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ABSTRACT
Service-oriented architecture (SOA) is a relatively new ap-
proach to software system development. It divides system
functionality to independent, loosely coupled, interoperable
services. In this paper we propose a new heterogeneous spec-
ification approach for SOA systems where a heterogeneous
structured specification consists of a number of specifica-
tions of individual services written in a “local” logic and
where the specification of their interactions is separately de-
scribed in a “global” logic. A main feature of our global
logic is the possibility of describing the dynamic change of
service communications over time. Our approach is based
on the theory of institutions: we show that both logics form
institutions and that these institutions are connected by an
institution comorphism. We illustrate our approach by a
simple scenario of an e-university management system and
show the power of the heterogeneous specification approach
by a compositional refinement of the scenario.

Categories and Subject Descriptors
F.3.1 [Theory of Computation]: Logics and Meanings
of Programs—Specifying and Verifying and Reasoning about
Programs

1. INTRODUCTION
Service-oriented architecture (SOA, [1]) is a software con-

struction paradigm where system functions are separated
into a number of encapsulated components. These com-
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ponents, called services, are independent entities capable
to communicate with each other through their public in-
terfaces. Services are loosely-coupled and their cooperation
structure may change dynamically, i.e. their communication
configuration may change at any time.

In this paper we propose a new formal approach for spec-
ifying the behaviour of SOA systems in a declarative way.
This is in contrast to many current SOA design and specifi-
cation languages such as BPEL, BPMN, UML4SOA or SCA
where behaviour is typically specified by state machines or
workflow-oriented notations. An exception is SRML which
also uses declarative temporal logic specifications ([2]). We
believe that such declarative logical specifications comple-
ment the more concrete operational approaches; they may
e.g. serve as goal-oriented requirement specifications and be
used for proving properties of operational models. Another
advantage of our approach is that it is based on the general
framework of (heterogeneous) institutions ([3, 4, 5]) which
allows us to integrate our service specifications easily and
in a mathematically well-defined way with other languages
such as UML ([6]).

We introduce institutions suitable for specifying SOA sys-
tems in which services are classified by roles (or interfaces),
the interaction structure of services may change over time,
and the number of services may be not known in advance.
Our approach is illustrated with an example scenario based
on the Sensoria e-learning case study ([7]).

The scenario describes an E-course Management System
with the student service acting as a representation of a
student to other services of the system. When a (human)
student enters its data to the portal (a user-interface of
student service that is irrelevant here), the student ser-
vice transfers these data to a course manager with a
request for all matching courses. In consequence, the
course manager contacts all available course providers
(one provider represents one course) and gathers their
replies. Then it selects only those courses that match the
student’s curriculum and university regulations. Eventu-
ally it sends the answer to the student service, that lets
the student choose from a given selection. Finally, on
the student’s request, the student service registers the
student to selected courses.
To describe such scenarios we propose two different log-
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ical systems formalised as institutions. In the local logic
one can specify the behaviour of individual services, such as
a course manager or a course provider. The services may
themselves be composed of other services and components;
however, in the local language they can be described only
as “monolithic” entities, with no indication in which part of
the service the actions occur. In contrast to this, the global
logic allows one to specify the choreography of a SOA sys-
tem, i.e. the common behaviour of co-operating services. It
provides means to refer to individual system components as
well as to describe the system configuration and its evolution
in time. We use a synchronisation predicate for modelling
the communication connections of the service partners; this
communication structure and thus the system configuration
can change dynamically (i.e. it may be different for each
configuration). Another feature of the global logic is quan-
tification over components which allows one to write specifi-
cations for systems with an unbounded number of services.

We relate these two institutions via an institution comor-
phism ([8]) that gives grounds for the heterogeneous spec-
ification ([5]) of SOA systems, where the specification of
a whole system is a heterogeneous structured specification
that consists of a number of specifications of individual ser-
vices in the local logic and the specification of their in-
teractions separately described in the global one. It also
gives the possibility for compositionally constructing speci-
fications using well-defined algebraic specification operators
and for expressing refinements of specifications on both lev-
els. Last not least it provides another example for heteroge-
neous semantics of modelling languages and can be seen as
further step in building heterogeneous semantics of multi-
modelling languages ([6, 9]).

The paper is organised as follows. In Section 2 we intro-
duce the local logic and formalise it as an institution. In
Section 3 we do the same for the global logic. Then, in
Section 4, we relate both logics using a map between in-
stitutions and introduce the notion of heterogeneous service
specifications. In Section 5 we survey the related work and
in Section 6 we provide concluding remarks.

2. LOCAL LOGIC
Our starting point is a logic for specifying the behaviour

of individual components of SOA. We call it the local logic to
contrast it with its extension presented in Sect. 3, intended
to describe the behaviour of the system as a whole.

In the paper we use a relatively expressive temporal lan-
guage to facilitate writing example specifications, both on
the local and on the global level. Our local logic is a vari-
ant of the full computation tree logic CTL∗ ([10]) enriched
with past temporal modalities. Unlike in the usual inter-
pretation of CTL∗ over Kripke structures, atomic formulae
will refer to transitions instead of states. Except for this
detail, syntax and semantics of formulae is standard. In
Sect. 6 we briefly comment on basing the local logic on a
more restricted language, such as LTL or CTL ([10]).

