after its effect). Similarly, more
complex annotations than goto can be defined for final states. However, these extensions
potentially complicate the weaving process and the semantics of aspects; since we have
not yet found it necessary to use them in practical applications, we have refrained from
adding them to the language.

6 Related Work

The idea of high-level aspects was first seen in dynamic aspect-oriented programming
languages such as JAsCo [28] and Object Teams [13]. Using history properties to quan-
tify over the execution history is reminiscent to the trace aspects of Arachne [9].

Considering state machines, aspects for Mealy automata are propsed by [2]. In com-
parison, the weaving algorithm of HiLA is much more elaborate, mainly due to the
richer language constructs of the UML. Because of the wider acceptance of the UML,
our approach is also more tightly connected to common practice. State-based aspects
in reactive systems are also supported by JPDD [25] and Telelogic TAU [35], both of
which do not rely soly on graph transformation, but facilitate specification of high-level
pointcuts in flat state machines. In comparison, HiLA was designed to be applicable to
parallel and hierarchical UML state machines, where in general concurrent threads are
contained, and concerns such as thread synchronization increase the difficulty of correct
and modular modeling. We believe that HiLA provides valuable help to address these
problems.

Addressing the complete UML, Theme/UML [7] models different features in dif-
ferent models (called themes) and uses UML templates to define common behavior of
several themes. General composers such as GeKo [21] and MATA [29] can be used for
weaving. The aspects of these approaches are low level, which means modeling non-
trivial features often requires rather complex aspects, and comprehension of the aspects
amounts to understanding the weaving result.

Aspect interference is an intrinsic problem of aspect-oriented techniques. It has been
addressed in a large amount of publications, for an overview see [1,19]. Notations of
precedence declaration are proposed in, e.g., [16,22,24,35]. Techniques to detect inter-
ference proposed so far include detecting shared fields addressed by read and write
operations [27], a formal foundation of AOP languages using Conditional Program
Transformations [19], and graph transformations [1,30]. These approaches focus on
sequential programming languages. In comparison, HiLA exploits the concurrency of
state machines and weaves aspects into parallel regions to solve the problem of join
points being changed by other aspects or the result of weaving depending on the weav-
ing order.

 261

Weaving into parallel constructs is also proposed in [8], where an approach to con-
current event-based AOP (CEAOP) is defined. Concurrent aspects can be translated into
Finite Sequential Processes and checked with the LTSA model-checker. Many similar-
ities exist between CEAOP and the work presented in this paper; however, the two
approaches take complementary viewpoints in the sense that our work is primarily con-
cerned with a state-based view of AOP that allows, e.g., the definition of mutual exclu-
sion in state machines, whereas the CEAOP is mostly concerned with aspects over event
sequences. CEAOP provides operators to combine aspects, e.g., by executing different
aspects in sequence or in parallel; our approach is more restricted since our aspects are
always executed in parallel. Furthermore, pointcuts in CEAOP are actually similar to
sequences of pointcuts according to the usual definition, and pieces of advice are exe-
cuted at different points of this sequence. This makes it easy to define stateful aspects.
While our history mechanism can also be used to define these kinds of aspects, the def-
inition has to be given in several parts and is more cumbersome than in CEAOP. On
the other hand, the history mechanism in our approach can take into account values of
context variables which significantly increases the expressive power; it seems that this
possibility does currently not exist in CEAOP.

Besides crisis management systems, HiLA was also applied to model adaptive web
applications and computer games, see [32,33].

7 Conclusions

We have presented the HiLA approach for aspect-oriented modeling and applied it to
the CCCMS case study. The expressiveness of HiLA has allowed us to methodologi-
cally transform the use case descriptions of the CCCMS into state machines; each main
success scenario is modeled by a base state machine, each extension of this scenario is
represented by a set of aspects. This method affords a high degree of traceability from
the resulting model to the requirements. Additionally, since we rely exclusively on state
machine models for the behavior, we can apply well-known formal methods, like model
checking, for validating system properties.

Acknowledgements. We thank the reviewers for their insightful and thorough com-
ments. This work has been partially sponsored by the DFG project MAEWA (WI 841/7–
2) and the EU project SENSORIA (IST-2 005-016004).

