
Enhancing UML State Machines with Aspects

Gefei Zhang, Matthias Hölzl, and Alexander Knapp�

Ludwig-Maximilians-Universität München
{gefei.zhang, matthias.hoelzl, alexander.knapp}@pst.ifi.lmu.de

Abstract. Separation of Concerns (SoC) is an important issue to reduce the com-
plexity of software. Recent advances in programming language research show
that Aspect-Oriented Programming (AOP) may be helpful for enhancing the SoC
in software systems: AOP provides a means for describing concerns which are
normally spread throughout the whole program at one location. The arguments
for introducing aspects into programming languages also hold for modeling lan-
guages. In particular, modeling state-crosscutting behavior is insufficiently sup-
ported by UML state machines. This often leads to model elements addressing
the same concern scattered all over the state machine. We present an approach
to aspect-oriented state machines, which show considerably better modularity in
modeling state-crosscutting behavior than standard UML state machines.

1 Introduction

Separation of Concerns (SoC) is an important issue in software engineering. A clear
SoC could improve the modularity of software artefacts, reduce the complexity of soft-
ware systems, and thus make them less error-prone and better maintainable.

Recent advances in programming language research propose the use of Aspect-
Oriented Programming (AOP [11]) to achieve a better SoC in programs. AOP helps in
particular to solve the problem of “scattered code”: code, that would be otherwise scat-
tered all over the program, may be collected together in a new language construct called
aspect. This way, AOP is particularly helpful for separating cross-cutting concerns, i.e.
concerns that are involved in other concerns, like logging or transaction management.

However, not only code may be scattered all over a program, but also model ele-
ments all over a software design model. In particular, the Unified Modeling Language
(UML [16]), the lingua franca in object-oriented software analysis and design, lacks
aspect-like language constructs to address the problem of “scattered model elements”
by centralizing model elements involved in one concern at a dedicated location.

We propose to extend the UML with aspect-oriented language concepts. In particular,
we present a design of aspect-oriented state machines. Aspect-oriented state machines
show considerably better modularity in, among others, the design of state-crosscutting
behavior, such as state synchronization and trace-based behavior.

The remainder of this work is organized as follows: in Sect. 2 we summarize the
syntax and semantics of UML state machines and in Sect. 3 we demonstrate some of

� This work has been partially sponsored by the EU project SENSORIA (IST-2005-016004) and
the DFG project MAEWA (WI 841/7-1).

530

their weaknesses w.r.t. SoC. In Sect. 4 we present our proposal to aspect-oriented state
machines and show how they may be used to achieve a better SoC by modularizing state
interaction and trace-based behavior. An algorithm for for translating aspects into UML
state machines is presented in Sect. 5. Related work is discussed in Sect. 6. Finally, we
conclude and outline some future work.

2 UML State Machines

A UML state machine provides a behavioral view of its context. Figure 1 shows a state
machine of a process which contains two parallel threads. After creation, the process is
first initialized in the state Init, then the two threads run parallel in the state Running,
until they receive the events astop and bstop while they are in the states A3 and B3,
respectively. In this case each thread waits for the other to receive his stop signal in
waiting states A4 and B4, respectively, before the threads terminate conjointly.

We briefly review the syntax and semantics of UML state machines according to the
UML specification [16] by means of Fig. 1. A UML state machine consists of regions
which contain vertices and transitions between vertices. A vertex is either a state, where
the state machine may dwell in and which may show hierarchically contained regions;
or a pseudo state regulating how transitions are compound in execution. Transitions
are triggered by events and describe, by leaving and entering states, the possible state
changes of the state machine. The events are drawn from an event pool associated with
the state machine, which receives events from its own or from different state machines.
The context of a state machine, a UML classifier, describes the features, in particular,
the attributes, which may be used and manipulated in execution.

A state of a state machine is simple, if it contains no regions (such as Init and all
states contained in Running in Fig. 1); a state is composite, if it contains at least one
region; a composite state is said to be orthogonal if it contains more than one region,
visually separated by dashed lines (such as Running). Each state may show an entry
behavior (like actB2 in B2), an exit behavior (like actA2 in A2), which are executed on
activating and deactivating the state, respectively; a state may also show a do activity
(like in Init) which is executed while the state machine sojourns in this state. Transitions
are triggered by events (a12, a23), show guards (condB), and specify actions to be
executed when a transition is fired (actA23). Completion transitions (transition leaving

A1 A3 A4

B1 B4B3

b3 / actB3

b32

exit / actA2

a12 A2

a32

a23 / actA23

a31

aStop

Running

entry / actB2

b12 B2 b23

[condB][else]

do / init
a12 / defer

Init

bStop

Fig. 1. State machine of a process containing two parallel threads

 531

Init) are triggered by an implicit completion event emitted when a state completes all its
internal activities. Events may be deferred (as a12 in Init), that is, put back into the event
pool, if they are not to be handled currently but only later on. By executing a transition
its source state is left and its target state entered; transitions, however, may also be
declared to be internal to a state (b3 / actB3), thus skipping the activation-deactivation
scheme. An initial pseudo state, depicted as a filled circle, represents the starting point
for the execution of a region. A final state, depicted as a circle with a filled circle inside,
represents the completion of its containing region; if all regions of a state machine are
completed the state machine terminates. Junction pseudo states, also depicted as filled
circles (see lower region of Running), allow for case distinctions. Transitions to and
from different regions of an orthogonal composite state can be synchronized by fork
and join pseudo states, presented as bars. For simplicity, we omit the other pseudo state
kinds (entry and exit points, shallow and deep history, and choice).

During runtime, a state gets active when entered and inactive when exited as a result
of a transition. The set of currently active states is called the active state configuration.
When a state is active, so is its containing state. The active state configuration is thus a
set of trees starting from the states in the top-level regions down to the innermost active
substates. The execution of a state machine consists in changing its active state config-
uration in dependence of the current active states and a current event dispatched from
the event pool. We call the change from one state configuration to another an execution
step. First, a maximally consistent set of prioritized, enabled compound transitions is
chosen. Transitions are combined into compound transitions by eliminating their link-
ing pseudo states; for junctions this means to combine the guards on a transition path
conjunctively, for forks and joins to form a fan-out and fan-in of transitions. A com-
pound transition is enabled if all of its source states are contained in the active state
configuration, its trigger is matched by the current event, and its guard is true. Two
enabled compound transitions are consistent if they do not share a source state; an en-
abled compound transition takes priority over another enabled compound transition if
its source states are below the source states of the other transition in the active state con-
figuration. For each compound transition in the set, its least common ancestor (LCA)
is determined, i.e. the lowest composite state containing all the compound transition’s
source and target states. The compound transition’s main source state, i.e., the direct
substate of the LCA containing the source states, is deactivated, the transition’s actions
are executed, and its target states are activated.

Given a state machine M , we denote by the sets states(M), transitions(M),
compounds(M) and events(M) the states, transitions, compound transitions and
events of M . Given a state s ∈ states(M), we write compounds(M, s) for the com-
pound transitions leaving s. Given a transition t ∈ states(M) we write trigger (t) for
the event triggering t and guard(t) for the guard of t.