Definition 1. Let A be a set. The formulae of the logic
aPCTL∗(A) (for action-based CTL∗ with past temporal op-
erators and atomic propositions from A) are defined by the
following grammar, where a ∈ A:

ϕ ::= ⊥ | ϕ1 ⇒ ϕ2 | a | Xϕ | Yϕ | ϕ1 Uϕ2 | ϕ1 Sϕ2 | Aϕ

Here, X (in the next step), U (until) and A (for every path)

are standard operators of CTL∗, and Y (in the previous step)
and S (since) are past temporal operators (see e.g. [11]).

We recall several standard notions. A labelled transition
system (an lts for short) T = 〈A,S, r,→〉 consists of a set
A of actions, a set S of states, an initial state r ∈ S and a
transition relation→ ⊆ S×A×S. As usual, we write s a−→ t
for 〈s, a, t〉 ∈ →. A path in T is a possibly infinite sequence
π = s0

a1−→ s1
a2−→ s2 . . . of consecutive transitions. A run

is a maximal path starting in the initial state. The number
of transitions in π is denoted by |π| ≤ ω. For finite n ≤ |π|,
by π|n we denote the prefix s0

a1−→ s1 . . . sn−1
an−→ sn of π.

Definition 2. Let A be a set and let T = 〈A,S, r,→〉 be
an lts. The satisfaction relation |= is defined by structural
induction on formulae of aPCTL∗(A).

Let π = s0
a1−→ s1

a2−→ . . . be a run and let i ≤ |π|:

• π, i |= ⊥ does not hold;

• π, i |= ϕ1 ⇒ ϕ2 iff π, i 6|= ϕ1 or π, i |= ϕ2;

• π, i |= a iff i < |π| and ai+1 = a;

• π, i |= Xϕ iff i < |π| and π, (i+ 1) |= ϕ;

• π, i |= Yϕ iff i > 0 and π, (i− 1) |= ϕ;

• π, i |= ϕ1 Uϕ2 iff there exists a finite j with i ≤ j ≤ |π|
such that π, j |= ϕ2 and π, i′ |= ϕ1 for every i′ with
i ≤ i′ < j;

• π, i |= ϕ1 Sϕ2 iff there exists j with j ≤ i such that
π, j |= ϕ2 and π, i′ |= ϕ1 for every i′ with j < i′ ≤ i;

• π, i |= Aϕ iff for every run π′ such that π|i = π′|i,
π′, i |= ϕ.

ϕ is satisfied in T , written T |=aPCTL∗ ϕ, if π, 0 |= ϕ holds
for every run π of T .

2.1 Institution L for Local Logic
An institution ([3]) I = 〈Sign,Mod,Sen, 〈|=Σ〉Σ∈|Sign|〉

consists of: a category Sign of signatures; a functor Mod :
Signop → Class giving a class of Σ-models for each Σ ∈
|Sign|; a functor Sen : Sign → Set giving a set of Σ-
sentences for each Σ ∈ |Sign|; a family {|=Σ}Σ∈|Sign| of
satisfaction relations, where |=Σ ⊆ Mod(Σ) × Sen(Σ) for
each Σ ∈ |Sign|. The components of I are subject to the fol-
lowing satisfaction condition: for every signature morphism
σ : Σ→ Σ′, Σ′-model M ′ and Σ-sentence ϕ,

Mod(σ)(M ′) |=Σ ϕ ⇐⇒ M ′ |=Σ′ Sen(σ)(ϕ) .

For a morphism σ : Σ → Σ′ in Sign, Sen(σ) is called the
σ-translation map and Mod(σ) the σ-reduct functor.1 A
specification Sp = 〈Σ,Ax〉 in I consists of a signature Σ ∈
|Sign| and a set of sentences Ax ⊆ Sen(Σ). A model M ∈
Mod(Σ) satisfies Sp, written as M |= Sp, if M |=Σ ϕ for
all ϕ ∈ Ax. A specification Sp′ = 〈Σ′,Ax ′〉 with a signature
morphism σ : Σ → Σ′ refines Sp, written as Sp  Sp′, if
Mod(σ)(M ′) |= Sp for all M ′ with M ′ |= Sp′.

Standard examples of institutions include propositional,
equational and first-order logic (single- and many-sorted),
1A more standard definition requires Mod to be a Cat-
valued functor. However, for our purposes morphisms of
models are not relevant and thus it is sufficient to consider
model classes.
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see e.g. [3]. From the point of view of behaviour specifi-
cation, more interesting examples of institutions are those
for temporal and modal logics. Numerous examples of such
institutions exist, we give a brief overview in Section 5.

As the category of signatures of the institution for local
logic L we take simply Set. Elements of a signature set
A are called action names. For a set A, an A-sentence
is a formula ϕ of aPCTL∗(A), and for a map f : A →
B, the f -translation of ϕ is a formula f(ϕ) of aPCTL∗(B)
obtained by replacing each name a ∈ A in ϕ with f(a) ∈ B.
The translation is clearly functorial and thus we obtain the
sentence functor of the local institution SenL : Set → Set.
The model functor is defined as follows.

