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Abstract. Components are strongly encapsulated behaviours which interact with
the environment by exchanging messages. Interaction may, amongst others, fol-
low a synchronous rendezvous mechanism for message exchange or an asyn-
chronous paradigm where sending and handling a message happens at different
points in time. We extend our previously defined component model by integrat-
ing synchronous and asynchronous communication. As the formal background
we use I/O-transition systems and consider asynchronous communication with
fifo-ordered message buffers. We identify compatibility properties that should be
satisfied when components communicate along synchronous and asynchronous
connectors. As a first result we show that synchronous compatibility is a sufficient
condition to ensure buffered compatibility in asynchronous communications. We
introduce the notion of connection-safe assemblies which requires compatibil-
ity of both kinds of communication. We define a refinement relation and show
its compositionality with respect to synchronous and asynchronous connectors in
connection-safe assemblies. Finally, we provide results showing the preservation
of connection-safety under component refinement.

1 Introduction

Structuring of large-scale software systems in terms of components and their intercon-
nections is nowadays a standard in software development. Components can be char-
acterised by the ability to encapsulate internal behaviour and to provide well-defined
access points (often called ports) to the outside. This supports the construction of com-
ponent assemblies, by connecting components via their ports, and the substitutability
of components by relying only on their observable behaviour. Various software compo-
nent models have been proposed; for an overview see [1] and for a comparison in the
context of a “common component modelling example” (CoCoME) see [2].

The current paper sets out from our component model provided in [3] which has been
equipped with a precise formalisation of the structural and behavioural aspects of com-
ponents. This model distinguishes between simple (i.e., basic) components, component

� This research has been partially supported by the GLOWA-Danube project (01LW0602A2)
sponsored by the German Federal Ministry of Education and Research.

                                                                          
                                     



                                                155

assemblies, i.e., network structures of components connected via their ports, and com-
posite components which encapsulate assemblies. For the formal representation of be-
haviours we use I/O-transition systems which are based on interface automata [4]. Ex-
plicit I/O-labellings allow us to distinguish between input, output and internal actions,
which can be hidden to compute (derive) the observable behaviour of a component. The
behaviour of an assembly is also an I/O-transition system which is derived from the
composition of the observable behaviours of the components connected within the as-
sembly. We assume that connections are always binary. For the computation of an as-
sembly behaviour, the communication behaviour between connected components plays,
of course, a central role. In [3] we have considered the case of synchronous communica-
tion, where communication is achieved by a rendezvous mechanism such that the sender
and the receiver of a message synchronise on message exchange. This case is also con-
sidered in most other approaches like in ADLs such as Wright, Darwin or PADL [5]; but
also software component models such as SOFA 2.0 and Fractal, both using behaviour
protocols, or CoIn [6] with component interaction automata follow the synchronous
communication scheme.

The first goal of this paper is to extend our component model in [3] by taking into
account synchronous and asynchronous communication where a fifo-buffering mech-
anism is used when a message is sent along an asynchronous connector. Even though
asynchronous communication with buffering is frequently used in practice, in particular
in the context of distributed systems, its semantic properties are often neglected when
it comes to behavioural analysis. One contribution of this paper lies in the rigorous
formal treatment of asynchronous communication in our component model. For this
purpose we provide a detailed definition for the computation of an assembly behaviour
on the basis of synchronous and asynchronous connectors integrating explicit buffer be-
haviour and component behaviour on the level of I/O-transition systems. The resulting
systems resemble communicating finite state machines (CFSM) with unbounded fifo-
channels [7], and, in fact, we expect the theoretical results from the broad literature on
the verification of CFSM systems, e.g., testing approaches to the unboundedness prob-
lem [8], to be more or less readily applicable to our semantics. In the realm of software
component models, Maréchal et al. [9] give an approach to the analysis of components
with asynchronous communication for Korrigan [10] based on symbolic transition sys-
tems. Asynchronous communication is explicitly taken into account by an integration
of mailboxes for messages received but not yet processed; this work aims at develop-
ing algorithms for mailbox analysis, such as boundedness checks for mailboxes with
(fifo) or without order (dictionary). Other approaches such as SOFA 2.0, Fractal, or
Java/A [11] usually cope with asynchronous communication only in terms of an imple-
mentation which is not directly applicable to formal analysis. More recently, a Fractal
extension [12] aims at a formal semantics for the behavioural modelling of distributed
systems based on pNets [13]. However, the latter focuses on remote method calls as a
mechanism for asynchronous communication.

None of the mentioned approaches provides equivalence or refinement relations for
component behaviour, which directly leads to our second important goal, focusing
on the study of component refinement and the investigation of properties concerning
the communication behaviour of components (in assemblies) to be preserved under
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refinements. To consider component refinement we must compare the observable be-
haviours of components which are given by I/O-transition systems. Since I/O-transition
systems are based on the interface automata of de Alfaro and Henzinger [4], we can
reuse their quite appealing ideas for refinement defined in terms of an alternating sim-
ulation relation. Essentially, any input of an abstract behaviour must be accepted as an
input of the concrete behaviour (in related states) and, conversely, any output produced
by a concrete behaviour must be producible as an output of the abstract behaviour (in
related states). In principle, we adopt this idea but we suggest two extensions. First, we
distinguish between internal actions and the invisible action τ , because internal actions
naturally appear to express communications between components (which are neither in-
put nor output actions) but which can not be abstracted away since we are interested in
communication behaviours within component assemblies. Secondly, in contrast to [4],
we require additional conditions for refinement, similar to the requirements of stuck-
free conformance as defined in [14], to ensure that reactiveness of abstract behaviours
is also valid in concrete behaviours.

On the basis of our refinement notion we study relationships between component
refinement and communication behaviour exposed by component assemblies. For this
purpose, we have to distinguish between synchronous and asynchronous communica-
tion. In the synchronous case two components (more precisely, observable component
behaviours) are called (synchronously) compatible if any output issued by one compo-
nent meets the other component in a state where this output will be accepted as an in-
put, and vice versa. This notion, however, cannot be directly applied for asynchronously
communicating components since then there is a delay between the action of sending
a message to a buffer and the action of the target component taking the message from
the buffer. Hence, in the asynchronous case, the interesting question is whether any
message sent by one component will eventually be taken from the buffer by the other
component for further processing. If this property is satisfied the two components are
called buffered compatible. In our component model we allow both, synchronous and
asynchronous connectors and we call a component assembly connection-safe if com-
patibility is ensured, for each kind of connectors, in any global system run.

As one major result we draw a connection between synchronous and asynchronous
communication behaviour and show, by extending a theorem of [15], that synchronously
compatible components are also buffered compatible if they are put in an asynchronous
environment. From the practical point of view this result is rather relevant because
checking buffered compatibility directly may soon become unmanageable while checks
for synchronous compatibility are usually much easier. Our main theorems show that for
closed assemblies with two connected components the following holds: First, the refine-
ment relation is compositional for synchronous as well as for asynchronous component
connectors and, secondly, the properties of synchronous and buffered compatibility, i.e.
connection safety, are preserved by component refinement. In particular, this implies
substitutability of components within an assembly by preserving connection-safety.

The paper is organised as follows: The basic definitions and facts for I/O-transition
systems needed for this study are summarised in Sect. 2. In Sect. 3 we present the
extension of our component metamodel to synchronous and asynchronous connectors
and introduce a running example. In Sect. 4, we provide a detailed account on the
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corresponding extension of the algebraic formalisation of our component model, in-
tegrating the definition of assembly behaviour with synchronous and asynchronous
connectors. Sections 5 and 6 constitute our main results. In Sect. 5, the notion of
connection-safe assembly is introduced and the relationship between the different com-
patibility notions is analysed. In Sect. 6 we define the refinement relation for I/O-
transition systems and components and we provide the compositionality results for
synchronous and asynchronous connectors. Finally, we give some concluding remarks
in Sect. 7.

2 I/O-Transition Systems

We use I/O-transition systems to describe behaviours of ports, components, and as-
semblies with their provided (input) and required (output) operations as well as their
internal actions. Our definition of I/O-transition system is similar to the notion of in-
terface automata of de Alfaro and Henzinger [4]. However, we distinguish between
internal actions and the invisible (or silent) action τ , because we are also interested in
behaviours where internal actions should not be abstracted. For instance, we will focus
on assembly behaviours of connected components where interactions between compo-
nents are internal (because they are neither input nor output). Then we are interested
in properties of interaction behaviours which can only be studied if internal actions are
not abstracted. But, of course, when climbing up the hierarchal structure of components
then the behaviour of a composite component, which encapsulates an assembly, will be
obtained by abstracting the internal interactions to τ . In the following we summarise
our notions for I/O-transition systems presented in [3] which will be used hereafter.

An I/O-labelling, iol for short, L = (I, O, T ) consists of three mutually disjoint
sets of input labels I , output labels O, and internal labels T ; we write

⋃
L for the set

of labels I ∪ O ∪ T . An I/O-transition system, iots for short, A = (L, S, s0, Δ) is
given by an iol L, a set of states S, an initial state s0 ∈ S and a transition relation
Δ ⊆ S × (

⋃
L ∪ {τ}) × S (with τ /∈

⋃
L). We write L(A) for the iol of A.

2.1 Operators on I/O-Transition Systems

For deriving behaviours in our component framework we will use the following op-
erators on iotss: hiding, relabelling and the formation of products. Hiding and rela-
belling on iotss are generalisations of the usual operators used in process algebras (see,
e.g., [16,5], and the product is defined in accordance with the product of interface au-
tomata [4].

