
Model Checking of UML 2.0 Interactions

Alexander Knapp1 and Jochen Wuttke2

1 Ludwig-Maximilians-Universität München, Germany
knapp@pst.ifi.lmu.de

2 Università della Svizzera Italiana, Lugano, Switzerland
wuttkej@lu.unisi.ch

Abstract. The UML 2.0 integrates a dialect of High-Level Message Sequence
Charts (HMSCs) for interaction modelling. We describe a translation of UML 2.0
interactions into automata for model checking whether an interaction can be sat-
isfied by a given set of message exchanging UML state machines. The translation
supports basic interactions, state invariants, strict and weak sequencing, alterna-
tives, ignores, and loops as well as forbidden interaction fragments. The transla-
tion is integrated into the UML model checking tool HUGO/RT.

Keywords: Scenarios, UML 2.0 interactions, model checking.

1 Introduction

Scenario-based development uses descriptions of operational sequences to define the
requirements of software systems, laying down required, allowed, or forbidden be-
haviours. In version 2.0 [1] of the “Unified Modeling Language” (UML) a variation
of High-Level Message Sequence Charts (HMSCs [2]) replaced the rather inexpressive
notion of interactions in UML 1.x for describing scenarios. The scenario language of
UML 2.0 not only contains the well-known HMSC notions of weak sequencing, loops,
and alternative composition of scenarios, but also includes a peculiar negation operator
for distinguishing between allowed and forbidden behaviour. The thus gained expres-
siveness would make UML 2.0 an acceptable choice to model high-quality and safety-
critical systems using scenario-based techniques. However, several vaguenesses in the
specification document have led to several, differing efforts for equipping UML 2.0
interactions with a formal semantics (see, e.g., [3,4]).

We propose a translation of UML 2.0 interactions into automata. This synthesised
operational behaviour description can be used to verify that a proposed design meets
the requirements stated in the scenarios by using model checking. On the one hand,
the translation comprises basic interactions of partially ordered event occurrences, state
invariants, the interaction combination operators for weak and strict sequencing, paral-
lel and alternative composition, as well as a restricted form of loops, which can have
potentially or mandatorily infinitely many iterations. On the other hand, besides these
uncontroversial standard constructs, we also handle a classical negation operator [3],
which avoids the introduction of three-valued logics as suggested by the UML 2.0 spec-
ification by resorting to binary logic.

The translation procedure is integrated into our freely available UML model check-
ing tool HUGO/RT [5]: A system of message exchanging UML state machines together

 43

with the generated automaton representing a UML interaction for observing message
traces is translated into the input language of an off-the-shelf model checker, which then
is called upon to check satisfiability. Currently, we support interaction model checking
over state machines with SPIN [6] and, partially, with UPPAAL [7].

The remainder of this paper is structured as follows: In Sect. 2 we briefly review
the features of UML 2.0 interactions. In Sect. 3 we introduce our automaton model for
interactions, and in Sect. 4 we describe the translation from UML 2.0 interactions into
automata. Section 5 reports on the results of applying SPIN model checking with our
approach. In Sect. 6 we discuss related work, and Sect. 7 concludes with a summary of
the results and an outlook on future work.

2 UML 2.0 Interactions

obj1 obj2

b

[else]

sd

a[x > 0]

c

b

alt

not

x < 0

Fig. 1. Sample interaction

UML 2.0 interactions consist of interaction fragments.
The primitive fragments are occurrence specifications,
specifying the occurrence of events within an ob-
ject that is participating in the interaction. Com-
bined fragments aggregate occurrence specifications
into bigger interaction fragments. A combined frag-
ment comprises an operator, defining the meaning of
the particular fragment, and one or more operands.
The operands are interaction fragments themselves,
and can be guarded by an optional condition, limit-
ing the possibilities for when this operand may be
executed.

The example in Fig. 1 shows instances of the impor-
tant aspects of a UML 2.0 interaction. The behaviour of two objects obj1 and obj2 is
specified by message exchanges (sending and receiving occurrence specifications, de-
noted by arrow tails and heads) on their lifelines, object destruction (cross), state invari-
ants (conditions in a rounded box), and combined fragments. Vertical juxtaposition of
interaction fragments implies weak sequencing, such that in the second operand of the
alternative the sending of c, active on obj1, comes before any event on obj1 inside the
not fragment, and the receiving of c before any event on obj2. Both operands to alt are
guarded by conditions, which determine which operands can be chosen at “runtime”.

The primitive interaction fragments we consider are basic interactions, consisting of
a set of event occurrences with a partial order [1, p. 410], and state invariants for a single
or several lifelines that has to hold if the state invariant is reached. Of the interaction
operators [1, p. 410–412], we consider weak (seq) and strict sequential composition,
parallel composition (par), alternative (alt), weak and strict sequencing loop, ignore of
messages not mentioned, and a binary negation (not).