3 Pervasive Modification of State Machines

UML state machines work fine as long as the only form of communication among states
is the activation of the subsequent state via a transition. More often than not, however,
an active state has to know how often some other state has already been active and/or if

532

Login
exit / l = inputLevel()

SelectLevel

setLevel

inputAnswer

again

[right]
Right

Wrong

[else]

next

key

ShowKey
next

newLevel

end

ShowQuestion

Fig. 2. State machine of an e-learning system

other states (in other regions) are also active. Unfortunately, behavior that depends on
such information cannot be modeled modularly in UML state machines.

For an example, consider an e-learning system as modeled in Fig. 2: the user first
logs in, selects a level of difficulty, and then proceeds to answering questions of this
level. The system tells him whether his answer is right or not, if it is right, the user may
proceed to the next question; if not, he may choose to try again, to see the key to the
question, or to proceed to the next question. Instead of answering the current question,
the user may also choose to go to another level.

Suppose the selection of a level l > 0 should be allowed only if the user has already
answered minRight questions of level l−1 in a row, otherwise the system should give an
error message. Figure 3 shows how this restriction might be modeled in a standard UML
state machine: a new attribute variable crir is introduced for counting the length of the
current stroke of correct answers (current right in a row), it is incremented in state Right
and reset to 0 once Wrong is active. An array r is introduced to store the maximal length
of crir at each level. Once the user gives a wrong answer, the system has to check if this
record should be updated. In order to know whether the user has selected in SelectLevel
a different level than the current one or just continues with the same level, another new
variable cl stores the current level each time SelectLevel is entered. The transition from
SelectLevel to ShowQuestion is split into two to handle the cases whether the level
selected by the user is selectable or not. Finally, the variable crir has to be reset to 0
when the user has successfully changed to another level. Obviously, it is unsatisfactory

Login ShowQuestion
inputAnswer [right]

again

[else]

do / r[l] == max(r[l], crir);
crir = 0

next

key

ShowKey
next

do / crir ++

newLevel Right

Wrong

ShowError

entry / cl = l
exit / l = inputLevel()

SelectLevel

setLevel [r[l] >= minRight] / if (cl != l) crir = 0

setLevel [else]end

Fig. 3. Modeling the level selection restriction using standard UML

 533

a12 [inState(B2)] / defer

A1

a32 [inState(B2)] / defer

A3 A4

b12 [inState(A2)] / defer

B1 B4b12 [!inState(A2)]

entry / actB2

B2 b23

b32 [condB && inState(A2)] / defer

A3

b3 / actB3

bStop

[condB && !inState(A2)] b32[!condB]

a32 [!inState(B2)]

a12 [!inState(B2)]

exit / actA2

A2 a23 / actA23 aStop

Running

a31

Fig. 4. Mutual exclusion using standard UML

that the model elements involved in this one feature are scattered all over the state
machine, switching the feature on and off thus is difficult and requires modifications all
over the state machine. The state machine gets rather hard to understand and maintain.

Besides history-based behavior, state synchronization is also difficult to model in
UML state machines. Suppose for our state machine shown in Fig. 1 an additional
mutual exclusion rule that the states A2 and B2 must not be active at the same time:
before any thread entering any of these two states, the process must check if the other
critical state is active; the thread may only proceed if this is not the case, otherwise it
must wait for the other thread to leave the “blocking” state.

Figure 4 extends the state Running of the state machine shown in Fig. 1 with this rule:
The OCL [15] predicate inState is used for checking whether a particular state is active;
every transition leading to A2 and B2 must be guarded by such a predicate in order to
ensure that the A2 and B2 do not become active at the same time. Simultaneously, the
source states of these offending transitions defer the triggering event such that it will be
reconsidered if the activation condition of either A2 or B2 changes. (Note that we have
taken the liberty of adding a guard to the deferring of an event in order to make a peek to
the current event, which is not covered by the UML metamodel. However, this construct
can be replaced by adding an internal transition involving the negated deferring guard.)
Again, it is a tedious and error-prone task to model a simple thread synchronization rule
including no more than two states like this, since invasive modifications to the original
state machine are necessary almost everywhere in it.

In both examples, having to model interaction between several states by the pervasive
usage of sometimes intricate state machine features makes the resulting state machine
rather complex and no longer intuitively understandable, in contrast to what models in
a graphical modeling language are supposed to be.

4 Aspect-Oriented State Machines

Our answer to the problem of scattered model elements in UML state machines is, mo-
tivated by the success of aspect-oriented programming in solving the problem of scat-
tered code, to enhance UML state machines with aspects. We introduce a new language
construct, aspect, to the UML, which contains a pointcut and a piece of advice. The

534

SelectLevel

Right
l == level − 1

Wrong
l == level − 1

ShowError

«pointcut»

«var»
level = l

«advice»

1

[0]

«before»

[minRight..*]

0

[else]

[a > 0]

{l > 0}
ShowQuestion

a = #

(a) Restricting level selection

A2

B2

«before»

«pointcut»

«advice»

waiting

(b) Mutual exclusion

Fig. 5. Aspects for a better separation of concerns

pointcut specifies some special point of time in the execution of a UML state machine,
which is called the base state machine. The advice defines some additional or alterna-
tive behavior. An aspect is thus a (graphical) statement expressing that at the special
point of time specified by the pointcut, the behavior defined by the advice should be
performed. The complete behavior of the context of the base state machine is there-
fore given by the composition of the base state machine and the aspect. The process of
composition is called weaving.

4.1 Concrete Syntax and Informal Semantics

We first define a new language construct, superstate, to be used in aspects. A super-
state contains a subset of the states of the base state machine and may be guarded by
constraints.

A pointcut is either a configuration pointcut or a transition pointcut. A configura-
tion pointcut consists of a superstate, stereotyped by �before� or �after�. It specifies,
depending on the stereotype, the point of time just before or just after any state config-
uration that contains all states in this superstate is active. A transition pointcut consists
of two superstates, connected by a transition with a stereotype �before� or �after�.
It specifies, depending on the stereotype, the point of time just before or just after this
transition is fired. In the aspect shown in Fig. 5(a), the transition from SelectLevel to
ShowQuestion is stereotyped �before� and guarded by a constraint l > 0. The pointcut
thus specifies the point of time just before the base state machine is about to change
from an active state configuration, which contains the state SelectLevel, to a new active
state configuration which would contain the state ShowQuestion, where the value of the
variable l is greater than zero.

The behavior to execute at the point of time specified by the pointcut is defined in the
advice. A piece of advice is a UML state machine enhanced with some pre-defined final
states. The variables of the base state machine may be used, the aspect may also define
local variables, in particular trace variables for counting the occurrences of a certain

 535

sequence of active state configurations in the execution history. The local variables may
also be used in the advice.