Hiding. Hiding is used to turn a subset of the labels of an iots into the invisible action
τ . Formally, the hiding of an iol L = (I, O, T ) w.r.t. a subset H ⊆

⋃
L is the iol

L/H = (I \ H, O \ H, T \ H). The hiding of an iots A = (L, S, s0, Δ) w.r.t. a label
set H ⊆

⋃
L is the iots A/H = (L/H, S, s0, Δ/H) where Δ/H = {(s, τ, s′) |

(s, a, s′) ∈ Δ ∧ a ∈ H} ∪ {(s, a, s′) | (s, a, s′) ∈ Δ ∧ a /∈ H}.
In some cases we will choose H = T , i.e., we will hide all internal labels. Then, for

an iol L = (I, O, T ), we write Lξ for L/T and for an iots A with L(A) = (I, O, T ),
we write Aξ for A/T .
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Relabelling. A relabelling is used for renaming labels and for changing the kind of
labels. Formally, a relabelling ρ : L → L′ from an iol L = (I, O, T ) to an iol L′ =
(I ′, O′, T ′) is defined by a function from

⋃
L to

⋃
L′ for which we also write ρ. The

relabelling of an iots A = (L, S, s0, Δ) w.r.t. a relabelling ρ : L → L′ is the iots
Aρ = (L′, S, s0, Δρ) where Δρ = {(s, ρ(l), s′) | (s, l, s′) ∈ Δ∧l ∈

⋃
L}∪{(s, τ, s′) |

(s, τ, s′) ∈ Δ}.
Given two relabellings ρ1 : L → L′ and ρ2 : L → L′, we define their union by

ρ1 ∪ ρ2 : L → L′ with (ρ1 ∪ ρ2)(l) = ρ1(l) if ρ2(l) = l, (ρ1 ∪ ρ2)(l) = l otherwise.

Product. The formation of the product of two iotss expresses their parallel composition
with synchronisation on identical input and output labels. To construct the product the
iols of the given iotss must be composable. Two iolss L1 = (I1, O1, T1) and L2 =
(I2, O2, T2) are composable if I1 ∩ I2 = ∅, O1 ∩ O2 = ∅, T1 ∩ (I2 ∪ O2 ∪ T2) = ∅,
and T2 ∩ (I1 ∪ O1 ∪ T1) = ∅. The shared labels of composable iolss L1 and L2,
written L1 �� L2, are given by (I1 ∩ O2) ∪ (O1 ∩ I2). The product of two composable
iolss L1 and L2 is the iol L1 ⊗ L2 = ((I1 ∪ I2) \ (L1 �� L2), (O1 ∪ O2) \ (L1 ��

L2), T1 ∪ T2 ∪ (L1 �� L2)) which moves the shared labels to the internal labels. Two
iotss A1 and A2 are composable if L(A1) and L(A2) are composable. The product of
two composable iotss A1 = (L1, S1, s0,1, Δ1) and A2 = (L2, S2, s0,2, Δ2) is the iots
A1 ⊗ A2 = (L1 ⊗ L2, S1 × S2, (s0,1, s0,2), Δ) where

Δ = {((s1, s2), a, (s′1, s2)) | (s1, a, s′1) ∈ Δ1 ∧ s2 ∈ S2 ∧ a /∈ L1 �� L2} ∪
{((s1, s2), a, (s1, s

′
2)) | (s2, a, s′2) ∈ Δ2 ∧ s1 ∈ S1 ∧ a /∈ L1 �� L2} ∪

{((s1, s2), a, (s′1, s
′
2)) | (s1, a, s′1) ∈ Δ1 ∧ (s2, a, s′2) ∈ Δ2 ∧ a ∈ L1 �� L2} .

Pairwise composability for a set of iols implies that all composable pairs of this set have
mutually disjoint shared labels. In the context of iots products, mutually disjoint shared
labels guarantee that the synchronisation between different iotss is always binary. The
product is commutative and associative. For a finite index set I , we write

⊗
i∈I Ai for

the product of the iotss Ai with i ∈ I .

3 Component Model with (A-)Synchronous Communication

We extend our component model presented in [3] to take into account not only syn-
chronous but also asynchronous communication. By synchronous communication we
understand a rendezvous mechanism where sender and receiver of a message synchro-
nise on message exchange. In contrast, asynchronous communication works with fifo-
buffering where the messages issued by a sender are buffered and can be taken (and
processed) later on by the receiver. In our component model we distinguish between
synchronous and asynchronous connectors which both are binary. For technical reasons
we have considered in [3] also unary connectors, but apart from this point the compo-
nent model described in the following is a conservative extension of the one in [3].

We consider components to be strongly encapsulated behaviours. Encapsulation is
achieved by ports which regulate any interaction of components with their environment.
Components can be hierarchically structured containing again an assembly of compo-
nents and connectors. Figure 1 shows the metamodel of our component model. A port
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1
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internal behaviour

1

* * *

*

Fig. 1. Component metamodel

describes a view on a component. The operations offered by a port are summarised in
its provided interface; the operations needed in its required interface. The sequencing
of operation invocations issued and received by a port is described in a port protocol
specification. To be precise, a port is in fact considered as a port type that can be used
in local port declarations of a component.

There are two kinds of components, simple components and composite components
which are abstracted in the metaclass component. Any kind of component has a set of
port declarations, which introduce locally unique port names with corresponding port
types, and an associated observable behaviour which describes the ordering of input
and output actions of the component. In our metamodel a component represents in fact
a component type that can be used in component declarations when building compo-
nent assemblies. Each component should be correct with respect to its ports, i.e., the
protocol of its ports should indeed be supported by the observable behaviour of the
component. This correctness issue has been studied in [3]. For each simple component
an internal behaviour specification is given which involves not only input and output
actions but also transitions with internal actions. A composite component encapsulates
an assembly of components. An assembly defines the internal structure of the com-
posite component in terms of a set of local component declarations and local (binary)
assembly connector declarations that connect local components via their ports. Assem-
bly connectors can be synchronous or asynchronous. In a composite component, non-
connected (open) ports of local components may be connected to so-called relay ports
of the composite component, using delegate connector declarations. Also an assembly
has an associated behaviour. As indicated by the slash symbol in Fig. 1 the observable
behaviour of a component as well as the assembly behaviour are derived behaviours.
The observable behaviour of simple components is derived from the components’ given
internal behaviour specification; for composite components the observable behaviour is
derived from the behaviour of its assembly which in turn is derived from the observable
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<<async>>

ab:Bat
a:AtmCom [1]

bank:Bank [1]

BankAtm

atm:Atm [1]

s:Srv [1]

verifyPin()
withdraw()

pinOk()
pinNotOk()
giveMoney()

AtmRequest

BankAck

BankAck

AtmRequest AtmRequest

BankAck

AtmCom
<<port>>

Srv
<<port>>

Fig. 2. Static structure of a simple Bank–Atm application

/a.pinNotOk

a.verifyPin/

/a.giveMoney

a.withdraw/

/a.pinOk

/s.withdraw

s.pinOk/

/s.verifyPin

s.pinNotOk/

s.giveMoney/

Fig. 3. Observable behaviour of Bank (left) and Atm (right)

behaviours of the local components within the assembly and their connections. In this
paper we will particularly focus on assembly behaviours which depends on the syn-
chronisation mechanisms used for the connectors.

Example 1 (Static structure and behaviours). Consider the simple Bank–Atm appli-
cation in Fig. 2. A composite component type BankAtm contains an assembly of two
simple components with types Bank and Atm introduced by the component declara-
tions bank : Bank and atm : Atm.1 The simple component types Bank and Atm have port
declarations a : AtmCom and s : Srv resp. which are connected with an asynchronous
assembly connector with name ab and type Bat.2 The two simple component declara-
tions and the connector form an assembly. The provided and required interfaces of the
port types with their operations are depicted with the UML ball-and-socket notation on
the right-hand side of Fig. 2. We do not consider operations with parameters here. If
two ports are connected by an assembly connector, the provided interface of the one
port has to be equal to the required interface of the other, and vice versa.3

Concerning behaviours we do not show port protocols and internal behaviour spec-
ifications of the simple component types Bank and Atm, but only give their derived
observable behaviours in Fig. 3. Input and output messages are indicated by p.m/ and
/p.m, respectively, where p is the port name on which the message is sent or received.
Figure 4 shows the assembly behaviour of the asynchronously communicating Bank

1 The UML2 declarations in Fig. 2 also show multiplicities, indicating how many instances of
a component or port may exist. However, we only specified singletons (multiplicity 1) leaving
the discussion of arbitrary multiplicities to future work.

2 UML2 would allow for arbitrary n-ary connectors with n > 2 which we do not consider here.
3 In general, one could use a more flexible condition such that the required interface of one

port is included in the provided interface of the other one. However, it is technically more
convenient to use the more restrictive condition from above.
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ab.verifyPin?ab.verifyPin!

ab.giveMoney?

ab.withdraw? ab.withdraw!

ab.pinNotOk? ab.pinNotOk!

ab.giveMoney!

ab.pinOk!

ab.pinOk?

Fig. 4. Assembly behaviour of the Bank–Atm assembly

and Atm components. In this case a buffering behaviour of the connector ab is involved.
Labels of the form ab.m! represent the action of sending a message m on the connector
ab which, at the same time, will be put into the input buffer on the opposite side of the
connector. Labels of the form ab.m? represent the action of taking a message out of the
buffer. Taking out a message of the buffer semantically corresponds to the input of a
message at a port as indicated in the observable behaviour of a component.

4 Formalisation of the Component Model

We will now provide a precise formalisation of our concepts for the static structure
and for the dynamic behaviour of components with synchronous and asynchronous
communication. For this purpose we complement the metamodel presentation of our
component model with an algebraic description, which defines formally all previously
mentioned concepts and behaviours in terms of algebraic structures and iotss resp.; see
Sect. 2. In particular, we distinguish between those behaviours which have to be pro-
vided by the component developer and those that are computed (derived), by rendering
the latter as definitions. We use italics to denote all kinds of derived operators. This
section extends our formalisation in [3] to the asynchronous case.

4.1 Technical Prerequisites

Buffered I/O-Transition Systems. For asynchronous communication we need a mecha-
nism for buffering (queueing) of messages. Technically, we use for this purpose buffered
I/O-transition systems which model queues over a given set M of messages such that
enqueueing a message m is an input action of the form m! and dequeueing a message
m is an output action of the form m?. The contents of a queue define the queue’s states
which are formally represented by the set M∗ of finite sequences over M . The empty
sequence is denoted by ε, the extension of s ∈ M∗ by an m ∈ M at the front is denoted
by m · s, extension of the back end by s · m.