References

1. Aksit, M., Rensink, A., Staijen, T.: A Graph-Transformation-Based Simulation Approach
for Analysing Aspect Interference on Shared Join Points. In: Proc. 8th Int. Conf. Aspect-
Oriented Software Development (AOSD 2009), pp. 39–50 (2009)

2. Altisen, K., Maraninchi, F., Stauch, D.: Aspect-Oriented Programming for Reactive Systems:
Larissa, a Proposal in the Synchronous Framework. Sci. Comp. Prog. 63(3), 297–320 (2006)

3. Arons, T., Hooman, J., Kugler, H.-J., Pnueli, A., van der Zwaag, M.B.: Deductive Verification
of UML Models in TLPVS. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML
2004. LNCS, vol. 3273, pp. 335–349. Springer, Heidelberg (2004)

262

4. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive Verification of UML
State Machines. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 434–448. Springer, Heidelberg (2004)

5. Blaha, M., Rumbaugh, J.: Object-Oriented Modeling and Design with UML, 2nd edn. Pren-
tice Hall, Englewood Cliffs (2004)

6. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User Guide, 2nd
edn. Addison-Wesley, Reading (2005)

7. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. Addison-Wesley, Reading
(2005)

8. Douence, R., Le Botlan, D., Noyé, J., Südholt, M.: Concurrent Aspects. In: Proc. 5th Int.
Conf. Generative Programming and Component Engineering (GPCE 2006), pp. 79–88.
ACM, New York (2006)

9. Douence, R., Fritz, T., Loriant, N., Menaud, J.-M., Ségura-Devillechaise, M., Südholt, M.:
An Expressive Aspect Language for System Applications with Arachne. In: Mezini, Tarr
(eds.) [20], pp. 27–38

10. Drusinsky, D.: Modeling and Verification Using UML Statecharts. Elsevier, Amsterdam
(2006)

11. Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.): MODELS 2007. LNCS, vol. 4735.
Springer, Heidelberg (2007)

12. Gnesi, S.: Formal Specification and Verification of Complex Systems. In: Proc. 8th Int. Wsh.
Formal Methods for Industrial Critical Systems (FMICS 2003). Electr. Notes Theor. Comput.
Sci., vol. 80 (2003)

13. Herrmann, S.: Object Teams: Improving Modularity for Crosscutting Collaborations. In: Ak-
sit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 248–264. Springer,
Heidelberg (2003)

14. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Reading (2003)

15. Jacobson, I., Ng, P.-W.: Aspect-Oriented Software Development with Use Cases. Addison-
Wesley, Reading (2004)

16. Kienzle, J., Gélineau, S.: AO Challenge — Implementing the ACID Properties for Transac-
tional Objects. In: Filman, R.E. (ed.) Proc. 5th Int. Conf. Aspect-Oriented Software Devel-
opment (AOSD 2006), pp. 202–213. ACM, New York (2006)

17. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis Management Systems: A Case Study for Aspect-
Oriented Modeling. Trans. Aspect-Oriented Software Development (TAOSD) 7, 1–22 (2010)

18. Knapp, A., Merz, S., Rauh, C.: Model Checking Timed UML State Machines and Collabo-
rations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–416.
Springer, Heidelberg (2002)

19. Kniesel, G.: Detection and Resolution of Weaving Interactions. In: Rashid, A., Ossher, H.
(eds.) Transactions on Aspect-Oriented Software Development V. LNCS, vol. 5490, pp. 135–
186. Springer, Heidelberg (2009)

20. Mezini, M., Tarr, P.L. (eds.): Proc. 4th Int. Conf. Aspect-Oriented Software Development
(AOSD 2005). ACM, New York (2005)

21. Morin, B., Klein, J., Barais, O., Jézéquel, J.-M.: A Generic Weaver for Supporting Product
Lines. In: Proc. 13th Int. Wsh. Software Architectures and Mobility (EA 2008), pp. 11–18.
ACM, New York (2008)

22. Nagy, I., Bergmans, L., Aksit, M.: Composing Aspects at Shared Join Points. In: Hirschfeld,
R., Kowalczyk, R., Polze, A., Weske, M. (eds.) Proc. Net.ObjectDays (NODe 2005). Lect.
Notes Informatics, vol. 69, pp. 19–38. Gesellschaft für Informatik (2005)

23. Object Management Group. OMG Unified Modeling Language (OMG UML), Superstruc-
ture, Version 2.2. OMG Available Specification, OMG (2009),
http://www.omg.org/spec/UML/2.2/Superstructure

 263

24. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N., Song, E.,
Georg, G.: Directives for Composing Aspect-Oriented Design Class Models. In: Rashid, A.,
Aksit, M. (eds.) Transactions on Aspect-Oriented Software Development I. LNCS, vol. 3880,
pp. 75–105. Springer, Heidelberg (2006)

25. Sánchez, P., Fuentes, L., Stein, D., Hanenberg, S., Unland, R.: Aspect-Oriented Model Weav-
ing Beyond Model Composition and Model Transformation. In: Czarnecki, K., Ober, I.,
Bruel, J.-M., Uhl, A., Völter, M. (eds.) Proc. 11th Int. Conf. Model Driven Engineering Lan-
guages and Systems (MoDELS 2008). LNCS, vol. 5301, pp. 766–781. Springer, Heidelberg
(2008)

