
A Heterogeneous Approach to UML Semantics�

Marı́a Victoria Cengarle1, Alexander Knapp2, Andrzej Tarlecki3, and Martin Wirsing2

1 Technische Universität München
cengarle@in.tum.de

2 Ludwig-Maximilians-Universität München
{knapp,wirsing}@pst.ifi.lmu.de

3 Uniwersytet Warszawski
tarlecki@mimuw.edu.pl

Abstract. UML models consist of several diagrams of different types describ-
ing different views of a software system ranging from specifications of the static
system structure to descriptions of system snapshots and dynamic behaviour. In
this paper a heterogeneous approach to the semantics of UML is proposed where
each diagram type can be described in its “natural” semantics, and the relations
between diagram types are expressed by appropriate translations. More formally,
the UML family of diagram types is represented as a “heterogeneous institution
environment”: each diagram type is described as an appropriate institution where
typically the data structures occurring in a diagram are represented by signature
elements whereas the relationships between data and the dynamic behaviour of
objects are captured by sentences; in several cases, the diagrams are themselves
the sentences. The relationship between two diagram types is described by a so-
called institution comorphism, and in case no institution comorphism exists, by
a co-span of such comorphisms. Consistency conditions between different dia-
grams are derived from the comorphism translations. This heterogeneous seman-
tic approach to UML is illustrated by several example diagram types including
class diagrams, OCL, and interaction diagrams.

1 Introduction

Almost exactly 40 years ago, computer programs had become so large and complex
that many software development projects failed and maintaining software programs
was almost unmanageable. Neither pragmatic methods for software construction nor
the scientific foundations of programming were established at the time; the need for
systematic software development techniques was so urgent and evident that in 1968 the
first software engineering conference was organized in Garmisch [39].

Today, software systems are larger than ever, and software is the central innovating
factor of many high-tech products, services, and systems, e.g. in consumer electronics,
automotive applications, telecommunications, and business. Our daily life and work de-
pend more and more on such software-intensive systems. Driven by techniques such as

� This work has been partially sponsored by the project SENSORIA IST-2005-016004, and the
DFG projects InfoZert, MAEWA and rUML.

384

object-orientation, service-orientation, or model-transformation, practical software en-
gineering methods have considerably evolved and many companies follow well-defined
software development processes for constructing larger and larger software systems.
A substantial body of theoretical foundations of programming is available and formal
modelling and analysis techniques like abstraction and refinement techniques, model
checking or theorem proving have undergone a steep development during the last years.
However, at the same time we experience that many software systems are error-prone,
unstable, have security holes, and do not meet the required quality standards. There
is still a large gap between industrial practice and formal approaches: pragmatic mod-
elling languages and techniques lack formal foundations, inhibiting the development of
powerful analysis and development tools, while formal approaches are often too dif-
ficult to use, do not scale easily to complex software-intensive systems, and are not
well-integrated with pragmatic methods. Aspects such as distribution, mobility, hetero-
geneity, quality of service, security, trust, and dynamically changing infrastructures and
environments are not well supported by actual engineering methods.

Bridging this gap and advancing software engineering theory and methods is one
of the main aims of our common research with Ugo Montanari during the last several
years. In the project AGILE [1] we developed an architectural approach to software mo-
bility which was based on a uniform mathematical framework to support sound method-
ological principles, formal analysis, and refinement. The aim of SENSORIA [48,50] is
to develop a novel comprehensive approach to the engineering of service-oriented soft-
ware systems where foundational theories, techniques and methods are fully integrated
in a pragmatic software development process. With SENSORIA techniques software
engineers can model a system in the usual way by using standard high-level visual
modelling languages such as UML; but they get additional help for reasoning about
functional and non-functional properties of the system by mathematical models which
run in the background hidden from the developer.

As a prerequisite for the SENSORIA approach we investigate in this paper the seman-
tics of UML. Models expressed in this language consist of several diagrams of different
types describing different views of a software system ranging from specifications of
the static system structure to descriptions of system snapshots and dynamic behaviour.
For example, UML 1.x offers nine different types of diagrams for describing different
static and dynamic aspects of a system. Depending on the modelling purpose one may
employ e.g. class diagrams, component diagrams, state diagrams, sequence diagrams,
activity diagrams, or instance diagrams. UML 2.0 adds several new diagram types and
enhances the expressiveness and semantics of sequence diagrams and activity diagrams
considerably.

We propose here a new “heterogeneous approach” to the semantics of UML which
concentrates on the comparison and integration of different modelling formalisms, and
in which

– each diagram type can be described in its “natural” semantics,
– relations between diagram types are expressed by appropriate translations, and
– consistency conditions can be derived between diagrams of different type.

More formally, we present the UML family of diagram types as a “heterogeneous
institution environment”. An institution is given by a type of signatures, a type of

 385

sentences, a notion of model, and a notion of validity of a sentence in a model. Each
diagram type is described as an appropriate institution, and each diagram instance is
a specification in the institution. Typically, the data structures occurring in a diagram
are named by signature elements whereas the dynamic behaviour of objects and rela-
tionships between data are described by sentences; in several cases, the diagrams are
themselves the sentences. The semantic concepts involved are captured by the models
considered, with the validation between sentences and models determining the seman-
tics of particular diagrams. The relationship between two diagram types is described by
so-called institution comorphisms, and in case no institution comorphism exists, by a
co-span of such comorphisms. Consistency conditions between different diagrams are
derived from the comorphism translations or the co-span construction. We illustrate the
heterogeneous semantic approach to UML by several diagram types including class dia-
grams, OCL, and interaction diagrams; we demonstrate the use of heterogeneous UML
institutions by means of the e-learning case study of the SENSORIA project [50].

The remainder of this paper is structured as follows: In Sect. 2 we review the related
work to the semantics on modelling languages and, in particular, on UML semantics.
Sect. 3 introduces the theory of heterogeneous institution environments. In Sect. 4 we
present sketches of the institutions for class diagrams, OCL, and interaction diagrams
and in Sect. 5 we sketch how these different languages can be linked by institution
comorphisms and co-spans. The implications for consistency conditions between dia-
grams of these different types are discussed in Sect. 6. Finally, in Sect. 7 we conclude
with a short discussion of the results of the paper and an outlook on further research
topics.

2 Related Work

Giving an integrated semantics to UML is a difficult task due to the complexity and
variety of the different diagram types. The classical approaches to programming lan-
guage semantics are adequate only for a restricted subset of the specification and mod-
elling tasks of software development. For example, denotational semantics is an elegant
framework for compositionally modelling functional behaviour but it is not so appro-
priate for the dynamic behaviour of concurrent processes; in contrast, structural oper-
ational semantics (SOS) is well-suited for the latter but treats data structures only in
a syntactic way. Algebraic specifications are appropriate for modelling complex data
types and associated operations, but they are not easily usable for specifying reactive
systems, in spite of the elegant work started with [2] on axiomatic process algebra.

In order to model static functional aspects as well as dynamic concurrent behaviour,
several researchers investigated extensions or combinations of these methods. Broy pro-
poses a denotational “system model” based on stream-processing functions in combi-
nation with abstract data types (see e.g. [8,9]) and currently uses this system model
for developing a complete UML semantics [5,6,7], where diagrams are taken as predi-
cates that a system model instance has to satisfy. Other approaches propose the combi-
nation of CSP and Z [23,47] or a combination of algebraic specifications and labelled

386

transition systems [42]. Rewriting logic [34] is a semantic framework for concurrency
which extends the algebraic specification approach to concurrent systems.

Ugo Montanari’s tile model [24] is a system model for describing the behaviour of
open systems; it is a SOS-like compositional framework where data structures are not to
be restricted to syntactic terms, and it can be seen as an extension of rewriting logic by
taking into account state changes with side effects and synchronisation [35]. Architec-
tural Design Rewriting [10] is another novel elegant approach of Ugo Montanari where
rewriting techniques are integrated with graph transformations in order to support the
design of reconfigurable software architectures.

Our framework is inspired by these combination approaches; but instead of a tight
integration of different modelling techniques we aim at a loose coupling and use a “het-
erogeneous specification approach” which concentrates on the comparison and integra-
tion of different specification formalisms, retaining the formalisms most appropriate for
expressing parts of the overall problem.

For UML, this line of research started with our algebraic viewpoint approach [49]
and the general categorical setting of Ehrig, Orejas, and Padberg (see e.g. [21]). In
other contexts, institutions [27] and general logics [33] have been proposed as a formal
basis establishing a powerful framework for heterogeneous specifications and hetero-
geneous proofs [3,45,36,37]. In particular, Goguen uses a heterogeneous institutional
framework for database schema integration [25]. Our approach in this paper is particu-
larly inspired by the KORSO development graph [40] and its subsequent formalisation
by Mossakowski [37,38] in the heterogeneous institution setting.