Definition 1 (Queue iots). Let M be a set. The queue iots over M is given by Q�
M =

((I, O, T ), S, s0, Δ), where I = {m! | m ∈ M}, O = {m? | m ∈ M}, T = ∅;
S = {s | s ∈ M∗}, s0 = ε; and Δ ⊆ S × (I ∪ O ∪ T ∪ {τ}) × S is the smallest
relation such that
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1. for all m! ∈ I and all s ∈ S, there exists (s, m!, s · m) ∈ Δ,
2. for all m? ∈ O and all m · s ∈ S, there exists (m · s, m?, s) ∈ Δ.

For an iol (I, O, T ) and a set of labels M we define the sets of labels IM? = {l? | l ∈
I ∩ M} ∪ (I \ M), OM ! = {l! | l ∈ O ∩ M} ∪ (O \ M) and analogously for IM ! and
OM?. If I ⊆ M or O ⊆ M we write I?, I! or O!, O? respectively. The relabelling for
buffered communication βM : (I, O, T ) → (IM?, OM !, T ) is defined by βM (l) = l? if
l ∈ I ∩ M , βM (l) = l! if l ∈ O ∩ M , and βM (l) = l otherwise.

Specialised Relabellings. For the computation of the behaviours of components and
assemblies we employ several relabelling functions, which specialise the relabelling
introduced in Sect. 2.1. These relabellings are needed for creating shared labels when
I/O-transition systems, representing behaviours, are composed. Even for asynchronous
compositions shared labels will be needed for appropriate synchronisations with queue
labels. We assume a primitive domain Nm of names.

A prefix relabelling prefixes all labels in an iots by a given name. For an iol L =
(I, O, T ) and some name n ∈ Nm, we define the iol n.L = (n.I, n.O, n.T ) where
n.I = {n.i | i ∈ I} and similarly for n.O and n.T . The prefix relabelling ρn : L →
n.L is defined by ρn(l) = n.l for l ∈

⋃
L. Given an iots A and a name n ∈ Nm, we

write n.A for the iots Aρn.
A match relabelling maps differently prefixed labels to labels with a single common

prefix. For an iol L = (I, O, T ), X ⊆ Nm and y ∈ Nm, we define the iol Lμ(X,y) =
(Iμ(X,y), Oμ(X,y), Tμ(X,y)) where Iμ(X,y) = {y.l | ∃x ∈ X . x.l ∈ I} ∪ {l | l ∈
I∧∀x ∈ X . l �= x.l′} and analogously for Oμ(X,y) and Tμ(X,y). The match relabelling
μ(X,y) : L → Lμ(X,y) is defined by μ(X,y)(x.l) = y.l if x ∈ X and x.l ∈

⋃
L, and

μ(X,y)(l′) = l′ otherwise.
For an iol L = (I, O, T ), X ⊆ Nm and y ∈ Nm, a (binary) synchronisation rela-

belling σ(X,y) is given by a match relabelling μ(X,y) with |X | = 2 and T = Tμ(X,y).
An asynchronous relabelling α(X,y) is given by the composition σ(X,y) ◦ βM of a re-
labelling βM for buffered communication (cf. above) with M = {x.l ∈ I ∪ O | x ∈
X, l ∈ Nm} and a synchronisation relabelling σ(X,y). Finally, a relay relabelling ρ(x,y)
is given by a match relabelling μ(X,y) with X = {x}.

4.2 Formalisation of Ports and Connectors

Ports. For the formalisation of ports we assume a domain Port of ports (more precisely,
port types), a domain If of interfaces and a domain Msg of messages, together with
functions msg : If → ℘Msg to return the messages constructed from the operations of
an interface, and prv : Port → If and req : Port → If for the provided and required
interfaces of a port such that for all P ∈ Port, msg(prv(P ))∩msg(req(P )) = ∅. For a
port P we write msg(P ) for msg(prv(P )) ∪ msg(req(P )). We also assume a domain
of port declarations PortDcl with a function nm : PortDcl → Nm for the name and a
function ty : PortDcl → Port for the port (type); we write p : P for a port declaration
d with nm(d) = p and ty(d) = P .

If ports are used for asynchronously communicating components, a queue iots is
defined with respect to the messages provided at the particular port.
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Definition 2 (Queue of a port). The queue of a port (type) P is given by que(P ) =
Q�

msg(prv(P )).

For each port P ∈ Port we assume given its protocol (specification), written prot(P ),
which is an I/O-transition system ((I, O, T ), Q, q0, Δ) with I = msg(prv(P )), O =
msg(req(P )) and T = ∅.

Connectors. For building component assemblies and composite components we will
connect port declarations of components. We assume a domain Conn of connectors
(more precisely, connector types) with a function ports : Conn → ℘PortDcl yielding
the connected port declarations such that |ports(K)| = 2 for each K ∈ Conn, i.e. we
consider binary connectors. We assume a domain of connector declarations ConnDcl
with a function nm : ConnDcl → Nm for the name and ty : ConnDcl → Conn for
the connector (type); we write k : K for a connector declaration d with nm(d) = k and
ty(d) = K and we write k : (p : P, q : Q) if ports(K) = {p : P, q : Q}.

The domain Conn has two disjoint sub-domains AsmConn ⊆ Conn, DlgConn ⊆
Conn of assembly and delegate connectors, resp. Assembly connectors are used to con-
nect port declarations of components when building up a component assembly. For an
assembly connector with port declarations {p1 : P1, p2 : P2} the required interface
req(P1) has to be equal to the provided interface prv(P2) and vice versa. There are
again two disjoint sub-domains AsynchConn ⊆ AsmConn, SynchConn ⊆ Conn for
asynchronous and synchronous connectors, resp.

Delegate connectors are used to connect open ports of an assembly with the relay
ports of a surrounding composite component. For a delegate connector the provided
and required interfaces of its port declarations must coincide.

Asynchronous connectors are used for asynchronous communication between the
ports of components. Hence, they must show a buffering behaviour on each end of the
connector in accordance with the messages that can be received (i.e. are provided) at a
particular port.

Definition 3 (Buffering connector behaviour). The buffering behaviour of an asyn-
chronous connector k : (p : P, q : Q) is given by buf (k : (p : P, q : Q)) =
k.(que(P ) ⊗ que(Q)).

To obtain a uniform definition of assembly behaviour below (Def. 4) we need for tech-
nical reasons a notion of “empty iots” which acts as a neutral element w.r.t. the product
of iotss. Define 1 to be an iots (L, S, s0, Δ) with

⋃
L = ∅, S = {s0} and Δ = ∅. If a

connector k : K is synchronous we set buf (k : K) = 1.

4.3 Formalisation of Components and Assemblies

Components. We assume a domain Cmp of components (more precisely, component
types) and a function ports : Cmp → ℘PortDcl returning the ports declared for a
component. For a component C and port declaration p : P we write C[p : P ] to
indicate that p : P ∈ ports(C). The port names p used in port declarations p : P of
one component C must be unique (but this is not necessary for port types P ). Like for
ports and connectors, we assume a domain of component declarations CmpDcl with a
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function nm : CmpDcl → Nm for the name and a function ty : CmpDcl → Cmp for
the component (type); we write c : C for a component declaration d with nm(d) = c
and ty(d) = C. The ports of a component declaration are given by ports(c : C) =
{c.p : P | p : P ∈ ports(C)}.

For each component (type) C ∈ Cmp there is a derived observable behaviour, writ-
ten obs(C), which is an iots ((I, O, T ), Q, q0, Δ) with I =

⋃
{p.msg(prv(P )) | p :

P ∈ ports(C)}, O =
⋃
{p.msg(req(P )) | p : P ∈ ports(C)} and T = ∅. Hence, the

observable labels of a component (type) are just the labels according to the (provided
and required) messages of the ports of the component prefixed with the port name in
the corresponding port declaration. The only additional action that can occur in the ob-
servable behaviour of a component is the invisible action τ . As already indicated in the
component metamodel in Fig. 1 the observable behaviour of a component is a derived
behaviour. Its definition depends on whether the component is simple or composite;
cf. Def. 5 and Def. 6 below. The observable behaviour of a component declaration
c : C is given by obs(c : C) = c.obs(C).

Assemblies. Let us now formalise the static structure and the behaviour of component
assemblies. An assembly contains a set of component declarations and a set of connec-
tor declarations which connect ports (more precisely, the connector declarations connect
port declarations belonging to component declarations of the assembly). We assume a
domain Asm of assemblies with functions cmps : Asm → ℘CmpDcl returning an
assembly’s declared components and conns : Asm → ℘ConnDcl yielding its declared
connectors. The component names c used in component declarations c : C of an assem-
bly a must be unique (but this is not necessary for the component types C). Similarly,
connector names within the assembly must be unique. For an assembly a we define the
subset of asynchronous connectors by acs(a) ⊆ conns(a) such that k : K ∈ acs(a) iff
K ∈ AsynchConn, and the subset of synchronous connectors by scs(a) ⊆ conns(a)
such that k : K ∈ scs(a) iff K ∈ SynchConn.

An assembly a ∈ Asm has to be well-formed: (i) it shows only assembly connectors,
i.e., if k : K ∈ conns(a), then K ∈ AsmConn; (ii) only ports of components inside
a are connected, i.e., for all k : K ∈ conns(a) we have that ports(K) ⊆

⋃
{ports(c :

C) | c : C ∈ cmps(a)}; and (iii) there is at most one connector for each port, i.e., if
c.p : P ∈

⋃
{ports(c : C) | c : C ∈ cmps(a)} and k : K, k′ : K ′ ∈ conns(a) with

c.p : P ∈ ports(K) ∩ ports(K ′), then k : K = k′ : K ′.
To retrieve component declarations from port declarations within an assembly a we

define cmp :
⋃
{ports(c : C) | c : C ∈ cmps(a)} → cmps(a) by cmp(c.p : P ) =

c : C if c.p : P ∈ ports(c : C). The components of an assembly a may show open
ports which are not connected and we let open(a) =

⋃
{ports(c : C) | c : C ∈

cmps(a)} \
⋃
{ports(K) | k : K ∈ conns(a)}.