26. Sommerville, I.: Software Engineering, 8th edn. Addison-Wesley, Reading (2007)
27. Störzer, M., Forster, F., Sterr, R.: Detecting Precedence-Related Advice Interference. In:

Proc. 21st IEEE/ACM Int. Conf. Automated Software Engineering (ASE 2006), pp. 317–
322. IEEE, Los Alamitos (2006)

28. Vanderperren, W., Suvée, D., Verheecke, B., Cibrán, M.A., Jonckers, V.: Adaptive Program-
ming in JAsCo. In: Mezini, Tarr (eds.) [20], pp. 75–86

29. Whittle, J., Jayaraman, P.K.: MATA: A Tool for Aspect-Oriented Modeling based on Graph
Transformation. In: Proc. 11th Int. Wsh. Aspect-Oriented Modeling, AOM@MoDELS 2007
(2007)

30. Whittle, J., Moreira, A., Araújo, J., Jayaraman, P.K., Elkhodary, A.M., Rabbi, R.: An Expres-
sive Aspect Composition Language for UML State Diagrams. In: Engels, et al. (eds.) [11],
pp. 514–528

31. Zhang, G.: Towards Aspect-Oriented Class Diagrams. In: Proc. 12th Asia-Pacific Software
Engineering Conf (APSEC 2005), pp. 763–768. IEEE, Los Alamitos (2005)

32. Zhang, G.: Aspect-Oriented Modeling of Adaptive Web Applications with HiLA. In: Kot-
sis, G., Taniar, D., Pardede, E., Khalil, I. (eds.) Proc. 7th Int. Conf. Advances in Mobile
Computing & Multimedia (MoMM 2009), pp. 331–335. ACM, New York (2009)

33. Zhang, G., Hölzl, M.: HiLA: High-Level Aspects for UML State Machines. In: 14th Wsh.
Aspect-Oriented Modeling (AOM@MoDELS 2009), Denver (2009)

34. Zhang, G., Hölzl, M.M., Knapp, A.: Enhancing UML State Machines with Aspects. In: En-
gels, et al. (eds.) [11], pp. 529–543

35. Zhang, J., Cottenier, T., van den Berg, A., Gray, J.: Aspect Composition in the Motorola
Aspect-Oriented Modeling Weaver. Journal of Object Technology 6(7), 89–108 (2007)

264

A Remaining Use Cases of the CCCMS

A.1 Use Case 2: Capture Witness Report

Main success scenario. Modeled in Fig. 22. The phone information of the witness as
found by the phone company is stored in pInfo. It is then compared with witnessInfo
(hidden in the operation validateInfo). State Validate is only left when validateInfo deter-
mines that the phone information is OK (event phoneInfoOK). The transitions to the join
vertex and then to AssignLevel are only enabled when both OK and CrisisInfoReceived
are active.

Table 7. Use Case 2: extensions

Ext. Template Base Binding
1a, 2a IntroduceOperation Fig. 8 C �→ Crisis

Op �→ �signal� disconnect
WhilstOnGoto Fig. 22 Whilst �→ s, s ∈ {CollectInfo, WaitForLocationAndType}

On �→ disconnect
Goto �→ Final

3a IntroduceOperation Fig. 8 C �→ SurveillanceSystem
Op �→ �static� covers(loc: Location): Boolean

IntroduceOperation Fig. 8 C �→ Coordinator
Op �→ rcvVideoFeed(vf: VideoFeed): void

AfterIfDo Fig. 22 After �→ CreateChecklist
If �→ SurveillanceSystem.covers(location)
Do �→ System.getCoordinator.rcvVideoFeed(

SurveillanceSystem.createVideoFeed(location))
4a IntroduceOperation Fig. 8 C �→ Crisis

Op �→ �signal� disconnect
WhilstOnGoto Fig. 22 Whilst �→ CollectCrisisInfo

On �→ disconnect
Goto �→ CrisisInfoReceived

5a IntroduceOperation Fig. 8 C �→ Crisis
Op �→ �signal� phoneInfoWrong

WhilstOnGoto Fig. 22 Whilst �→ Validate
On �→ phoneInfoWrong
Goto �→ Final

5b IntroduceOperation Fig. 8 C �→ Crisis
Op �→ �signal� s, s ∈ {fake, deny}

WhilstOnGoto Fig. 22 Whilst �→ GatherInfo
On �→ s, s ∈ {fake, deny}
Goto �→ Final

Extensions. The extensions of Use Case 2 are modeled by instantiating the aspect tem-
plates given in Figs. 4 and 5. The bindings are given in Table 7. We model that “Coor-
dinator cannot confirm the situation” by an additional signal deny. Moreover, we point
out that multiple instances of IntroduceOperation are defined to extend class Crisis by
signal disconnect (1a, 2a, 4a). The reason is that we propose to model the extensions
separately from each other, and while modeling one extension we therefore assume no
knowledge of other extensions. According to our definition of transformation aspects
(see [31]), only one instance of the signal is actually introduced to the class.