3 Heterogeneous Institution Environments

To cope with the multitude of different views of software systems as captured in UML
by various diagram types we need to formally define what logical systems are (each
corresponding to a different diagram type) and how they may be related (to provide
precise semantic links between UML diagrams of different types). The theory of in-
stitutions, started by Goguen and Burstall [26,27] and then developed in a number of
directions, from an abstract theory of software specification and development [46] to a
very general version of abstract model theory [20], offers a suitable formal framework.

The usual presentation of the theory of institutions depends on category theory [31].
However, to follow the presentation here not much more is needed than some intuitive
understanding of the basics: a category K consists of a collection |K| of objects and
morphisms between them (including identity morphisms) that can be composed in a
natural way; a functor F : K → K′ between categories maps objects to objects and
morphisms to morphisms preserving their source and target, identities and composition;
and a natural transformation between “parallel” functors F,F′ : K → K′ consists of a
family of morphisms in K′ that link the functor values on each object in |K| and change
smoothly w.r.t. the functor values on each morphism in K.

An institution I consists of a category SignI of signatures describing its language
symbols; a functor SenI : SignI → Set,1 describing its language in the form of

1 The category Set has all sets as objects and all functions between them as morphisms.

 387

sentences; a functor ModI : Signop
I → Set,2 describing its models; and for Σ ∈

|SignI | a satisfaction relation |=I,Σ ⊆ ModI(Σ) × SenI(Σ) describing which
sentences are satisfied (hold) in which models. Expanding the above, the sentence
functor SenI yields a set SenI(Σ) of Σ-sentences for each signature Σ ∈ |SignI |,
and a function SenI(σ) : SenI(Σ) → SenI(Σ′), denoted simply by σ, that repre-
sents the σ-translation of Σ-sentences to Σ′-sentences for each signature morphism
σ : Σ → Σ′. The model functor ModI gives a set ModI(Σ) of Σ-models for each
signature Σ ∈ |SignI |, and a function ModI(σ) : Mod(Σ′) → Mod(Σ), denoted
by |σ , that yields σ-reducts of Σ′-models for each signature morphism σ : Σ → Σ′.
The satisfaction relations have to satisfy the following satisfaction condition for all
Σ, Σ′ ∈ |SignI |, signature morphisms σ : Σ → Σ′, Σ-sentences ϕ ∈ SenI(Σ) and
Σ′-models M ′ ∈ ModI(Σ′):

M ′ |=I,Σ′ σ(ϕ) ⇐⇒ M ′|σ |=I,Σ ϕ .

We typically omit the subscript I when referring to the components of an institution I,
and the subscript Σ on the satisfaction relations. For any signature Σ, the satisfaction
relation extends naturally to sets of Σ-sentences and classes of Σ-models. Moreover, it
determines the usual consequence relation: a Σ-sentence ϕ ∈ Sen(Σ) is a (semantic)
consequence of a set Φ ⊆ Sen(Σ) of Σ-sentences, written Φ |= ϕ, if for all Σ-models
M ∈ Mod(Σ), M |= Φ implies M |= ϕ.

The notion of institution is quite general, as it imposes only very mild requirements
on the logical system. Apart from the implicit structural assumptions (like functorial-
ity of sentence translations and model reducts) the key requirement is the satisfaction
condition. Informally, it asserts that logical satisfaction is invariant under the change of
signature, and so does not depend on the context of use of a sentence. This property
may fail for some logical systems (for instance, when some version of “closed world
assumption” is used). Nevertheless, typically the satisfaction of a sentence depends only
on semantic interpretation of the symbols it actually involves, and the satisfaction con-
dition then holds. Consequently, examples of institutions abound, and include standard
logical systems like equational, first-order and higher-order logics, various modal log-
ics, logics of partial functions, etc. We refrain from spelling out any examples for now,
with examples of institutions capturing various UML diagram types to be presented
below.

Given the definition of an institution to capture the informal notion of a logical sys-
tem, we can make precise various ways in which logical systems can be related. The
starting point was the definition of an institution morphism in [26,27]. Other notions fol-
lowed, capturing different intuitions and various aspects of relating one logical system
to another. We will use here institution comorphisms (named so in [29]; see “plain maps
of institutions” in [33] and “institution representations” in [43,44]). Very informally, an
institution comorphism ρ : I → I′ captures how a weaker and poorer institution I can

2 To keep things simple, we work with the version of institutions where morphisms between
models, not needed here, are disregarded. To capture standard examples, we should allow here
for the use of classes, rather than just sets of models — but again, we will disregard such
foundational subtleties here.

388

be represented in a stronger and richer institution I ′, by representing I-signatures as I ′-
signatures and I-sentences as I′-sentences, and extracting I-models from I ′-models.

More precisely, for arbitrary institutions I = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉
and I ′ = 〈Sign′,Sen′,Mod′, 〈|=′Σ′〉Σ′∈|Sign′|〉, an institution comorphism ρ : I →
I ′ consists of a functor ρSign : Sign → Sign′; a natural transformation ρSen : Sen →
ρSign ;Sen′; and a natural transformation ρMod : (ρSign)op ;Mod′ → Mod, such that
for any signature Σ ∈ |Sign| the translations ρSen

Σ : Sen(Σ) → Sen′(ρSign (Σ)) of
sentences and ρMod

Σ : Mod′(ρSign(Σ)) → Mod(Σ) of models preserve the satisfac-
tion relation, that is, for any ϕ ∈ Sen(Σ) and M ′ ∈ Mod′(ρSign(Σ)):

M ′ |=′ρSign (Σ) ρSen
Σ (ϕ) ⇐⇒ ρMod

Σ (M ′) |=Σ ϕ .

The naturality requirements amount to the facts that ρSen and ρMod are families of func-
tions ρSen

Σ : Sen(Σ) → Sen′(ρSign(Σ)) and ρMod
Σ : Mod′(ρSign(Σ)) → Mod(Σ),

respectively, such that for σ : Σ → Σ′ the diagrams in Fig. 1 commute.

Sen(Σ2) Sen′(ρSign (Σ2))

Sen′(ρSign (Σ1))Sen(Σ1)

�ρSen
Σ2

�
σ

�
ρSign(σ)

�
ρSen

Σ1

Mod′(ρSign(Σ2))Mod(Σ2)

Mod(Σ1) Mod′(ρSign(Σ1))

�ρMod
Σ2

�
|σ

�

|ρSign (σ)

�
ρMod

Σ1

Fig. 1. Naturality diagrams for an institution comorphism

The original notion of institution morphism [27] essentially differs from the above
only in the direction of translation of models and sentences w.r.t. translation of sig-
natures: an institution morphism from I to I′ maps I-signatures to I ′-signatures,
I-models to I ′-models, and I ′-sentences to I-sentences, capturing quite a different
intuition though (how a richer institution I is built over the poorer institution I′). Other
possible notions of a mapping between institutions can be obtained by a similar manip-
ulation of mutual directions of the translations involved [44], to capture yet different
intuitions. It turns out, however, that all such variations can be expressed using insti-
tution comorphisms, albeit in general we may need a span of those. Namely, to relate
two institutions I and I ′, when a direct institution comorphism between them cannot
be given, we can devise an auxiliary “intermediate” institution I ′′ that incorporates the
common features of I and I ′, and relate those features using a span of comorphisms

I ρ←− I ′′ ρ′

−→ I ′. In particular, using spans of comorphisms we can capture semi-
comorphisms, which relate signatures and models of institutions as comorphisms do,
but do not translate sentences at all (then the intermediate institution has the empty sets
of sentences).

It turns out, however, that spans of comorphisms need not offer the most natural way
to capture certain “consistency” (rather than “sharing”) requirements between models

 389

of two institutions. It is often more natural to join the two institutions then by a sink

(co-span) of comorphisms I ρ−→ I ′′ ρ′

←− I ′ that embed the institutions I and I ′ into
an auxiliary, richer institution I′′, where the consistency conditions may be expressed.
(A perhaps even more natural alternative, which we will not discuss here, is to link the
two institutions by a span of institution morphisms.)

Institutions with institution comorphisms (with rather obvious, component-wise
composition) form a category coINS . We will be working in a context of a num-
ber of logical systems, formalised as institutions, linked in various ways by institution
comorphisms. We hence define a heterogeneous institution environment HIE to be a
diagram in the category coINS , that is, for some underlying graph G = 〈N , E〉,3
HIE = 〈〈In〉n∈N , 〈ρe〉e∈E〉 consists of institutions In, for n ∈ N , and institution
comorphisms ρe : In → Im, for e : n → m in E .

As we have mentioned, quite a number of logical systems have been formalised as
institutions in the literature. Similarly, quite a number of them have been linked by insti-
tution maps of various kinds, and hence by (spans of) comorphisms. Rarely, however, a
number of these have been collected together to offer a framework for building hetero-
geneous specifications. One notable exception is the HETS family of institutions [37],
supported by a tool to build and work with heterogeneous specifications [38].