In Fig. 5(a), two variables are introduced: a normal variable level which stores the
current value of the variable l each time the advice is executed, and a trace variable a.
The value of a is the number of occurrences (indicated by #) of the sequence specified
by the pattern on the right hand side: it is a sequence that contains at least minRight
([minRight..*]) active state configurations in which Right is active while the variable l
has the value of level − 1, and that does not contain any active state configuration ([0])
where Wrong is active while l has the value of level−1. The terms l == level–1 are added
as constraints to the respective states. The advice in Fig. 5(a) checks whether such a
sequence can be found in the trace ([a > 0]) or not ([else]), and resumes the execution
of the base state machine (final state named 1) or prevents the base state machine from
firing the specified transition by making it stutter at the current state configuration (final
state named 0). As a whole, this aspect implements additively to the base state machine
that changing to level l > 0 is only allowed when the user has already answered l − 1
questions correctly in a row. Note that no more invasive modification to the base state
machine is necessary and that the model elements used are now gathered at a dedicated
location instead of scattered all over the state machine.

Figure 5(b) shows another aspect, which is applied to the state machine given in
Fig. 1 and implements the desired mutual exclusion. Its configuration pointcut contains
only one superstate and specifies the point of time just before (�before�) any state
configuration containing A2 and B2 gets active (this configuration should be avoided
according to the mutual exclusion requirement). The advice does not need any variable,
but simply makes the base state machine stutter (final named waiting). The difference
between 0 and waiting is that returning to the base state machine after 0 the event that
kicked off the aspect is consumed and the base state machine therefore needs explicity
another instance of this event if it should try again, while after waiting the base state
machine does not need such an event but will be waiting to complete the interrupted
transitions as soon as possible, e.g., as soon as the next active state configuration would
not be caught by the pointcut again. Figure 5(b) thus models the logic of mutual ex-
clusion highly modularly and non-invasively, switching on and off this feature is now a
very easy task.

4.2 Resuming from Advice

Note that waiting and 0 are not the only “stuttering” final states that may be used in the
advice. When the base state machine is told to stutter, it needs not only information on
whether it should try to resume the interrupted transition “automatically” or only upon
an explicit event, but also whether it should react to other events or not. For example,
suppose the base state machine shown in Fig. 1 tries to enter the state A2 from A3, but
has to stay in A3 since B2 is active, then what should it do when it now receives an a31
event? Should it proceed to A1 or not?

Therefore, we could distinguish four stuttering strategies:

1. The base state machine tries automatically to resume the interrupted transition with-
out any explicit event and reacts to other events; this is our case waiting.

536

2. The base state machine needs an explicit event to make another try of the inter-
rupted transition and reacts to other events; this is our case 0.

3. The base state machine tries automatically to resume the interrupted transition with-
out any explicit event and does not react to other events. We say the base state ma-
chine is in this case “pinned” to the interrupted transition and model this case with
a final state with the name pinned.

4. The base state machine needs an explicit event to make another try of the inter-
rupted transition but does not react to other events.

We currently have no examples that require case 4 and therefore do not include it
in our aspect language. However, both assigning this case a name and extending our
implementation (see Sect. 5) are straightforward so that a simple extension would make
our language to cover this case as well.

We call final states with label 0 or 1 progressing and final states with labels waiting
or pinned inhibiting.

5 Translation of Aspects

The weaving process transforms a state machine and an aspect into a new state machine.
As combining several aspects presents a number of additional challenges we concen-
trate on weaving a single aspect into a state machine. Weaving proceeds in the following
stages which we describe in more detail in the rest of the section.

1. Normalize the state machine to eliminate syntactic variation.
2. Identify the states and transitions which have to be modified.
3. Construct the finite automata that track the relevant history.
4. Insert variables and actions.
5. Insert advice.

Normalization. UML state machines allow a number of notational variations. To sim-
plify the translation process we transform the state machine into an equivalent canoni-
cal state machine which is well-suited for the next stages of the translation process. We
require that the normalization process transform the state machine into a form where
all transitions that can lead to a state configuration in which the pointcut applies are
explicit. Hence the normalization process ensures that all states and transitions which
may potentially be modified by the introduction of the aspect can be determined from
the advice or a variable declaration.

Identification of Relevant States and Transitions. There are two different kinds of
relevant state machine elements: Some elements are necessary for inserting advice. We
call these elements advice-relevant and write arel(M,A) for the set of advice-relevant
elements of state machine M and aspect A. Other elements are relevant for keeping
track of the history of active state configurations; these are called history-relevant. The
set of all history-relevant elements is written as hrel(M,A). The set of elements which
are history-relevant for a single trace variable a is written hrel(M, a). It is, of course,
possible for an element to be both advice-relevant and history-relevant.

The advice-relevant elements can be found from the pointcut specification:

 537

(1,0) (2,0)
RightRight

Wrong

Wrong

Right

Wrong

Right

Right, Wrong

Fig. 6. Finite automaton for trace variable a

– If the stereotyped element of the pointcut is a state configuration and the stereotype
is �before�, then all simple states in this state configuration and all transitions
with such a state as target are advice-relevant. If the stereotype is �after�, then all
simple states in the state configuration and all transitions with one of these states as
source are advice-relevant.

– If the stereotyped element of the pointcut is a transition, then all the transitions in
the state machine which go directly from the source state of the stereotyped tran-
sition to its target state are advice-relevant; furthermore all simple states contained
in the source state of the stereotyped transition are advice-relevant.

A state is history relevant if and only if it appears on the right hand side of a variable
declaration. Transitions are never history-relevant.

Construction of History Automata. Aspect-oriented state machines can take deci-
sions based on their history of active state configurations. It would obviously be pro-
hibitively expensive to store and analyze the complete history of the state machine in
order to decide which transition to take. Therefore our aspect language is designed
such that the whole relevant history for unbounded executions can be stored in a finite
amount of memory unless the context variables referenced by trace variables in some
aspect take an infinite number of values.

This is possible because a trace pattern for a trace variable a defines a regular lan-
guage over the alphabet hrel(M, a). For example, the definition of the trace variable
a with minRight = 3 in Fig. 5(a) is translated into the non-deterministic finite au-
tomaton shown in Fig. 6. The initial state of this automaton accepts the whole alphabet
hrel(M, a); this represents the fact that we are looking for occurrences of the pattern
anywhere in the history. The automaton for recognizing a sequence of trace patterns
can be obtained by connecting the automata for the individual trace patterns with ε-
transitions.

The rest of this section is rather technical as it describes the construction of the non-
deterministic finite automaton (NFA) for integer trace variables of the form a = #(s)
for some superstate s.

We assume that the states in hrel(M, a) are numbered from 0 to n and write si for
the state with number i. If the constraint on a state s is of the form n1..n2 we call
min(s) := n1 the minimal and max(s) := n2 the maximal number of occurrences of
that state. If the constraint on s is of the form n..∗ we define min(s) := max(s) := n.
in this case we define infinite?(s) = true, otherwise infinite?(s) = false.

To distinguish states of the finite automaton from states of the state machine we
refer to the former as hstates. We define a hstate for each tuple (a0, . . . , an) with
0 ≤ ai ≤ max(si) and write hstate(ao, . . . , an) for this hstate. Furthermore we

538

write tuple(H) = (a0, . . . , an) iff H = hstate(ao, . . . , an). For all other tuples
we define hstate(a0, . . . , an) = ⊥. We write H(A) for the set of all hstates, i.e.,
H(A) := hstate[Nn+1] \ {⊥}.

