apute

=

r-Aide

Edited by ;
ean VANDERDON

Generating User Interfaces from
Formal Specifications of the Application

Bernhard Bauer

Abstract

The generation of the dialogue description from an algebraic specification of the
application and its restrictions to different user groups are presented. The idea and
motivation for the work is that the development of the application and the UT has
to go hand in hand. Moreover, the Ul should be generated since the programming
of Uls is a time consuming and errot-prone task. A formal specification of an ap-
plication, characterizing the application in an abstract way, allows the automatic
analyses and the generation of specifications, desctibing the dynamic behaviour of
the UL The generated (dynamic) specification can be used as an input for an ex-
isting UI Generator (UIG), called BOSS, which is patt of a formal UI development
environment, called FUSE.

Keywords

Algebraic specifications, user interface generation, model-based approach, user
interface, formal methods, application of theorem provers, links between applica-
tion and UL

Introduction

Nowadays nearly every software project has to deal with the implementation of
Uls, since the end-users of such systems are often computer novices using only
the program with little or less knowledge about the computer technology. But the
programming of Uls is not a trivial task, especially implementing the dialogue con-
trol, since the implementation is a time-consuming, error-prone and complex SE
process and therefore expensive.

Moreover the development of a graphical Ul is a very critical point in the softwate
engineering process, since the complete interaction between the user and the ap-
plication is via the UI and according to [Myers88a] 50-88% of the code of an in-
teractive application is the code for the UIL Furthermore the price for individual

142 Computer-Aided Design of User Interfaces

software should be low to enter into competition with other softwatre developets.
Necessary is the generation of Uls from higher specifications, i.e., “I tell you what,
you work it out®. The software engineer should only desctibe the “global“ infor-
mation of the UI and define style-guides for the dialogues and presentations. This
style-guides have to be defined once and are usable for the generation of a lot of
Uls. These style-guides allow to get consistent UI for a family of products with the
same look and feel.

Considering a whole application with a UI three layers have to be distinguished:

1. The specification of the presentation (layout) the user is interacting with.

2. The specification of the dialogues or tasks (dynamics) describing all possible
dialogues, in a layout-independent way (as presented for document architecture
systems in [Eickel90]).

3. The specification of the application (functional core) offering an appointed
functionality which must be supported by the UL

Taking this scheme into consideration and looking at the UI development process
it is obvious that the UI cannot be constructed without the knowledge of the ap-
plication, since the application interface, the dynamics of the UI and the user tasks
are not independent of the application, since the state of the application controls
inherent the performable dialogues. Therefore it is necessary to use the application
as a starting point for the UI development.

But which description of the application should be used? An informal specifica-
tion, a formal specification or the implementation of the application? Using an in-
formal specification does not allow the use of machine supported analyzing of the
specification. On the other side, the implementation of the application is too low-
level to be considered. Furthermore the implementation of the UI has to be done
in parallel to the implementation of the functional core to finish the implementa-
tion of both at neatly the same time.

Working with a formal specification technique allows:

e computer supported analyzation of the specifications,
e clucidating the problem and
e consideration of correctness aspects of the obtained software.

Thus the starting point for the UI and the application development is the same,
namely a formal specification of the application and the software construction of
both can be done hand in hand. In our framework as a starting point for the gen-
eration of Uls, algebraic specifications of the applications are used because on the
one side this technique allows the abstract specification of the application, de-
scribes the input/output behaviour and allows the use of theotem proving tech-
niques for obtaining cotrect softwate and on the other side are well-studied (cf.
e.g., [Ehrig85, Wirsing90]). The output of the generation process are HIT specifi-
cations [Schreiber96] used for the generation of an executable UI with BOSS [Sch-
reiber94a, Schreiber94b] (“BedienOberflichenSpezifikationsSystem® the german