3 Interaction Automata

We interpret a UML 2.0 interaction as an observer of the message exchanges and state
changes in a system. Whenever the system under observation sends or receives a mes-

44

sage or one of its objects terminates successfully, the observer is notified and can act
accordingly by making a move accepting the event or by producing a failure. However,
it may also refrain from doing so, if it does not deem the state change relevant. Tak-
ing such an observer to be an automaton accepting words of system changes, i.e. state
changes or events, the acceptance conditions for finite and infinite runs can be rendered
as the corresponding ones in finite state machines and Büchi automata [8].

Interaction automata, realising such an observer from an interaction by a state-
transition system, are defined over an interaction alphabet (L, E, Σ) of a finite set
of involved lifelines L, a set E of termination, send and receive events from messages
exchanged between the lifelines, and a set Σ of system states. The transitions outgoing
from a state define a set of events that, when occurring, enable the transition. Moreover,
transitions may be guarded by conditions arising from the conditions in the interac-
tion. In order to reflect weak sequencing of interactions, the events η and the guard g
of a transition show a set of lifelines lifelines(η, g), which are active when making a
move by this transition. Finally, an interaction automaton may also use and manipulate
a set of counters V that allow to record how often lifelines in loops have executed. For
the guards we assume a propositionally closed language GΣ,V ; it should be expressive
enough to capture system state queries on Σ and to compare counters in V . For the
actions, we similarly assume a language AV manipulating the set of counters V .

A run of an interaction automaton N starts from an initial configuration (i, υ0) where
i is N ’s initial state and υ0 the valuation of the set of counters V to zero. A run of N

proceeds by steps (s, υ)
(σ,ζ)−−−→ (s′, υ′) with a system state σ ∈ Σ and a set of events

ζ ⊆ E, if there is a transition outgoing from s with a set of events equal to ζ such that in
σ and υ the transition guard is satisfied and the valuation υ is updated to υ′ according to
the transition’s action. N accepts a finite run, if this run reaches a state in the accepting
states A of N , and it accepts an infinite run if this run reaches one of N ’s recurrence
states R infinitely often.

It may be noted that although we define interaction automata to be finitely repre-
sented, the configuration space may be infinite due to unbounded increases of counters.
However, for bounded interactions, in which no lifeline in a loop is allowed to proceed
arbitrarily in advance with respect to another lifeline in the loop [9], the configuration
space can be kept finite, and even for unbounded interactions, the system under obser-
vation may not produce runs that exhibit unbounded differences between counters.

4 Translation of UML 2.0 Interactions

We translate UML 2.0 interactions into interaction automata following the generally
agreed upon semantics of basic interactions, state invariants, and the interaction oper-
ators seq, strict, par, alt, ignore, and, in a restricted form, loop [3,4]. Furthermore, we
handle a binary logic not operator; not and loop are restricted to basic interactions.1

In contrast to other approaches (e.g. [10,11]) we propose not to generate one au-
tomaton for every object in an interaction, but to use only a single observing interaction

1 For a more detailed account of the translation procedure we refer the reader to the unabridged
version of this article in the proceedings of the workshop “Critical Systems Development
Using Modeling Languages” 2006.

 45

automaton for the entire interaction. This single automaton represents the property to be
checked by a model checker. Our translation of basic interactions is a simplified version
of the construction for Live Sequence Charts (LSCs) given by Brill et al. [12], the han-
dling of weak sequencing cuts down techniques of Alur and Yannakakis for bounded
MSCs [9].

4.1 Basic Interactions, Loops, and Negation

We first describe the translation of basic interactions, and loops and negations of basic
interactions. These interaction fragments form the primitive blocks in our translation
procedure and have to be represented as interaction automata directly.

Basic Interactions. The translation of basic interactions is performed by unwinding the
partial order of events. For each event the partial order defines the prerequisite events,
which must be unwound before that event can be unwound. The unwinding is performed
in phases [12]. In every phase there exists a history, i.e., a set of events which have been
unwound already. Given a phase, the function ready delivers the events which can be
unwound in the next step, as inscriptions of transitions; we write isAccepting(phase)
for ready(phase) = ∅. A function nextPhase, given a phase and a transition inscription,
creates a new phase recording the additional event from the transition inscription in the
history. The following algorithm unwind transforms phases directly into states of an
interaction automaton result. Started for a basic interaction with the phase with empty
history, the state returned by this call to unwind becomes the initial state of result.

1 unwind(phase, result) ≡
2 state ← addState(result)
3 if isAccepting(phase) then addAcceptingState(result, state) fi

sd
obj2obj1

a

b

(a) Basic interaction.

obj1 obj2

a

sd

par

b

(b) par fragment.

s_6

s_4

rcv(a)

s_3

snd(b)

s_5

rcv(b)

s_2

snd(b) rcv(a)

s_1

snd(a)

(c) Automaton generated for 2(a).

s_15

s_13

snd(a)

s_11

rcv(a)

s_8

s_12

snd(b)

s_9

rcv(a)

rcv(b)

s_10

rcv(a)snd(b)

s_14

rcv(b)snd(a)

rcv(b)

s_7

snd(a) snd(b)

(d) Automaton generated for 2(b).