Algorithm 1. Computation of the transitions T
1: H ← H(A)
2: T ← ∅
3: h0 ← hstate(0, . . . , 0)
4: for all i, 0 ≤ i ≤ n do
5: T ← T ∪ {h0

si−→ h0}
6: end for
7: for all h ∈ H do
8: (a0, . . . , an) ← tuple(h)
9: for all k ← (a0, . . . , ai + 1, . . . , an), 0 ≤ i ≤ n do

10: if hstate(k) �= ⊥ then
11: T ← T ∪ {h si−→ hstate(k)}
12: else if infinite?(si) then
13: T ← T ∪ {h si−→ h}
14: else
15: T ← T ∪ {h si−→ ho}
16: end if
17: end for
18: end for

The set of transitions T is generated as described in Algorithm 1. This algorithm
inserts a transition with label si between hstates of the form hstate(a0, . . . , ai, . . . , an)
and hstate(a0, . . . , ai +1, . . . , an); it inserts a self-transition with label si for hstates of
the form hstate(a0, . . . , an) if ai = max(si) and si allows infinitely many repetitions,
otherwise it inserts a transition into the initial hstate h0. By inserting (non-deterministic)
transitions h0

s−→ h0 for all states s ∈ hrel(M, a) we ensure that the automaton keeps
track of all sequences of states in its history.

A hstate hstate(a0, . . . , an) is accepting if min(si) ≤ ai ≤ max(si) for all i with
0 ≤ i ≤ n. To achieve the desired semantics for the aspect-oriented state machine
we execute a transition of the automaton for each run to completion step of the state
machine. By construction the finite automaton enters an accepting state from a non-
accepting state for the n-th time precisely when the state machine is in the correspond-
ing superstate for the n-th time. The construction of the automaton described above
takes into account overlapping patterns, a slight modification of the construction of the
NFA and the functions described in the next section would disallow them.

Depending on the space/time trade-off for the state machine we can either convert
the NFA into a deterministic finite automaton (DFA) or simulate the execution of the
DFA with the NFA. For the sake of concreteness we assume that convert the NFA into
a DFA which we call the history automaton for a, H(a), with hstates states(H(a)),
transitions transitions(H(a)), initial hstate ha

0 (corresponding to the translation of
hstate(0, . . . , 0)), and accepting hstates accepting(H(a)). If h is a hstate of H(a) we

 539

write H(a)(h, s) to denote the result of executing the transition labeled s starting from
hstate h of the automaton H(a).

Insertion of Variables and Actions. Having defined the history automata for all trace
variables we are now in a position to introduce the necessary modifications for deciding
the applicability of aspects into the context of the base state machine. Let a be a trace
variable. We write vars(a) for the set of context variables in the trace patterns of a. For
example, in Fig. 5(a), vars(a) = {l}. We need to keep track of a separate history for
each value of each variable in vars(a). This is also the case when manually modifying
the state machine, as can be seen in Fig. 3 where an array r[l] is used to store the number
of correct answers for each level.

For each trace variable we therefore introduce the following elements into the context
of the base state machine:

– history : This is a finite function with domain vars(a) × E(a), where E(a) is the
set of environments for vars(a), i.e., the set of all assignments of a value to each
variable in vars(a). The value for each key is a pair 〈H(a), h〉, where h is the current
state of the state machine H(a) (for the values in e). The initial value for history is
the function mapping each value 〈a, e〉 in its domain to 〈H(a), ha

0〉.
– val : This is a finite function with domain vars(a) × E(a) as described above and

range N, evaluating the current value of a in environment e. The default value is a
function mapping each value in its to domain to 0

– updateHistory : This is a function with arguments 〈a, s, e〉, where a and e are as
described above and s is a state of the base state machine. This function updates the
result 〈H(a), h〉 of history(a, e) by executing transition s of H(a) in hstate h, i.e.,
history(a, e) is updated to 〈H(a), H(a)(h, s)〉. If h is not accepting and the result
of this transition is an accepting hstate of H(a), i.e., if h �∈ accepting(H(a)) and
H(a)(h, s) ∈ accepting(H(a)), then val (a, e) is incremented by one.

To keep track of the state machine’s history, it is now sufficient to add an entry action
updateHistory(a, s, e) (where e is the local environment for vars(a)) to every state s
in hrel(M, a) for each trace variable a. To evaluate an expression X in which a occurs
we replace a by val (a, e) (with the current environment e for vars(a)) in X , i.e., we
evaluate X [a/ val(a, e)].

Inserting Advice. The final step in the weaving process is the insertion of the advice
itself. We write init(A) for the initial transition of the advice, final(A, l) for the set of
final transitions of the advice with label l , source(t) for the source state of a transition
t, target(t) for the target state of a transition, and guard(t) for the guard of a transition.
We write source(t) ← s to denote the operation of replacing the source state of transi-
tion t with state s, similar for the target node. The operation copy(A) copies the advice
of an aspect; all states and transitions of the copy are disjoint from the original. We
write inhibited(s) for the set of all compound transitions leading from s to an inhibited
final state.

To simplify the translation algorithm we place the following restrictions on advice:
the advice itself may only contain a single region; for each compound transitions all
final states must either be progressing or inhibiting. The first restriction ensures that

540

Algorithm 2. Inserting Advice
1: Told ← transitions(arel(M,A))
2: transitions(M) ← transitions(M) \ Told

3: for all t ∈ Told do
4: A ← copyAdvice(A)
5: source(init(A)) ← source(t); guard(init(A)) ← guard(t)
6: ADD BEHAVIOR FOR INHIBITED FINAL STATES(A)
7: UPDATE TRANSITION TARGETS(A, t)
8: end for
9: transitions(M) ← transitions(M) ∪ transitions(A)

10: states(M) ← states(M) ∪ states(A)

Algorithm 3. Adding behavior for inhibited final states
1: function ADD BEHAVIOR FOR INHIBITED FINAL STATES(A)
2: for all s ∈ states(A) do
3: ew ← ∅; ep ← ∅
4: ∀e ∈ events(A). (gw

e ← false; gp
e ← false)

5: for all t′ ∈ inhibited(s) do
6: g ←

��
inState(s′) ∧ constraints(s′) | s′ ∈ states(arel(M, A)) \ target(t′)

�

7: if t′ ∈ final(A, waiting) then
8: gw

e ← gw
e ∨ (guard(t′) ∧ g); ew ← ew ∪ {event(t′)}

9: else
10: gp

e ← gp
e ∨ (guard(t′) ∧ g); ep ← ep ∪ {event(t′)}

11: end if
12: guard(t′) ← guard(t′) ∧ ¬g
13: end for
14: for all e ∈ ew do
15: Add behavior e[gw

e]/defer to s
16: end for
17: for all e ∈ ep do
18: Add entry behavior vs

e = false to s
19: Add the following behavior to s:
20: e[gp

e]/vs
e = true; e[gp

e ∧ vs
e]/defer

21: ∀e′ ∈ events(A) \ {e}. e′[gp
e ∧ vs

e]/
22: end for
23: end for
24: end function

Algorithm 4. Updating transition targets
1: function UPDATE TRANSITION TARGETS(A, t)
2: for all t′ ∈ final(A, 1) ∪ final(A, waiting) ∪ final(A, pinned) do
3: target(t′) ← target(t)
4: end for
5: for all t′ ∈ final(A, 0) do
6: target(t′) ← source(t)
7: end for
8: end function

 541

compound transitions cannot have multiple final states, the second restriction simplifies
the introduction of guards in the weaving process.

