
ABSTRACT
This paper illustrates the next steps of AUML by presenting a
(A)UML presentation of the internal behavior of an agent and
relating it to the external behavior of an agent using and extending
UML class diagrams.

Keywords
Agents, UML, internal behavior of agents, AUML, design artifacts,
software engineering.

1. INTRODUCTION
Successful industrial deployment of agent technology requires
techniques that reduce the risk inherent in any new technology. Two
ways that reduce risk in the eyes of potential adopters are: to present
the new technology as an incremental extension of known and
trusted methods, and to provide explicit engineering tools that
support industry-accepted methods of technology deployment.
The Unified Modeling Language (UML) is gaining wide acceptance
for the representation of engineering artifacts in object-oriented
software. Our view of agents as the next step beyond objects leads
us to explore extensions to UML [3] and idioms within UML to
accommodate the distinctive requirements of agents. The result is
Agent UML (AUML), see [1, 2, 4]. This paper reports on the
representation of the agent's internal behavior and relating it to the
external behavior of agent using and extending UML class
diagrams.

2. UML CLASS DIAGRAMS - REVISITED
The usual object oriented techniques have to be applied to agent
technology, supporting efficient and structured program
development, like inheritance, abstract agent types and agent
interfaces, and generic agent types. Single, multi and dynamic
inheritance can be applied for states, actions, methods, message
handling. Associations are usable to describe e.g. agent A uses the
services of agent B to perform a task, with some cardinality and
roles. Aggregation and composition show e.g. car park service and
car park monitoring can be part of an car park agent.

The components can either be agent classes or usual object oriented
classes. Agent and objects are completely different paradigms.

Therefore different notations between agents and objects have to be
used either directly or using stereotypes. A class in the sense of
object oriented programming is a blueprint for objects, an agent
class has to be a blueprint for agents. This can be either an instance
of an agent or a set of agents satisfying some special role or
behavior.

agent-class-name / rolename1, rolename-2, ...

state-description

actions

methods

capabilities, service description, supported
protocols

[constraint] society-name

agent-head-
automata-name

CA-1 /
protocol

CA-2 /
protocol

not-
understood

CA-1 /
protocol

CA-2 /
protocol

default

fig. 1. agent class diagram and its abbreviations
What has to be specified for agent classes is shown in figure 1.

Agent Class Descriptions and Roles
In UML, role is an instance focused term. In the framework of
agent oriented programming by agent-role [1] a set of agents
satisfying distinguished properties, interfaces, service descriptions or
having a distinguished behavior are meant. Agents can perform
various roles e.g. a reseller agent can act as a buyer and seller. An
agent role describes two variations, which can apply within a multi
agent system. A multi agent system can be defined at the level of
concrete agent instances or for a set of agents satisfying a
distinguished role and/or class. The general form (see [2]) of
describing agent roles in Agent UML is

instance-1 ... instance-n / role-1 ... role-m : class

denoting a distinguished set of agent instances instance-1,...,
instance-n satisfying the agent roles role-1,..., role-m with n, m 0
and class it belongs to.

State description
The state description looks similar to a field description in class
diagrams with the exception that a distinguished class wff for well
formed formula for all kinds of logical descriptions of the state are
used, independent of the underlying logic. In the case of BDI

© ACM 2001. This is the author's version of the work. It is posted here
for your personal use. Not for redistribution. The definitive Version of
Record was published in:
AGENTS¶01, May 28-June 1, 2001, Montrpal, Quebec, Canada.
https://doi.org/10.1145/375735.376010

104

semantics four instance variables can be defined, e.g. named beliefs,
desires, intentions and goals each of type wff. Describing the beliefs,
desires, intentions and goals of a BDI agent. These fields can be
initialized with the initial state of a BDI agent. The semantics states
that the wff holds for the beliefs, desires, intentions and goals of the
agent.

However in different design stages different kinds of agent can be
appropriate, e.g. on the conceptual level one can specify some BDI
agents which are then implemented by some Java-based agent
platform, i.e. some refinement steps from BDI agents to Java agents
are performed.