In this paper we outline a family of institutions capturing various UML sublanguages
and comorphisms that represent the expected semantic relationships between them —
this too will form such a heterogeneous institution environment.

4 Institutions for the UML Sublanguages

The UML sublanguages, on the one hand, provide means for the design and specifica-
tion of different aspects or views of a software system. On the other hand, institutions
deliver a model theoretic characterisation of logics. Institutions, by the satisfaction con-
dition, guarantee that certain properties still hold after renaming and/or identification
of symbols. Consequently, and in the frame of an institution, two or more theories can
be combined in such a way that the properties of each one of them do not get lost by
putting them together. We investigate if the semantics of the UML sublanguages can be
precisely captured by institutions, and how they can be linked.

Let us sketch institutions for the UML sublanguages of static structures (i.e., class
diagrams), interaction diagrams, and OCL by means of a running example inspired
by an e-learning case study for service-oriented computing [32]: In a university, thesis
topics are managed by a central electronic office, where tutors announce topics that
students can work on and where students may accept posted topics. The electronic office
ensures certain conditions, like that no student is given more than one topic.

We do not detail here the institutions mentioned above fully formally, for more de-
tails see [19,18,17]. We also leave out for now possible definitions of other UML sub-
languages as institutions.

3 G is given by a set of nodes N and a family of sets of edges E = 〈En,m〉n,m∈N unam-
biguously classified by their source and target. We identify E with

�
n,m∈N En,m and write

e : n → m for e ∈ En,m.

390

4.1 Institution of Static Structures

Signatures for static structures declare class names, typed attributes and methods, and
association names with corresponding association ends. For instance, the class diagram
in Fig. 2 declares

({EOffice, Topic, Tutor, Student, String, Void},

{tname : Tutor → String,

sname : Student → String,

content : Topic → String,

announce : EOffice × Tutor × Topic → Void,

post : EOffice × Tutor × Topic → Void,

accept : EOffice × Student × Topic → Void,

register : EOffice × Student × Topic → Void},

{tuteof ⊆ tutors : Tutor × eoffice : EOffice,

tuttop ⊆ tutor : Tutor × topics : Topic,

topeof ⊆ topics : Topic × eoffice : EOffice,

topstu ⊆ topic : Topic × student : Student,

stueof ⊆ students : Student × eoffice : EOffice})

announce(tutor : Tutor, topic : Topic)
post(tutor : Tutor, topic : Topic)
accept(student : Student, topic : Topic)
register(student : Student, topic : Topic)

EOffice

Student

sname : Stringcontent : String

Topic

Tutor

tname : String

0..1

topic student

students*

stueof

topeof

tutors

*

tutor 1

*topics

eoffice

tuteof 1

eoffice

0..1

eoffice1

* topics

topstu

0..1

Fig. 2. E-office example: class diagram (1)

Sentences associated with a signature of the institution of static structures declare
multiplicities for associations. The class diagram of Fig. 2 presents a theory axiomatized
by the following sentences

association(tuteof, tutors : Tutor : 0..�, eoffice : EOffice : 1..1) ,

association(tuttop, tutor : Tutor : 1..1, topics : Topic : 0..�) ,

association(topeof, topics : Topic : 0..�, eoffice : EOffice : 0..1) ,

 391

association(topstu, topic : Topic : 0..1, student : Student : 0..1) ,

association(stueof, students : Student : 0..�, eoffice : EOffice : 1..1) .

Models of a class diagram signature are given as sets of object states. Object states
are sets of created object identifiers of the declared class names, together with functions
that interpret attributes and methods, as well as relations that interpret associations.
Moreover, models of a presentation are required to satisfy the constraints put on associ-
ations. In our example we require, for instance, that for each topic there is at most one
student and for each student there is at most one topic, so that if we navigate from a
topic to its student, then we can navigate back to the topic, and vice versa.

For signature morphisms, translations, and reducts, consider again the class diagram
in Fig. 2 and the class diagram in Fig. 3 with an additional method remove for class
EOffice, and different multiplicities for association tuteof. A signature morphism σ from
the signature induced by the former to the signature induced by the latter can be defined
with σ(x) = x for every element of the simpler signature. The reduct of any model sim-
ply “forgets” the interpretation of the method remove. Signature morphisms canonically
extend to sentences: the axioms of the simple signature are not rephrased in the context
of the complex signature, whose axioms in fact are stronger. Indeed, whereas the class
diagram of Fig. 2 allows an arbitrary number of tutors for an e-office, the class diagram
of Fig. 3 requires at least one tutor per e-office. Therefore, for any model satisfying the
stronger axiom, its reduct also satisfies the weaker axiom.

announce(tutor : Tutor, topic : Topic)
post(tutor : Tutor, topic : Topic)
accept(student : Student, topic : Topic)

Tutor

Student

sname : Stringcontent : String

Topic

EOffice

remove(topic : Topic)
register(student : Student, topic : Topic)

tname : String

students*

topeof

tutors

1..*

1 eoffice

stueof

tutor 1

*topics

eoffice

tuteof 1

eoffice

0..1

* topics

topstu

0..10..1

topic student

Fig. 3. E-office example: class diagram (2)

4.2 Institution of Interactions

Signatures for interactions simply declare class names and class-typed messages. Given
a set of variables, typed over declared class names, a signature induces a set of sentences
as follows. Atomic formulas are sequence diagrams (mathematically represented using
labelled pomsets, see [41]) and their composition using interaction-building operators

392

: EOffice

post(tutor, topic)
announce(tutor, topic)

tutor : Tutor

accept(student, topic)
register(student, topic)

student : Student

Fig. 4. E-office example: sequence diagram for accepting a topic

like for instance seq, par, loop, etc. (for details see [16]). Well-formed formulas com-
bine atomic ones using conjunction, negation, universal quantification, and equality of
variables. As usual, sentences are closed formulas.

For instance the interaction diagram in Fig. 4 declares classes Tutor, Topic, EOf-
fice, and Student, and messages announce(Tutor, Topic), post(Tutor, Topic), accept(Student,
Topic), and register(Student, Topic). Given variables tutor : Tutor, eoffice : EOffice, and
student : Student, the only sentence represented by the diagram is the atomic formula
given by the following pomset:

[{X1, X2, X3, X4, X5, X6, X7, X8},
{X1 < X2 < X3 < X4 < X6 < X7 < X8, X5 < X6,},
{X1
→ snd(tutor, eoffice, announce(tutor, topic)),
X2
→ rcv(tutor, eoffice, announce(tutor, topic)),
X3
→ snd(eoffice, eoffice, post(tutor, topic)),
X4
→ rcv(eoffice, eoffice, post(tutor, topic)),
X5
→ snd(student, eoffice, accept(student, topic)),
X6
→ rcv(student, eoffice, accept(student, topic)),
X7
→ snd(eoffice, eoffice, register(student, topic)),
X8
→ rcv(eoffice, eoffice, register(student, topic))}]

In the institution of interactions, an interpretation maps class names to sets of object
instances and messages to message instances. Object instances may interchange mes-
sage instances; we define send events as triples of a sender instance, a receiver instance,
and a message instance; receive events are defined similarly. Traces are sequences of
send/receive events. Models for interactions are defined to be pairs (P, N) of sets of
traces.

In order to grasp the notion of models for interactions and of satisfaction relation of
an interaction by a model, recall that interactions depict possible message interchange
scenarios, and perhaps forbid (other) scenarios by use of the interaction-building op-
erator neg. In general, hence, interactions do not completely specify a software sys-
tem. Given an interpretation, given a valuation of variables by object instances (of the

 393

correct class), an interaction induces positive and negative traces of send/receive events.
These induced sets, of all positive traces and of all negative traces, need not be disjoint,
and their union need not contain every possible trace [16]. Given a valuation, a model
(P, N) satisfies an interaction if the negative traces of the interaction diagram under
that valuation are contained in N , and the genuine positive ones (i.e., positive and non-
negative) are included in P . Equality, negation, conjunction and universal quantification
are interpreted as usual.

On the one hand, for example the trace

snd(tutor, eoffice, announce(tutor, topic)) · rcv(tutor, eoffice, announce(tutor, topic)) ·
snd(eoffice, eoffice, post(tutor, topic)) · rcv(eoffice, eoffice, post(tutor, topic)) ·
snd(student, eoffice, accept(student, topic)) · rcv(student, eoffice, accept(student, topic)) ·
snd(eoffice, eoffice, register(student, topic)) · rcv(eoffice, eoffice, register(student, topic))

positively satisfies the interaction diagram of Fig. 4, where tutor, topic, eoffice and student
are instances of the corresponding classes, and the message instances coincide with the
messages declared in the signature of above. On the other hand, no trace negatively
satisfies the interaction, i.e., the set of negative traces of the interaction is empty.