Generating User Interfaces from Formal Specifications of the Application 143

translation of “UI specification system®) and state transition systems. The here
presented work is part of the FUSE system (Formal UI Specification Environ-
ment) presented in [Lonczewski96] in this volume. The FUSE system consists of
the three components BOSS [Schreiber94a, Schreiber94b], FLUID (Formal UI De-
velopment) and PLUG-IN [Lonczewski 95a, Lonczewski95b] (PLan-based User
Guidance for Intelligent Navigation). Within the FUSE atchitecture, the FLUID sys-
tem plays the role of a theorem prover (cf. [Bauer95]) and an automatic dialogue
designer. This contribution concentrates on the generation of the formal specifi-
cation of the logical UI - called in the following often dynamics of the UI - from the

formal specification of the application (i.e., problem domain model and user
model).

1 The Problem

As already mentioned in the introduction the programming of Uls is a time-
intensive and expensive SE task. Therefore it would be desirable to generate Uls
out of a higher specification with the aim “I tell you what, you work it out®. One
aim is the re-use of the specification of the application for the generation of the
UL Using algebraic specifications (being a well-founded formal specification tech-
nique, cf. e.g., [Wirsing90]) for the generation process allows a unifying starting
point for the UI and application development. The specification of the application
is taken as input of the generation process and the output is a HIT specification or
a state transition system describing the possible dialogues with the UI on a logical
view. This HIT specification in connection with a given runtime system allows the
prototypical development and evaluation of a UI with BOSS.

1.1 The Starting Point

Following [Larson92] the UI design decision framework consists of the following
five classes:

e The structural and functional decision class determine the end users’ con-
ceptual model,

e the dialogue decision class determines the dialogue style and

o the presentation and pragmatic decision class determines the refinement of
the end users’ conceptual model and dialogue style.

In the structural and the functional decision class the structure of the end users’
conceptual model is specified including

e the description of conceptual objects (consumed, produced and/or accessed by
the end user),

e the application functions and

e the description of constraints and relationships that hold among conceptual
objects).

144 Computer-Aided Design of User Interfaces

Le., more or less an abstract datatype with a special observable interface is defined
in the structural and functional decision class. Such an abstract datatype can easily
be specified by an algebraic specification.

We assume the reader to be familiar with the basic notions of algebraic specifica-
tions such as signature ¥ = (S, C, F), Z-terms Tx(X), ground terms Ty, (ground)
substitutions O, set of partial X—algebras Algrtia(Y) (for more details see [Ehrig85,
Wirsing90]).

Let X = (S, C, F) be a signature consisting of a set of sort symbols S, constructor
symbols C and function symbols F and Ax a set of equations of the form t = r
with t, r € Ty(X), whereby the function symbols in f € F with functionality
f:sl,s2,.., sn —> s may be partial (with s1, s2,..., sn, s € S), i.e. there ate some re-
strictions on the parameters denoted in the following way:

Eei(f =g o], Xr o P82 0 X Bsh - EQAKE o1, X 0y Rhisn) o5

such that f is only defined if Eqe(x¢, s1, X, s2,..., Xf, sn) is valid, whereby Eqe(x, s1,
Xf, 52, Xf,sn) 1 an equation with the only identifiers in { x¢ 1, X¢ 52,0+, X 5n }-

A subset Obs of the sorts S is distinguished being the observable sotts.

A partial algebraic specification is a tuple Sp = <X, Obs, Ax>.
The semantics is defined by its signature ¥ and the behavioural class
Beh(Sp) = { A € Algratial(¥)) | A | =pen ax for all axioms ax € Ax }.

The behavioural satisfaction | =peh is defined by
A | =pen t = riff for all context c[z] of observable sort holds A |= c[t] = c[t]

whereby a X-context c[z] is a term over the signature X with a distinguished identi-
fier zs occurring exactly once in c. The application of a context c[zy] to a term t
(denoted by cf[t]) is done by substituting the identifier z by t if t is of sort s. |=
denotes the usual satisfaction relation.

The model class of an algebraic specification is defined by:
Mod(Sp) = { A € Algrial(3) | A |= ax for all axioms ax € Ax }.