Let us now focus on the definition of the behaviour of an assembly. The idea is that
the behaviour of an assembly is determined by the composition of the observable be-
haviours of the components occurring in the assembly. But, of course, the composition
must be defined in accordance with the possible communications between components
which are connected via their ports. Since connectors may be asynchronous the buffer-
ing behaviour of connectors (cf. Def. 3) plays a crucial role. Moreover, some matching
relabellings are necessary to achieve the desired behaviour.
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c : C p : P
c.p.m

α�→ k.m? k.m! α←� d.q.m

comp.
in

qu.
out

qu.
in

comp.
out

d : Dq : Q
c.p.n

α�→ k.n! k.n? α←� d.q.n
comp.

out
qu.
in

qu.
out

comp.
in

m ∈ prv(P ) = req(Q)

n ∈ prv(Q) = req(P )

Fig. 5. Assembly with asynchronous connector

Figure 5 illustrates how the behaviour of an assembly with two asynchronously com-
municating components is constructed. There are two component declarations c : C and
d : D. The component type C has one port declaration p : P which, in the context of
the assembly with component declaration c : C, is considered as a port declaration
c.p : P to ensure uniqueness of port names within an assembly. Similarly, the com-
ponent type D has one port declaration q : Q. Thus the messages sent out from the
component c via its port p have the form c.p.n where n is a message of the required
interface of P . The two ports are connected by a connector declaration of the form
k : (c.p : P, d.q : Q). Thus the required interface of P must coincide with the provided
interface of Q. According to the buffering behaviour of the connector k there is a queue
que(Q) (cf. Def. 2) which allows inputs of the form k.n! with n being a message ac-
cording to the provided interface of Q. To achieve that the issued message c.p.n will
indeed be put into the queue que(Q), we use a matching relabelling α which maps c.p.n
to k.n!. The message n can be dequeued from que(Q) later on with the action k.n?.
Since the component d inputs on its port q messages of the form d.q.n we use again the
matching relabelling α which now maps d.q.n to k.n?. The communication in the other
direction works analogously.

Figure 6 illustrates how the behaviour of an assembly with two synchronously com-
municating components is constructed. Here, the necessary relabelling to synchronise
input and output actions is much easier. Indeed, in this case a message c.p.n sent from
component c via its port p must be matched with the input action d.q.n on the port q
of the component d. For this purpose both actions are simply matched to the label k.n
with the relabelling σ, where k is again the connector’s name.

c : C p : P
c.p.m

σ�→ k.m
σ←� d.q.m

comp.
in

comp.
out

d : Dq : Q
c.p.n

σ�→ k.n
σ←� d.q.n

comp.
out

comp.
in

m ∈ prv(P ) = req(Q)

n ∈ prv(Q) = req(P )

Fig. 6. Assembly with synchronous connector
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For general assemblies, we apply the match relabellings defined in Sect. 4.1 to define
the relabelling α for asynchronous and σ for synchronous connectors.

α ≡
⋃
{α({c.p,d.q},k) | k : K ∈ acs(a) . ports(K) = {c.p : P, d.q : Q}} ,

σ ≡
⋃
{σ({c.p,d.q},k) | k : K ∈ scs(a) . ports(K) = {c.p : P, d.q : Q}} .

We have now the technical ingredients to define the behaviour of an assembly. In the
definition the successive application of α and σ cannot lead to conflicts because both
relabellings are disjoint. Note also that in the case of synchronous connectors buf (k :
K) is trivial as explained in Sect. 4.2. Moreover, the assembly behaviour is well-defined
because all participating behaviours are composable. This is due to the disjointness of
provided and required operations on port types, to the uniqueness of names for ports (in
component declarations) as well as for components and connectors (in the assembly),
and to the commutativity and associativity of the composition operator for iotss.

Definition 4 (Assembly behaviour). The behaviour of an assembly a is given by

beh(a) =
⊗

c:C∈cmps(a)(obs(c : C)ασ) ⊗
⊗

k:K∈conns(a) buf (k : K) .

We write 〈C;K〉 for an assembly a with the set of component declarations cmps(a) = C
and the set of connector declarations conns(a) = K.

Example 2 (Assembly behaviour). The static structure of the Bank–ATM application
in Fig. 2 is formally represented by an assembly 〈bank : Bank, atm : Atm; ab : Bat〉. The
assembly behaviour, shown in Fig. 4, is obtained from the composition of the observ-
able behaviours of the components Bank and Atm with the buffering behaviour of the
asynchronous connector Bat:

beh(〈bank : Bank, atm : Atm; ab : Bat〉) =
obs(bank : Bank)ασ ⊗ obs(atm : Atm)ασ ⊗ buf (ab : Bat) .

Simple Components. We assume a sub-domain SCmp ⊆ Cmp of simple components.
Each SC ∈ SCmp has a user defined internal behaviour specification beh(SC), which
is an iots ((I, O, T ), Q, q0, Δ) with I = {p.msg(prv(P )) | p : P ∈ ports(SC)} and
O = {p.msg(req(P )) | p : P ∈ ports(SC)}. The observable behaviour of a simple
component SC is derived from its internal behaviour specification by hiding all internal
labels. Technically this is achieved with the hiding operator ξ; see Sect. 2.

Definition 5 (Observable behaviour of simple component). The observable behaviour
of a simple component SC is given by obs(SC) = beh(SC)ξ.

Example 3 (Observable behaviours). The observable behaviour hides internal transi-
tions, i.e. relabels internal transition to τ . In order to keep our running example simple
and illustrative we refrained from modelling internal behaviour and assumed observable
behaviours without τ transitions instead (cf. Fig. 3).

Composite Components. Composite components are constructed by encapsulating an
assembly and by connecting, with delegate connectors, the open ports of the assem-
bly with relay ports of the composite component. Formally, we assume a sub-domain
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CCmp ⊆ Cmp of composite components, disjoint to SCmp and functions asm :
CCmp → Asm returning the underlying assembly of a composite component, and
conns : CCmp → ℘ConnDcl returning the connectors declared in a composite compo-
nent. Similar to assemblies we require a composite component CC to be well-formed:
(i) it shows only delegate connectors, i.e., if k : K ∈ conns(CC), then K ∈ DlgConn;
(ii) all open ports of the asm(CC) are connected, i.e., for all c.p : P ∈ open(asm(CC))
there is k : K ∈ conns(CC) such that c.p : P ∈ ports(K); and (iii) all relay ports are
connected, i.e., for all r : R ∈ ports(CC) there is a unique k : K ∈ conns(CC) with
ports(K) = {c.p : P, r : R} and c.p : P ∈ open(asm(CC)).

The observable behaviour of a composite component is derived from the behaviour
of its underlying assembly by hiding all internal actions, which in the case of assemblies
are the communications on the connectors, and by matching the labels on the open ports
of the assemblies with the labels on the relay ports in accordance with the delegate
connectors.

Definition 6 (Observable behaviour of composite component). The observable be-
haviour of a composite component CC is given by

obs(CC) = (beh(asm(CC))ξ)ρ ,

where ρ =
⋃
{ρ(c.p,r) | k : K ∈ conns(CC) . ports(K) = {c.p : P, r : R}}.

We write 〈a;P ;K〉 for a composite component CC with assembly asm(CC) = a, set
of (relay) port declarations ports(CC) = P and set of (delegate) connector declarations
conns(CC) = K.

Example 4 (Observable behaviour of composite components). Since the Bank–Atm ap-
plication is a closed system, the observable behaviour of the composite component
〈〈bank : Bank, atm : Atm; ab : Bat〉; ∅; ∅〉 consists of τ -transitions only.

4.4 Buffered Components

The assembly behaviour has been defined on the basis of connectors which may show
an asynchronous buffering behaviour. We show that the assembly behaviour can also
be computed by rearranging the buffers in such a way that they do not belong to the
connectors but to the components. For this purpose we introduce a new kind of compo-
nent behaviour which integrates observable behaviour and message buffers for a single
component based on a notion of buffered iotss.

An iots A = (L, S, s0, Δ) is without queue labels if L does not contain labels of the
form m? or m! (dequeue and enqueue labels of queue iotss; cf. Def.1).

Lemma 1. If A = ((I, O, T ), S, s0, Δ) is without queue labels, X ⊆ I and Y ⊆ O,
then AβX∪Y and Q�

X are composable. ��

The relabelling βX∪Y , defined in Sect. 4.1, prepares A on the one hand for the syn-
chronisation with its queue Q�

X , and, on the other hand for synchronisation with an iots
which provides matching inputs for the asynchronous outputs of A on Y .
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Definition 7 (Buffered iots). Let A = ((I, O, T ), S, s0, Δ) be an iots without queue
labels. Let X = {X1, . . . , Xn} where Xi ⊆ I and Xi ∩ Xj = ∅ for all i �= j ∈
{1, . . . , n}. The buffered iots for A with buffered input X and buffered output Y ⊆ O
is given by

ΩX,Y (A) = AβX1∪···∪Xn∪Y ⊗ Q�
X1

⊗ · · · ⊗ Q�
Xn

,

If X = I and Y = O, then the iots is completely buffered and we write Ω(A).

Lemma 2. If A = ((I, O, T ), S, s0, Δ) is without queue labels, X = {X1, . . . , Xn}
where Xi ⊆ I and Xi ∩ Xj = ∅ for all i �= j ∈ {1, . . . , n}, and Y ⊆ O, then
L(ΩX,Y (A)) = (I(X1∪···∪Xn)!, OY !, T ∪ (I(X1∪···∪Xn)? \ I)). ��

Buffered iotss are later used to develop and analyse notions of refinement and compati-
bility on the level of iotss. The results are then applied to our formal component model.
Therefore, we detail in the following on buffered iotss and their intended application as
a formal representation of asynchronously communicating components.

Example 5 (Buffered iots). Buffered iotss for the observable behaviour of components
are obtained from their composition with input queues defined w.r.t. the ports of the
given component. For instance, the Bank component is equipped with one port only,
therefore we have ΩX,Y (obs(Bank)) = obs(Bank)βX∪Y ⊗ Q�

X , where X = {{a.m |
m ∈ {verifyPin, withdraw}}} and Y = {a.m | m ∈ {pinOk, pinNotOk, giveMoney}}.

Definition 8 (Communication behaviour of component). The communication be-
haviour of a component C buffered on a set of port declarations P is given by

comP(C) = ΩX,Y (obs(C)) ,

where X = {Xp:P | p : P ∈ P ∩ ports(C)}, Xp:P = {p.m | m ∈ msg(prv(P ))},
Y = {p.m | p : P ∈ P ∩ ports(C) ∧ m ∈ msg(req(P ))}.