Fig. 2. Automata for a basic interaction and par (accepting states are doubly outlined)

46

4 for label ∈ ready(phase) do
5 addTransition(result, state, label, unwind(nextPhase(phase, label), result))
6 od
7 return state

Figure 2(a) shows an example of a basic interaction, the interaction automaton in
Fig. 2(b) shows the effects of unwinding its partial order. The branching in s_2 is due
to the fact that the second event can be either the reception of a or the sending of b.

Loops. The UML 2.0 defines loops which have a lower and an upper bound for the
number of iterations their operand has to perform; the lower bound has to be finite,
while the upper bound may be infinity. We change this and also allow the lower bound
to be infinity. However, we restrict loops to contain only a basic interaction.

For finite or infinite loops of a basic interaction the basic unwinding algorithm can
be reused. As weak sequencing is used for loops, the lifelines in the underlying basic
interaction can make different progress. Thus the history stored in a phase for a basic
interaction becomes insufficient for loops, as not all prerequisite events for a given event
will be present in the history if the lifeline’s event is lagging behind the lifeline of one
of its prerequisites. Thus we let loop phases also show a history, but the computation
of the next events from a loop phase is changed: We introduce counters for recording
the separate progress of each lifeline. Then, an event e on lifeline l is possible in a loop
phase if the following condition is met: If e has a prerequisite e′ on a lifeline l′, either
the counter for l′ is greater than the counter for l, or the counters for l and l′ are equal
and e′ is present in the history. Upon finishing a cycle through a lifeline the counter for
this lifeline has to be increased in order to make real progress.

It remains to ensure that the number of iterations of the loops indeed is between
its lower and upper bound. If the lower bound is finite, a phase becomes accepting if
the counters for all lifelines are equal and greater than or equal to the lower bound. If
the upper bound is finite a new cycle of a lifeline may only be started, if the counter
of the lifeline has not reached the upper bound. Finally, if either the lower or the upper
bound of iterations is infinite, we have to introduce a recurrent state which is run through
every time the lifeline counters are equal. The introduction of a recurrent phase extends
the unwind algorithm after line 3 by

if isRecurrent(phase) then addRecurrentState(result, state) fi

Figure 3 shows an example of an automaton for a loop. The example is based on the
basic interaction in Fig. 2(a), wrapped into a loop 〈4,∞〉.
Negation. We replace UML 2.0’s notorious negation operator neg by a binary logic
variant not which simply accepts all those traces that are not valid for its operand. How-
ever, an algorithm for negating general interaction automata is out of reach. Thus we
restrict the application of not to basic interactions, such that the interaction automaton
to be negated is deterministic and does not involve counters. The negation operation
on these interaction automata basically means that all accepting states become non-
accepting states and all non-accepting states become accepting states in the negated
automaton. A new recurrent state is added, and from all complemented states transi-
tions to this accepting state are added to accept all events that were not accepted in the

 47

s_6

s_4

rcv(b) [((v_1 < v_2) && (v_1 < v_2))
&&(((v_1+1) == v_2) && ((v_1+1) >= 4))]

/v_1++;

s_1

rcv(b)
[((v_1 < v_2) && (v_1 < v_2))

&& (((v_1+1) != v_2) ||
((v_1+1) < 4))]/v_1++;

s_5

snd(a)

s_3

snd(b) [((v_2+1) == v_1) &&
((v_2+1) >= 4)]/v_2++;

snd(b) [((v_2+1) != v_1) ||
((v_2+1) < 4)]/v_2++;

rcv(a) [(v_1 < v_2) || (v_1 == v_2)]

/v_1 = 4; v_2 = 4;

s_2

rcv(a)
[v_1 < v_2]

snd(a)
[(v_1 >= 4) && (v_2 >= 4)]

/v_1 = 0; v_2 = 0;

snd(b)
/v_2++;

rcv(b)[((v_1 < v_2) ||(v_1 == v_2))
&&(v_1 < v_2)]/v_1++;

Fig. 3. The automaton for an infinite loop (recurrence states are triply outlined; transition annota-
tions abbreviated)

corresponding state of the original automaton. This additional accepting state is also
equipped with a self-loop accepting all possible events.

4.2 Interleaving, Sequencing, and Composition

We next describe the parallel (par) and weak sequential (seq) composition of two in-
teraction automata N1 and N2 over a common interaction alphabet (L, E, Σ). We also
give a brief account of strict sequential (strict) composition, extending this notion to
introduce a general strict sequencing variant sloop of loops, and of alternatives (alt),
ignore, and state invariants.