The sorts and constructor symbols define the conceptual objects, the function
symbols the application functions, the obsetvable sorts charactetize those objects
which are observable by the end-user and the parameter restrictions with the axi-
oms describe the constraints and relationships between the conceptual objects.

The notion of algebraic specifications has to be extended by a set of distinguished
function symbols applicable to the conceptual objects (called in the following 7x-
terface functions) which should be supported by the UI and the sort of the applica-
tion state, i.e., the sort of the terms representing the state of the functional core.
The use of interface functions cannot be neglected by identifying the function
symbols with observable result sort as the interface function, since it would be de-
sirable to use application functions only changing the internal state of the applica-
tion. Furthermore the initial state of an application may be defined.

-

Generating User Interfaces from Formal Specifications of the Application 145

Note, that the meaning of the functions (by defining the semantics of the func-
tions by axioms and parameter restrictions) is specified, but not their format or se-
quencing of invocation is defined.

The three important types of decisions made in the dialogue decision class are

e what are the units of information exchanged between the user and the applica-
tion (defined by the observable sorts and the interface functions),

e how this units of information are structured into messages between the user
and the application (not considered here) and

e what the appropriate sequences of message exchange ate (main issue of this
contribution).

The aim of the new approach is to generate the sequence of information ex-
changed between the user and the application, namely to automate part of the
dialogue decision class.

1.2 Specification of the Application: an Example

We start with the algebraic specification ISDN-Application of the application. A si-
miliar specification can be found in [Bauer95]. The specification of the ISDN tele-
phone is a syntactical enrichment of the natural numbers (NAT). The sorts de-
scribe the connection with a participant (Connection), the internal state of the tele-
phone (S7aze) and the state of a connection (Cstate).

The internal state is viewed in an abstract way, i.e., at most two connections can be
achieved with the telephone (&State). mtCon states an empty connection. A (non-
empty) connection consists of a telephone number (represented by a natural num-
ber being the only observable sort) and the status of the line (%4Con). A line can
either be waiting or telephoning.

The function ca// describes the telephone call with a single participant, secondCall
starts a telephone call with a second participant and the conference function en-
ables a conference session between the user of the telephone and the two partici-
pants on the other lines. all, secondCall and conference have parameter restrictions
denoted by a first order formulae after pre.

All telephone calls are ended with endCalls. emptyConnections, singleConnections and
doubleConnections are predicates stating none, one and two connections. The inter-
face functions, i.e., the set of functions which should be supported by the UT are
call, secondCall, conference and endCalls.

spec ISDN-Application =
enrich NAT by

sorts Connection, CState, State

obs-sorts Nat

cons
mkState: Connection, Connection -> State
mtCon: -> Connection,
mkCon: Nat, CState -> Connection,

>

146 Computer-Aided Design of User Interfaces

waiting, telephoning: -> CState

opns
call: Nat, Xcal, suare : State. pre emptyConnections(Xcal, State) = true -> State,
secondCall: Nat, XsecondCall, State © State. pre singleConnections(Xsecondcall, ste) = true -> State
conference: Xconference, stare : State. pre doubleConnections(Xconference, Stare) = true -> State,
endCalls: State -> State,
emptyConnections: State -> Bool,
singleConnections: State -> Bool,
doubleConnections: State -> Bool

interface functions call, secondCall, conference, endCalls

axioms forall nr, nr2: Nat, s: State.
emptyConnections(mkState(mtCon, mtCon)) = true,
emptyConnections(mkState(mkCon(nr, cs), c)) = false,
singleConnections(mkState(mkCon(nr, cs), mtCon)) = true,
singleConnections(mkState(mtCon, c)) = false,
singleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = false,
doubleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = true,
doubleConnections(mkState(c, mtCon)) = false,
call(nr, s) = mkState(mkCon(nr, telephoning), mtCon),
secondCall(nr, call(nr2, s)) = mkState(mkCon(nr2, waiting), mkCon(nr, telephoning)),
conference(secondCall(nr, call(nr2, 5))) =

mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
endCalls(s) = mkState(mtCon, mtCon)
endspec

>

Because of lack of space (large figures are obtained) and in order to keep the speci-
fication small, not the whole functionality presented in [Lonczewski96] in this vol-
ume is given, especially with endCalls a conference session is ended and the
switching between two participiants is omitted.