Actions
Two kinds of actions can be specified for an agent: pro-active
actions (denoted by the stereotype <<pro-active>>) are triggered by
the agent itself, e.g. using timer, or a special state is reached. I.e. it is
tested on state changes of the agent (e.g. timer, sensor input) if the
pre-condition of the action evaluates to true. Re-active actions
(stereotype <<re-active>>) are triggered by another agent, i.e.
receiving some message from another agent. The description of an
agent's actions consists of the action signature with visibility
attribute, action-name and a list of parameters with its associated
types. The semantics of an action is defined by pre-conditions, post-
conditions, effects and invariants.

Methods
Methods are defined like in UML [2].

Capabilities
The capabilities of an agent can be defined either in an informal way
or using class diagrams for e.g. FIPA-service descriptions

Sending and Receiving of Communicative Acts
The main interface of an agent to its environment is the sending and
receiving of communicative acts. By communicative act (CA) we
mean the type of the message as well as the other information, like
sender, receiver or content like in FIPA-ACL messages. We assume
that the information about communicative acts are represented by
classes and objects. How ontologies and classes / objects are playing
together is beyond this paper. The incoming messages are drawn as

C A - 1 /
p ro t o c o l

and the outgoing messages are drawn

as
C A - 1 /
p r o to c o l

. The received or sent communicative act can
either be some class or some concrete instance. The notation CA-1 /
protocol is used if the communicative act of class CA-1 is received
in the context of an interaction protocol protocol. In the case of an
instance of a communicative act the notation CA-1 / protocol is
used. The context / protocol can be omitted if it is interpreted inde-
pendent of some protocol. In order to re-act to all kinds of received
communicative acts, we use a distinguished communicative act
default, which matches every incoming communicative act. The not-
understood CA is sent if an incoming CA cannot be interpreted.

An instance describes a concrete communicative act with fixed
content or other fixed values, like a concrete request, say ³start
auction for a special good.´ In order to allow a more flexible or
generic description, like ³start auction for any kind of good,´ an
agent class is used.

Matching of Communicative Acts
A received communicative act has to be matched against the
incoming communicative acts of an agent to trigger the
corresponding behavior of the agent. The matching of the
communicative acts depends on the ordering from top to bottom.

The simplest case is the default case, default matches everything and
not-understood is the answer to messages not understood by an
agent. Since we match on the one side instances of communicative
acts, as well as classes of communicative acts, we have to define free
variables within an instantiated communicative act. Communicative
acts are defined by classes without methods.

An input communicative act CA matches an incoming message CA',
iff

CA is a class, then
CA' must be an instance of class CA or
CA' must be a subclass of class CA or a subclass of it.

CA is instance of some class, then
CA' is instance of the same class as CA and
CA.field matches CA'.field for all fields field of the class
CA, defined as

CA.field matches CA'.field, if CA.field has the value
undef.
CA.field matches CA'.field, if CA.field is equal to
CA'.field with CA.field not equal to undef and the
type of field is a basic type.
CA.field matches CA'.field, if CA.field is unequal to
undef and the type of field is not a basic data type
and CA.field are instance of the same class C and
CA.field.cfield matches CA'.field.cfield for all fields
cfield of class C.

In the case of a communicative act in the context of a protocol, CA /
protocol matches CA' / protocol', if CA matches CA' and protocol' is
equal to protocol. The analogous holds for outgoing messages, in
this case the communicative act has to match the result
communicative acts of the agent head automata.

The agent's head is the ³switch-gear´ of the agent. Its behavior has
to be specified with the agent head automata. Especially this
automata relates the incoming messages with the internal state,
actions and methods and the outgoing messages, called the re-active
behavior of the agent. Moreover it defines the pro-active behavior of
an agent, i.e. it automatically triggers different actions, methods and
state-changes depending on the internal state of the agent (for more
details see [2]).

3. REFERENCES
[1] [Bauer, B.� M�ller, J. P.� Odell, J.: An Extension of UML by

Protocols for Multiagent Interaction, Proc. ICMAS 2000,
Boston, 2000.

[2] Bauer, B., M�ller, J.P., Odell, J.: Agent UML: A Fo-
rmalism for Specifying Multiagent Software Systems, to
be published International Journal on Software
Engineering and Knowledge Engineering, 2001

[3] Martin, J., Odell, J., Object-Oriented Methods: A
Foundation, (UML edition), Prentice Hall, 1998.

[4] www.auml.org

105