 265

O
K

C
ris

is
In

fo
R

ec
ei

ve
d

do
 /

cl
 =

 c
re

at
eC

he
ck

lis
t(

)
C

re
at

eC
he

ck
lis

t

C
ol

le
ct

In
fo

/ a
dd

W
itn

es
sI

nf
o(

w
i)

w
itn

es
sI

nf
o(

w
i)

w
In

fo
F

in
is

he
d

W
ai

tF
or

C
ris

is
In

fo

C
ol

le
ct

C
ris

is
In

fo

C
on

ta
ct

P
ho

ne
C

om
pa

ny

fin
dI

nf
o(

w
In

fo
)

do
 /

S
ys

te
m

.g
et

P
ho

ne
C

om
pa

ny
()

.
V

al
id

at
e

do
 /

va
lid

at
eI

nf
o(

pI
nf

o)
ph

on
eI

nf
oO

K

lo
ca

tio
nA

nd
T

yp
e(

lo
c,

 t)

/ S
ys

te
m

.g
et

C
oo

rd
in

at
or

()
.r

cv
C

he
ck

lis
t(

cl
)

cI
nf

oF
in

is
he

d

ph
on

eI
nf

o(
in

fo
)

do
 /

ac
tiv

e
=

 tr
ue

;
se

tE
m

er
ge

nc
yL

ev
el

()

A
ss

ig
nL

ev
el

do
 /

cr
ea

te
A

dv
is

er
()

C
re

at
eA

dv
is

er

cr
is

is
In

fo
(in

fo
)

/ a
dd

C
ris

is
In

fo
(in

fo
)

cr
is

is
In

fo
(in

fo
)

/ a
dd

C
ris

is
In

fo
(in

fo
)

W
ai

tF
or

Lo
ca

tio
nA

nd
T

yp
e

G
at

he
rI

nf
o

/ p
In

fo
 =

 in
fo

/ l
oc

at
io

n
=

 lo
c;

 ty
pe

 =
 t

F
ig

.2
2.

C
la

ss
C

ris
is

:b
as

e
m

ac
hi

ne

266

A.2 Use Case 3: Assign Internal Resource

Main success scenario. Modeled in Fig. 23. We assume that all “internal resources” are
employees. The Assignment object (see Fig. 23(a)) passes on the mission description,
received from the adviser for its own creation, along with references of the most ap-
propriate employee (selected in SelectEmployee), and of this Assignment object itself
(this), to an Assigner object, which then (see Fig. 23(b)) sends a request to the employee
and waits for acceptance (signal accept).

SelectEmployee
do / sd = select(exp)

«create» init(description, expertise)

/ createAssigner(md, sd, this)

/ md = description; exp = expertise;
resource = null;

(a) Class Assignment: base machine

WaitFor
Acceptance

/ if (asmnt.resource == null)
asmnt.resource = r

accept(r)

/ m = md; e = em; a = an
«create» init(md, em, an)

SendRequest
do / e.request(m, a)

(b) Class Assigner, base machine

Fig. 23. Classes for allocation of internal resources

Extensions. The feature “in very urgent cases, steps 1 and 2 can be performed for
several CMSEmployees concurrently, until one of the contacted employees accepts the
mission” is not formulated as an extension in [17]. However, we consider this an excep-
tional feature and decided to model it in a separate aspect.

This feature is modeled by the aspect Urgent (Fig. 24(a)), which alternates the “nor-
mal” behavior specified in the main success scenario. If the emergency level is greater
than 10, which we assume is the threshold for the crisis to be “very urgent”, then, instead
of selecting the most appropriate employee (�before� SelectEmployee), we create an
Assigner object for each employee with the desired expertise (exp.employees). Each of
these assigners then sends in parallel a request to “its” employee.

Extension 1a is modeled by the aspect in Fig. 24(b). Again, we instantiate the tem-
plate Login given in Fig. 29 on page 271. The needed operations are introduced by
instantiations of aspect templates as given in Table 8. The extensions 1b and 2a are
modeled by instantiating the template given in Fig. 24(c) with T -> t, t ∈ {reject, after
t time}. When the assigner is waiting for acceptance, and receives one of these two
signals, then it tries to find a backup (getBackup) for the resource it wanted. If one
can be found (bp != null), then another assigner is created to contact the backup, other-
wise the use case ends in failure. The extension of the static structure is also given in
Table 8.