Parallel Composition and Weak Sequencing. The parallel composition N1‖N2, accept-
ing the trace o0o1 · · · ∈ (Σ×℘E)∗∪(Σ×℘E)∞ by interleaving traces o

(1)
0 o

(1)
1 . . . and

o
(2)
0 o

(2)
1 . . . accepted by N1 and N2 respectively, uses a construction very similar to the

parallel composition of Büchi automata [8]. This construction only has to be adapted
to cover the case that both or one of the interaction automata do not show recurrence
states.

A slight modification of the construction for parallel composition can be used for
obtaining the weak sequential composition N1 ;<> N2 of N1 and N2: Also interleavings

of traces o
(1)
0 o

(1)
1 . . . and o

(2)
0 o

(2)
1 . . . accepted by N1 and N2 are accepted by N1 ;<> N2,

but in the interleaving no o
(2)
j is allowed to occur before an o

(1)
k if their active lifelines

overlap. Therefore, the states of N1 ;<> N2 show an additional component of sets of
lifelines, recording which lifelines have been covered by the interleaving of N2.

48

Formally, given the interaction automata N1 = (S1, V1, T1, i1, A1, R1) and N2 =
(S2, V2, T2, i2, A2, R2), their weak sequential composition N1 ;<> N2 is the interaction
automaton (S, V1 ∪ V2, T, i, A, R) with

S = S1 × ℘L × S2 × {0, 1, 2}, i = (i1, ∅, i2, 0)
(s1, K, s2, k) ∈ A ⇐⇒ (s1 ∈ A1 ∧ s2 ∈ A2 ∧ k = 0)
(s1, K, s2, k) ∈ R ⇐⇒ k = 2
((s1, K, s2, k), (η, g, a), (s′1, K

′, s′2, k
′)) ∈ T ⇐⇒

(((s1, (η, g, a), s′1) ∈ T1 ∧ s′2 = s2 ∧ K = K ′ ∧ lifelines(η, g) ∩ K = ∅) ∨
((s2, (η, g, a), s′2) ∈ T2 ∧ s′1 = s1 ∧ K ′ = K ∪ lifelines(η, g))) ∧

k′ =

⎧
⎪⎨

⎪⎩

k + 1, if (k = 0 ∨ k = 1) ∧
(s′k+1 ∈ Rk+1 ∨ (s′k+1 ∈ Ak+1 ∧ R1−k �= ∅))

k mod 2, otherwise

The results of applying the construction for parallel composition and weak sequenc-
ing (using an optimised algorithm cutting off states that are unreachable from the initial
state) to the interaction in Fig. 2(b) and Fig. 2(a) respectively, are shown in Fig. 2(d)
and Fig. 2(c) and show the unrestricted interleaving in comparison with the restricted
interleaving of weak sequencing.

Strict Sequencing, Alternatives, and Ignores. The strict sequential composition N1 ; N2

is achieved by building an automaton which appends N2 at every accepting state of
N1. The simplicity of the strict sequencing construction for interaction automata also
allows for the introduction of an unrestricted loop operator sloop, which enforces strict
sequencing of the operand.

In alternative fragments all operands are guarded by either an explicitly given con-
dition, or the implied condition [true]. We integrate the operand automata into a single
automaton with guarded transitions from a new initial state to their respective initial
states. A similar construction is employed for state invariants.

An ignore fragment specifies which messages are allowed to occur additionally in
the traces generated from its operand. This is captured by adding self-loops to every
state with the send and receive events from these messages, active for every possible
sender or receiver, to the interaction automaton of the operand.

5 Model Checking UML 2.0 Interactions

We apply interactions as observers in model checking by translating the generated inter-
action automata into observing processes in the model checker SPIN. The system to be
observed are message exchanging UML state machines. SPIN is called upon to check
whether there is a run of the UML state machines that is accepted by the observer in-
teraction automaton. The translation of UML state machines into SPIN, the translation
from UML 2.0 interactions into interaction automata, and the translation of interaction
automata into SPIN are integrated into the UML model checking tool HUGO/RT [5].

 49

sd
: ATM : Bank

ignore { verifyPIN, reenterPIN,
abort, done }

inState(GivingMoney)

(a) PIN must have been verified

sd

verifyPIN

PINVerified

: ATM : Bank

loop <infty>

(b) Always give money to validated customers

Fig. 4. Two examples for the ATM case study

Implementation. We use SPIN’s accept labels to capture the acceptance conditions of in-
teraction automata both for finite and infinite traces. For infinite traces the accept labels
are generated from the recurrent states, for finite traces a special accept label with loop-
ing transitions is produced from the acceptance states. The counters of an interaction
automaton are represented as variables of the observing process. For recording events
the system is instrumented to communicate with the observer via rendezvous channels:
Each time a message is sent or received, or a state machine terminates successfully the
observer is notified.