An equivalent abstract representation of the diagram of Fig. 4 is seq(S1, S2), where
S1 is the labelled pomset

[{X1, X2, X3, X4},
{X1 < X2 < X3 < X4},
{X1
→ snd(tutor, eoffice, announce(tutor, topic)),
X2
→ rcv(tutor, eoffice, announce(tutor, topic)),
X3
→ snd(eoffice, eoffice, post(tutor, topic)),
X4
→ rcv(eoffice, eoffice, post(tutor, topic)) }]

and S2 the labelled pomset

[{Y1, Y2, Y3, Y4},
{Y1 < Y2 < Y3 < Y4},
{Y1
→ snd(student, eoffice, accept(student, topic)),
Y2
→ rcv(student, eoffice, accept(student, topic)),
Y3
→ snd(eoffice, eoffice, register(student, topic)),
Y4
→ rcv(eoffice, eoffice, register(student, topic)) }]

and seq combines its arguments sequentially in a “instance-wise” manner: For each in-
stance, all events for this instance in the first argument must happen before all events
for this instance in the second argument. Hence, we could moreover have split the pom-
set S2 into S1

2 and S2
2 with S1

2 representing the sending and reception of the message
accept(student, topic), and S2

2 the sending and reception of the message register(student,
topic), and combine S1

2 and S2
2 using the seq interaction-building operator. In other

words, the abstract representation of a diagram needs not be unique. These different
representations are nevertheless equivalent, i.e., have the same models.

Signature morphisms in the interactions institution work similarly to the signature
morphisms in the static structure institution, renaming classes and messages. The trans-
lation of sentences along a signature morphism is canonical, and reducts forget all traces
mentioning events only expressible over the target signature.

394

4.3 OCL Institution

OCL signatures declare class names, query names (that correspond to attributes and
query methods), and method names. Class names are equipped with a partial order rela-
tion representing the inheritance hierarchy. Default (or built-in) types extend these dec-
larations. So for instance the set of class names is closed under application of the type
constructors Set and Sequence (which is equivalent to list construction). This extended
type system is used to define a (unique) type for each query name and each method
name. The inheritance hierarchy together with a built-in subtype relation induce the
OCL-subtype relation, that comprises class names as well as query and method names.
The sentences defined by an OCL signature are invariants and pre/postconditions, as
in the example shown in Fig. 5. The corresponding signature declares, possibly among
others, class names EOffice, Student, and Topic, query names topic and student for EOffice,
student for Topic, topic for Student, and a method name register for EOffice. OCL presen-
tations consist of an OCL signature and a set of OCL sentences over that signature.

context EOffice::accept(student : Student, topic : Topic)
pre: topic.student->empty() and student.topic->empty()
post: topic.student = student and student.topic = topic

Fig. 5. E-office example: OCL specification of accept

The OCL interpretations map class names to sets of created objects, and provide
a mechanism to retrieve functions that implement query names and method names;
see [15]. The former functions do not modify the state of objects, whereas the latter may
modify the state. Models of OCL theories are state transition systems, whose states are
sets of created objects and whose transitions are labelled by a method invocation and
the corresponding return value, so that the target state of a transition is the result of
applying the method on the origin state. Moreover, every state of these models observes
the invariants of the theory, and any two adjacent states satisfy the pre-/postconditions
required for the method that labels the transition connecting these two states.

Signature morphisms, translations and reducts, again, are built similarly to the cor-
responding notions in the static structure institution.

5 Linking UML Institutions

We study how particular views of a given software system, as represented in different
languages designed for their specification, can be linked with each other. In particular,
we investigate the natural links between the UML institutions as sketched above.

Following the presentation in Sect. 3, there are two possibilities to link institutions:
direct translation from one institution to another via a comorphism, and definition of
a new mediating institution to which both institutions are embedded (see definition of
sink in Sect. 3).

 395

context Tutor inv: eoffice->count() = 1
context Tutor inv: eoffice->tutors->includes(self)
context EOffice

inv: tutors->forall(x | x.eoffice->includes(self))

Fig. 6. EOffice example: multiplicity axiom for tuteof translated into OCL

The institution of class diagrams can easily be embedded into the OCL institution. In-
deed, class names are mapped to class names, typed attributes to queries, typed method
to method names, and role names to set-valued queries (this means, the same class
name possibly gets more queries when translated). Sentences of a theory presentation
given by a class diagram are translated into OCL invariants. So, for instance, the first
association -sentence associated with Fig. 2 is translated into the OCL invariants of
Fig. 6. In general, for a binary association a ⊆ r1 : c1 × r2 : c2 with declared multiplic-
ity association(a, r1 : c1 : m1, r2 : c2 : m2), the translation of each of the multiplici-
ties consists of a constraint for navigability and up to two constraints for cardinality: if
m1 is of the form n1..n2, then

context c1 inv: r2->forall(x | x.r1->contains(self))
context c2 inv: r1->count() >= n1 and r1->count() <= n2 ;

if m1 is of the form n..�, then

context c1 inv: r2->forall(x | x.r1->contains(self))
context c2 inv: r1->count() >= n1 ;

and similarly for m2.
This translation gets somewhat more involved for other than binary associations and

the various kinds of multiplicities. Nevertheless, the translation is rather straightfor-
ward: the same as above, it takes care of back navigability and cardinalities within the
bounds imposed by multiplicities.

Given an OCL model for a signature, we extract from it a model of an embedded
class diagram signature by taking the set of states of the OCL model.

The institution of class diagrams cannot so easily be embedded in the institution of
interactions. Again, class names could be mapped to class names, and typed methods
to sets of messages. But it is not trivial how to embed typed attributes and association
names, nor how to translate declarations of multiplicities for associations. Since class
diagrams can be embedded into OCL, this matter, however, is not so crucial if the OCL
institution and the interactions institution can be linked.

For this an auxiliary institution OCL+I can be devised that contains all the elements
of the OCL institution as well as all the elements of the institution of interactions. Sig-
natures declare class names (as OCL signatures and interaction signatures do), query
names and method names (as in the OCL institution); query and method names, together
with variables typed over declared class names, induce messages (which correspond to
messages in the institution of interactions). Sentences are either OCL sentences over
class names, query names and method names, or interaction sentences over class names
and induced messages. A model is a set of so-called runs; cf. [14,11]. Runs are se-
quences of pairs, each pair consisting of a set of created objects and a set of events. An

396

event is a send or receive event (cf. models for interactions in the previous section) or a
mark that indicates that a univocally identified method invocation has come to an end.4

Given pairs (ωk, Hk) and (ωl, Hl) of a run, with k < l, we say that the events in Hk

occur before the events in Hl; events within the same set are considered to occur simul-
taneously. A model satisfies an OCL+I sentence if every single run in the model satisfies
the OCL+I sentence. The satisfaction condition for single runs, a relation between a run
and an OCL+I sentence, is defined in three parts, namely for pre/postcondition pairs,
for invariants, and for interactions.

A run satisfies an OCL pre/postcondition for a method m whenever for any two pairs
(ωk, Hk) and (ωl, Hl) of the run, with k the precondition time (i.e., Hk−1 containing
the reception of a call on method m), and with l the corresponding postcondition time
(i.e., Hl−1 containing the mark that indicates that the call on method m at time k has
come to an end), the following property holds: ωk and the call satisfy the precondition,
and ωk, ωl, the return value and the call satisfy the postcondition (we have to include
the call when checking both the pre- and the postcondition, since these conditions may
refer to the arguments of the call).

A run satisfies an OCL invariant if each set of created objects sans the objects cur-
rently executing a method (cf. definition of pre- and postcondition times above) ob-
serves the invariant.

Given a variable valuation, a run satisfies an interaction if any trace obtained from
the run by first eliminating the sets of objects, then eliminating the marks, and finally
linearising simultaneous events, is positive and non-negative for the interaction under
the valuation.

For signatures and sentences, the embedding of the OCL institution as well as the
embedding of the institution of interactions in the institution OCL+I are straightfor-
ward. The transformation of OCL+I models into OCL models and the one into inter-
action models can be sketched as follows. On the one hand, an OCL+I model defines
an OCL model, i.e., a state transition system, whose set of states is the union of all the
sets of objects of all the runs of the OCL+I model, and whose transitions are labelled
v.m(v1, . . . , vn) : v′ and connect an origin state ωk with a target state ωl if these states
are the precondition and postcondition times, respectively, of a method call m on v
with arguments (v1, . . . , vn) and return value v′; in case there is no return value, then
the transition is labelled simply v.m(v1, . . . , vm). Notice that a set of objects ωi can
occur more than one time within a run and within an OCL+I model; in the OCL model,
the corresponding state may thus have many transitions arriving to and departing from
it. On the other hand, an OCL+I model defines an interaction model (P, N) where P
is the set of traces obtained from the runs of the OCL+I model by the procedure de-
scribed above (elimination of sets of objects, deletion of marks from sets of events, and
linearisation of simultaneous events) and N is the complement of P .