Definition 3. Let A be a set. A local A-model M =〈
T, 〈aM 〉a∈A

〉
consists of an lts T = 〈A,S, r,→〉 and, for

every a ∈ A, an action aM ∈ A.
Let f : A → B be a map and let M =

〈
T, 〈bM 〉b∈B

〉
be a

local B-model. The f-reduct of M is a local A-model M |f =〈
T, 〈aM|f 〉a∈A

〉
where, for every a ∈ A, aM|f = f(a)M .

These data define the model functor ModL : Setop → Class.

Note that we do not require that the action names in a sig-
nature A be the same as the ones in the lts T underlying
a model. Instead, each name in A is interpreted as an ac-
tion in T . A model may thus contain transitions which are
unobservable, i.e., not labelled with any of aM . This allows
us to define model reduct in a natural way and makes the
proof of the satisfaction condition straightforward.

Definition 4. Let A be a set, M =
〈
T, 〈aM 〉a∈A

〉
be a

local A-model and let ϕ be an A-sentence. By (ϕ)M we
denote the translation of ϕ along the map a 7→ aM . Then

M |=L
A ϕ iff T |=aPCTL∗ (ϕ)M .

At this point we have all components of L at hand. It
remains to verify whether the satisfaction condition holds.

Proposition 1. L = 〈Set,ModL,SenL, |=L〉 is an insti-
tution; for every map f : A → B in Set, M ∈ ModL(B)
and ϕ ∈ SenL(A),

M |f |=L
A ϕ iff M |=L

B f(ϕ).

The proof uses the fact that the reduct operation essentially
amounts to action relabelling—the idea of the proof is the
same as for the institution in [12] and the technical details
can be found in the extended version of this paper [13].

2.2 Local Specification of E-Course Manage-
ment Example

Using the local logic we specify some aspects of the ex-
ample scenario. We start with the local specification of a
student service—a component representing a student using
the e-course registration system. In the sequel, we refer to
this component simply as student. Its observable actions are

AS = {ask!, answer?, choose!, register !}

representing a request for a list of available courses (ask!),
receiving the list (answer?), choosing courses from the list
(choose!), and registering to the chosen courses (register !).
For ease of readability, actions initiated by the student (e.g.,
requests to external services) end with “!”, while names of

the actions for which it is a receiving party (e.g., responses
from those services) end with “?”.

In the axioms we use a number of derived operators. These
include the standard temporal operators F (finally) and G
(globally), their past counterparts P (sometimes in the past)
and H (always in the past), as well as some non-standard op-
erators parametrised with sets of action names.

Fϕ ≡ >Uϕ XA ϕ ≡ X
(
(¬
∨
a∈A a) Uϕ

)
Pϕ ≡ > Sϕ YA ϕ ≡ Y

(
(¬
∨
a∈A a) Sϕ

)
Gϕ ≡ ¬F¬ϕ ϕ1 UA ϕ2 ≡

(
ϕ1 ∨ ¬

∨
a∈A a

)
Uϕ2

Hϕ ≡ ¬P¬ϕ ϕ1 SA ϕ2 ≡
(
ϕ1 ∨ ¬

∨
a∈A a

)
Sϕ2

The axioms for the student component read as follows:

(1) G (ask!⇒ XAS answer?) (3) G (choose!⇒ YAS answer?)
(2) G (answer?⇒ YAS ask!) (4) G (register !⇒ YAS choose!)

Axiom (1) states that after requesting a list of courses (ask!)
the student expects a reply (answer?). By axiom (2), a
reply may be observed only as the next action after the
request is sent. We use XAS and YAS here, rather than X
and Y, since transitions labelled with ask! and answer? may
be separated by some transitions not labelled with any name
from AS ; the exact number of those transitions is considered
an “implementation detail” that should be left unspecified.
This is achieved by using XAs which skips over transitions
not labelled with elements of AS . The remaining axioms
specify that choosing a course may occur only as the next
action after the reply is received and that registering may
only occur as the next action after choosing a course.

From the description of the e-course management in the
Introduction we may infer two additional services: course
and management with respective alphabets:

AC = {request?, reply!, register?}
AM = {ask?, answer !, request!, reply?, select!}

where request? and reply! are the request for an offer from
a course provider and its response and select! represents the
selection of a course performed by the course management
for a student. The specifications for course and management
in the local logic are given in Appendix A.

3. GLOBAL LOGIC
At the global level we describe the choreography of ser-

vices. We first describe the structures that will serve as mod-
els for assemblies of interacting service components and then
introduce a global choreography description language that
extends the local logic (see Sect. 2) with component vari-
ables, quantification over components and atomic formulae
for describing synchronisations of actions of components.

Models at the global level represent communities of in-
teracting components; these communities may change their
communication configuration over time. We start with a
family {Tn}n∈N of lts’s, where N is an arbitrary set. Each
Tn = 〈An, Sn, rn,→n〉 represents one component of the mod-
elled system. For n ∈ N and a ∈ An, by n.a we denote the
corresponding element of the disjoint union

∐
n∈N An.

Definition 5. A global state of {Tn}n∈N is a tuple 〈sn〉n∈N
of states, with sn ∈ Sn, for every n ∈ N . A global step of
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{Tn}n∈N is a triple〈
〈sn〉n∈N , A, 〈s

′
n〉n∈N

〉
where 〈sn〉n∈N and 〈s′n〉n∈N are global states of {Tn}n∈N
and A ⊆

∐
n∈N An is such that A 6= ∅ and, for every n ∈ N ,

• either An ∩A = ∅ and sn = s′n,

• or An ∩A = {a} for some a such that sn
a−→n s

′
n.