These features can easily be added to the specification and the generation would
be analogous. In this paper mainly the generation idea should be described to get a
feeling how the generation is performed.

2 The Generation Idea of the Dialogue Specification

In this section the idea for the generation of the dialogue specifications (HITs and
state transition systems) and their restrictions to different user groups are infor-
mally described.

2.1 Generation of the Dialogue Specifications

The generation process consists of several steps:

As a first step a graph is constructed with nodes marked with function symbols,
identifiers for the arguments and the resulting term for each interface function.
The only non-observable sort is the sort of the state of the functional core, namely

State, marked with

and observable arguments are marked with

Generating User Interfaces from Formal Specifications of the Application 147

secondCall

conference

Figure 1. First dependency graph

Now all the parameter restrictions for the functions can be solved by a system
solving existential quantified equations by narrowing like RAP [HuBmann89].
Therefore the solutions for the identifiers in the parameter restrictions must be
calculated, i.e., the solutions of the existential quantified formulae:

3 Xeall, state : State. emptyConnections(Xea, sue) = true,
3 XeecondCall, suate : State. singleConnections (Xsecondcall, stare) = true and

3 Xeonfeence, State : State. doubleConnections(Xconference, State) = true
The solutions - denoted here as substitutions - can be easily calculated as

01 = { mkState(mtCon, mtCon) / Xcal, suate }
02 = { mkState(mkCon(nr, telephoning), mtCon) / Xsecondcal, State } and

o

03 = { mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)) / Xconference, State }

=

secondCall

.

'/
B
)

conference

endCalls

Figure 2. Instantiated dependency graph

148 Computer-Aided Design of User Interfaces

These substitutions can now be applied to the graph, i.e. in the graph the identifi-
€rS Xcal, State, XsecondCall, State AN Xconference, Sate are substituted by mkState(mtCon,
mtCon), mkState(mkCon(nr, telephoning), mtCon) and mkState(mkCon(nt, wai-
ting), mkCon(nr2, telephoning)), respectively, resulting in figure 2.

Since the parameter restrictions of call and secondCall influence only the second
argument of sort State and not the first argument of sort Nat there is no restric-
tion on the telephone numbers. Thus a natural number can be used as an input for
the first argument of call and the first argument of secondCall. The same holds for
the function endCalls which can be applied in every state.

(secondCall J

conference

endCalls

Figure 3. Putting the instantiated dependency graph together

The result term of the function call is call(Xca, Nat, mkState(mtCon, mtCon)), of the
function secondCall is secondCall(Xsccondcall, Nat, mkState(mkCon(nt, telephoning),
mtCon)) and of the function conference is conference(mkState(mkCon(nr, wait-
ing), mkCon(nt2, telephoning))). Moreover it holds

call(nr, mkState(mtCon, mtCon)) = mkState(mkCon(nt, telephoning), mtCon)),

secondCall(nr, mkState(mkCon(nr2, telephoning), mtCon)) =
mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)),

conference(mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)) =
mkState(mkCon(nr, telephoning), mkCon(nt2, telephoning)))

and endCalls(s) = mkState(mtCon, mtCon) for all States s.

Generating User Interfaces from Formal Specifications of the Application 149

Now the graphs can be merged together (figure 3) and the non-observable state of
the application can be omitted resulting in the graph reproduced in figure 4.

secondCall

v

l conference '

A 4 A

endCalls

Figure 4. Composed instantiated dependency graph

The obtained graph can now be translated on the one side into a state transition
system and on the other side into a BOSS specification. In this generation process
special dialogue style guides (specifiable in a formal way by defining transforma-
tion rules for the obtained graphs) can be used, e.g., for a user or system driven
dialogue style. We assume here a hard-coded transformation into the dialogue
specifications.