Algorithms 2, 3 and 4 describe the process of inserting advice into the state machine
for configuration pointcuts: For each advice-relevant transition t we remove t from the
base state machine, attach the advice to the source state of t and connect the final states
of the advice with appropriate states of the state machine. We also modify the advice
relevant states of the resulting state machine to defer events for advice ending in a final
state with label waiting or pinned and disable the outgoing transitions once the advice
arrives in a pinned state. The algorithm for transition pointcuts is similar.

As an example of the weaving process consider Fig. 4 which is the result of weaving
the mutual exclusion advice in Fig. 5(b) into the base state machine in Fig. 1. The result
of manually extending the e-learning example in Fig. 3, however, differs from the result
of the automatic weaving process, as this process uses a history automaton for the trace
variables instead of explicitly manipulating counters.

6 Related Work

Our idea of dynamic aspects of state machines has been inspired by dynamic aspect-
oriented programming languages such as JAsCo [20] and Object Teams [9]. Such lan-
guages are recognized as useful for separation of concerns (cf. [7]); a recent example of
using control flow based aspects to build powerful debuggers is given in [4]. In partic-
ular, using trace variables to quantify over the trace is reminiscent to the trace aspects
of Arachne [6]. Aspect-oriented modeling, aiming at a better separation of concerns on
the level of software design, is still in its infancy. Most existing work (e.g. [1,17,19])
focuses on modeling aspect-oriented programs rather than making modeling languages
aspect-oriented.

In the realm of modeling languages and state machines in particular, Altisen et al. [2]
propose aspects for Mealy automata. Pointcuts are also defined as automata. In com-
parison, the weaving algorithm of our approach is due to the richer language constructs
of the UML much more elaborate. Thanks to the wider acceptance of the UML, our
approach is more tightly connected to common practice. Mahoney et al. [13] propose
to combine several state machines into one orthogonal composite state and to relate
by textual notations triggering events in different regions so that related transitions can
be fired jointly. This approach can be used to modularize the synchronization of state
machines, although having to declare all events of the wrapping state machine to be
executed before triggering transitions in the base state machine may lead to quite com-
plicated annotations. JPDD [8] is a pointcut language that facilitates the definition of
trace-based pointcuts. In comparison, our approach also allows the modeler to define
state machine synchronization modularly. Moreover, we have also defined a translation
semantics for our aspects including both pointcuts and advice.

Theme/UML [5] models different features in different models (called themes) and
uses UML templates to define common behavior of several themes. It does not contain a
pointcut language, model elements have to be bound to formal parameters explictly by
textual notations (A first step towards using JPDD as the pointcut language is presented
in [10], although there are still compatibility problems between these two approaches).

542

The definition of history-based and modular modeling of state machine synchronization
does not seem possible.

7 Conclusions and Future Work

We have defined a syntax and a translation semantics of aspect-oriented state machines.
Using aspects may improve the modularity of UML state machines considerably by
separating state interaction and trace-based behavior from other concerns. Our weaving
algorithm works with a bounded amount of memory in realistic cases, i.e., as long as
the variables used in the constraints of superstates do not take infinite many values.

Both the pointcut language and the advice language may be extended. In particular,
it is expected to be straightforward yet useful to allow the pointcut to contain more than
two superstates and/or to quantify over variable traces (and thus allow data-oriented
aspects as proposed in [18]). It would also be interesting to allow the advice to make
the base state machine not only stutter, but jump into the past. This might be useful
for modeling compensations in long-running transactions in service-oriented systems.
Moreover, in order to allow the application of several aspects to a state machine, a
notation should be designed for defining the order of weaving in case of conflicts; the
implementation described in Sect. 5 should be extended as well.

Another important issue of future work is model validation. We plan first to extend an
existing UML model checker, such as Hugo/RT [12], to validate the weaving product. In
a second step, it would be interesting to investigate techniques of compositional valida-
tion, in order to allow validation of larger models. Finally, extending aspect-orientation
to other UML diagrams and generating aspect-oriented programs from aspect-oriented
models are also part of our future research.

References

1. Aldawud, O., Elrad, T., Bader, A.: UML Profile for Aspect-Oriented Software Development.
In: AOM. Proc. 3rd Int. Wsh. Aspect-Oriented Modeling, Boston (2003)

2. Altisen, K., Maraninchi, F., Stauch, D.: Aspect-Oriented Programming for Reactive Systems:
Larissa, a Proposal in the Synchronous Framework. Sci. Comp. Prog. 63(3), 297–320 (2006)

3. Barry, B., de Moor, O. (eds.): AOSD’07. Proc. 6th Int. Conf. Aspect-Oriented Software De-
velopment, ACM Press, New York (2007)

4. Chern, R., De Volder, K.: Debugging with Control-Flow Breakpoints. In: Barry, de Moor [3],
pp. 96–106 (2007)

5. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. Addison-Wesley, Reading
(2005)

6. Douence, R., Fritz, T., Loriant, N., Menaud, J.-M., Ségura-Devillechaise, M., Südholt, M.:
An Expressive Aspect Language for System Applications with Arachne. In: Mezini, Tarr
[14], pp. 27–38

7. Filman, R.E., Haupt, M., Hirschfeld, R. (eds.): Proc. 2nd Dynamic Aspects Wsh. (DAW’05).
Technical Report 05.01. Research Institute for Advanced Computer Science (2005)

8. Hanenberg, S., Stein, D., Unland, R.: From Aspect-Oriented Design to Aspect-Oriented Pro-
grams: Tool-Supported Translation of JPDDs into Code. In: Barry, de Moor [3], pp. 49–62

 543

9. Herrmann, S.: Object Teams: Improving Modularity for Crosscutting Collaborations. In: Ak-
sit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 248–264. Springer,
Heidelberg (2003)

10. Jackson, A., Clarke, S.: Towards the Integration of Theme/UML and JPDDs. In: Proc. 8th

Wsh. Aspect-Oriented Modeling, Bonn (2006)
11. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,

J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

12. Knapp, A., Merz, S., Rauh, C.: Model Checking Timed UML State Machines and Collabo-
rations. In: Damm, W., Olderog, E.R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–416.
Springer, Heidelberg (2002)

13. Mahoney, M., Bader, A., Elrad, T., Aldawud, O.: Using Aspects to Abstract and Modularize
Statecharts. In: Proc. 5th Wsh. Aspect-Oriented Modeling, Lisboa (2004)