Thus a global step represents a collective action performed
by a subset of components. We assume two actions may
occur together only if they are synchronised; independent
actions performed concurrently by different components will
be interleaved.

Formally, possible collective actions are represented by
equivalence classes of a synchronisation relation for {Tn}n∈N ,
i.e., any equivalence relation ∼ on

∐
n∈N An such that, for

every A ∈ (
∐
n∈N An)/∼ and n ∈ N , A ∩ An has at most

one element. The set of all synchronisation relations for
{Tn}n∈N is denoted by Sync({Tn}n∈N ).

In order to model typical scenarios in service-oriented
computing we have to allow for dynamic changes in the
system configuration. For this we introduce a structure in
which system configurations, as given by synchronisation re-
lations, can vary from state to state.

Definition 6. A global frame G =
〈
N, {Tn}n∈N , S, r,→

〉
consists of

• a set (possibly infinite) N of components,

• for every n ∈ N , an lts Tn = 〈An, Sn, rn,→n〉,

• a set S ⊆
(∏

n∈N Sn
)
× Sync({Tn}n∈N ) of global con-

figurations,

• an element r of S, called the initial global configuration,

• a relation→ ⊆ S×P(
∐
n∈N An)×S, called the global

transition relation,

which together satisfy the following conditions

(1) r =
〈
〈rn〉n∈N ,∼r

〉
, for some ∼r ∈ Sync({Tn}n∈N );

(2) for every 〈s,∼〉, 〈s′,∼′〉 ∈ S and A ⊆
∐
n∈N An, if

〈s,∼〉 A−→ 〈s′,∼′〉 then s
A−→ s′ is a global step of

{Tn}n∈N (see Def. 5) and A ∈ (
∐
n∈N An)/∼.

(3) for every 〈s,∼〉 ∈ S, s′ ∈
∏
n∈N Sn andA ⊆

∐
n∈N An,

if s A−→ s′ is a global step of {Tn}n∈N and A ∈
(
∐
n∈N An)/∼ then there exists ∼′∈ Sync({Tn}n∈N )

such that 〈s,∼〉 A−→ 〈s′,∼′〉.

By (1), in the global initial configuration all the components
are in their initial states. By (2), all transitions enabled in a
global configuration are compatible with the synchronisation
in this state. Finally, (3) is a progress condition saying that if
all components involved in a collective action may proceed
locally then the collective action is enabled. Note that in
this case the collective action may lead to several global
configurations with different synchronisation relations.

3.1 Institution G for Global Logic
The global logic extends the local logic with component

variables, quantification over components and atomic for-
mulae for describing synchronisation of actions. Using com-
ponent variables we will be able to say, e.g., that an action
occurs at a particular component. Formulae of the global
logic are classified by global signatures.

Definition 7. A global signature Γ = 〈C, 〈Ac〉c∈C〉 consists
of a set C of classes2 and, for each c ∈ C, a set Ac of actions
of class c, such that Ac ∩ Ad = ∅ when c 6= d.

A global signature morphism γ :〈C, 〈Ac〉c∈C〉→〈C
′, 〈A′c〉c∈C′〉

is a tuple γ = 〈κ, 〈αc〉c∈C〉, where κ : C → C′ and, for ev-
ery c ∈ C, αc : Ac → A′κ(c). Global signatures with global
signature morphisms form a category SignG.

Recall that a local A-model is an lts enriched with an
interpretation of symbols from A (see Def. 3). Similarly, a
global Γ-model will consist of a global frame (see Def. 6) and
an interpretation of symbols from Γ in this structure. As in
L, the reduct functor in the global institution does not affect
underlying structures (i.e., global frames) but only changes
the interpretation part of models.

Definition 8. A global model M =
〈
G,
〈
cM
〉
,
〈
aMn
〉〉

for a
global signature Γ = 〈C, 〈Ac〉c∈C〉 (a Γ-model) consists of

• a global frame G =
〈
N, {Tn}n∈N , S, r,→

〉
,

• for every c ∈ C, a non-empty set cM ⊆ N ,

• for every c ∈ C, a ∈ Ac, n ∈ cM , an action aMn ∈ An.

The class of all global Γ-models is denoted by ModG(Γ).

Definition 9. Let γ : Γ → ∆ be a signature morphism,
with γ =

〈
κ, 〈αc〉c∈C

〉
, and let M =

〈
G,
〈
cM
〉
,
〈
aMn
〉〉

be a
∆-model. The γ-reduct of M is a Γ-model

M |γ =
〈
G, 〈cM|γ 〉, 〈aM|γn 〉

〉
where

• for every c ∈ C, cM|γ = κ(c)M ,

• for every c ∈ C, n ∈ cM and a ∈ Ac, aM|γn = αc(a)Mn .

In the sequel we assume a functor V giving, for every
signature Γ =

〈
C, 〈Ac〉c∈C

〉
, a C-sorted set V(Γ) and, for

every signature morphism γ =
〈
κ, 〈αc〉c∈C

〉
: Γ → ∆, a

tuple of maps
〈
V(γ)c : V(Γ)c → V(Γ)κ(c)

〉
c∈C

such that the
induced map

∐
c∈C V(γ)c :

∐
c∈C V(Γ)c →

∐
c∈C V(∆)κ(c) is

an injection. An element k ∈ V(Γ)c is a variable of class c.