In order to keep the size of the SPIN code produced small state sharing is used in the
algorithms for basic interactions and loops. Additionally, in the automata from parallel
composition and weak sequencing unreachable states are cut off. These optimisations
are done on the fly without constructing the product automaton. What is more, the
unwind algorithm produces rather large automata, even with sharing: In the worst case
for n independent events the resulting number of states will be 2n. Thus it is beneficial
to encode a phase not into the states of an interaction automaton, but to employ an
external bit-array which encodes the progress of the phases and to use tests on this
bit-array for checking whether an event can be accepted.2

Verification. Some examples for an automatic teller machine (ATM) case study [14]
may show how the additions to interactions in UML 2.0 add to the expressiveness,
and thus to the ease of specification and verification of interesting system properties.
The two examples in Fig. 4 encode two important properties of the interaction between
the system’s components ATM and Bank: Figure 4(a) specifies a forbidden scenario;
the state invariant that money is dispensed should not be reachable if no PINVerified
(all other messages are ignored) has been sent. The interaction in Fig. 4(b) is a required
scenario; it must be possible to take money from the ATM infinitely often, as long as
the card is valid.

Having specified the interactions and state machines for the system components
(see [14]) in the input language of HUGO/RT, the verification process itself is fairly
straightforward. HUGO/RT translates the model into a set of SPIN processes and calls
SPIN for finding acceptance cycles. For the interaction in Fig. 4(a) no such cycle is
found, verifying that the interaction is indeed not satisfiable. For the interaction in

2 For example, the error scenario in Fig. 15-9 of the telecom case study of Baranov et al. [13]
with 19 messages on 5 lifelines amounts to 207 states and 476 transitions in the phase-based
translation, but only 2 states and 39 transitions using a bit-array.

50

Fig. 4(b) an acceptance cycle is found showing that the infinite behaviour is possible.
SPIN also produces an example trail, which is retranslated into a human-readable format
of UML system states. For these simple examples the translation and model checking
take about three seconds on an Intel R© Pentium R© 4, 3.2 GHz with 2 GB of memory.

6 Related Work

Over time there have been various approaches to formalising scenario descriptions in
order to facilitate the analysis of requirements or specifications. Starting from MSCs,
Uchitel et al. [15,11] specified semantics for HMSCs, and then developed an approach
to synthesise behavioural models in the form of labelled transition systems. Their ap-
proach aims at preserving the component structure of the system. This causes their
models to allow additional behaviours, which are not explicitly specified in the scenar-
ios, and requires refinement steps to complete the specification [11].

Damm and Harel [16] developed LSCs as a more expressive extension of MSCs.
They enrich their specification language with means to express preconditions for scenar-
ios, and facilities to explicitly specify mandatory and forbidden behaviour. Klose [17]
proposes an automaton-based interpretation of LSCs and gives an algorithm to create
automata out of basic LSCs [17,12]. Bontemps and Heymans [18] formalise automata
constructions for strict sequencing, parallel composition, and finite iteration of LSCs.
Harel and Maoz [19] propose to port the semantics of LSCs to UML 2.0.

With CHARMY, Autili et al. [20] present a tool based on an approach similar to ours.
The focus of CHARMY are architectural descriptions and the verification of their consis-
tency. The semantics of interactions, given by their translation rules, however, deviates
substantially from what can be gleaned from the UML 2.0 specification. Furthermore,
in the program version we tested, combined fragments are not supported.

7 Conclusions and Future Work

We have presented a translation from UML 2.0 interactions into a special class of
automata showing features of finite state automata, Büchi automata and counter au-
tomata. These interaction automata have been further translated into concrete programs
for model checkers. Together with matching descriptions for UML state machines the
approach has been used to model check consistency between the different system de-
scriptions. In some examples we have shown the applicability of the translation pro-
cedures to check the satisfiability of scenarios by using the model checker SPIN. The
added expressiveness allows the use of our approach to specify properties which before
would have required formalisms other than UML interactions.

Since in the current implementation loop and not are restricted in terms of operands,
one direction of future work will be to detail to which extent these restrictions can be
removed. We also intend to integrate the remaining operators specified by the UML 2.0
specification, which we have disregarded so far. Furthermore, the specification patterns
for scenarios described by Autili et al. [20] should be combined with our approach.
Finally, we plan to integrate timing constraints and to enhance the translation of inter-
actions into the real-time model checker UPPAAL.

 51

References

1. Object Management Group: Unified Modeling Language: Superstructure, version 2.0. (2005)
http://www.omg.org/cgi-bin/doc?formal/05-07-04(06/07/18).