The communication behaviour of a component declaration c : C w.r.t. a set of port
declarations P ⊆ ports(C) is given by comP(c : C) = c.comP(C).

In order to obtain a characterisation of assembly behaviour in terms of communicat-
ing buffered components we have to ensure commutativity and associativity of compo-
sitions of buffered iotss. Concerning composability we record only the special case of
completely buffered iotss, which is later needed in our analysis.

Lemma 3. Let A and B be iotss without queue labels. If A and B are composable,
then Ω(A) and Ω(B) are composable. ��

The lemma holds also for arbitrary buffered iotss, if we ensure that the input partitions
determining the asynchronous input of one iots is consistent with the relabelling for
asynchronous output of its communication partner. As a consequence the composition
of buffered iotss is associative and commutative. The proof of these facts is tedious but
rather straightforward.

Definition 8 includes the synchronisation of the observable behaviour of a compo-
nent with its input queues. By composition of communication behaviours, we syn-
chronise output transitions of one component behaviour with input transitions of the
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queues of other components. Hence we can obtain an assembly behaviour by com-
position of communication behaviours of components which is equivalent to Def. 4.
For taking into account the names of asynchronous connectors, we replace the asyn-
chronous relabelling α used in Def. 4 by a slightly simpler relabelling, defined by
κ ≡

⋃
{μ({c.p,d.q},k) | k : K ∈ acs(a) . ports(K) = {c.p : P, d.q : Q}}.

Proposition 1. If a is an assembly, then beh(a) =
⊗

c:C∈cmps(a)(comP(c : C)κσ),
where P =

⋃
{ports(K) | k : K ∈ acs(a)}. ��

5 Connection-Safe Assemblies

A safe communication of two components over a synchronous connector is charac-
terised by the fact that if one component is about to send a message the other component
is indeed willing to accept this message. For the iotss underlying the components this
means that if the one iots has reached a state where it does an output, the other iots is
in a state where it does the corresponding input. This idea of synchronous safe commu-
nication is captured by the following notion of compatibility of iotss as introduced by
Gouda, Manning, and Yu for communicating finite state machines [17] and used by de
Alfaro and Henzinger for iotss [4], which is based on the reachable states of iotss: The
reachable states R(A) of an iots A = (L, S, s0, Δ) are inductively defined as follows:
s0 ∈ R(A); and if s ∈ R(A) and there is an a ∈

⋃
L ∪ {τ} and an s′ ∈ S with

(s, a, s′) ∈ Δ, then s′ ∈ R(A).

Definition 9 (Compatibility). Let A = ((IA, OA, TA), SA, s0,A, ΔA) and B = ((IB ,
OB, TB), SB, s0,B, ΔB) be composable iotss. B is a compatible context for A, if for
all l ∈ OA ∩ IB and all (sA, sB) ∈ R(A ⊗ B), if (sA, l, s′A) ∈ ΔA, then there exists
(sB, l, s′B) ∈ ΔB . The iotss A and B are compatible if A is a compatible context for B
and vice versa.

Example 6 (Compatible iotss). The iotss representing the observable behaviours of the
components Bank and Atm in Fig. 3 are obviously compatible. All outputs are immedi-
ately synchronised in both directions (modulo port relabelling).

For asynchronously communicating components which are connected by buffers the sit-
uation of safe communication is different: We have to ensure that each message sent out
by one component is eventually understood by the receiving component. For technical
reasons we restrict our attention to infinite communication sequences. Then safe com-
munication means that if we observe an infinite communication sequence with output
labels putting a message into a buffer and input labels taking a message from a buffer
we have to be able to pair off the corresponding output and input labels. We thus base
the notion of buffered compatibility of buffered iotss as an analogue to (synchronous)
compatibility of iotss on infinite label sequences and require for buffered compatibility
a pairing function for sending and taking. An infinite run of an iots A = (L, S, s0, Δ)
is an infinite sequence s0, l0, s1, l1, . . . with sn ∈ S, ln ∈

⋃
L, and (sn, ln, sn+1) ∈ Δ̂

for all n ∈ N. An infinite weak trace of A is a sequence l0, l1, . . . with ln ∈
⋃

L such
that there is a run s0, l0, s1, l1, . . . of A.
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/s.verifyPin

s.giveMoney/

s.pinOk/

/s.withdraw

a.verifyPin/

/a.giveMoney

a.withdraw/

/a.pinOk

Fig. 7. Example for buffered compatible iotss

Definition 10 (Buffered compatibility). Let (L, S, s0, Δ) be an iots and μ : U → V
a mapping with U, V ⊆

⋃
L. An infinite weak trace l0, l1, . . . of (L, S, s0, Δ) is μ-

buffered compatible, if for each u ∈ U there is a bijection ϕu : {k ∈ N | lk = u} →
{k ∈ N | lk = μ(u)} with k < ϕu(k).

Let A and B be composable iotss without queue labels and L(A) = (IA, OA, TA)
and L(B) = (IB , OB, TB). Let μ : {m! | m ∈ OA ∪ OB} → {m? | m ∈ IA ∪ IB} be
defined by μ(m!) = m?. An infinite weak trace of Ω(A)⊗Ω(B) is buffered compatible,
if it is μ-buffered compatible. A and B are buffered compatible, if all infinite weak
traces of Ω(A) ⊗ Ω(B) are buffered compatible.

Example 7 (Buffered compatible iotss). Asynchronous communication allows for si-
multaneous sending of messages as illustrated, for instance, in the iotss of Fig. 7. Com-
pared to the behaviours known from Fig. 3, the order of s.withdraw and s.pinOk in the
right-hand iots was swapped and both iots were reduced to one path. The composition of
the corresponding buffered iotss results in an iots where the possibility of simultaneous
sending is modelled by the respective queue actions (cf. Fig. 8).

Obviously the iotss in Fig. 7 are not synchronously compatible, due to the output of
the messages a.pinOk and s.withdraw. However, they are buffered compatible. Figure 8
shows the product iots, which would be obtained along appropriate relabellings (cf.
Prop. 1) and an asynchronous connector ab : Bat as above. The infinite weak traces of
the product allow to match the enqueue actions ab.verifyPin!, ab.withdraw!, etc. with their
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Fig. 8. Product of buffered iotss with simultaneous sending
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dequeuing counterparts ab.verifyPin?, ab.withdraw?, etc. as required by the definition of
μ-buffered compatibility.

In the context of component assemblies, compatibility of two synchronously or asyn-
chronously communicating iotss has to be lifted to an arbitrary number of communicat-
ing components. We therefore introduce the notion of connection-safe assemblies.

Definition 11 (Connection-safety). An assembly a = 〈c1 : C1, . . . , cn : Cn;K〉 is
connection-safe, if for all connector declarations k : (ci.p : P, cj .q : Q) ∈ K the
following conditions hold:

1. If k is synchronous, let obs(ci : Ci) = (Lci , Sci , s0,ci, Δci) and obs(cj : Cj) =
(Lcj , Scj , s0,cj , Δcj ). Then for all (sc1 , . . . , scn , K) ∈ R(beh(a)), if (sci , ci.p.m,
s′ci

) ∈ Δci for some m ∈ msg(req(P )), then there is a (scj , cj .q.m, s′cj
) ∈ Δcj ;

and if (scj , cj.q.m, s′cj
) ∈ Δcj for some m ∈ msg(req(Q)), then there is a

(sci , ci.p.m, s′ci
) ∈ Δci .

2. If k is asynchronous, let μ : {k.m! | m ∈ msg(req(P )) ∪ msg(req(Q))} →
{k.m? | m ∈ msg(prv(Q)) ∪ msg(prv(P ))} with μ(k.m!) = k.m?. Then all
infinite weak traces of beh(a) are μ-buffered compatible.

Note that for assemblies consisting of just two components with one port each and
being connected by a single either synchronous or asynchronous connector, connection
safety just means (synchronous) compatibility or buffered compatibility of the iotss
underlying the communication behaviour of components of Def. 8.

The different concepts of compatibility for rendezvous and buffered communica-
tion raise the question whether synchronous compatibility of two iotss induces their
buffered compatibility when they are put into an asynchronous context; we concentrate
on closed compositions, where an iots ((I, O, T ), S, s0, Δ) is closed if I = O = ∅. In
order to answer this question, we first extend a result by Cécé and Finkel [15, Thm. 35]
that, under some restrictions, two compatible finite state machines yield, when com-
municating through queues, a so-called half-duplex system. In our context of iotss,
a composition Ω(A) ⊗ Ω(B) is half-duplex, if in every reachable state ((sA, qA),
(sB, qB)) ∈ R(Ω(A)⊗Ω(B)) one of the queues is empty: qA = ε∨qB = ε. The proof
of this result was by contradiction and used the restriction that the two compatible com-
municating finite state machines are deterministic and have no so-called mixed states,
i.e., states where both an input and an output can happen. For iotss, this corresponds to
input separation, that is, for each state showing some outgoing input transition all out-
going transitions are labelled by inputs: An iots A = (L, S, s0, Δ) with L = (I, O, T )
is input separated, if for all s ∈ R(A) with (s, l, s′) ∈ Δ for some s′ ∈ S and l ∈ I ,
then {a ∈

⋃
L∪{τ} | ∃s′ ∈ S . (s, a, s′) ∈ Δ} ⊆ I . For example the iotss in Fig. 3 are

input separated, since all states with outgoing input transitions show only input transi-
tions. Input separation may be understood as a property which reflects single-threaded
execution: output and internal transitions succeeding an input are considered to encode
the reaction of the component to this input.

Moreover, the restriction to deterministic iotss would not be appropriate for our set-
ting because in the context of invisible actions non-determinism arises quite naturally.
After establishing the result that compatible, input separated iots A and B induce a half-
duplex asynchronous system Ω(A)⊗Ω(B) by a direct proof based on an invariant, we
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show that if we additionally require A and B to always eventually take an input, then A
and B are buffered compatible. An iots A = (L, S, s0, Δ) with L = (I, O, T ) is always
eventually inputting, if all weak infinite traces l0, l1, . . . show infinitely many ln ∈ I .