 267

«before»

Employee
Select

«pointcut»

«advice»
{md.adviser.crisis.emergencyLevel > 10}

«aspect»
Urgent

do / ForEach e in exp.employees
CreateSelector

createAssigner(md, e, this)

(a) Extension 0

«pointcut»

«aspect»
EmployeeLogin

«advice»

: Login
Op −> validateEmployee()

«before»

SendRequest

{!e.isLoggedIn()}

(b) Extension 1a

WaitFor
Acceptance

«whilst»
{trigger = T}

«pointcut»

«advice»
CallBackup

/ asmnt.createAssigner(m, bp, asmnt)
[bp != null]

[else] / failure = true

goto Final

goto Final

«aspect»
AssignmentFailed

do / bp =
getbackup(e)

T

(c) Extensions 1b and 2a: bind T -> t, t ∈ {reject, timeout}

Fig. 24. Use Case 3

Table 8. Introducing static elements for modeling Use Case 3

Ext. Template Base Binding
1a IntroduceProperty Fig. 9 C �→ Assigner

Prop �→ u: String
IntroduceProperty Fig. 9 C �→ Assigner

Prop �→ p: String
IntroduceOperation Fig. 9 C �→ Assigner

Op �→ �signal� input(u: String, i: String)
IntroduceOperation Fig. 9 C �→ Assigner

Op �→ validateEmployee(u: String, i: String): void
IntroduceOperation Fig. 9 C �→ Employee

Op �→ isLoggedIn(): Boolean
1b, 2a IntroduceProperty Fig. 9 C �→ Assigner

Prop �→ failure: Boolean = false
IntroduceOperation Fig. 9 C �→ Assigner

Op �→ getBackup(e: Employee): Employee
IntroduceOperation Fig. 9 C �→ Assigner

Op �→ �signal� reject

268

A.3 Use Case 4: Request External Resource

Main success scenario. Modeled in Fig. 25. The Request object passes the mission
description, the desired type of external resource, as well as a reference (this), to the
ExternalRequestSystem (ERS), and waits for some resource to accept.

WaitFor
Acceptance

/ md = description; t = type;
«create» init(description, type)

ERS.request(md, t, this);

accept(r) / resource = r

Fig. 25. Class Request: base machine

Extensions. Again, the extensions are modeled with instances of aspect templates (see
Figs. 4 and 5) with bindings defined in Table 9. Exit codes are introduced to indicate
different results of this use case; two WhilstOnDoGoto aspects set the right exit code
upon the corresponding response from the resource.

Table 9. Use Case 4: extensions

success
degradedSuccess
failure

«enumeration»
ExitCode

Ext. Template Base Binding
2a, 2b IntroduceClass Fig. 9 C �→ ExitCode = success

IntroduceProperty Fig. 9 C �→ Request
Prop �→ exitCode: ExitCode

IntroduceOperation Fig. 9 C �→ Assignment
Op �→ s, s ∈ { �signal� partialApproval,

�signal� denial }
WhilstOnDoGoto Fig. 25 Whilst �→ WaitForAcceptance

On �→ partialApproval
Do �→ exitCode = degradedApproval
Goto �→ Final

WhilstOnDoGoto Fig. 25 Whilst �→ WaitForAcceptance
On �→ denial
Do �→ exitCode = failure
Goto �→ Final

A.4 Use Case 5: Execute Mission

Not modeled, for this is an abstract use case.

A.5 Use Case 6: Execute SuperObserver Mission

Main success scenario. Modeled in Fig. 26. In the use case description [17], SuperOb-
server is supposed to select missions to execute. Since the term Mission is already in

 269

use, we assume that it is (sub-)tasks that should be suggested to and then selected by
SuperObserver for execution.

Task
Completed

so.rcvCheckList(cl)
do / cl = getChecklist()

SendChecklist

do / task = createTask()
CreateTask

WaitFor
Feedback

crisisInfo(info)
/ cInfo = info

GenerateTasks
do / tasks = generateTasks()

/ so.rcvTasks(tasks)

/ currentTask = t
task(t)

soLeft

info

taskCreated / so.taskCreated()

success / so.taskSucceeded()

task(t)
/ currentTask = t

WaitFor
Notification

do / so.requestInfo(currentTask)
RequestInfo

Fig. 26. SuperObserverMission.execute: base machine

Create
Task

«pointcut»

«advice»

«aspect»

{trigger = creationFailed}
«whilst»

[replacementPossible()]

[else]

do / tasks = replace()
so.rcvTasks(tasks);

SuggestNationalCrisisCenter

GenerateReplacement

do / so.suggestNCC

goto
WaitForNotification

Fig. 27. Use Case 6, extensions 7a/b

Extensions. Extensions 7a and 7b are modeled in Fig. 27 with introduction of static
elements as defined in Table 10. Extension 8a is modeled by the instantiations only,
also given in Table 10.