Notice that the set of sentences of a signature of OCL+I is, so to speak, the union
of the set of sentences of the embedded OCL signature and the set of sentences of the

4 A termination mark is useful for asynchronous methods and signal processing. There may be
also a termination mark for a synchronous method, however; in this case, the mark and the
send event for the result value of the method execution must be contained in the same set Hi

of events of the run (they occur simultaneously, so to speak).

 397

: EOfficetutor : Tutor

Pre_accept and Inv_EOffice

Post_accept and Inv_EOffice

Pre_announce and Inv_EOffice

post(tutor, topic)
announce(tutor, topic)

Post_announce and Inv_EOffice

accept(student, topic)
register(student, topic)

student : Student

Fig. 7. E-office example: sequence diagram incl. OCL sentences for accepting a topic.

embedded interactions signature, these two simpler signatures sharing somehow the
method names (that are declared in the OCL signature and which occur in the messages
of the interaction signature). Instead, we could moreover allow intertwined sentences
as in Fig. 7.

These matters as well as criteria for devising a kind of (least) upper bound, i.e., a
reasonable sink for two given institutions are subject of ongoing study.

6 Consistency Conditions

Working with a specification formalism with different viewpoints, like UML, raises the
question concerning consistency of specifications developed in different viewpoints.
In a heterogeneous institution environment, as the one sketched here for UML, this
question is equivalent to the problem of characterising when specifications in different
but linked institutions have, in some sense, a common model.

We begin by a concept of consistency within a single institution I. Intuitively, two
sets of sentences are consistent if their union admits a model. We want, however, to be
able to identify different symbols or to point at common symbols used by sentences
in these two sets. We thus define consistency of two sets of sentences Φ1 and Φ2 over
signatures Σ1 and Σ2, respectively, with respect to a third signature Σ and signature
morphisms σ1 : Σ1 → Σ and σ2 : Σ2 → Σ as follows: there is a model M ∈ Mod(Σ)
such that σ1(Φ1) ∪ σ2(Φ2) is satisfied by M , or equivalently, M |σ1 satisfies Φ1 and
M |σ2 satisfies Φ2.

This concept of consistency can be lifted to a heterogeneous institution environment.
Let us first consider two institutions I1 and I2 linked by a comorphism ρ : I1 → I2.

398

A set of sentences Φ1 ⊆ SenI1(Σ1) is consistent with a set of sentences Φ2 ⊆
SenI2(Σ2) with respect to a signature Σ ∈ |SignI2 | and signature morphisms σ1 :
ρSign(Σ1) → Σ and σ2 : Σ2 → Σ if ρSen

Σ1
(Φ1) and Φ2 are consistent with respect to

Σ, σ1 and σ2, i.e., if there is a model M ∈ ModI2(Σ) such that σ1(ρSen
Σ1

(Φ1))∪σ2(Φ2)
is satisfied by M , or equivalently, ρMod

Σ1
(M |σ1) satisfies Φ1 and M |σ2 satisfies Φ2.

Generalizing this further, if institutions I1 and I2 are linked by a co-span I1
ρ1−→

I ρ2←− I2, two sets of sentences Φ1 ⊆ SenI1(Σ1) and Φ2 ⊆ SenI2(Σ2) are consistent
with respect to a signature Σ ∈ |SignI | and signature morphisms σ1 : ρ1

Sign (Σ1) →
Σ and σ2 : ρ2

Sign(Σ2) → Σ if ρ1
Sen
Σ1

(Φ1) and ρ2
Sen
Σ2

(Φ2) are consistent with respect to
Σ, σ1 and σ2. This is equivalent to the existence of a model M ∈ ModI(Σ) such that
ρ1

Mod
Σ1

(M |σ1) ∈ ModI1(Σ1) satisfies Φ1 and ρ2
Mod
Σ2

(M |σ2) ∈ ModI2(Σ2) satisfies
Φ2.

In the heterogeneous institution environment for UML, the institutions for static
structures and for OCL are linked by a comorphism. Given a class diagram as a speci-
fication in the institution of static structures and a set of invariants and operation spec-
ifications, we are interested in their consistency with respect to shared class names,
attributes, and translated association ends. For example, when linking the translation of
the class diagram in Fig. 2 with the OCL specification in Fig. 5, the conjuncts of the
postcondition of accept imply each other due to the association -axiom for topstu.

As long as both specifications do not require any particular objects of the classes in
the class diagram to exist, their consistency can always be witnessed by a model, i.e.,
a state transition system, whose states are empty sets of object instances. However, for
our e-office example, if the OCL specification contains, e.g.,

context Tutor
inv: Tutor.allInstances()->count() >= 2

a common model must show at least two instances of Tutor, as this symbol is identified
with Tutor. Thus, the invariants induced in the comorphism translation of class dia-
grams to OCL, which, in particular, require then at least one e-office to exist, must not
contradict the invariants in the extended OCL specification.

The institution OCL+I integrates the semantics of OCL and of interactions via a co-
span of institution comorphisms. It does so by presupposing a particular way of link-
ing operation specifications from OCL with sequencing obligations from interactions.
Here, we are interested in their consistency with respect to shared class names on the
one hand, and identifying query and method calls with messages on the other. Consider,
for example, the operation specification for accept in Fig. 5 and the interaction in Fig. 4.
Then, in order to be able to obtain a common model in OCL+I, it is required that the
precondition of accept does not contradict the postcondition of announce, as the post-
condition time of announce is the same as the precondition time of accept; indeed, this
is the case in our specification when accept is called only by a student lacking a topic.

The particular integrating institution OCL+I with the co-span of institution
co-morphisms presented above is by no means the only possibility to link the OCL
and the interactions institution. We could also choose a looser definition of satisfaction
of an interaction by a run: a trace is obtained from a run by not only eliminating the
set of objects and eliminating the marks but also skipping all those events that happen

 399

on objects that are not mentioned in the interaction. In this situation, the postcondition
of an operation and the precondition of another operation, albeit the termination of the
first and the start of the second happen immediately after each other in an interaction,
do not have to show any correlation, as always some event, external to the interaction,
could interfere and restore the precondition of the second operation.

7 Conclusions

We have presented a general framework for constructing the semantics of different
UML diagram types in a flexible way. The framework is used as a mathematical basis
of UML in the SENSORIA development approach for service-oriented systems. It relies
on the mathematical theory of institutions and offers a new approach to the semantics
of heterogeneous system specifications in a “heterogeneous institution environment”. It
allows one to describe each diagram type in its “natural” semantics. Different diagram
types are integrated via appropriate translations (into each other or into intermediate in-
stitutions), and in this way their semantic consistency can be analysed. Another advan-
tage of our approach is that other system models can be easily integrated. For instance,
rewriting logic and temporal logic are themselves institutions [12,13].

Institutions provide an elegant and robust framework for programming in the large
and in particular for compositionality. Indeed, the satisfaction condition ensures that
properties fulfilled by parts of a development do not get lost when putting those parts
together. This is also true when, even at different places, those parts are made more
specific using a refinement relation based on model-class inclusion. The trade-off is
the loss of expressive power regarding some reflective properties like closed-world as-
sumption (cf. the OCL constructs Type and Type.allInstances). Depending on
the application, however, this is a price we are willing to pay, since the compositionality
gained applies not only to the development of the software system as such but also to
the verification of the whole system, which may proceed by verification of the parts.

Incontrast toMossakowski[36],wekeepthedifferentinstitutions(oftheheterogeneous
institution environment) separate and do not aim at integrating them into a single
(heterogeneous) institution using the so called Grothendieck construction. The latter only
puts the institutions side by side and allows atmost thesharing of syntactic constructs. As a
consequence, from this construction we do not get additional insight like e.g. consistency
conditions, and may moreover loose the intuitiveseparationof thediverseviewsofferedby
the individual institutions in a heterogeneous institution environment.

The ideas in this paper present only a first step to a comprehensive heterogeneous
approach to system development which will support also model transformations, refine-
ment, and deployment to particular programming languages environments, and provide
relationships to “single” system models such as Broy’s stream-based system model.
Currently we are studying the embedding of service-oriented concepts into our het-
erogeneous system model approach, ranging from declarative specifications of SCA in
SRML [22] and Montanari’s Architectural Design Rewriting [10] to process algebraic
specifications of the dynamic behaviour of services [4,28,30].

Acknowledgements. We would like to thank an anonymous referee for many valuable
suggestions and José Meseguer for fruitful discussions.