14. Mezini, M., Tarr, P.L. (eds.): AOSD’05. Proc. 4th Int. Conf. Aspect-Oriented Software De-
velopment, ACM Press, New York (2005)

15. Object Management Group. Object Constraint Language, version 2.0. Specification, OMG
(2006), http://www.omg.org/cgi-bin/doc?formal/06-05-01.pdf

16. Object Management Group. Unified Modeling Language: Superstructure, version
2.1.1. Specification, OMG (2007), http://www.omg.org/cgi-bin/doc?formal/
07-02-05.pdf

17. Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L., Martelli, L.: A UML
Notation for Aspect-Oriented Software Design. In: AOM’02. 1st Int. Wsh Aspect-Oriented
Modeling, Enschede (2002)

18. Rashid, A., Chitchyan, R.: Data-Oriented Aspects. In: Hannemann, J., Baniassad, E., Chen,
K., Chiba, S., Masuhara, H., Ren, S., Zhao, J. (eds.) AOASIA’06. Proc. 2nd Asian Wsh.
Aspect-Oriented Software Development, pp. 24–29. National Institute of Informatics, Tokyo
(2006)

19. Stein, D., Hanenberg, S., Unland, R.: A UML-based Aspect-Oriented Design Notation for
AspectJ. In: AOSD’02. Proc. 1st Int. Conf. Aspect-Oriented Software Development, pp.
106–112. ACM Press, New York (2002)

20. Vanderperren, W., Suvée, D., Verheecke, B., Cibrán, M.A., Jonckers, V.: Adaptive Program-
ming in JAsCo. In: Mezini, Tarr [14], pp. 75–86

http://www.omg.org/cgi-bin/doc?formal/06-05-01.pdf
http://www.omg.org/cgi-bin/doc?formal/07-02-05.pdf
http://www.omg.org/cgi-bin/doc?formal/07-02-05.pdf

	Title Page
	Preface
	Organization
	Table of Contents
	Bidirectional Model Transformations in QVT: Semantic Issues and Open Questions
	Introduction
	Bidirectional Versus Bijective Transformations
	Related Work

	QVT
	Semantic Issues
	What Exactly It Makes Sense to Write
	Determining Validity of a Transformation
	Composition of Relations in QVT: $When$ and $Where$ Clauses
	Sequential Composition of Transformations

	Requirements for Bidirectional Model Transformations
	Examples and Consequences
	Composition of Metamodels
	Sequential Composition Revisited

	Conclusion
	References

	Reconciling TGGs with QVT
	Introduction
	QVT and TGG Transformation Rule Examples
	QVT-Core Mappings
	TGG Rules

	Mapping QVT to TGGs
	Comparing Concepts of QVT and TGGs
	Philosophical Differences
	Semantical Comparison
	Conceptual Differences
	Advanced Features

	Conclusion
	References

	UniTI: A Unified Transformation Infrastructure
	Introduction
	Using and Composing Transformations
	Characteristics of Current Transformation Technologies
	Limitations

	Characteristics of Reusable and Composable Transformations
	Unified Transformation Representation
	UTR Metamodel
	Transformation Roles
	Usage Scenario

	Implementation
	Related Work
	Evaluation
	Conclusions and Future Work
	References

	Guided Development with Multiple Domain-Specific Languages
	Introduction
	Motivating Example: Apache Open for Business
	Application Development with Multiple DSLs in OFBiz
	Consistency Constraints in OFBiz
	SmartEMF
	Ecore-to-Prolog Mapping
	Representing Constraints
	Constraint Checking Using Higher-Order Queries
	Preconditions of Editing Operations
	Reflective Editor

	Discussion and Suggestions for Future Work
	Related Work
	Conclusion
	References

	Model-Driven, Network-Context Sensitive Intrusion Detection
	Introduction
	Related Work
	The PNMT Approach
	Network Data Model
	Packet Data Model
	Rule Specification
	Tool Design

	Case Study
	Case Study Setting
	Results

	Conclusion
	References

	An Empirical Study of the Impact of OCL Smells and Refactorings on the Understandability of OCL Specifications
	Introduction
	OCL Smells
	OCL Refactorings
	Study Design
	Definition
	Hypothesis
	Study Design and Instrumentation

	Results
	Instruments
	Scores
	Time to Answer
	Subjective Evaluation
	Threats to Validity

	Conclusions
	References

	On Metamodeling in Megamodels
	Introduction
	Megamodels and Models in Model Driven Engineering
	On Meaning of Models and Ontologies

	Metamodeling
	The Megamodel: Metamodeling Relations
	Linguistics Metamodeling
	Ontological Metamodeling

	Expanding the Megamodel for Ontological Metamodeling
	Ontological and Linguistic Metamodeling: Implications

	Conclusion
	References

	Magritte – A Meta-driven Approach to Empower Developers and End Users
	Introduction
	Describing Domain Objects
	Structural Descriptions
	Executability and Constraints

	Interpreting Descriptions
	Building a View
	Building an Editor
	Other Interpreters

	End Users Customizability
	Adaptive Model: Enabling End User Editable Meta-descriptions

	Related Work
	Evaluation and Lessons Learned
	Lessons Learned

	References

	Matching Model-Snippets
	Introduction
	Motivating Example

	Patterns as Model-Snippets
	Pattern-Framework Meta-model
	Constructing Model-Snippets
	Pattern-Matching Behaviour
	Model-Snippets During Model Evolution

	Implementation
	Related Work
	Conclusion
	References

	Improving Inconsistency Resolution with Side-Effect Evaluation and Costs
	Introduction
	Inconsistency of Object Life Cycles and Process Models
	Inconsistency Resolution with Side-Effects and Costs
	Design and Implementation of Tool Support
	Related Work
	Conclusions and Future Work
	References

	Model Composition in Product Lines and Feature Interaction Detection Using Critical Pair Analysis
	Introduction
	Tool Support for Software Product Line Engineering
	Background
	Model Composition and Feature Interaction for Product Lines
	A Language for Composing Variant Features with the Kernel (MATA)
	Application of Critical Pair Analysis to Detecting Feature Interactions

	MATA Evaluation and Tool Support
	Related Work
	Future Work and Conclusion
	References

	Automated Semantic Analysis of Design Models
	Introduction
	Model Development Environment
	Formal Verification of Models
	System Testing

	ModelAnalysis
	Model Pathologies Overview

	Structural and Communications Pathologies
	Sending an Unreceivable Signal
	Ignored Behavior
	Unused Elements
	Statically Unreachable Behavior
	Nondeterminism
	Informal Text
	Use Before Definition

	Domain Pathologies
	Underconstrained or Overconstrained Branch Points
	Real Number Equality
	Incompatible Subranges
	Out-of-Bounds Indexes
	Dereferencing Null
	Invalid Union Access
	Invalid Operations on a Type

	Realizability Pathologies
	Unbounded Number of Instances
	Infinite or Unrealizably Large Data Structures