270

Table 10. Use Case 6: Introducing static elements used by the dynamic aspects

Ext. Template Base Binding
7a, 7b IntroduceOperation Fig. 10 C �→ SuperObserverMission

Op �→ �signal� creationFailed()
IntroduceOperation Fig. 10 C �→ SuperObserverMission

Op �→ replacementPossible(): Boolean
IntroduceOperation Fig. 10 C �→ SuperObserverMission

Op �→ replace(): Set<TaskDescription>
IntroduceOperation Fig. 10 C �→ SuperObserver

Op �→ �signal� suggestNCC
8a IntroduceOperation Fig. 10 C �→ SuperObserverMission

Op �→ �signal� taskFailed(t: Task)
IntroduceOperation Fig. 10 C �→ SuperObserver

Op �→ �signal� taskFailed(t: Task)
IntroduceOperation Fig. 8 C �→ Coordinator

Op �→ �signal� taskFailed(t: Task)

WhilstOnDoGoto Fig. 26 Whilst �→ WaitForFeedback
On �→ taskFailed(task)
Do �→ so.taskFailed(task); System.getCoordinator.taskFailed(task)
Goto �→ TaskCompleted

A.6 Use Case 7: Execute Rescue Mission

Main success scenario. Modeled in Fig. 28. The “optional” steps that FirstAidWorker
determines victim’s identity upon which the system requests the victim’s medical his-
tory information from all connected HospitalResourceSystems are modeled by the
iInfo.vid != null branch after WaitForInjuryInfo, where vid stands for victim ID.

Extensions. The (only) extension is modeled by the instantiations of aspect templates
as described in Table 11.

Table 11. Use Case 7, extension 4a

Template Base Binding
IntroduceOperation Fig. 10 C �→ FirstAidWorker

Op �→ victimHistory(his: History)
IntroduceOperation Fig. 10 C �→ RescueMission

Op �→ �signal� victimHistory(his: History)

WhilstOnDoGoto Fig. 28 Whilst �→ FindBestHospital
On �→ victimHistory(his)
Do �→ faw.victimHistory(his)
Goto �→ FindBestHospital

A.7 Use Case 8: Execute Helicopter Transport Mission

Not modeled, since its scenarios are not described in the case study.

A.8 Use Case 9: Execute Remove Obstacle Mission

Originally not specified in [17], a sample description of the use case and its design are
given in Sect. 3.4.

 271

WaitFor
Departure

WaitFor
DropOff

WaitFor
Completion

WaitFor
InjuryInfo

injuryInfo(iInfo)

[iInfo.vid == null]

/ faw.toHospital(hpt)

leavingCrisisSite

victimDroppedOff()

completed()

FindBestHospital
do / hpt = findHospital(iInfo)

[iInfo.vid != null]
/ ForEach h In hrs
h.getHistory(iInfo.vid)

Fig. 28. RescueMission.execute: base machine

A.9 Use Case 10: Authenticate User

The full model of use case 10 (see Fig. 29 and Tab. 12) is similar to the simplified model
described in Sect. 2.2. However, as the use case is used twice (in use cases 1 and 3), the
login procedure is rendered as a sub-state machine that takes the validation procedure
as template parameter. In particular, the extensions 2a and 3a are covered by Figs. 3
and 6.

Prompt okValidate
do / Op

Login

/ u = userid; p = pwd
input(userid, pwd)

Op

Fig. 29. Base sub-state machine for Login

Table 12. Use Case 10: Introducing new operations to class System

Template Base Binding
IntroduceOperation Fig. 8 C �→ System

Op �→ �signal� input(u: String, i: String)
IntroduceOperation Fig. 8 C �→ System

Op �→ �signal� ok

	Title
	Editorial
	A Common Case Study for Aspect-Oriented Modeling
	References

	Editorial Board
	Table of Contents
	Crisis Management Systems: A Case Study for Aspect-Oriented Modeling
	Introduction
	Crisis Management System: Requirements
	Crisis Scenario of a Car Crash Crisis Management System
	Scope of the CMS
	Non-functional Requirements of the CMS
	Car Crash Crisis Management System

	Crisis Management System: Feature Models
	Car Crash Crisis Management System: Use Cases
	Textual Use Cases