400

References

1. Andrade, L., Baldan, P., Baumeister, H., Bruni, R., Corradini, A., De Nicola, R., Fiadeiro,
J.L., Gadducci, F., Gnesi, S., Hoffman, P., Koch, N., Kosiuczenko, P., Lapadula, A., Latella,
D., Lopes, A., Loreti, M., Massink, M., Mazzanti, F., Montanari, U., Oliveira, C., Pugliese,
R., Tarlecki, A., Wermelinger, M., Wirsing, M., Zawłocki, A.: AGILE: Software architec-
ture for mobility. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS,
vol. 2755. Springer, Heidelberg (2003)

2. Bergstra, J.A., Klop, J.W.: Process Algebra for Synchronous Communication. Information
and Control 60(1–3), 109–137 (1984)

3. Bernot, G., Coudert, S., Gall, P.L.: Towards Heterogenous Formal Specifications. In: Wirs-
ing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 458–472. Springer, Heidelberg
(1996)

4. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Monta-
nari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC: a Service Centered
Calculus. In: Bravetti, M., Zavattaro, G. (eds.) Proc. 3rd Int. Wsh. Web Services and Formal
Methods (WS-FM 2006). Lect. Notes Comp. Sci., vol. 4184, pp. 38–57. Springer, Heidelberg
(2006)

5. Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System Model for
UML: The Structural Data Model. Technical Report TUM-I0612, Institut für Informatik,
Technische Universität München (June 2006)

6. Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System Model for
UML: The Control Model. Technical Report TUM-I0710, Institut für Informatik, Technische
Universität München (February 2007)

7. Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System Model for
UML: The State Machine Model. Technical Report TUM-I0711, Institut für Informatik,
Technische Universität München (February 2007)

8. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement. Springer, Heidelberg (2001)

9. Broy, M., Wirsing, M.: Algebraic State Machines. In: Rus, T. (ed.) AMAST 2000. LNCS,
vol. 1816, pp. 89–118. Springer, Heidelberg (2000)

10. Bruni, R., Lluch-Lafuente, A., Montanari, U., Tuosto, E.: Style-based architectural recon-
figurations. Technical Report TR-07-17, Computer Science Department, University of Pisa
(2007)

11. Calegari, D.: UML 2.0 Interactions with OCL/RT Constraints. Master’s thesis, InCo-
PEDECIBA, Technical report 07-17 (2007)

12. Cengarle, M.V.: The Rewriting Logic institution. Technical Report 9801, Ludwig-
Maximilians-Universität München, Institut für Informatik (1998)

13. Cengarle, M.V.: The Temporal Logic institution. Technical Report 9805, Ludwig-
Maximilians-Universität München, Institut für Informatik (1998)

14. Cengarle, M.V., Knapp, A.: Towards OCL/RT. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME
2002. LNCS, vol. 2391, pp. 390–409. Springer, Heidelberg (2002)

15. Cengarle, M.V., Knapp, A.: OCL 1.4/1.5 vs. OCL 2.0 Expressions: Formal Semantics and
Expressiveness. Softw. Syst. Model. 3(1), 9–30 (2004)

16. Cengarle, M.V., Knapp, A.: UML 2.0 Interactions: Semantics and Refinement. In: Jürjens, J.,
Fernandez, E.B., France, R., Rumpe, B. (eds.) Proc. 3rd Int. Wsh. Critical Systems Develop-
ment with UML (CSDUML 2004), pp. 85–99 (2004); Technical Report TUM-I0415, Institut
für Informatik, Technische Universität München (2004)

17. Cengarle, M.V., Knapp, A.: An Institution for OCL 2.0. Technical Report 0801, Institut für
Informatik, Ludwig-Maximilians-Universität München (2008)

 401

18. Cengarle, M.V., Knapp, A.: An Institution for UML 2.0 Interactions. Technical Report TUM-
I0808, Institut für Informatik, Technische Universität München (2008)

19. Cengarle, M.V., Knapp, A.: An Institution for UML 2.0 Static Structures. Technical Report
TUM-I0807, Institut für Informatik, Technische Universität München (2008)

20. Diaconescu, R.: Institution-independent Model Theory. Birkhäuser (to appear, 2008)
21. Ehrig, H., Padberg, J., Orejas, F.: From basic views and aspects to integration of specifica-

tion formalisms. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoret-
ical Computer Science: Entering the 21th Century, pp. 202–214. World Scientific, Singapore
(2001)

22. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A Formal Approach to Service Component Architec-
ture. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp.
193–213. Springer, Heidelberg (2006)

23. Fischer, C.: CSP-OZ: How to Combine Z with a Process Algebra. In: Bowman, H., Derrick,
J. (eds.) Proc. 2nd Int. Conf. Formal Methods for Open Object-Based Distributed Systems
(FMOODS 1997), pp. 423–438. Chapman & Hall, Boston (1997)

24. Gadducci, F., Montanari, U.: The Tile Model. In: Plotkin, G., Stirling, C., Tofte, M. (eds.)
Proof, Language, and Interaction: Essays in Honour of Robin Milner. Foundations Of Com-
puting Series, pp. 133–166. The MIT Press, Cambridge (2000)

25. Goguen, J.A.: Data, schema, ontology and logic integration. Logic J. IGPL 13(6), 685–715
(2005)

26. Goguen, J.A., Burstall, R.M.: Introducing Institutions. In: Clarke, E., Kozen, D. (eds.) Logics
of Programs. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984)

27. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and Pro-
gramming. J. ACM 39(1), 95–146 (1992)

28. Guidi, C., Lucchi, R., Busi, N., Gorrieri, R., Zavattaro, G.: SOCK: A Calculus for Service-
Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
327–338. Springer, Heidelberg (2006)

29. Goguen, J.A., Rosu, G.: Institution Morphisms. Form. Asp. Comp. 13(3-5), 274–307 (2002)
30. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In: De

Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)
31. MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)
32. Mayer, P., Schroeder, A., Koch, N.: A Model-Driven Approach to Service Orchestration. In:

Proc. IEEE Int. Conf. Services Computing (SCC 2008) (submitted, 2008)
33. Meseguer, J.: General Logics. In: Ebbinghaus, H.D., Fernandez-Prida, J., Garrido, M., Las-

car, D. (eds.) Logic Colloquium 1987, pp. 275–329. North-Holland, Amsterdam (1989)
34. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theo. Comp.

Sci. 96, 73–155 (1992)
35. Meseguer, J., Montanari, U.: Mapping Tile Logic into Rewriting Logic. In: Parisi-Presicce,

F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 62–91. Springer, Heidelberg (1998)
36. Mossakowski, T.: Heterogenous Development Graphs and Heterogeneous Borrowing. In:

Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 326–341. Springer,
Berlin (2002)

37. Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set. Habilitation
thesis, Universität Bremen (2005)

38. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)

39. Naur, P., Randell, B.: Software Engineering — Report on a Conference sponsored by the
NATO Science Committee. NATO Sci. Affairs Div., Bruxelles, Garmisch (1969)

40. Pepper, P., Wirsing, M.: A Method for the Development of Correct Software. In: Jähnichen,
S., Broy, M. (eds.) KORSO 1995. LNCS, vol. 1009, pp. 27–57. Springer, Heidelberg (1995)

402

41. Pratt, V.: Modeling Concurrency with Partial Orders. Int. J. Parallel Program. 15(1), 33–71
(1986)

42. Reggio, G., Repetto, L.: CASL-CHART: A Combination of Statecharts and the Algebraic
Specification Language CASL. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 243–
272. Springer, Berlin (2000)

43. Tarlecki, A.: Institution representation. Unpublished note, Dept.of Computer Science, Uni-
versity of Edinburgh (1987)

44. Tarlecki, A.: Moving between Logical Systems. In: Haveraaen, M., Dahl, O.-J., Owe, O.
(eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502.
Springer, Heidelberg (1996)

45. Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., de Rijke, M. (eds.) Fron-
tiers of Combining Systems. Studies in Logic and Computation, vol. 2, pp. 337–360. Re-
search Studies Press (2000)

46. Tarlecki, A.: Abstract Specification Theory: An Overview. In: Broy, M., Pizka, M. (eds.)
Models, Algebras, and Logics of Engineering Software. NATO Science Series — Computer
and System Sciences, vol. 191, pp. 43–79. IOS Press, Amsterdam (2003)

47. Wehrheim, H.: Behavioural Subtyping in Object-Oriented Specification Formalisms. Habil-
itationsschrift, Carl-von-Ossietzky-Universität Oldenburg (2002)

48. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:
Semantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-Peyre, J.-
F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Hei-
delberg (2006)

49. Wirsing, M., Knapp, A.: View Consistency in Software Development. In: Wirsing, M.,
Knapp, A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 341–357. Springer, Hei-
delberg (2004)