2. International Telecommunication Union: Message Sequence Chart (MSC). ITU-T Recom-
mendation Z.120, ITU-T, Geneva (2004)

3. Cengarle, M.V., Knapp, A.: UML 2.0 Interactions: Semantics and Refinement. In Jürjens,
J., Fernandez, E.B., France, R., Rumpe, B., eds.: Proc. 3rd Int. Wsh. Critical Systems De-
velopment with UML (CSDUML’04), Technical Report TUM-I0415, Institut für Informatik,
Technische Universität München (2004) 85–99

4. Runde, R.K., Haugen, Ø., Stølen, K.: Refining UML Interactions with Underspecification
and Nondeterminism. Nordic J. Comp. 12(2) (2005) 157–188

5. Hugo/RT website: http://www.pst.ifi.lmu.de/projekte/hugo(06/07/18) (2000)
6. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2003)
7. UPPAAL website: http://www.uppaal.com(06/07/18) (1995)
8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
9. Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In Baeten, J.C.M.,

Mauw, S., eds.: Proc. 10th Int. Conf. Concurrency Theory (CONCUR’99). Volume 1664 of
Lect. Notes Comp. Sci., Springer (1999) 114–129

10. Leue, S., Ladkin, P.B.: Implementing and Verifying MSC Specifications Using Prome-
la/XSpin. In Gregoire, J.C., Holzmann, G.J., Peled, D., eds.: Proc. 2nd Int. Wsh. SPIN Ver-
ification System (SPIN’96). Volume 32 of Discrete Mathematics and Theoretical Computer
Science., American Mathematical Society (1997) 65–89

11. Uchitel, S., Kramer, J., Magee, J.: Incremental Elaboration of Scenario-based Specifications
and Behavior Models using Implied Scenarios. ACM Trans. Softw. Eng. Methodol. 13(1)
(2004) 37–85

12. Brill, M., Damm, W., Klose, J., Westphal, B., Wittke, H.: Live Sequence Charts. In Ehrig,
H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E., eds.:
Integration of Software Specification Techniques for Applications in Engineering. Volume
3147 of Lect. Notes Comp. Sci., Springer (2004) 374–399

13. Baranov, S., Jervis, C., Kotlyarov, V., Letichevsky, A., Weigert, T.: Leveraging UML to
Deliver Correct Telecom Applications. In Lavagno, L., Martin, G., Selic, B., eds.: UML for
Real. Kluwer (2003) 323–342

14. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collaborations.
In Stoller, S., Visser, W., eds.: Proc. Wsh. Software Model Checking. Volume 55(3) of Elect.
Notes Theo. Comp. Sci., Paris (2001) 13 pages.

15. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios. IEEE
Trans. Softw. Eng. 29(2) (2003) 99–115

16. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal Meth.
Sys. Design 19(1) (2001) 45–80

17. Klose, J.: Live Sequence Charts: A Graphical Formalism for the Specification of Communi-
cation Behaviour. PhD thesis, Carl von Ossietzky-Universität Oldenburg (2003)

18. Bontemps, Y., Heymans, P.: Turning High-Level Live Sequence Charts into Automata.
In: Proc. ICSE Wsh. Scenarios and State-Machines: Models, Algorithms and Tools
(SCESM’02), Orlando (2002)

19. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Sequence
Diagrams. In: Proc. 5th Int. Wsh. Scenarios and State Machines: Models, Algorithms, and
Tools (SCESM’06), ACM Press (2006) 13–20

20. Autili, M., Inverardi, P., Pelliccione, P.: A Scenario Based Notation for Specifying Temporal
Properties. In: Proc. 5th Int. Wsh. Scenarios and State Machines: Models, Algorithms, and
Tools (SCESM’06), ACM Press (2006) 21–27

http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.pst.ifi.lmu.de/projekte/hugo
http://www.uppaal.com

	Title
	Preface
	Table of Contents
	9th International Workshop on Aspect-Oriented Modeling
	Introduction
	Overview of Accepted Position Papers
	Overview of Discussion Topics
	Concluding Remarks
	References

	Modeling Features in Aspect-Based Product Lines with Use Case Slices: An Exploratory Case Study
	Introduction
	Product Line Example
	Example Description
	AspectJ Implementation

	Use Case Slices
	Feature Oriented Programming (FOP)
	AHEAD in a Nutshell
	An Algebraic Model of EPL

	Integrating Use Case Slices and Features
	Related Work
	Conclusions and Future Work
	References

	Join Point Patterns: A High-Level Join Point Selection Mechanism
	Introduction
	Limits of the Join Point Models
	JPP Specification Language
	JPP Terminology and Description
	Aspects That Use Join Point Patterns

	Weaving in JPP
	Conclusions

	Critical Systems Development Using Modeling Languages – CSDUML 2006 Workshop Report
	Introduction

	Modeling an Electronic Throttle Controller Using the Timed Abstract State Machine Language and Toolset
	Introduction
	Related Work
	The Timed Abstract State Machine (TASM) Language
	Basic Definitions
	Time
	Resources
	Hierarchical Composition
	Parallel Composition

	The Timed Abstract State Machine Toolset
	The TASM Editor
	The TASM Simulator
	The TASM Analyzer

	Modeling the Electronic Throttle Controller
	Components
	Resources
	Complete Model and Simulation
	Scenario Modeling
	Results