Definition 10. Let Γ = 〈C, 〈Ac〉c∈C〉 be a global signature.
The formulae of the global logic over Γ are generated by the
following grammar:

ϕ ::= ⊥ | ϕ1 ⇒ ϕ2 | Xϕ | Yϕ | ϕ1 Uϕ2 | ϕ1 Sϕ2 | Aϕ |
∀ k :c ϕ | kc1

1 = kc2
2 | k

c.a | kc1
1 .a1 ∼ kc2

2 .a2

where c ∈ C, k ∈
⋃
V(Γ)c and a ∈

⋃
Ac. Additionally, we

require that a formula is well-typed, i.e., in every k : c and
kc we have k ∈ V(Γ)c, in every kc1

1 = kc2
2 we have c1 = c2

and in every kc.a we have a ∈ Ac.
2In the sense of object-oriented programming.
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The notions of free and bound variables are standard. We
omit class names in bound occurrences of variables, writing
e.g. k1.a1 ∼ k2.a2 instead of kc1

1 .a1 ∼ kc2
2 .a2, whenever c1

and c2 may be inferred from the context.
As usual, a sentence is a formula with no free variables.

For a global signature morphism γ =
〈
κ, 〈αc〉c∈C

〉
: Γ → ∆

the translation of a Γ-sentence ϕ to a ∆-sentence γ(ϕ) is
defined in a straightforward way: class names are trans-
lated using κ, variables are translated using V(γ)c and ac-
tion names are translated using αc. All connectives are pre-
served. It is easy to verify that the translation is functorial,
that is, γ; δ(ϕ) = δ(γ(ϕ)) for every global δ : ∆ → Υ. This
defines the sentence functor SenG : SignG → Set.

LetM be a model with a frameG =
〈
N, {Tn}n∈N , S, r,→

〉
.

Formulae of the global logic will express global behaviour of
the system represented by M . Formally, this behaviour is
represented by the lts LTS(M) =

〈
P(
∐
An), S, r,→

〉
and

thus the satisfaction relation refers to runs in this lts.
AnM-valuation ξ is a C-sorted map 〈ξc : V(Γ)c → cM 〉c∈C .

Definition 11. Let Γ =
〈
C, 〈Ac〉c∈C

〉
be a signature and

let M =
〈
G,
〈
cM
〉
,
〈
aMn
〉〉

be a Γ-model. For k ∈ V, c ∈ C,
a ∈ Ac and an M -valuation ξ we let (kc.a)Mξ denote the
action ξc(k).aMξc(k). We define the relation |=M by struc-
tural induction on formulae as follows: for every run ρ =
〈s0,∼0〉

[a1]∼0−−−−→ 〈s1,∼1〉
[a2]∼1−−−−→ . . . in LTS(M), finite i ≤ |ρ|

and an M -valuation ξ,

• ρ, i, ξ |=M Xϕ iff i < |ρ| and ρ, (i+ 1), ξ |=M ϕ;

• ρ, i, ξ |=M Yϕ iff i > 0 and ρ, (i− 1), ξ |=M ϕ;

• ρ, i, ξ |=M ϕ1 Uϕ2 iff there exists a finite j such that
i ≤ j ≤ |ρ| and ρ, j, ξ |=M ϕ2, and for every i′, if
i ≤ i′ < j then ρ, i′, ξ |=M ϕ1.

• ρ, i, ξ |=M ϕ1 Sϕ2 iff there exists j such that j ≤ i
and ρ, j, ξ |=M ϕ2, and for every i′, if j < i′ ≤ i then
ρ, i′, ξ |=M ϕ1.

• ρ, i, ξ |=M Aϕ iff for every run ρ′ such that ρ|i = ρ′|i,
ρ′, i, ξ |=M ϕ.

• ρ, i, ξ |=M kc1
1 = kc2

2 iff ξc1(k1) = ξc2(k2);

• ρ, i, ξ |=M kc.a iff i < |ρ| and (kc.a)Mξ ∈ [ai+1]∼i ;

• ρ, i, ξ |=M kc1
1 .a1 ∼ kc2

2 .a2 iff (kc1
1 .a1)Mξ ∼i (kc2

2 .a2)Mξ ;

• ρ, i, ξ |=M ∀k :c ϕ iff for every n ∈ cM , ρ, i, ξ[n/kc] |=M

ϕ;

Standard clauses for propositional connectives are omitted.
M satisfies a formula ϕ, written M |=Γ ϕ, if ρ, 0, ξ |=M ϕ

holds for every run ρ in LTS(M) and every M -valuation ξ.

Note that the clauses for the temporal operators follow Def. 2.
Quantification and variable equality are interpreted as in
the first-order many-sorted logic. A formula k.a states that
the next collective action along the current path involves
the action a of the component referred to by k. A formula
k1.a1 ∼ k2.a2 states that in the current global state the ac-
tion a1 of the component k1 is synchronised with the action
a2 of the component k2. Note that k1.a1 ∼ k2.a2 is strictly
stronger than A (k1.a1 ⇔ k2.a2) and strictly weaker than
E (k1.a1 ∧ k2.a2). In fact, action synchronisation cannot be
expressed in terms of other operators.