	When Model Analysis Is Not Sufficient
	Summary
	References

	Piecewise Modelling with State Subtypes
	Introduction
	Modelling with Declarations
	Attaching Definitions to Declarations
	Introduction of State Subtypes
	Definition of State Subtypes
	Integration with Statecharts

	Process Issues
	Discussion
	Total and Partial Relations, and Error Propagation
	Open Problems
	Possible Improvements
	Related Work

	Conclusion
	References

	Deriving Operation Contracts from UML Class Diagrams
	Introduction
	Preliminary Concepts
	Completeness of a Behavior Schema
	Modifiability of a Model Element
	Computing the Relevant Structural Events for a Class Diagram

	Executability of a Behavior Schema
	Generation of a Complete and Executable Behavior Schema
	Creating the Required System Operations
	Completing the Operation Definition
	Computing the Dependencies
	Defining the Operation Signature
	Defining the Operation Body

	Case Study
	Related Research
	Conclusions and Further Research
	References

	Finding the Pattern You Need: The Design Pattern Intent Ontology
	Introduction
	Design Patterns
	Ontologies
	The Design Pattern Intent Ontology
	Evaluation
	The Design Pattern Wizard
	Related Work and Discussion
	Conclusion and Further Work
	References

	Model-Driven Approach for Managing Human Interface Design Life Cycle
	Introduction
	Related Work
	Approach for User Interface Life Cycle Support
	Remaining in Scope with Business Design
	Coping with Iterations
	Maintaining Design Integrity

	Models
	Design Model
	Group Model
	UI Model

	Summary
	References

	Integrating Heterogeneous Tools into Model-Centric Development of Interactive Applications
	Introduction
	Models as Central Hub
	From Prototypes to Models
	Flash Click-Dummies
	Photoshop Mock-Ups

	MML: From Models to Multimedia Authoring Tools
	SSIML: From Models to 3D Authoring Tools
	Related Work
	Conclusion and Outlook
	References

	A Business-Process-Driven Approach for Generating E-Commerce User Interfaces
	Introduction
	Related Work
	Model-Based UI Generation Framework
	Models and Their Transformations
	Analysis of Business Processes
	Task Model
	Role Rule
	Primitive Task Rule
	Manual Task Rule
	Optional Task Rule
	Branch Rule
	Data Sharing Rule

	Application of Rules
	Dialog Model
	Presentation Model

	Case Studies
	Application of Rules
	Usability Evaluation

	Conclusion and Future Work
	References

	Enhancing UML Extensions with Operational Semantics Behaviored Profiles with Templates
	Introduction
	UML and Semantics
	The Semantics of Semantics
	Related Works
	Semantics of a Foundational UML Subset

	UML Profiling Basics
	Behaviored and Templated Profiles
	Execution Model
	L2-Compliant Profile Enhancement
	L3-Compliant Profile Enhancement
	Profile Enhancements and UML Compliance Levels

	Conclusion
	References

	Integrated Definition of Abstract and Concrete Syntax for Textual Languages
	Introduction
	The MontiCore Grammar Format
	Interfaces and Inheritance Between Nonterminals
	Associations Between Nonterminals

	A Demonstrating Example
	Related Work
	Conclusion
	References

	Architectural Aspects in UML
	Introduction
	A Motivating Example
	ArchSpect - Architectural Aspects in UML
	Architectural Variance with ArchSpect
	Asymmetrical vs. Symmetrical Concerns
	Binding Language

	Comparing With UML Mechanisms
	Archspects vs. Specialisation
	Archspects vs. Collaborations and Collaboration Use
	Archspects and Virtual Connectors

	Related Work
	Conclusion
	References

	Domain Specific Modeling Methodology for Reconfigurable Networked Systems
	Introduction
	Process
	Scenario Modeling
	Interaction Modeling
	Behavior Specification
	State Elimination

	Platform Modeling
	RUNES Component Metamodel
	RUNES Semantics Metamodel
	ErlCOM

	Application Modeling
	Metamodel Mapping to ErlCOM
	Component Mapping

	Deployment Architecture
	Conclusion
	References

	A Modelling Method for Rigorous and Automated Design of Large-Scale Industrial Systems
	Introduction
	Lyra Design Flow for the Specification of Behavior
	Service Specification
	Service Decomposition
	Service Distribution
	Service Implementation
	Automation of Service Design Flow

	Lyra Enhancement for the Specification of System Structure
	System Interface Specification
	System Functional Architecture
	System Architecture
	Recursive System Design Process
	Automation of System Design Flow

	WiMAXDesignExample
	Functional Architecture for {\it WimaxMobility}
	System Architecture for {\it WimaxMobility}
	Service Distribution for {\it HandoffFunction}
	System Interface Specification for {\it WimaxMobility_BS}
	System Integration

	Conclusions and Future Work
	References

	Relating Navigation and Request Routing Models in Web Applications
	Introduction
	The FARNav Navigation Model
	The Request Routing Model
	Relating the Models
	The Core Mappings
	FARtoRR and RRtoFAR

	Tool Support
	Related Work
	Discussion and Conclusion
	References

	A UML2 Profile for Service Modeling
	Introduction
	Rich Service Profile
	Rich Service Profile Stereotypes
	Behavior

	Case Study
	Discussion and Related Work
	Conclusions and Outlook
	References

	Automatic Generation of Workflow-Extended Domain Models
	Introduction
	Basic Workflow Concepts
	Extending Domain Models with Workflow Information
	Translation of Process Constraints
	Sequences of Activities
	Split Gateways
	Merge Gateways
	Condition Constraints
	Loops
	Applying the Translation Patterns

	Code-Generation of the Workflow-Extended Domain Model
	Related Work
	Conclusions
	References

	A Practical Perspective on the Design and Implementation of Service-Oriented Solutions
	Introduction
	Design for SOA
	SOA Design Elements
	Developing SOA Solutions with the IBM Rational Software Delivery Platform

	Practical SOA Design Techniques
	Message-Centric Design
	Main Characteristics
	Practical Example
	Key Activities

	Service-Centric Design
	Main Characteristics
	Practical Example
	Key Activities
	Follow-Up Actions

	Collaboration-Centric Design
	Main Characteristics
	Practical Example
	Key Activities

	Use of Enterprise Models to Automate Realization of Service-Oriented Solutions
	Enterprise Models Relevant to SOA
	Application of Enterprise Models to SOA
	Process Analysis
	Service Analysis
	Service Design

	Summary and Conclusions
	References

	Constructive Techniques for Meta- and Model-Level Reasoning
	Preliminaries - Metamodels, Domains, and Logic
	Analysis of Nonrecursive Horn Domains
	The Membership Problem
	Finding Well-Formed Members
	Generating Well-Formed Embeddings

	Extensions, Tools, and Future Directions
	References

	A Metamodel-Based Approach for Analyzing Security-Design Models
	Introduction
	General Approach
	SecureUML+ComponentUML
	The SecureUML+ComponentUML Metamodel
	The SecureUML+ComponentUML Models
	The Mapping from Models to Metamodel Instances