	Conclusion and Future Work

	Model Checking of UML 2.0 Interactions
	Introduction
	UML 2.0 Interactions
	Interaction Automata
	Translation of UML 2.0 Interactions
	Basic Interactions, Loops, and Negation
	Interleaving, Sequencing, and Composition

	Model Checking UML 2.0 Interactions
	Related Work
	Conclusions and Future Work

	3rd International Workshop on Metamodels, Schemas, Grammars and Ontologies
	A Unified Ontology-Based Process Model for SoftwareMaintenance and Comprehension
	Introduction and Motivation
	Background
	Modeling a Software Maintenance Process
	An Ontological Software Maintenance Process Model
	Ontological Representation for Software Artifacts
	Process Management

	System Implementation and Evaluation
	System Overview
	Initial Evaluation

	Related Work
	Conclusions
	References

	Formalizing the Well-Formedness Rules of EJB3QL in UML + OCL
	Introduction
	Reverse Engineering the EJB3QL Spec: How and Why
	Consistency and Completeness Enforced by Language Metamodeling
	Selected Examples of Additional Corner Cases
	Integrating the Artifacts Generated from the Language Metamodel in a Software Project
	Related Work
	Conclusions and Future Work

	The 1st Workshop on Quality in Modeling
	Consistency of Business Process Models and Object Life Cycles
	Introduction
	Business Process Models and Object Life Cycles
	Generation of Object Life Cycles
	Consistency of Object Life Cycles
	Related Work
	Conclusion and Future Work

	A Qualitative Investigation of UML Modeling Conventions
	Introduction
	Evaluating Model Quality
	Measuring Model Quality

	Experimental Set-Up
	Experimental Design
	Experimental Subjects, Tasks and Objects
	Experimental Procedure
	Experimental Variables

	Data Analysis
	Threats to Validity
	Conclusion
	Modeling Conventions

	Model Driven Development of Advanced User Interfaces (MDDAUI) – MDDAUI’06 Workshop Report
	Workshop Topic
	Submissions, Participants, and Program
	Workshop Discussions
	Co-development of Models and Visualizations
	Runtime Interpretation of UI Models
	MDDAUI and Usability
	An Integrated Metamodel for UI Development

	Conclusion

	A Model-Driven Approach to the Engineering of Multiple User Interfaces
	Introduction
	Related Work
	Abstract Description of User Interfaces
	Adapting on the AUI Level
	Clustering Interaction Elements to Generate Presentation Units
	Inserting Control-Oriented Interaction Elements
	Selecting Content

	Generating Concrete and Implemented User Interfaces
	AUI Metamodel
	User Interface Structure
	Dialogue Model

	Applied Technologies
	Conclusion

	Model-Driven Dynamic Generation of Context-Adaptive Web User Interfaces
	Introduction
	Related Work
	Ontology-Based Web Application and Context Modeling
	The CATWALK Framework
	Generation of Adaptive, Context-Aware User Interfaces
	Representation
	Selection
	Parameterization
	Presentation

	Conclusion and Future Work

	Modelling and Analysis of Real Time and Embedded Systems – Using UML
	Introduction
	The Issues Discussed at the Workshop
	Profiles and Modelling Languages
	Techniques and Tools
	Applications
	Discussion and Conclusions

	References

	Time Exceptions in Sequence Diagrams
	Introduction
	Background
	The UML 2.1 Simple Time Model
	UML Profile for Schedulability, Performance and Time
	TimedSTAIRS
	UML Testing Profile --- Default Concept
	Proposed Notation for Exceptions in Sequence Diagrams

	Time Exceptions in the ATM Example
	The Normal Flow
	Applying Time Exceptions to the ATM
	Time Exceptions in EnterPin
	Time Exceptions in Withdrawal

	The Formal Semantic Domain of Sequence Diagrams
	The Formal Semantics of Time Exceptions
	Definitions
	Refinement
	Conclusions

	Applying Model Intelligence Frameworks for Deployment Problem in Real-Time and Embedded Systems
	Introduction
	Motivating Example
	Domain-Specific Model Intelligence
	Domain Constraints as the Basis for Automatic Suggestions
	Modeling Guidance On-the-Fly
	Model Completion Solvers

	Case Study: Solving EAST-EEA Deployment Problem
	Defining Constraints and Solvers

	Concluding Remarks

	OCL for (Meta-)Models in Multiple Application Domains
	Motivation and Goals
	Organization
	Topics and Approaches of Accepted Papers
	Discussion and Conclusion

	Introduction
	OCL-Based Validation of a Railway Domain Profile
	Short Introduction to the Railway Domain
	RCSD Profile
	Network Elements
	Instances of Network Elements
	Route Definitions

	Validation of Wellformedness Rules with USE
	Modeling the UML Metamodel and the RCSD Profile for USE
	Compliance of RCSD Model to Profile on Class Level
	Compliance of RCSD Model to Profile on Instance Level
	Results