	Car Crash Crisis Management System: Domain Model
	Car Crash Crisis Management System: Informal Physical Architecture Description
	Car Crash Crisis Management System: Selected Design Models
	Creating Missions

	References

	Requirements Modeling with the Aspect-oriented User Requirements Notation (AoURN): A Case Study
	Introduction
	Overview of the AoURN Modeling Process
	Overview of Aspect-oriented User Requirements Notation
	Car Crash Crisis Management System (CCCMS)
	Identification of Concerns (P1)
	Model Functional Concerns with UCM (P2 – Modified)
	Model Functional Concerns with AoUCM (P2)
	The Concern Interaction Graph (P7)
	Build a Test Suite for the UCM and AoUCM Models (P3)
	Model Non-functional Concerns with UCM and AoUCM (P4 – Modified)
	Model Stakeholder Concerns with GRL and AoGRL (P5 – Modified)
	Evaluate Stakeholder Concerns (P6)

	Comparison of URN and AoURN
	Metrics-Based Evaluation
	Task-Based Evaluation
	Summary

	Comparison of Aspect-Oriented Techniques for Scenario-Based and Goal-Oriented Requirements Engineering
	Comparison with Other Scenario-Based Techniques for AORE
	Comparison with Other Goal-Oriented Techniques for AORE

	Conclusion
	References

	Relating Feature Models to Other Models of a Software Product Line
	Introduction
	Background
	Variability Mechanisms
	Variability Mapping Approaches

	Zooming in on the Case Study: Car Crises vs Flood Crises
	Flood Crisis Management System
	Detailed Models of the {\it Rescue} Mission
	Units ofMeasurement

	Application of FeatureMapper to the Case Study
	Modelling the Mapping for Requirements Models
	Modelling the Mapping for Architecture and Design Models

	Application of VML* to the Case Study
	Creating VML Languages
	Modelling the Mapping for Requirements Models
	Modelling the Mapping for Architecture and Design Models

	Discussion and Comparative Analysis of the Two Approaches
	Comparison Criteria
	Comparative Analysis of VML* and FeatureMapper

	Conclusions
	References

	Aspect-Oriented Development Using Protocol Modeling
	Introduction
	Protocol Modeling
	Events
	Protocol Machine
	Local Storage
	Derived States
	Modal Semantics
	Composition
	Concurrency and Determinism

	Representation of a Protocol Model
	Events and Machines
	Structure of a Model
	Attribute Handling
	Derived States
	Modal Machines
	Actors

	Building a Protocol Model
	Step 1: Model the Domain
	Step 2: Model Associations
	Step 3. Model Inheritance
	Step 4. Refine Machine Behavior
	Step 5. Model Event Automation
	Step 6. Define the Actors
	Step 7. Validate against Use Cases

	Protocol Model of the CMS Case Study
	CMS Domain Model
	CMS Use Cases
	Some Observations

	From Model to System
	Aspect-Orientation of Protocol Modelling
	CSP Composition as Weaving
	Quantification of Event
	Symmetric Approach
	Derived States as Join Points Refinements
	Mixins as Aspects

	Protocol Modeling in Practice
	Barriers to Protocol Modeling
	Model Execution and Testability
	Model Evolution
	Scalability
	Correctness

	Related Work and Conclusion
	Related Work
	Conclusion

	References

	Using VCL as an Aspect-Oriented Approach to Requirements Modelling
	Introduction
	Process
	High-Level Requirements Modelling
	Detailed Requirements Modelling in VCL

	High-Level Requirements Model of CCCMS
	Subsystems and Their Functional Features
	Use Cases and System Sequence Diagrams

	Detailed VCL Model
	Packages That Localise Generic Concerns
	Users
	Authentication
	Session Management
	Access Control
	Authenticated Access Control: Composing Aspects
	System Administration and Security Management
	Logging
	Mapping
	Video Surveillance

	Customising Generic Packages for the CCCMS Context
	Customising Authorisation by Defining a Configuration
	Customising Logging by Adjusting Behaviour
	Customising Session Management
	Customising Mapping
	Customising Video-Surveillance

	Packages That Localise Problem Domain Concerns
	Crisis Management
	Package MappingDisplay

	Composing Domain Packages with Aspect Packages
	Direct Composition
	Indirect Composition via a Join Interface

	Discussion
	Evaluation
	Scalability
	Usability
	Reuse
	Correctness and Testability
	Evolution
	Variability
	Aspect Interaction

	Related Work
	Contracts Notation
	AOM

	Conclusions
	References

	Workflow Design Using Fragment Composition Crisis Management System Design through ADORE
	Introduction
	Using ADORE to Model the CCCMS
	The ADORE Method: An Overview
	CCCMS as Service Orchestrations
	Realizing Use Case Extensions as Orchestrations Fragments
	Realizing Non-functional Concerns as Fragments