	Analyzing SecureUML+ComponentUML Models
	Semantics
	Analysis Operations

	Analysis Examples
	The SecureMOVA Tool
	Conclusion
	References

	UML2Alloy: A Challenging Model Transformation
	Introduction
	Preliminaries
	Model Transformation from the UML to Alloy
	EBNF to MOF
	Mapping Class Diagram and OCL to Alloy

	Example UML Class Diagram
	Differences Between UML and Alloy Which Influence the Transformation
	Analysis, Discussion and Future Work
	Analysis Via Alloy
	Discussion and Future Work

	Related Work
	Conclusions
	References

	{\iimap}: An Incremental and Iterative Modeling and Analysis Process
	Introduction
	 {\cobra} Patterns
	Process
	Planning
	Modeling
	Analysis

	Example Application
	Related Work
	Conclusions
	References

	A Model-Driven Measurement Procedure for Sizing Web Applications: Design, Automation and Validation
	Introduction
	The OO-H Development Process
	The OO-H Metamodel

	The Design of OO-HFP
	Selection of the Metamodel
	Definition of the Mapping Rules

	Definition of the Numerical Assignment Rules
	Definition of the Measurement Rules
	FPA Counting Rules

	A Measurement Example

	The Automation of OO-HFP in VisualWADE
	The Validation of OO-HFP for Effort Estimation
	Selecting the Estimation Technique
	Results

	Conclusions and Further Work
	References

	Model-Driven Engineering for Software Migration in a Large Industrial Context
	Introduction
	Model-Driven Migration Process
	Migration General Process
	Automation in the Migration Process
	Migration Project Phases

	Model-In-Action (MIA) Tool Suite
	Migration of a Large-Scale Banking Application
	Specific Requirements and Migration Process
	Project Time Schedule and Cost Breakdown
	Validation and Quality Assurance

	Discussion
	Migration Time Schedule
	Migration Cost Repartition
	Benefits and Limitation of Model-Driven Migration

	Related Works
	Conclusion
	References

	Introducing Variability into Aspect-Oriented Modeling Approaches
	Introduction
	Motivating Example
	Matching Variability
	Adaptation Variability

	An AOM Approach Overview
	Extension to Support Variability
	Metamodeling and Implementing AOMwithVariability
	RelatedWork
	Conclusion
	References

	An Expressive Aspect Composition Language for UML State Diagrams
	Introduction
	Motivation
	SDMATA: Aspects for UML State Diagrams
	Graph Transformations
	SDMATA
	State Diagram Patterns
	State Diagram Pattern Example
	Composition Operators
	Applying SDMATA Rules
	SDMATA Example

	Application to Use Case Slices
	Related Work
	Conclusion
	References

	Enhancing UML State Machines with Aspects
	Introduction
	UML State Machines
	Pervasive Modification of State Machines
	Aspect-Oriented State Machines
	Concrete Syntax and Informal Semantics
	Resuming from Advice

	Translation of Aspects
	Related Work
	Conclusions and Future Work
	References

	Complementary Use Case Scenario Representations Based on Domain Vocabularies
	Introduction
	Use Case Scenarios Based on Domain Vocabulary
	Redefined Use Case and Types of Scenario Sentences
	Sentences in SVO Grammar with Separated Domain Vocabulary
	Introducing Complementary Scenarios Representations

	Metamodel of Complementary Scenarios Representations
	Constrained Language Scenario Representation
	Activity Scenario Representation
	Interaction Scenario Representation

	Conclusions and Future Work
	References

	Modeling Time(s)
	Introduction
	Existing Time and Allocation Models
	Time Modeling
	Allocation Models
	Timed Allocation Models

	MARTE
	MARTE Time Model
	MARTE Allocation Model

	Illustrative Examples
	Chronometric Clocks
	AADL Communication

	Conclusion
	References

	A UML Profile for Developing Airworthiness-Compliant (RTCA DO-178B), Safety-Critical Software
	Introduction
	Safety Assessment of Aerospace Systems
	Requirements for an Airworthiness Profile
	Usage Scenarios of Safety Information
	Safety Information Requirements

	Existing UML-Based Solutions
	The Airworthiness Profile by Examples
	Identification of Events and Reactions
	Controller Subsystem Design
	Safety Monitoring and Certification

	Conclusion
	References

	Forensic Debugging of Model Transformations
	Introduction
	Concepts and Context
	Model Transformation Tools
	The Model Transformation Environment

	Model Transformation Bugs
	The Debugging Questions
	Classes of Bugs

	Debugging Techniques
	Forensic vs Live Debugging
	Learning from the Past

	Localisation of Model Transformation Bugs
	Analysis
	Re-enactment

	Conclusion
	References

	Runtime Debugging Using Reverse-Engineered UML
	Introduction
	Hard to Find Faults
	Notions of Distance
	Cache (In)Consistency: An Example

	The Approach
	Unit Tests
	Instrument the Code
	Execute the Tests
	Partition Paths
	Aggregate Paths
	Generate Sequence Diagrams
	Reason About Fault

	RelatedWork
	References

	Formally Defining a Graphical Language for Monitoring and Checking Object Interactions
	Introduction
	Testing and Debugging with Behavior View Diagrams
	Defining BVD Syntax with UML Profile
	The Operational Semantics of BVD
	Encoding Sequencing Constraints with Scenario Expressions
	Encoding the Data Environment
	Operational Semantic Rules

	Related Works
	Conclusion
	References

	Statechart Development Beyond WYSIWYG
	Introduction
	Related Work
	The KIEL Modeling Environment

	The WYSIWYG Statechart Editing Process
	Proposals for Enhancements in Statechart Editing
	Macro-Based Modeling
	Text-Based Modeling
	Implementation in KIEL

	Experimental Evaluation
	Experiment design
	Hypotheses
	Validity
	Results

	Conclusion and Future Work
	References

	Model-Based Design of Computer-Controlled Game Character Behavior
	Introduction
	Modeling Game AI
	Modeling the State of a Tank
	Sensors – Generating Important Game Events
	Analyzers – Correlating Sensor Events
	Memorizers – Modeling Memory
	Strategic Deciders – Deciding on a High-Level Goal
	Tactical Deciders – Planning how to Achieve the Goal
	Executors – Mapping the Decisions to Actuator Commands
	Coordinators – Resolving Undesired Actuator Interactions
	Actuators – Signaling the Action to the Game
	Tank AI Model Summary

	Mapping to an Execution Platform
	The EA Tank Wars Simulation Environment
	Time-Slicing vs. Continuous Time
	Bridging the Time-Sliced – Event-Driven Gap
	ATOM3 and Code Generation

	Related Work
	Discussion and Conclusion
	References

	Model-Driven Construction of Certified Binaries
	Introduction
	BasicConcepts
	Framework for Generating Certified Binaries
	Certifying Model Checking
	Certified Source Code Generation
	Certified Binary Generation
	Related Work
	Experimental Results
	Conclusion
	References

	Workshops and Symposia at MODELS 2007
	Introduction
	Detailed List of Workshops
	Detailed List of Symposia

	Tutorials at MODELS 2007
	Introduction
	Tutorial Summaries

	Panels at MODELS 2007
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