A transaction-rule in BOSS (for more details, see [Lonczewski96] in this volume
and [Schreiber96]) is fired by the user, e.g., by selecting a menu-item, ot by a push-
button., ie., each interface function is viewed as a non-repeatable transaction rule
and the observable arguments as input slots, i.e., the user has to enter some infor-
mation for it. The corresponding BOSS-specification looks like figure 5.

internal state

inputslot

non-repeatable

ﬁ,—) secondCall
T ﬁz_’

ﬁ'_. conference
v

&., endCalls

e transaction-rule

Figure 5. HIT specification

|
|
{
i
|
|
!

150 Computer-Aided Design of User Interfaces

Using non-repeatable transaction rules states, that the whole HIT has to be
worked through starting with the initial state until the termination state is reached.
Now a new instance of the HIT can be made since the termination state is equal to
the initial state.

Depending on the dialogue style different state transition systems are obtained. Let
us first of all construct a state transition system where the arguments are entered
after performing the selection of the interface function.

As a next step a state transition system is considered where all the parameters of
the interface functions have to be known before the intetface function is deter-
mined. With the interface functions abstract menu items with the function sym-
bols in capital letters ate assumed, i.e., the abstract menu items are CALL, SEC-
ONDCALL and CONFERENCE.

Starting with an initial state, say sO, CALL can be selected according to the de-
pendency graph in figure 4. Afterwards the telephone number (a natural number)
has to be entered. After performing a call either a second call can be started (be-
ginning with SECONDCALL and enteting the telephone number afterwards) or
the telephone call can be ended (ENDCALLS).

After performing a second call either all telephone calls can be ended (END-
CALLS) or a conference sessions can be started (CONFERENCE) and then all
telephone calls can be ended (ENDCALLS). The obtained state transition system
looks like figure 6.

ENDCALLS

ENDCALLS

ENDCALLS

Nat X SECOND:" 2 =ezoN = Nat:
Q N\ o/ CATL N
Figure 6. State transition system for dialogue style 1

The other state transition system looks like figure 7.

ENDCALLS

ENDCALLS
ENDCALLS

= Nat = Q SECOND-
O Nl = CALL

Figure 7. State transition system for dialogne style 2

Another dialogue style would allow to select the CONFERENCE menu-item and
the system automatically starts the first and afterwards the second call. A state
transition system for such a behaviour of the telephone system can be constructed
analogous.

Generating User Interfaces from Formal Specifications of the Application 151

2.2 Restricting the Dialogue Specification to Different User Groups

Usual different user groups with a different functionality use a software product.

In the ISDN-example it is possible that a special user group may only use the in-
terface functions call and endCalls but not secondCall and conference.

One solution for this problem is to generate for each user group a different dia-
logue desctiption, but some work has to be done twice.

Therefore a more elegant way is to restrict the generated dialogue description to
the interface functions of the user groups, i.e., all the nodes with interface func-

tions, which are not usable by a spectal user group, and their argument nodes are
“deleted*:

v by

(endCalls)

Figure 8. Restricting the dialogue specification to different user groups

resulting in:

v

l endCalls |.__

Figure 9. Restricted dialogne specification

with the corresponding HIT specification and state transition system.

In this section we have shown informally by an example how a HIT specification
and a state transition system, describing the dynamics of a UI out of an algebraic
specification of the application can be generated.

152 Computer-Aided Design of User Interfaces

3 Generating a Specification of the Performable Dialogues

In the previous section we have seen by an example what the idea of generating
the dialogue specification from an algebraic specification is. The starting point is a

given algebraic specification Sp = <(Z, C, F), Obs, Ax>.

The sorts are splitted up into obsetvable and non-obsetvable sorts and the state
sort, i.e. the observable sorts describe those objects visualizable to the end-user
and the non-observable objects not visible by the end-user and the objects of the
state sort describe the internal state of the application also not visible by the user.