	Composing Orchestrations
	Fragment Weaving
	Behavioral Merge
	Pointcut Matching Mechanism

	Analyzing ADORE Models to Identify Inconsistencies
	Quantitative Analysis
	Coarse-Grained Structural Complexity: |A^*|
	Entity Provenance
	Cognitive Load: Process Surface and Labyrinthine Complexity

	Implementation and Approach Limitations
	Tool Support
	Composition Algorithms
	Pointcuts
	Approach Intrinsic Limitations

	Related Work
	Conclusions and Further Work
	References
	Annexes

	Modeling the Car Crash Crisis Management System Using HiLA
	Introduction
	A Brief Overview of HiLA
	UML State Machines
	HiLA
	General Concrete Syntax and Informal Semantics of Dynamic Aspects

	Modeling the CCCMS
	Overview and Static Structure
	Modeling the Main Success Scenario of Use Case 1
	Modeling the Extensions of Use Case 1
	Modeling System Monitoring

	Validation of the Model
	Evaluation of the HiLA Approach
	The HiLA Approach to Modeling
	The HiLA Language

	Related Work
	Conclusions
	References
	Remaining Use Cases of the CCCMS
	Use Case 2: Capture Witness Report
	Use Case 3: Assign Internal Resource
	Use Case 4: Request External Resource
	Use Case 5: Execute Mission
	Use Case 6: Execute SuperObserver Mission
	Use Case 7: Execute Rescue Mission
	Use Case 8: Execute Helicopter Transport Mission
	Use Case 9: Execute Remove Obstacle Mission
	Use Case 10: Authenticate User

	Aspect-Oriented Design with Reusable Aspect Models
	Introduction
	Crisis Management System Design
	Resource Management
	Communication
	Workflow Management
	Logistics
	Base Design
	Design Summary and Comments

	Lessons Learned from the Case Study
	Aspect-Oriented Design Process
	Importance of Tool Support
	Support for Variability

	In-Depth Comparison to Related Work
	Observer Design Pattern and Library Management System
	Language
	Concern Composition
	Asymmetric Concern Composition
	Symmetric Concern Composition
	Maturity
	Tool Support

	Discussion on Reuse
	Encapsulation and Information Hiding
	Reuse Hierarchies
	Consistent Reuse with Tool Assistance
	Reuse in the CCCMS

	Conclusion
	References

	A Graph-Based Aspect Interference Detection Approach for UML-Based Aspect-Oriented Models
	Introduction
	An Approach for Graph-Based Model Checking of AOM for Aspect Interference Detection
	Designing the Crisis Management System Using AOM
	A Brief Overview of AOM Approaches
	On the Use of Theme/UML
	Concern Identification
	Crisis Management System Main Class Diagram
	Modeling Gathering of Statistical Information as an Aspect
	Modeling the Car Crash Scenario as an Aspect
	Incremental Evolution: Adding New Scenarios
	Incremental Evolution: Resource Allocation Based on Location
	Aspect Interference in the Crisis Management System

	A Graph-Based Approach to Conflict Detection on UML-Based AOMs
	Motivating Example: Ensuring the State Constraints of Scenarios
	Design Configuration Modeling Language
	Aspects in the Design Configuration Modeling Language
	Execution Semantics via Graph Transformations
	State Space Generated from Simulation
	Conflict Detection Using CTL

	Application of the Approach to the Case Study
	Evolution of CMS
	Simulation of the UML Models of the CMS
	Verification of the Constraints of the CMS After Evolution
	State Space Size and Methods for Pruning the State Space

	Related Work
	Discussions and Conclusions
	References
	Appendix – DCML Elements and Execution Semantics

	Discovery of Stable Abstractions for Aspect-Oriented Composition in the Car Crash Management Domain
	Introduction
	Pre-processing the Inputs
	Selection of Suitable Requirements
	Refinement of the Requirements

	Application of the Method
	Activity 1: Define Domain Model and Use Cases
	Activity 2: Identify and Separate Crosscutting Concerns in Use Cases
	Activity 3: Generalization of Crosscutting Extends Relationships
	Activity 4: Define Discovered Domain Abstractions
	Activity 5. Architectural Design Using Domain Abstractions
	Activity 6. Specify Pointcut Interfaces
	Activity 7. Compose Aspects to Architecture

	Discussion
	Summary of Main Artifacts and Complexity Management
	Pointcut Interface Reuse
	Pointcut Interface Stability
	Use Case Generalization
	Aspect Precedence
	Type of Crosscutting Concerns
	Usability of the Method

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