Proposition 2. G = 〈SignG,ModG,SenG, |=G〉 is an
institution; for every morphism γ : Γ → ∆ in SignG, M ∈
ModG(∆) and ϕ ∈ SenG(Γ),

M |γ |=G
Γ ϕ ⇐⇒ M |=G

∆ γ(ϕ) .

The proof can be found in [13].

3.2 Global Specification of E-Course Manage-
ment Example

We exemplify the global logic by specifying a choreogra-
phy for the e-course management system. First, we intro-
duce some convenient abbreviations: given a global signa-
ture 〈C, 〈Ac〉c∈C〉 and a variable kc, for some c ∈ C with finite
Ac, we define the following derived operators, corresponding
to XA and YA in the local logic (see Sect. 2.2):

XAck ϕ ≡ X¬(
∨
a∈Ac

kc.a) Uϕ, YAck ϕ ≡ Y¬(
∨
a∈Ac

kc.a) Sϕ

For the local logic, in Sect. 2.2, we have identified the three
services student, course and management. The global sig-
nature of the e-course management specification is therefore〈
C, 〈Ac〉c∈C

〉
where C = {student, course,mngm} and the

sets of actions for component classes are given as in Sect. 2.2.
As an initial condition we require that everything starts

with a student asking for courses:

∃s : student · s.ask!

We ensure that a student asking for courses is connected
to a management service by requiring their ask actions to
be synchronised; the same must hold true for their answer
actions when the management service replies to the student:

∀s : student · G (s.ask!⇒ ∃m : mngm·
s.ask! ∼ m.ask? ∧ F (s.answer? ∧m.answer !))

Later on the management service will have gathered all
available courses and go on to select suitable ones; we re-
quire that when doing the selection at least one course is
indeed available, i.e., connected to the management service;
this is again expressed by requiring synchronisation:

∀m : mngm · G ((YAMm m.select!)⇒
∃c : course ·m.request! ∼ c.request?)

A more complete specification is given in Appendix A.

4. HETEROGENEOUS SPECIFICATION
OF SERVICE SYSTEMS

One of the advantages of institutions is that they provide
a framework in which various specification-building opera-
tions can be given semantics independent of any particular
institution ([3, 14]). This can be extended to a heteroge-
neous setting where the overall specification is built out of
components coming from different institutions ([5]). A pre-
requisite for such a heterogeneous approach is the ability
to “translate” specifications between different institutions,
just like they can be translated along signature morphisms
within a single institution. For this, institution morphisms
and comorphisms are introduced ([8]). Here we will only
need the latter notion.

Given institutions I = 〈Sign,Mod,Sen, |=〉 and I′ =
〈Sign′,Mod′,Sen′, |=′〉, an institution comorphism from I
to I′ is a triple 〈Φ, α, β〉 where Φ : Sign→ Sign′ is a functor
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and α : Sen→ Φ; Sen′ and β : Φ; Mod′ →Mod are natu-
ral transformations such that the following condition holds
for every Σ ∈ Sign, M ′ ∈Mod′(Φ(Σ)) and ϕ ∈ Sen(Σ):

M ′ |=′Φ(Σ) αΣ(ϕ) iff βΣ(M ′) |=Σ ϕ .

Intuitively, a comorphism from I to I′ shows how I can be
represented in I′: for every signature Σ in I, Φ(Σ) is the
corresponding signature in I′; for every Σ-sentence ϕ, αΣ(ϕ)
is the corresponding Φ(Σ)-sentence; from every Φ(Σ)-model
M ′ we can retrieve the corresponding Σ-model βΣ(M).

In our case, it is more straightforward to relate a single
global model M to a whole set of local models, each cor-
responding to one component of M . In order to fit this
approach into the framework of institution comorphisms we
introduce a “powerset” version of the local institution as fol-
lows: Signatures and sentences of P(L) are those of L; for
every signature A, ModP(L)(A) is the class of all sets of lo-
cal A-models; for every α : A → B and M ⊆ModP(L)(B),
ModP(L)(α)(M) is obtained by applying ModL(α) to each
element of M; finally, M |=P(L)

A ϕ holds if M |=L
A ϕ holds

for every M ∈ M.
Now, a link between G and L can be formalised as a co-

morphism from P(L) to G. Each global model M in G
will be mapped to a set of local models, each obtained by
“projecting” M onto one of its components. Formally, for
a global frame G =

〈
N, {Tn}n∈N , S, r,→

〉
and n ∈ N we

define an lts G|n = 〈An ∪ {τ}, S, r,→n〉 where τ is a name
not in An and →n is defined as follows:

→n =
{
〈s, a, t〉 | s A−→ t, An ∩A = {a}

}
∪
{
〈s, τ, t〉 | s A−→ t, An ∩A = ∅

}
.

Proposition 3. The following data form an institution
comorphism 〈Γ, α, β〉 : P(L)→ G:

• for every set A, Γ(A) = 〈{∗}, {∗ 7→ A}〉, where ∗ is a
“dummy” class name;

• for every set A and a sentence ϕ ∈ aPCTL∗(A), αA(ϕ)
is ∀k :∗ k.ϕ, where k.ϕ is a formula obtained by replac-
ing each occurrence of a ∈ A in ϕ by k.a;

• for every set A and a Γ(A)-model M with a frame G,
βA(M) is the set {M |n | n ∈ ∗M}, where M |n =

〈
G|n,

〈aM|n〉a∈A
〉

and aM|n = αMn (a), for each a ∈ A.