The generation process consists of five phases:

1. Construction of the pure dependency graph.

2. Solving the parameter resttictions.

3. Instantiation of the pure dependency graph with the solutions of the parameter
restrictions.

4. Merging of the instantiated dependency graph.

5. Converting the obtained graph into BOSS notation / state transition system.

3.1 Construction of the Pure Dependency Graph

The pure dependency graph G = (N, E) has two kinds of nodes and edges.

For each interface function f with functionality
fet(l) = x5+ 51, Xe 52 1 52,y Xe s - SD . EqH(Xgt, X¢ 50,005 %5.on) => 5

we construct the following graph graphy:

.
i

Figure 10. Graph of an interface function f

Therefore the nodes N = Nierm U Naunc ate splitted up into N the set of terms
and N the set of function symbols. The edges E = Eimeofunc W Efuncroterm U
Efunctofunc are splitted into edges from Nierm € Nierm to nodes nfnc € Nanc in the set
Ertermtofunc, €dges from ngnc € Neune to nodes fierm € Niem it the set Egncroterm and
edges from ffunc € Nfunc t0 Nifunc € Niunc it the set Efuncrofunc: Efunctofunc ate used latet.

The pure dependency graph is the set of graphs of each interface function f.

Generating User Interfaces from Formal S pectfications of the Application %3

3.2 Solving the Parameter Restrictions

In this phase it is tried to solve the parameter restrictions of the interface func-

tions, i.e. the solution of the parameter restriction for an interface function f with
functionality

fet(f) = xga1 051, X021 52, ..., Xeon t 50 . Eqe(Xe, o1, X¢ 52,0, Xe sn) >

are the solutions of the existential formulae:

I xga s, X2t 2,00, Xeon t S0 . BQe(Xe o1, X6 2,000, Xg)

To solve existential quantified formulae theorem provers can be applied, namely
the solutions can be found by narrowing (e.g., by the RAP system [HuBmann89)),
whereby the most general solutions are obtained.

If the parameter restrictions cannot be solved at generation time (because informa-
tion is missing, e.g. with loose specifications is dealt with) the run-time system of
BOSs controls the parameter restrictions (therefor the parameter restrictions have
to be implemented by Boolean functions). Thus for every interface function f with
parameter restriction the following set of solutions is obtained:

6(f) = {0 | Mod(Sp) | = Eq¢o such that G€ Subst is most general solution }

with fet(f) = x¢a 51, X020 82, Xgon * 50 . Bqe(Xe o1, Xt 62,1, Xe sn) > s and Subst is
the set of all substitutions.

3.3 Instantiation of the Pure Dependency Graph with the Obtained
Solutions

Now for every graph graph¢ obtained from an interface function f the set of in-
stantiated graphs instgraphe is defined by:

instgraph¢ = graphsg, if no solution exists,

instgraphf = Ug eon O(graphy) otherwise

such that 6(graphy) is defined for graphe of figure 10 by.

—

Figure 11. Applying a substitution to a graph

3.4 Merging of the Instantiated Dependency Graphs

After calculating the instantiated set of graphs
InstGraphs = Ufe interface(Sp) instgraphf

154 Computer-Aided Design of User Interfaces

wheteby interface(Sp) yields the interface functions of the application. The set of
instantiated graphs InstGraphs is examined whether nodes of sort Niem can be
connected. An edge between two nodes tl, t2 € Nim 1s drawn if Mod(Sp) |=

t1=t2 holds and there exists an edge (t1, f1) € Etermtofunc and an edge (f2, t2) €
Efuncoterm for some function symbols f1 and f2 and terms t1 and t2. If an edge
from t2 to another term t of Niem exists then instgraphy is duplicated. The new
obtained graph is merged together in the following way:

If edges (f1, t1) € E and (t1, f2) € E exist

e and there is no edge (t1, f3) € E (with f3 # £2) then (f1, t1) and (t1, 2) are de-
leted in E and (f1, £2) is added to E.
e and there is an edge (t1, £3) € E (with 3 # £2) then (f1, 2) is added to E.