Lemma 4. Let A and B be composable, input separated iotss without queue labels,
and let A⊗B be closed. If A and B are compatible, then Ω(A)⊗Ω(B) is half-duplex.

Proof. Let us first fix some terminology: For an iots (L, S, s0, Δ) the transitive closure
of Δ is the relation Δ∗ ⊆ S×

⋃
L∗×S defined inductively as follows: (s, ε, s′) ∈ Δ∗, if

s = s′; (s, l ·λ, s′) ∈ Δ∗, if there is an s′′ ∈ S with (s, l, s′′) ∈ Δ, and (s′′, λ, s′) ∈ Δ∗.
The transitive τ -closure of Δ is the relation Δ̂∗ ⊆ S ×

⋃
L
∗ × S defined inductively

by: (s, ε, s′) ∈ Δ̂∗, if (s, τ, s′) ∈ Δ̂; (s, l · λ, s′) ∈ Δ̂∗, if there is an s′′ ∈ S with
(s, l, s′′) ∈ Δ̂, and (s′′, λ, s′) ∈ Δ̂∗. The safe label sequences Δ∗(s) ⊆

⋃
L
∗ in a

state s ∈ S are inductively given by: ε ∈ Δ∗(s) for all s ∈ S; l · λ ∈ Δ∗(s), if there
is an s′ ∈ S with (s, l, s′) ∈ Δ, and for all s′ ∈ S with (s, l, s′) ∈ Δ it holds that
λ ∈ Δ∗(s′). For an iots A = ((I, O, T ), S, s0, Δ) we write IA for I , OA for O and
similarly for the other parts.

Define, using the hiding operator ξ defined in Sect. 2.1,

R = {(((sA, qA), (sB, qB)), (rA, rB)) |
((sA, qA), (sB, qB)) ∈ R(Ω(A) ⊗ Ω(B)) ∧ (rA, rB) ∈ R(A ⊗ B) ∧
((qA = ε ∧ qB = ε ∧ (sA, sB) = (rA, rB)) ∨
(qA = ε ∧ qB �= ε ∧ sB = rB ∧ (rA, qB, sA) ∈ Δ̂∗

Aξ ∧ qB ∈ Δ∗
B(rB) ∨

(qA �= ε ∧ qB = ε ∧ sA = rA ∧ (rB , qA, sB) ∈ Δ̂∗
Bξ ∧ qA ∈ Δ∗

A(rA)))}

We show that for all reachable ((sA, qA), (sB, qB)) ∈ R(Ω(A) ⊗ Ω(B)) it holds
that ∃(rA, rB) . (((sA, qA), (sB, qB)), (rA, rB)) ∈ R. Then, by definition of R, al-
ways one of the queues in Ω(A)⊗Ω(B) is empty. In fact, (((s0,A, ε), (s0,B, ε)), (s0,A,
(s0,B))) ∈ R. Let (((sA, qA), (sB, qB)), a, ((s′A, q′A), (s′B , q′B))) ∈ ΔΩ(A)⊗Ω(B). We
only consider transitions originating from Ω(A), the cases for transitions from Ω(B)
are symmetric.

If a ∈ TA ∪ {τ}, then (sA, a, s′A) ∈ ΔA and qA = q′A, (sB, qB) = (s′B , q′B). If
qA = qB = ε, then (sA, sB) = (rA, rB) and thus (((s′A, qA), (sB, qB)), (s′A, rB)) ∈
R. If qA = ε and qB �= ε, then (((s′A, qA), (sB , qB)), (rA, rB)) ∈ R. But qA �= ε and
qB = ε is impossible, as then sA = rA and hence A would not be input separated, since
qA ∈ Δ∗

A(rA).
If a ∈ TΩ(A) \ TA, then a = m? for some m ∈ IA, (sA, m, s′A) ∈ ΔA, qA =

m · q′A, (sB , qB) = (s′B, q′B). Thus sA = rA, (rB , qA, sB) ∈ Δ̂∗
Bξ, and qA ∈ ΔA(sA).

Moreover, q′A ∈ Δ∗
A(s′A). If q′A = ε, then ((rA, rB), m, (s′A, sB)) ∈ Δ∗

Aξ⊗Bξ and

(((s′A, q′A), (sB, qB)), s′A, sB) ∈ R; if q′A �= ε, ((rA, rB), m, (s′A, r′B)) ∈ Δ̂∗
Aξ⊗Bξ

with (r′B , q′A, sB) ∈ Δ̂Bξ and hence (((s′A, q′A), (sB , qB)), r′A, r′B) ∈ R.
If a ∈ OΩ(A), then a = m! for some m ∈ OA, (sA, m, s′A) ∈ ΔA, qA = q′A,

sB = s′B , q′B = qB · m. If qA = qB = ε, then (sA, sB) = (rA, rB). As (rA, rB) ∈
R(A ⊗ B) and because A and B are compatible, there is a state (s′A, s′B) ∈ SA⊗B

with ((sA, sB), m, (s′A, s′B)) ∈ ΔA⊗B and thus (((s′A, qA), (sB, qB ·m)), (rA, rB)) ∈
R. If qA = ε and qB �= ε, then sB = rB . We have (rA, qB · m, s′A) ∈ Δ̂∗

Aξ . In
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order to show that qB · m ∈ Δ∗
B(rB), let r′B ∈ SB with (rB , qB, r′B) ∈ Δ∗

B . Then
((rA, rB), qB , (sA, r′B)) ∈ Δ̂Aξ⊗Bξ and, in particular, (sA, r′B) ∈ R(A ⊗ B) and
hence, by the compatibility of A and B, we have (r′B , m, r′′B) ∈ ΔB . Thus (((s′A, qA),
(sB, qB · m)), (rA, rB)) ∈ R. But qA �= ε and qB = ε is impossible, as then sA = rA

and hence A would not be input separated, since qA ∈ Δ∗
A(rA). ��

Theorem 1. Let A and B be composable, input separated iotss without queue labels,
and let A ⊗ B be closed. Let A and B be always eventually inputting. If A and B are
compatible, then A and B are buffered compatible.

Proof. Let A and B be compatible. Then Ω(A) ⊗ Ω(B) is half-duplex by Lem. 4.
Consider an infinite weak trace λ of Ω(A) ⊗ Ω(B). As A and B are always eventually
inputting, λ shows infinitely many labels of the form m? with m an input label of A
and infinitely many labels of the form n? with n an input label of B. In each state of
Ω(A)⊗Ω(B) with an outgoing transition with a label marked with ? the corresponding
queue of A and B resp. is not empty, thus the queue of the other iots is empty. Hence
each output of Ω(A) and Ω(B) is eventually answered by an input of A and B resp.
and hence λ is buffered compatible. ��

Example 8 (Compatiblity and buffered compatibility). The theorem is applicable to the
iotss given by Fig. 3. The iotss are obviously input separated. They are compatible by
Ex. 6, and they are always eventually inputting, since all of their weak infinite traces
show infinitely many input labels. Therefore the iotss are indeed buffered compatible.
Note that the input assumption for A and B is necessary. The iots on the left-hand side
of Fig. 9 is not always eventually inputting and even though the iotss are synchronously
compatible, they are not buffered compatible. The sender may proceed infinitely often
with output actions while the receiver never dequeues resulting in an infinite weak trace
that is not μ-buffered compatible.

/m m/

Fig. 9. Buffered incompatible I/O-transition systems

As witnessed by Ex. 7 (Fig. 7), the converse of Thm. 1, that buffered compatibility
induces synchronous compatibility of the non-queued iotss, is not true in general.

6 Compositional Refinement of Connection-Safe Assemblies

When substituting a refined version of a component for another component in an assem-
bly context, it should be ensured that relevant properties of the original assembly are
preserved. In the following we introduce a notion of refinement of components based
on alternating simulations of interface automata [4] and show that, at least for binary
assemblies, component refinement is compositional and preserves connection-safety of
assemblies.
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6.1 Refinement of I/O-Transition Systems and Components

When an alternating simulation, as defined by de Alfaro and Henzinger [4], puts two
states of an abstract and a concrete behaviour in relation, each input of the abstract be-
haviour must be accepted as an input of the concrete behaviour and, conversely, each
output of a concrete behaviour must be an output of the abstract behaviour; these re-
quirements correspond to clauses (1) and (2) in the definition below. We adopt this gen-
eral idea, but formally extend the definition of alternating simulations in several points:
Since we study connection-safety of assemblies, we do not allow a concrete behaviour
to fall silent w.r.t. outputs, when the abstract behaviour showed some output; this con-
dition is inspired by one part of stuck-freedom introduced by Rajamani and Rehof [14]
and is represented in clause (5). As we are interested in the communication behaviour of
assemblies, we do not abstract from internal actions and use an action τ for invisible be-
haviour; we require concrete internal actions to exist on the abstract level by clause (3).
In contrast, concrete τ actions are optional on the abstract level as long as the iots-
simulation relation is taken into account (cf. clause 4). Abstract internal and τ actions
are treated by clause (6) and (7) like output actions in clause (5). Finally, and more tech-
nically, we remove the requirement of input determinism of interface automata, saying
that for each input label there is at most one successor state. Instead, we introduce the
weaker condition (8) below, that inputs of the concrete behaviour do not introduce more
non-determinism than the corresponding inputs in the abstract behaviour.