For the proof see [13].

4.1 Heterogeneous Service Specifications
The institution comorphism from the local to the global

level allows us to combine specifications of service compo-
nents in the local and the global logic into a single spec-
ification. Let C be a set of service classes with a local
signature Ac and a local specification Spc for each c ∈ C.
Let Sp be a global specification over the global signature
Γ =

〈
C, 〈Ac〉c∈C

〉
. Then〈

〈c : Spc〉c∈C ,Sp
〉

is a heterogeneous service specification. Its signature is Γ
and its class of models M is given by

{M ∈Mod(Γ) |M |= Sp∧∀c ∈ C .M |= αAc(Spc){∗ 7→ c}},

where αAc embeds specifications of the local logic into the
global logic and {∗ 7→ c} substitutes the class name ∗ by c in
the specification Spc for adapting the service classes. In par-
ticular, the notion of specification refinement (see Sect. 2.1)
transfers to heterogeneous service specifications.

For the e-course management example, denoting the lo-
cal specifications for student, course, and management (see
Sect. 2.2) by SpS , SpC , and SpM , respectively; and letting
the global choreography specification for the e-course man-
agement (see Sect. 3.2) be SpE the overall service specifica-
tion for the e-course management service system is〈
〈student : SpS , course : SpC , mngm : SpM 〉, SpE

〉
.

4.2 Refinement of Specification of E-Course
Management

Suppose we want to refine the description of our example
scenario by splitting the course selection process into two
phases: the management service first selects the continu-
ations of previously taken courses, and then selects other
feasible courses taking into account their time and place.

The refinement concerns only the component class mngm,
thus we just refine its local specification. We extend the sig-
nature to AM1 = AM ∪ {sel_continuation!, sel_feasible!}.
We extend the local specification of the service component
mngm into a specification SpM1 adding the axiom

G (reply? ∧ ¬XAM reply?⇒
XAM1 (sel_continuation! ∧ XAM1 (sel_feasible! ∧ F select!))

which basically says that the two new actions occur after
the last reply? and before select!. Notice that since in SpM
we used XAM and YAM , the axioms still hold even though
we put some actions between the last reply? and select!. It
is so, because none of new actions belongs to AM . Thus we
have SpM  SpM1. This refinement relation extends to the
overall specifications Specm and 〈〈student : SpS , course :
SpC ,mngm : SpM1〉,SpE1〉 where SpE1 is SpE but with its
signature extended by the new actions for mngm.

5. RELATED WORK
The theory of institutions ([3]) and its subsequent devel-

opment into a powerful framework for distributed heteroge-
neous specifications ([15, 4, 16, 5]) provide the mathematical
foundations for our approach. A recent application of het-
erogeneous specifications is [6] where institutions for several
types of UML diagrams are related with comorphisms.

Various institutions for temporal and modal logics are di-
rectly related to our work. In [17] several such institutions
are presented in a uniform way as so-called β-institutions
(i.e., institutions for behaviour). Our local institution can
also be fit into this approach. The institution of [12] resem-
bles our local institution and uses lts’s as models, but its
logic contains also first-order constructs. An institution for
CTL∗ and Kripke structures is given in [18].

Institutions aside, our local logic is related to other action-
based variants of CTL or CTL∗, such as ACTL* ([19]). Dif-
ferences are mostly syntactic, since action-based temporal
logics usually use action names as modalities, e.g., a for-
mula 〈a〉ϕ means that the action a is enabled and after it
occurs, ϕ holds. Recently, such temporal logics have been
used in the context of service-oriented computing. Exam-
ples include UCTL ([20])—an action and state-based logic
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which was originally designed for expressing properties of
UML statecharts, SocL ([21])—a variant of UCTL used for
expressing properties of the service-oriented process calcu-
lus COWS ([22]), and µUCTL (UCTL extended with fixed
point operators) for specifying asynchronous service inter-
actions ([2]), in connection with SRML ([23]). The dis-
tributed state temporal logic of [24] is an extension of Unity
for formalising policies; it includes an operator to deal with
events and modalities to localise properties of system com-
ponents. Similarly, in [25] atomic formulae expressing event
occurrence are localised at particular agents, represented by
identifiers from a fixed set. However, none of these tempo-
ral logics contains quantification over component instances
nor allows for a direct specification of configuration, as is
possible in our global logic.

The concept of wires in SRML may be regarded as cor-
responding to our synchronisation relation; wiring can also
be dynamic and change at runtime ([23]), but the semantic
construction involves discovery and binding and can be seen
as an implementation of the synchronisation relation.

6. CONCLUSION AND FUTURE WORK
We have proposed a formal approach to the specification

of SOA systems. We employ the theory of institutions ([3])
to define two temporal logics. The first logic is used to
specify the individual SOA components, the second logic
is used to specify changes to their communication patterns.
We connect the two logics by an institution comorphism ([8])
that yields a heterogeneous specifications setting ([5]) where
a SOA system can be specified on two levels. Its individual
components can be specified in the local logic, whereas their
interactions can be separately described on the global level.