3.5 Obtaining a Boss Specification / State Transition System

The obtained graph of the merging phase is converted into a HIT-specification as
follows:

FEach node of an interface function f is converted into a transaction trule

—» s - - f
ﬁ' if f is interface functions and an equational rule oth-
erwise.

The obtained graph of the merging phase is converted into a state transition sys-
tem as follows. Depending on the dialogue style different state transition systems
can be constructed. The transformation presented here is performed by first se-
lecting the abstract menu item of the corresponding interface function and then
entering the arguments.

. A,

Each subgraph of an interface function f is converted into
O f Oargl Carg O arg, C

such that argi, atgy,..., arg, denote the observable arguments which have to be en-
tered. The non-observable arguments are neglected in the state transition system.

&

argi L

Subgraphs of the form g of interface functions f and g are con-

verted into

Generating User Interfaces from Formal Specifications of the Application 155

(s Oa im0, 0

£ =y : Y
such that denotes the state transition system obtained from the interface
functions f and its arguments.

Cycles in the merged instantiated dependency graph are expressed analogous in the
state transition system.

The restriction of the dialogue description for special user groups is done by de-
leting the non-usable interface functions from the obtained HIT specification o
state transitition system.

Parallelism can also be taken into consideration in the generation process. Things
can be done in parallel without synchronisation if the output of the fourth phase
are non-dependent graphs. Then each of these graphs can be worked through in
parallel.

Converting the graph of the fourth phase into BOSS is the same as desctibed. The
obtained state transition systems have to be put into the construct for expressing
parallelism.

Using the structuring mechanisms well-known from algebraic specifications allows
to use these technique also for larger projects. The expetience shows that the gen-
eration of the dialogue description for subspecifications can often be put together
without considering the context in which the subspecifications are used. Otherwise
normalization techniques exists for the structured algebraic specifications and the

normalized specification can be used as the starting point for the generation proc-
ess.

4 Related Work

MIKE [Olsen86] (Menu Interaction Kontroll Environment) und MIKEY [Olsen89]
generate Uls with menus and dialogue boxes based on a description of the func-
tions (argument and result parameters) and the data structures in the application
interface.

In HIGGENS [Hudson86] a semantic data model of the application interface is
used as the base for detiving views as abstract descriptions of the UI layout.

The JANUS-System [Balzert93, Balzert94a, Balzert95a] uses OOA (Object—Orien-
ted Analysis) for describing the problem domain model (i.e., application interface)
of an data base-oriented interactive application. Moreover, JANUS allows the
specification of software ergonomic guidelines, which describe the mapping be-
tween OOA-models to the UI description language of a UIMS. JANUS does not
provide means for the explicit specification of the UI dynamics.

In the UIDE system (UI Design Environment) [Foley91, Foley93, Foley94], the UI
development process consists of the description of two models. In the application

156 Computer-Aided Design of User Interfaces

model, the logical Ul is described in terms of application objects and tasks. The
Ul-model desctibes the coupling of the application model to a UI layout by link-
ing application tasks to interface tasks, interaction techniques and —objects. The
links between the models are used by a runtime engine to provide animated help.

HUMANOID [Luo93] divides the UI-development process into the activities appli-
cation design, dialogue sequencing, action side effects, presentation design and
manipulation design. In the first three design dimensions the logical structure of a
UI is described in terms of the structute and the behaviour of so called application
objects. The mapping of the state of the application objects in an logical Ul to a
UI layout is desctibed in the design dimensions presentation— and manipulation
design through presentation and manipulation templates. Based on the model de-
scribed above, HUMANOID is able to provide textual help.

Recently the research on UIDE and HUMANOID were joint in the MASTERMIND
project.

The GENIUS-System (GENerator for Uls Using Software Ergonomic Rules)
[Janssen93] generates Uls for data—base oriented applications. In GENIUS, the
problem domain model is represented by an ERA diagram. Based on this ERA—
diagram static aspects of the logical Ul are described in terms of so called views,
which can be regarded as abstract representations of UI windows. For the repre-
sentation of the dynamics of the logical interface, GENIUS employs a petri—net—
like specification technique (“dialogue—nets”). For each view in the logical UI, the
static Ul-layout is generated by applying software—ergonomic guidelines, which
are described as decision tables (e.g., for the selection of interaction objects).