	Conclusion

	OCL Support in an Industrial Environment
	Introduction
	The SAP Modeling Infrastructure (MOIN)
	Overview on the Architecture and Services of MOIN

	Related Work
	OCL Impact Analysis in the SAP Modeling Infrastructure
	Architecture
	Class Scope Analysis
	Instance Scope Analysis

	Preliminary Results
	UML-meta-model + MOF-constraints

	Conclusion

	Report on the 3rd MoDeVa Workshop – Model Design and Validation
	Towards Model-Driven Unit Testing
	Introduction
	Overview of the Approach
	Modeling with Visual Contracts
	Translation to JML
	Test Case Generation and Test Execution
	Test Case Generation
	Test Execution with Embedded Oracles

	Tool Support
	Conclusion

	Validation of Model Transformations – First Experiences Using a White Box Approach
	Introduction
	Model Transformations for Business Process Models
	Systematic Testing of Transformations
	Fault Model for Model Transformations
	Meta Model Coverage Testing
	Using Constraints for Construction of Test Cases
	Using Rule Pairs for Testing

	Conclusions

	Summary of the 2006 Model Size Metrics Workshop
	Overview
	Workshop Presentations
	Group Discussions
	Open Questions
	Plans and Summary

	Model Size Matters
	Introduction
	Why Do We Need Model Size Metrics?
	What Are the Challenges?
	Possible Approaches
	What Is Model Size?
	Proposed Approaches

	Conclusions and Future Directions

	On the Application of Software Metrics to UML Models
	Introduction
	General Observations
	Relationship with Code
	Some Future Directions
	Summary

	Summary of the Workshop Models@run.time at MoDELS 2006
	Introduction
	Workshop Format
	Session Summaries
	Discussions
	Reference

	Using Runtime Models to Unify and Structure the Handling of Meta-information in Reflective Middleware
	Introduction
	Foundations
	Reflection
	Metamodeling

	Combining Reflection and Metamodeling
	The Meta-ORB Metamodel
	Using the Model to Instantiate Platform Configurations
	Using the Model to Instantiate Reflective Meta-objects
	Creating New Model Elements Using Reflection

	Further Applications of the Approach
	Related Work
	Concluding Remarks

	Applying OMG D&C Specification and ECA Rules for Autonomous Distributed Component-Based Systems
	Introduction
	Principles of Autonomic Computing
	Key Research Challenges
	Our Dacar Prototype
	Case Study
	Related Works
	Conclusions and Future Work

	Summary of the Workshop on Multi-Paradigm Modeling: Concepts and Tools
	Introduction
	Multi-Paradigm Modeling
	Presented Papers
	Working Group Results
	Multiple Views
	Abstraction
	Model Evolution

	Program Committee

	Think Global, Act Local: Implementing Model Management with Domain-Specific Integration Languages
	Introduction
	Rationale for Our Approach
	Managing Models on a Global Level
	Model Manangement Scripts on the Global Composite Level
	Categorizing Transformations on the Global Level

	Integrating Models on the Local Level
	An Example DSIL on the Intermediate Level
	Integration Operators on the Local Composite Level
	Mapping Integration Operators onto the Local Level

	Related Work
	Conclusion and Future Work

	MoDELS 2006 Doctoral Symposium
	Model Driven Security Engineering for the Realization of Dynamic Security Requirements in Collaborative Systems
	Introduction
	MDE for the Realization of Dynamic Security Requirements
	Related Work
	Conclusions
	Contributions
	Future Work

	Educators’ Symposium at MoDELS 2006
	If You’re Not Modeling, You’re Just Programming: Modeling Throughout an Undergraduate Software Engineering Program
	Introduction
	The Difficulty of Modeling Software Systems
	Modeling Throughout the Curriculum
	Basic Object-Oriented Modeling
	Modeling in a Course on Design Patterns

	Formal Modeling
	“Theoretical” vs. “Practical” Modeling
	Finite State Process Modeling of Concurrent Systems
	Model-Driven Development

	Modeling in Other Design Areas
	Problems Still to Solve
	Using a Consistent Subset of UML
	Getting Students to Trust Their Models

	Success of Modeling Throughout the Curriculum
	Preference for a Modeling-First Approach
	Analysis of Formal Models

	Conclusions
	References

	Teaching Software Modeling in a Simulated Project Environment
	Introduction
	Course Format
	Teaching Results
	Conclusions

	Repository for Model Driven Development (ReMoDD)
	Introduction
	Goals, Objectives, Targeted Activities
	Project Description and Infrastructure
	Core ReMoDD Content-Related Concepts
	The ReMoDD Development Plan

	Evaluation
	Outreach
	Future Activities

	2nd UML 2 Semantics Symposium: Formal Semantics for UML
	Introduction
	Motivation
	The Semantics Architecture
	System Model
	Status
	Future Work

	A UML Simulator Based on a Generic Model Execution Engine
	Motivation and Background
	Analysis of DMM Based Semantics
	Conclusion

	Author Index