50. Wirsing, M., Nicola, R.D., Gilmore, S., Hölzl, M.M., Lucchi, R., Tribastone, M., Zavattaro,
G.: Sensoria process calculi for service-oriented computing. In: Montanari, U., Sannella, D.,
Bruni, R. (eds.) TGC 2007. LNCS, vol. 4661, pp. 30–50. Springer, Heidelberg (2007)

	Title Page
	Preface
	Organization
	Table of Contents
	Ugo Montanari in a Nutshell
	Ugo's Origins
	Ugo's Research
	Ugo's Students

	Ugo Montanari and Graph Transformation
	Papers on Graph Transformation in This Volume
	References

	Unfolding Graph Transformation Systems: Theory and Applications to Verification
	Introduction
	Unfolding Semantics of Graph Transformation Systems
	Graph Transformation Systems
	Nondeterministic Occurrence Grammars
	Unfolding Construction

	Functorial Semantics: From Nets to {\spo} Grammars
	A Coreflective Semantics for Petri Nets
	Coreflective Semantics: From Nets to {\spo} Grammars

	Verification of Finite State {\gts}s
	Rewriting up to Isolated Nodes
	Finite Complete Prefix of Bounded {\gts}s
	Checking Properties of Reachable Graphs

	Verification of Infinite State {\gts}s
	Approximating the Behaviour of {\gts}s
	Verifying Behavioural Properties of {\gts}s

	Conclusions

	Graph-Based Design and Analysis of Dynamic Software Architectures
	Introduction
	Running Example: Road Assistance Scenario
	Design and Analysis of Dynamic Software Architectures
	The Design of Software Architectures
	The Analysis of Architectural Properties

	Typed Graph Grammars with Alloy
	Designing Software Architectures
	Analysis in Alloy

	Architectural Design Rewriting with Maude
	Designing Software Architectures with Maude
	Analysis with Maude

	Comparison
	Designing Software Architectures
	Specifying Architectural Properties
	Analysing Software Architectures

	Related Work
	Conclusion

	Graph Transformation Units – An Overview
	Introduction
	Graphs and Rule-Based Graph Transformation
	Graphs
	Paths
	Graph Morphisms, Subgraphs, and Matches
	Graph Transformation Rule
	Application of a Graph Transformation Rule
	Derivation and Application Sequence

	Simple Graph Transformation Units
	Graph Grammar
	Graph Class Expressions
	Control Conditions
	Simple Graph Transformation Units

	Graph Transformation Units with Structuring
	Units with Import and Interleaving Semantics
	Networks of Units
	Interleaving Semantics of Acyclic Networks

	Approach Independence and Product Type
	Graph Transformation Approach
	Restriction
	Product Type
	Tuples of Graph Transformation Units
	Typing of Units

	Further Research and Related Work
	References

	Synchronous Multiparty Synchronizations and Transactions
	Introduction
	Fusion Calculus
	Synchronized Hyperedge Replacement
	Zero-Safe Fusion Calculus
	Syntax
	Operational Semantics

	From SHR to Zero-Safe Fusion
	About Assumptions
	Simulating Multiple Actions
	Each Edge is Attached to Any Chosen Node at Most Once
	No Non-trivial Renamings Nor τ Actions in SHR Productions

	From Zero-Safe Fusion to SHR
	Conclusion

	Transformations in Reconfigurable Place/Transition Systems
	Introduction
	Adhesive HLR Categories and Systems
	Reconfigurable P/T Systems
	P/T Systems as Weak Adhesive HLR Category
	Conclusion

	Explicit State Model Checking for Graph Grammars
	Introduction
	Transformation of Simple Graphs
	Graph Transition Systems
	First-Order Temporal Logic
	First-Order Linear Temporal Logic
	Graph-Based Linear Temporal Logic

	Evaluation and Future Work

	Linear-Ordered Graph Grammars: Applications to Distributed Systems Design
	Introduction
	Linear-Ordered Graph Grammars
	Example: Distributed Systems in Presence of Faults
	Tile Semantics of LOGG
	Tile Systems for Graph Grammars
	Interpretation of LOGGs as Tile Rewriting Systems

	Open Graphs
	LOGGs Using Open Graphs
	Composition of Open Graphs

	Conclusion and Future Work

	Constraint and Logic Programming: Ugo Montanari’s Main Contributions and Introduction to the Volume Section
	Constraint Programming
	Logic Programming
	Papers About Constraint and Logic Programming in This Volume

	Semiring-Based Soft Constraints
	Before Soft Constraints: A Brief Introduction to Constraint Programming
	Semiring-Based Soft Constraints: Main Idea and Properties
	Embedding Soft Constraints in Programming Paradigms
	Soft CLP
	Soft cc

	Extending Soft Constraints to Model Other Kinds of Preferences
	Bipolar Preferences
	Conditional Qualitative Preferences

	Mastering the Complexity of Modeling and Solving Soft Constraint Problems
	Abstraction
	Symmetry Breaking
	Explanations
	Learning
	Incompleteness and Elicitation

	Applying Soft Constraints
	Temporal Reasoning
	Security
	Routing and Quality of Service
	Data Mining

	Conclusions and Future Scenarios
	A Special Thank

	Declarative Debugging of Membership Equational Logic Specifications
	Introduction
	Maude Functional Modules
	Membership Equational Logic
	Representation in Maude
	A Buggy Example: Non-empty Sorted Lists

	Declarative Debugging of Maude Functional Modules
	Proof Trees
	Abbreviated Proof Trees

	Using the Debugger
	Assumptions
	Commands
	Sorted Lists Revisited
	Implementation

	Conclusions and Future Work

	SPREADSPACES: Mathematically-Intelligent Graphical Spreadsheets
	Overview
	Cosmetic Constraints
	Constrained Spreadsheets
	Constrained Graphics
	Active Graphics
	Examples
	Color-Changing Rectangle
	Standard Spreadsheet
	Red First

	\mathbf{S}_p^2 System Organization
	Conclusion

	An Overview of the Ciao Multiparadigm Language and Program Development Environment and Its Design Philosophy
	Origins and Initial Motivations
	Supporting Multiple Paradigms
	The Ciao Approach to Assertions
	Program Documentation, Static Debugging, and Verification
	High Performance with Less Effort
	Incremental Compilation: Other Support for Programming in the Small and in the Large
	An Advanced Integrated Development Environment
	Some Final Thoughts on Parallelism, Dynamic Languages, and Mainstream Programming

	AND/OR Multi-valued Decision Diagrams for Constraint Networks
	Introduction
	Preliminaries
	Binary Decision Diagrams Review
	Bucket Elimination Review

	Overview of AND/OR Search Space for Constraint Networks
	AND/OR Search Tree
	AND/OR Search Graph

	AND/OR Multi-valued Decision Diagram (AOMDD)
	From AND/OR Search Graphs to Decision Diagrams

	AOMDDs for Constraint Networks Are Canonical Forms
	Using AND/OR Search to Generate AOMDDs
	Algorithm AND/OR-Search-AOMDD
	Reducing the Context Minimal AND/OR Graph to an AOMDD

	Using Bucket Elimination to Generate AOMDDs
	Algorithm BE-AOMDD
	The AOMDD \sc{APPLY} Operation

	Related Work
	Conclusion

	Software Engineering: Ugo Montanari’s Main Contributions and Introduction to the Section
	Organization of the Software Engineering Section
	References

	Modeling Business within a UML-Based Rigorous Software Development Approach
	Introduction
	Business Modelling: The Overall Structure
	Business Modeling: The Context
	Data View
	Static View
	Organization View

	Business Modeling: The Business Processes
	The Business Process Overview
	The Business Process Descriptions
	Overall View of a Business Process
	Activity of a Business Process

	Related Works
	Conclusions and Future Work

	From Domain to Requirements
	Introduction
	The Triptych Principle of Software Engineering
	Domain Engineering
	Stages of Domain Engineering
	First Example of a Domain Description
	Domain Modelling: Describing Facets
	Discussion

	Requirements Engineering
	Stages of Requirements Engineering
	Business Process Re-engineering
	Domain Requirements Prescription

	Discussion
	An ‘Odyssey’
	Claims of Contribution
	Comparison to Other Work
	A Critique
	Programming Methodology Versus Software Engineering

	References

	Business Process Modeling for Organizational Knowledge Management
	Introduction
	BP's for Organizational Knowledge Management
	Business Modeling
	System Modeling
	System Implementation

	Tools for the System Modeling Phase
	Conclusions

	Event-Based Service Coordination
	Introduction
	Signal Calculus
	Operational Semantics
	Joining Events

	Java Signal Core Layer
	Case Studies
	Implementing Long Running Transactions in JSCL
	The Car Emergency System

	Concluding Remarks
	References

	Dynamically Evolvable Dependable Software: From Oxymoron to Reality
	Introduction
	Change Requirements and Research Challenges
	Approaches to the Development of Adaptable Evolving Software
	An Approach to Business Process Flexibility
	An Approach to Adaptable SOA
	An Approach to Lifelong Verification of SOA