Definition 12. Let A = ((IA, OA, TA), SA, s0,A, ΔA) and C = ((IC , OC , TC), SC ,
s0,C , ΔC) be iotss such that IA ⊆ IC , OC ⊆ OA and TC ⊆ TA. A relation R ⊆
SA × SC is an alternating iots-simulation for A and C, if for all (sA, sC) ∈ R it holds
that

1. ∀l ∈ IA . ∀s′A ∈ SA . (sA, l, s′A) ∈ ΔA =⇒ (∃s′C ∈ SC . (sC , l, s′C) ∈ ΔC ∧
(s′A, s′C) ∈ R) ,

2. ∀l ∈ OC . ∀s′C ∈ SC . (sC , l, s′C) ∈ ΔC =⇒ (∃s′A ∈ SA . (sA, l, s′A) ∈ Δ̂A ∧
(s′A, s′C) ∈ R) ,

3. ∀l ∈ TC . ∀s′C ∈ SC . (sC , l, s′C) ∈ ΔC =⇒ (∃s′A ∈ SA . (sA, l, s′A) ∈ Δ̂A ∧
(s′A, s′C) ∈ R) ,

4. ∀s′C ∈ SC . (sC , τ, s′C) ∈ ΔC =⇒ (∃s′A ∈ SA . (sA, τ, s′A) ∈ Δ̂A ∧(s′A, s′C) ∈R),
5. (∃l′ ∈ OA . ∃s′′A ∈ SA . (sA, l′, s′′A) ∈ ΔA) =⇒ (∃l ∈ OA . ∃s′A ∈ SA . ∃s′C ∈

SC . (sA, l, s′A) ∈ ΔA ∧ (sC , l, s′C) ∈ ΔC ∧ (s′A, s′C) ∈ R) ,
6. (∃a′ ∈ TA . ∃s′′A ∈ SA . (sA, a′, s′′A) ∈ ΔA) =⇒ (∃a ∈ TA . ∃s′A ∈ SA . ∃s′C ∈

SC . (sA, a, s′A) ∈ ΔA ∧ (sC , a, s′C) ∈ ΔC ∧ (s′A, s′C) ∈ R) ,
7. (∃s′′A ∈ SA . (sA, τ, s′′A) ∈ ΔA) =⇒ (∃s′A ∈ SA . ∃s′C ∈ SC . (sA, τ, s′A) ∈

ΔA ∧ (sC , τ, s′C) ∈ ΔC ∧ (s′A, s′C) ∈ R) .
8. ∀l ∈ IA . (∃s′′A ∈ SA . (sA, l, s′′A) ∈ ΔA) =⇒ (∀s′C ∈ SC . (sC , l, s′C) ∈

ΔC =⇒ (∃s′A ∈ SA . (sA, l, s′A) ∈ ΔA ∧ (s′A, s′C) ∈ R)) ,

The iots C is a refinement of the iots A, written C � A, if there exists an alternating
iots-simulation R for A and C with (s0,A, s0,C) ∈ R.

The concept of refinement can be immediately transferred to components by consider-
ing their observable behaviours:
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a.verifyPin/

/a.giveMoney

a.withdraw/

/a.pinOk

Fig. 10. Refined behaviour of Bank (cf. Fig. 3)

Definition 13. A component C′ is a subtype of a component C, written C ≥ C′, if
ports(C) = ports(C′) and obs(C) � obs(C′).

Example 9 (Refinement). In the context of our Bank–ATM example, the iots in Fig. 10
refines the observable behaviour of the component Bank given in Fig. 3, where the
transition of outputting the message that the PIN is not correct has been removed. In
particular, the new behaviour is more deterministic than the old one.

6.2 Refinement of Compatible I/O-Transition Systems

Let us first consider refinements of synchronously compatible iotss. In [4], de Alfaro
and Henzinger proved that compatibility of input deterministic iots is preserved by their
notion of alternating simulations. We extend this result to general iotss and our extended
concept of refinement.

Theorem 2. Let A, B and C be iotss. Let A, B and C, B be composable, and let A⊗B
and C ⊗B be closed. Let A and B be compatible. If A�C, then A⊗B �C ⊗B and
C and B are compatible.

Proof. Let A = ((IA, OA, TA), SA, s0,A, ΔA), and similarly for B and C. Let A⊗B =
((IAB , OAB, TAB), SAB, s0,AB, ΔAB) and C⊗B = ((ICB , OCB, TCB), SCB, s0,CB,
ΔCB). Then IAB = OAB = ICB = OCB = ∅.

Let RAC be an alternating iots-simulation for A and C with (s0,A, s0,C) ∈ R. Let

R = {((sA, sB), (sC , sB)) | (sA, sC) ∈ RAC ∧ (sA, sB) ∈ R(A ⊗ B)} .

Then ((s0,A, s0,B), (s0,C , s0,B)) ∈ R. Let ((sA, sB), (sC , sB)) ∈ R. We have to check
clauses (1–8) for alternating iots-simulations for R. Since IAB = OAB = OCB = ∅,
clause (1), clause (2), clause (5) and clause (8) are satisfied vacuously. We only detail
clause (3) for l ∈ L(A) �� L(B); clause (6) for these labels is analogous to (3) and the
remaining cases merely transfer the alternating iots-simulation RAC to R.

Let l ∈ L(A) �� L(B) and ((sC , sB), l, (s′C , s′B)) ∈ ΔCB . Then l ∈ OA = IB or
l ∈ IA = OB and (sC , l, s′C) ∈ ΔC , (sB , l, s′B) ∈ ΔB . If l ∈ OA = IB , by clause (2)
for RAC , there is an s′A ∈ SA with (sA, l, s′A) ∈ Δ̂A and thus ((sA, sB), l, (s′A, s′B)) ∈
Δ̂AB and also ((s′A, s′B), (s′C , s′B)) ∈ R. If l ∈ IA = OB , then, since (sA, sB) ∈
R(A ⊗ B) and A and B are compatible, there is an s′′A ∈ SA with (sA, l, s′′A) ∈ ΔA.
Thus there is an s′A ∈ SA with (sA, l, s′A) ∈ ΔA and (s′A, s′C) ∈ RAC by clause (8).
Hence ((sA, sB), l, (s′A, s′B)) ∈ Δ̂AB and also ((s′A, s′B), (s′C , s′B)) ∈ R.
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In order to show the compatibility of C and B, let (sC , sB) ∈ R(C ⊗ B). Then
there is an (sA, sB) ∈ R(A ⊗ B) with ((sA, sB), (sC , sB)) ∈ R, by induction using
clause (3) for R. If (sC , l, s′C) ∈ ΔC with l ∈ OC ∪ TC , then there is an s′A ∈ SA with
(sA, l, s′A) ∈ ΔA by clause (2) for RAC and thus (sB, l, s′B) ∈ ΔB for some s′B ∈ SB

by the compatibility of A and B. If (sB , l, s′B) ∈ ΔB with l ∈ OB = IA, then there is
an s′A ∈ SA with (sA, l, s′A) ∈ ΔA by the compatibility of A and B. Thus there is an
s′C ∈ SC with (sC , l, s′C) ∈ ΔC by clause (1) for RAC . ��

From this theorem we immediately obtain the desired compositionality result for refine-
ment in the case of synchronously compatible iots.

Corollary 1. Let A, B, C, and D be iotss. Let A, B and C, B and C, D be composable,
and let A⊗B, C ⊗B, and C ⊗D be closed. Let A and B be compatible. If A�C and
B � D, then A ⊗ B � C ⊗ D and C and D are compatible. ��

Example 10 (Refinement and compatibility). The iotss for the behaviours of the Bank–
Atm application in Fig. 3 are compatible (modulo port relabelling). The iots in Fig. 10
is a refinement of the original behaviour of the Bank component. By application of
Thm. 2 to a synchronous composition of the iotss, we may replace the original Bank
behaviour by its refined version and obtain, first, that the composition is a refinement
of the original composition and, second, that the refined iots is still (synchronously)
compatible with the iots of the Atm behaviour.

For refinements in the context of buffered compatible asynchronous compositions the
analogue of Thm. 2 holds. Here, clauses (5), (6) and (7) of Def. 12 for keeping at least
one abstract output or internal label in the concrete behaviour are not only conceptually
relevant, but also play a major technical role. For technical reasons, we restrict ourselves
to a concrete input separated iots and we have to ensure that there are only infinite runs
of the composition: An iots A = (L, S, s0, Δ) is deadlock free, if for all s ∈ R(A)
there is an l ∈

⋃
L and an s′ ∈ S with (s, l, s′) ∈ Δ̂.

Theorem 3. Let A, B and C be iotss without queue labels. Let A, B and C, B be
composable, and let A⊗B and C ⊗B be closed. Let A and B be buffered compatible,
C input separated, and Ω(A) ⊗ Ω(B) deadlock-free. If A � C, then Ω(A) ⊗ Ω(B) �
Ω(C) ⊗ Ω(B) and C and B are buffered compatible.

Proof. Let A = (LA, SA, s0,A, ΔA), and similarly for B, C, Ω(A), Ω(B), and Ω(C).
Since A, B and C, B are composable, Ω(A), Ω(B) and Ω(C), Ω(B) are composable
by Lem. 3. Let Ω(A) ⊗ Ω(B) = ((IAB , OAB, TAB), SAB, q0,AB, ΔAB), Ω(C) ⊗
Ω(B) = ((ICB , OCB, TCB), SCB, s0,CB, ΔCB). By the closedness of A ⊗ B and
C ⊗ B, we have IA = OB = IC and OA = IB = OC , hence IΩ(A) = OΩ(B) =
IΩ(C) and OΩ(A) = IΩ(B) = OΩ(C), and hence IAB = OAB = ICB = OCB = ∅.
Furthermore TAB = TΩ(A) ∪ L(Ω(A)) �� L(Ω(B)) ∪ TΩ(B) with TA ⊆ TΩ(A).

Let RAC be an alternating simulation for A and C with (s0,A, s0,C) ∈ RAC . Let

R = {(((sA, q), (sB, qB)), ((sC , q), (sB , qB))) |
(sA, sC) ∈ RAC ∧ ((sA, q), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B))} .
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Then (((s0,A, ε), (s0,B, ε)), ((s0,C , ε), (s0,B, ε))) ∈ R. Let (((sA, q), (sB , qB)), ((sC ,
q), (sB, qB))) ∈ R. We have to check the clauses (1–8) for alternating iots-simulations
for R. Since IAB = OAB = OCB = ∅, clause (1), clause (2), clause (5) and clause (8)
are satisfied vacuously. We only detail clause (3) for l ∈ (TΩ(A) \ TA) ∪ (L(Ω(A)) ��

L(Ω(B))); clause (6) for such labels is analogous to (3) and the remaining cases merely
transfer the alternating iots-simulation RAC to R.