As for the temporal part of both the local and the global
logic, our choice of CTL∗ extended with S and Y is rather
arbitrary. In particular, past operators have been added
purely for convenience in writing example properties. Atomic
predicates evaluated in states could have been used for this
purpose equally well, but this would lead to slightly more
complicated definitions of a signature and a model. If needed,
institutions for action-based variants of LTL or CTL can be
obtained by restricting the syntax of the local logic appro-
priately. On the other hand, the language can be extended,
e.g., with fixed-point operators, without affecting the model
part of the institution. This flexibility is due to the fact
that reducing a model along a signature morphism does not
alter the transition system underlying a model and thus the
satisfaction condition is easy to establish.

On the other hand, using an action-based logic is a natu-
ral choice since, at the global level, we use synchronisation
of actions to model component interactions. It should be
straightforward to enrich the logics with state predicates or
first-order constructs for describing data, both on the local
and on the global level. A more interesting topic of fur-
ther work is to generalise the way we build the global logic
over the local one to a construction parametrised by an ar-
bitrary temporal logic institution, possibly satisfying some
additional requirements.

In our model, components communicate in a purely syn-
chronous manner. This choice may look strange in the con-
text of services that are naturally “loosely-coupled”. How-
ever, asynchronous communication can be implemented by
synchronous channels and, since we allow communication
topology to change, the coupling of the components is not

that strict at all. Moreover, since global specifications may
allow an unlimited number of interacting components, it is
fairly easy to model discovery and binding of new services.
Nevertheless, it would be interesting to develop a similar
formalism based on asynchronous communication in future.

Our specification methodology promotes the separate spec-
ification of components in a local logic and confines the
global specification to the description of their common be-
haviour; it thus provides an example of structured specifica-
tions. However, the methodology currently does not reflect
the common practical situation where the components are
implemented independently according to local specifications
and then used as parameters to the global construction that
implements their coordination working consistently for any
given set of actual parameters; this would amount to ar-
chitectural specifications. Usually the prerequisite for such
specifications is the existence of amalgamation in the in-
stitution used for specifications. Fortunately, both of our
institutions meet this requirement and we plan to extend
our framework to architectural specifications as well.
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APPENDIX
A. SPECIFICATIONS OF E-COURSE MAN-

AGEMENT SYSTEM
The example scenario describes an e-course management

system. The student service acts as a representation of a stu-

dent to other services of the system. It transfers the data
entered by the (human) student to a course manager service
and requests a list of matching courses. The course manager
then contacts all available course providers (each provider
represents one course) and gathers their replies. Then it se-
lects the courses that match the student’s curriculum and
university regulations and sends the list to the student ser-
vice, which in turn lets the student choose from the list.
Finally, on the student’s request, the student service regis-
ters the student to the selected courses.

The local specification SpS of a student service consists
of the set of actions AS = {ask!, answer?, choose!, register !}
and the four axioms given in Sect. 2.2. The local specifica-
tion SpC of the course service consists of the set of actions
AC = {request?, reply!, register?} and the following axioms:

(1) G (request?⇒ XAC reply!) (2) G (reply!⇒ YAC request?)
(3) G (register?⇒ YAC reply!)

The local specification SpM of the mngm service has AM =
{ask?, answer !, request!, reply?, select!} as the set of actions
and the following axioms:

(1) G (ask?⇒ XAM request!)
(2) G (request!⇒ (YAM ask?) ∧ (XAM reply?))
(3) G (reply?⇒ (reply? SAM request!) ∧ (F select!))
(4) G (select!⇒ (YAM reply?) ∧ (XAM answer !))
(5) G (answer !⇒ YAM select!)

The signature of the global specification is
〈
C, 〈Ac〉c∈C

〉
where C = {student, course,mngm} and the actions for
each class are given above. The axioms of the global speci-
fication include the three axioms discussed in Sect. 3.2 and
the following additional ones:

(1) ∀m : mngm · G (m.request!⇒
(∃c : course ·m.request! ∼ c.request?) ∧
(∀c : course ·m.request! ∼ c.request?⇒
F (m.reply? ∧ c.reply!)))

(2) G ∀m : mngm, c1, c2 : course ·
c1.request? ∼ m.request! ∼ c2.request? ∧ c1 6= c2 ⇒

G c1.reply! 6∼ c2.reply!
(3) ∀m : mngm, c : course · G (m.request! ∧ c.request?⇒

(m.request! ∼ c.request?) Um.select!)
(4) ∀m : mngm, c : course, s : student ·

G (((YAMm m.select!) ∧m.request! ∼ c.request?)⇒
(¬s.register !) U (s.register ! ∼ c.register?))

(5) ∀m : mngm, c : course, s : student ·
G (((YAMm m.select!) ∧m.request! ∼ c.request?)⇒

E F ((YASs s.choose!) ∧ s.register ! ∼ c.register?))
(6) ∀c : course, s : student · G ((s.register ! ∧ c.register?)⇒

∃m : mngm · P (P (YAMm m.select!) ∧
m.request! ∼ c.request?) ∧

((YASs s.choose!) ∧ s.register ! ∼ c.register?))

For the discussion of the additional axioms the reader is
referred to the extended version of this paper ([13]).
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