	Conclusions

	The Temporal Logic of Rewriting: A Gentle Introduction
	Introduction
	The System/Property Mismatch Problem
	How $Rewriting Logic/$TLR^{*}$$ Addresses System/Property Mismatches

	A Simple Example
	Rewrite Theories, Computations and Spatial Actions
	Rewrite Theories
	Proof Terms
	Computations
	Spatial Actions

	The Temporal Logic of Rewriting
	TLR^{\ast} Syntax
	TLR^{\ast} Semantics
	Reduction to State-Based Temporal Logics
	The Example Revisited

	Related Work
	Conclusions

	A Heterogeneous Approach to UML Semantics
	Introduction
	Related Work
	Heterogeneous Institution Environments
	Institutions for the UML Sublanguages
	Institution of Static Structures
	Institution of Interactions
	OCL Institution

	Linking UML Institutions
	Consistency Conditions
	Conclusions

	Ugo Montanari and Concurrency Theory
	Introduction
	The Contributed Papers
	One of Ugo's Pearls
	Conclusion

	On the Synthesis of Zero-Safe Nets
	Introduction
	Zero-Safe Nets
	Zero-Safe Regions
	Establishing the Axioms for ZS-Net Synthesis
	Computing S-Regions and Z-Regions
	A Decision and ZS-Net Synthesis Procedure
	Conclusion

	A Note on Persistent Petri Nets
	Introduction
	Definitions
	Persistent Nets, and Related Notions
	Uniqueness of Simple Cycles in the Reachability Graph
	Concluding Remarks

	Secure Data Flow in a Calculus for Context Awareness
	Introduction
	A Calculus for Context Awareness
	Type Systems and Well-Typedness
	A Type System for Active Code
	A Type System for Inactive Code

	Operational Semantics and Type Soundness
	Case Study: Ubiquitous Computing in a Hospital
	The Guessing Visitor
	The Conspiring Nurse
	The Wandering Visitor

	Related Work, Conclusions and Future Work

	On Beta-Binders Communications
	Introduction
	Beta-Binders Overview
	Labelled Semantics
	Operational Correspondence
	Concluding Remarks

	On the Asynchronous Nature of the Asynchronous π-Calculus�
	Introduction
	Justifying the Choice of the Languages
	Justifying the Criteria for the Encodings
	Plan of the Paper

	Preliminaries
	The Asynchronous \pi-Calculus: \pi_{a}

	Buffers
	A \pi-Calculus with Bags
	Relation between the Asynchronous \pi-Calculus and the \pi-Calculus with Bags
	From π_a to $\pi_\mathfrak{B}$
	From From $\pi_\mathfrak{B}$ to π_a

	Negative Results for Other Buffers
	Impossibility of Encoding Queues and Stacks
	Impossibility of Encoding Stacks in the \pi-Calculus without Mixed-Choice Operator

	Related Work
	Conclusion and Future Work

	StonyCam: A Formal Framework for Modeling, Analyzing and Regulating Cardiac Myocytes
	Introduction
	Modeling Excitable Cells Using Hybrid Automata
	Simulation and Analysis of Networks of Cardiac Myocytes
	Simulation
	Detecting Emergent Behavior

	Conclusion

	Models of Computation: A Tribute to Ugo Montanari’s Vision
	Ugo Montanari’s Models of Computation
	Papers on Models of Computation in This Volume
	References

	Automatic Mutual Exclusion and Atomicity Checks
	Introduction
	Automatic Mutual Exclusion
	The AME Calculus
	High-Level Semantics
	States
	Steps

	Dynamic Atomicity Checks
	Static Atomicity Checks
	Soundness
	Further Work

	Petri Nets, Discrete Physics, and Distributed Quantum Computation
	Introduction
	Petri Nets as Discrete Physics
	Causal Sets and Other Roads

	Interlude: Symmetric Monoidal Categories
	Categories
	Symmetric Monoidal Categories

	Petri Nets and Monoidal Categories
	The Meseguer and Montanari Approach

	Processes in Monoidal Categories: A General Perspective
	Outline of the Graphical Calculus

	Deficits and Cancellation
	The Financial Game
	Graphical Calculus for Information Flow

	Monoidal Categories and Physics
	Bits and Qubits
	Quantum Entanglement
	Categorical Quantum Mechanics and Diagrammatics

	Conclusions

	A Category of Explicit Fusions
	Introduction
	Background on the Explicit Fusion Calculus
	A Category of Name Equivalences
	Abstract Syntax
	Typing the Concrete Syntax
	A Basic Metalanguage in \Set^\E
	Explicit Fusion Syntax as an Initial Algebra
	Including Fusions, Syntactically

	Behavioural Functor
	B-coalgebras as E-transition Systems
	A Further Abstraction

	Conclusions and Further Work

	What Do Semantics Matter When the Meat Is Overcooked?
	Introduction
	Configurations of Global Computers
	Services as Architectural Units
	Business Configurations
	Services as Clauses
	Reconfiguration as Resolution
	Final Tasting
	References

	Calculating Colimits Compositionally
	Introduction
	WhatAlgebra?
	The wscc Structure on Span and Cospan Categories
	$Cspn(Graph/|E|)$

	TheTheorem
	The Example of Coequalizers
	Sketch of Proof of Theorem
	Example of Theorem

	Limits and Colimits of Monoidal Diagrams
	$Cspn(MonGraph/|E|)$
	Example

	The Kleene Theorem
	Comments
	References

	Observability Concepts in Abstract Data Type Specification, 30 Years Later
	Introduction
	Algebraic Preliminaries
	Behaviours and Behaviour Specifications
	Observable Behaviour
	Examples
	Implementations
	Examples

	Local Constructions in Global Contexts
	Examples

	Conclusion

	Ugo Montanari and Software Verification
	Introduction
	Verification Via Semantics Equivalence
	History Dependent Automata
	The Contributed Papers

	History Dependent Automata for Service Compatibility
	Introduction
	Background
	Automata as Coalgebras
	Named Sets and Named Functions
	HD-Automata

	Simulation for HD-Automata
	A Motivating Example
	The Scenario
	Binding Services Using HD-Automata Simulation

	Conclusions and Future Work

	A Type System for Client Progress in a Service-Oriented Calculus
	Introduction
	Processes
	Syntax and Semantics
	Client Progress Property

	Types
	A Type System for Client Progress
	Results
	Conclusion

	Session and Union Types for Object Oriented Programming
	Introduction
	An Example
	Syntax
	Auxiliary Functions
	Operational Semantics
	Typing
	Typing of Channel Free Expressions
	Typing of Runtime Expressions
	Type Soundness

	Conclusion

	The Pairing of Contracts and Session Types
	Introduction
	Contracts
	Session Types
	Encoding Session Types into Contracts
	Encoding Contracts into Session Types
	Discussion

	Specifying and Analysing SOC Applications with COWS
	Introduction
	On Road Assistance Scenario
	COWS: A Calculus for Orchestration of Web Services
	Syntax
	Basic Operators for Service Orchestration
	Fault and Compensation Handling

	Service Publication, Discovery and Negotiation
	A Type System for Checking Confidentiality Properties
	A Logical Framework for Verifying Functional Properties
	Concluding Remarks

	Approximating Behaviors in Embedded System Design
	Introduction
	Methodology Overview
	Refinement Preserving Abstractions

	Models of Embedded System Behavior
	Metric Time
	Non-metric Time
	Pre-post Time
	Construction of Agent Models

	Relations Between Models
	Homomorphisms
	Conservative Approximations
	Inverse Approximations
	Modeling Constructs in Embedded Software

	Related Work
	Conclusions
	References

	Ugo Montanari and Friends
	References

	Calculating with Automata
	Introduction
	Grammar as a Recursive Specification
	Deterministic Automata
	Automata with ε-Transitions
	Regular Expressions
	Conclusion

	Twenty Years on: Reflections on the CEDISYS Project. Combining True Concurrency with Process Algebra
	Genesis of the Project
	Goal and Context
	Some Achievements of the Project
	Noninterleaving Operational Semantics for CCS
	Abstract Noninterleaving Semantics

	Conclusion

	Some Theorems Concerning the Core Function
	A Theorem of Boolean Isotonic Functions
	The Question ``P = NP?''
	The Core Function
	Properties of the Core Function
	The Reference Architecture
	The Merit and Cost of a PCA
	The Structure of PCA's and PCAF's
	The Decomposition of a PCA in Factors
	The Decomposition of a PCAF in Addenda
	The Role of Complemented Variables
	Conclusion

	The Seventies
	References

	Categories, Software and Meaning
	A Roman Senator
	The Semantics of Ugo Montanari
	References

	Abstraction for a Career in Industry: A Praise for Ugo’s 65 Years
	Author Index