If l ∈ TΩ(A)\TA and (((sC , q), (sB, qB)), l, ((s′C , q′), (s′B , q′B))) ∈ ΔCB . Then l =
m? for m ∈ IA, (sC , m, s′C) ∈ ΔC , q = m·q′, and (sB, qB) = (s′B, q′B). Since Ω(A)⊗
Ω(B) is deadlock-free and A and B are buffered compatible, there is an a ∈

⋃
LA∪{τ}

and an s′′A ∈ SA with (sA, a, s′′A) ∈ ΔA; but a ∈ OA ∪ TA ∪ {τ} would contradict
the input separation of C at sC by clauses (5), (6) and (7) for RAC , respectively. Thus
a ∈ IA and a = m, since otherwise A and B would not be buffered compatible. In
particular, there is an s′A ∈ SA with (sA, m, s′A) ∈ ΔA such that (s′A, s′C) ∈ RAC by
clause (1) for RAC . Thus (((sA, m · q′), (sB , qB)), m?, ((s′A, q′), (sB , qB))) ∈ Δ̂AB

and also (((s′A, q′), (sB , qB)), ((s′C , q′), (sB, qB))) ∈ R.
If l ∈ L(Ω(A)) �� L(Ω(B)), then l = m! with either m ∈ OA = IB or m ∈

IA = OB . If m ∈ OA = IB , then (sC , m, s′C) ∈ ΔC , q = q′, sB = s′B , q′B =
qB · m. By clause (2) for RAC there is an s′A ∈ SA with (sA, m, s′A) ∈ Δ̂A and thus
(((sA, q), (sB, qB)), m!, ((s′A, q), (sB , qB · m))) ∈ Δ̂AB and also (((s′A, q), (sB , qB ·
m)), ((sC , q), (sB, qB · m))) ∈ R. If m ∈ IA = OB , then (sB , m, s′B) ∈ ΔB , q′ = q ·
m, sC = s′C , q′B = qB . Thus (((sA, q), (sB, qB)), m!, ((sA, q · m), (s′B, qB))) ∈ Δ̂AB

and also (((sA, q · m), (s′B, qB)), ((s′C , q · m), (s′B, qB))) ∈ R.
C and B are also buffered compatible: First, for each infinite run p0, l0, p1, l1, . . .

of Ω(C) ⊗ Ω(B) we can inductively construct a simulating run p′0, l0, p
′
1, l1 . . . of

Ω(A) ⊗ Ω(B) such that (pk, p′k) ∈ R for all k ∈ N: if (pk, p′k) ∈ R, then we have
(pk, lk+1, pk+1) ∈ Δ̂CB and thus there is a p′k+1 ∈ SAB with (p′k, lk+1, p

′
k+1) ∈ Δ̂AC

and (pk+1, p
′
k+1) ∈ RAC by clause (3) for R. Thus, if there would be an infinite weak

trace of Ω(C)⊗Ω(B) which is not buffered compatible, there would be an infinite weak
trace of Ω(A) ⊗ Ω(B) which is not buffered compatible, contradicting the buffered
compatibility of A and B. ��
From Thm. 3 we immediately obtain the desired compositionality result for the refine-
ment of buffered compatible iotss.

Corollary 2. Let A, B, C, and D be iotss without queue labels. Let A, B and C, B
and C, D be composable, and let A⊗B, C ⊗B, and C ⊗D be closed. Let C and D be
input separated. Let A and B be buffered compatible, and Ω(A ⊗ B) and Ω(C ⊗ B)
deadlock-free. If A � C and B � D, then Ω(A) ⊗ Ω(B) � Ω(C) ⊗ Ω(D) and C and
D are buffered compatible. ��
Example 11 (Refinement and buffered compatibility). As an example for the application
of Thm. 3 consider the observable behaviours in Fig. 3. Assume again, that the Bank
behaviour is refined by an iots as given by Fig. 10. In order to apply the theorem we
need to make sure that (1) the iotss in Fig. 3 are buffered compatible, (2) the product of
the corresponding buffered iotss is deadlock-free and (3) the refined behaviour is input
separated. (1) follows from Ex. 8, (2) is derived from the product in Fig. 4 and (3) is
obvious from Fig. 10.



178                                 

6.3 Substituting Components in Connection-Safe Assemblies

Having shown that refinement preserves (synchronous) compatibility and buffered com-
patibility, we can finally apply this result to the refinement of components in connection-
safe assemblies and show that, under some mild restrictions, connection-safety is pre-
served when substituting components by refined components. As a technical prerequi-
site we note that refinement is a pre-congruence w.r.t. relabellings which preserve the
kinds of labels:

Lemma 5. Let A and C be iotss with L(A) = (IA, OA, TA) and L(C) = (IC , OC , TC)
and IA ⊆ IC , OC ⊆ OA, and TA = TC . Let ρ : (IC , OA, TA) → (I, O, T ) be a re-
labelling with ρ(li) ∈ I , ρ(lo) ∈ O, ρ(lt) ∈ T for li ∈ IC , lo ∈ OA, and lt ∈ TA. If
A � C, then Aρ � Cρ. ��

Theorem 4. Let 〈c : C, d : D; k : K〉 be an assembly with ports(C) = {p : P} and
ports(D) = {q : Q} and K = (c.p : P, d.q : Q). Let C′ and D′ be components. If
k is asynchronous, let obs(C′) and obs(D′) be input separated and let beh(〈c : C, d :
D; k : K〉) and beh(〈c : C′, d : D; k : K〉 be deadlock-free. If C ≥ C′, D ≥ D′ and
〈c : C, d : D; k : K〉 is connection-safe, then 〈c : C′, d : D; k : K〉 is connection-safe.

Proof. Let a = 〈c : C, d : D; k : K〉 and a′ = 〈c : C′, d : D′; k : K〉. Then
beh(a) = obs(c : C)ασ ⊗ obs(d : D)ασ ⊗ buf (k : K) and beh(a′) = obs(c :
C′)ασ ⊗ obs(d : D′)ασ ⊗ buf (k : K). Moreover, beh(a) and beh(a′) are closed. Let
a be connection-safe and C ≥ C′, D ≥ D′.

If k is synchronous, then buf (k : K) = 1 and α is the identity relabelling. The
connection-safety of a thus amounts to the compatibility of obs(c : C)σ and obs(d :
D)σ; and a′ is connection-safe, if, and only if obs(c : C′) and obs(d : D′) are compat-
ible. From C ≥ C′ and D ≥ D′, we have obs(C) � obs(C′) and obs(D) � obs(D′)
and thus obs(c : C)σ � obs(c : C′)σ and obs(d : D)σ � obs(d : D′)σ by Lem. 5.
From Cor. 1, it follows that obs(c′ : C) and obs(d : D′) are compatible.

If k is asynchronous, then σ is the identity relabelling and by Prop. 1 we have
beh(a) = com{c.p:P,d.q:Q}(c : C)κ ⊗ com{c.p:P,d.q:Q}(d : D)κ which is the same
as ΩXp,Yp(obs(c : C))κ ⊗ ΩXq ,Yq(obs(d : D))κ by Def. 8 with Xp = {c.p.m |
m ∈ msg(prv(P ))}, and analogously for Yp, Xq, Yq . Now ΩXp,Yp(obs(c : C))κ =
Ω(obs(c : C)κ) and similarly for d : D, as C and D have only a single port each and
κ is a match relabelling which does not introduce queue labels. Thus the connection-
safety of a amounts to the buffered compatibility of obs(c : C)κ) and obs(d : D)κ;
and a′ is connection-safe, if, and only if obs(c : C′)κ and obs(d : D′)κ) are buffered
compatible. But C ≥ C′ and D ≥ D′ induce obs(c : C)κ � obs(c : C′)κ and
obs(d : D)κ � obs(d : D′)κ by Lem. 5 and leave obs(c : C′)κ and obs(d : D′)κ
input separated; hence obs(c : C′)κ and obs(d : D′)κ are buffered compatible by
Cor. 2. ��

Example 12. [Connection-safe assemblies] The behaviours of the Bank–ATM applica-
tion discussed so far are readily applicable to illustrate Thm. 4. For the implication in
Fig. 11 to hold, we need to meet two assumptions in case of an asynchronous connec-
tor: first the behaviour of the subtype Bank’ must be input separated, i.e. the component
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atm:Atm

s:Srv
ab:Bat

a:AtmCom

bank:Bank atm:Atm

s:Srv
ab:Bat

a:AtmCom

bank:Bank’

Bank       Bank’connection−safe connection−safe

Fig. 11. Subtype substitution preserves connection safety

should behave like a single-threaded system and, second, the original assembly must
be deadlock-free. Then connection-safety is preserved when replacing component Bank
by its subtype Bank’.

Let Bank and Atm be components with observable behaviours as in Fig. 3. Let Bank’
be a component with ports(Bank) = ports(Bank’) and an observable behaviour as in
Fig. 10. Then,

– 〈bank : Bank, atm : Atm; ab : Bat〉 is connection-safe due to Ex. 6 if the connector is
synchronous and due to Ex. 8 in the asynchronous case,

– Bank ≥ Bank’ holds due to Ex. 9
– the observable behaviour of Bank’ is obviously input separated,
– 〈bank : Bank, atm : Atm; ab : Bat〉 is deadlock-free, since the product of the corre-

sponding buffered iotss in Fig. 4 is deadlock-free.

Hence 〈bank : Bank’, atm : Atm; ab : Bat〉 is connection-safe by Thm. 4. ��

7 Conclusions

We have presented a component model which supports synchronous and asynchronous
communication. For the formal foundation of behaviours we have used I/O-transition
systems. The main focus has been on the study of communication behaviours between
components in component assemblies. As a crucial desirable property we have required
connection-safety of component assemblies which relies on compatibility conditions
for iotss with synchronous and asynchronous communication. We have shown that
synchronous compatibility is a sufficient criterion for buffered compatibility in asyn-
chronous communications if both communication partners show observable behaviours
which are input separated and always eventually inputting. Moreover, we have defined
a refinement relation which is compositional w.r.t. synchronous and asynchronous con-
nections of components and which preserves connection-safety.

Our compositionality results are proved for closed systems with only two connected
components which already involves a lot of technical efforts due to the formal treat-
ment of asynchronous communication with buffering behaviours. We believe that these
results provide a solid basis for an extension of our theorems to closed assemblies with
an arbitrary number of components. For the case of open systems further investigation
incorporating assumptions on the environment as considered e.g. in [18] is necessary.
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