A similar approach is presented in the TADEUS-System (T'Ask based DEvelop-
ment of UI Software) [Elwert95]. TADEUS differs from GENIUS in the use of dif-
ferent specification techniques for the representation of the problem domain
model (TADEUS uses an object oriented approach) and the dynamics of the Ul
(dialogue—graphs, an extension of dialogue—nets). In this system the dynamics of
the application is not taken into consideration or the specification of the applica-
tion is not used for dynamics considerations of the application.

ITS (Interactive Transaction System) [Wiecha89] offers a frame based language for
the specification of Uls in its logical structures (“dialogue content”). Moreovert,
IS allows the specification of style rules, which describe the mapping between
logical Uls and Uls in a particular style.

In the ADEPT system [Johnson92b, Wilson96], a process—algebra—like specifica-
tion technique called Task Knowledge Structures (TKS) is used for the specifica-
tion of the task model of an interactive application. In the design phase of the UI-
development process, the task model is transformed into the specification of the
so called Abstract Interface Model (AIM), which corresponds to the term “logical
UT”. Based on design rules in a user model, the ADEPT-System derives a Concrete
Interface Model (CIM) from the AIM by replacing the AIOs in the AIM by the
appropriate CIOs in the CIM.

Generating User Interfaces from Formal Specifications of the Application 157

The TRIDENT (Tools foR an Interactive Development ENvironmenT) system
[Bodart94a, Bodart94b] consists of a methodology and a support environment for
developing Uls for business—otiented interactive applications. TRIDENT uses
ERA—diagrams for the description of the problem domain model. For the repre-
s.entation of the task model TRIDENT provides a data—flow—graph-like specifica-
tion techm'quci called Activity Chaining Graphs (ACGs). Each ACG is structured
into presentation units. From these presentation units, the static UI layout can be

generated by applying rules for the selection of AIO, rules for mapping AIO to
CIO and rules for the placement of CIO.

Thf:se §ystems start more or less with the specification of the dynamics of the UI
which is the output of the FLUID system and can therefore be seen at the same

level as the BOSS system in the FUSE system. But they do not take the dynamic
semantics of the application into consideration.

Conclusion

The FLUID system, whose theoretical foundations were presented here, is currently
under development, whereby prototypes of BOSS and PLUG-IN already exist. The
FUSE methodology and tools have been applied successfully to a number of exam-
ples (ISDN phone simulation, UI for a literature research system, UI for a home
banking system, formula editor for LATEX).

In the future we plan to increase the level of compatibility of the FUSE develop-
ment environment to other model based methodologies and tools. E.g., for setting
up the problem domain model, we want to support OOA, BON and ERA data
models in addition to the curtently supported algebraic specification technique.

In order to gain more practical experience with the Fust-methodology and the

related tools, we plan to organize a course in U specification and generation at the
Munich University of Technology.

Acknowledgements

This work has been partially supported by Siemens Corporate Research and De-
velopment, Department of System Ergonomics and Interaction (ZFE ST SN 51).
The author would like to thank Siegfried Schreiber and the anonymous reviewers
for their useful comments and suggestions on draft versions of this paper.

COMPUTER-AIDED DESIGN OF
USER INTERFACES

For the first time in the history of Human-Computer Inter-
action, this book gathers the most recent and up-to-date
contributions of people, research teams and leading orga-
nisations involved in Computer-Aided Design of User
Interfaces (CADUD). It provides practical advice on how to
use various CADUI techniques to effectively and efficiently
develop user interfaces of interactive applications.

Computer-Aided Design of User Interfaces brings
together in one place the invaluable experience the
authors have gained during more than the last deca-
de. This extensive experience is now given to a
broad range of people who specify, model, design,
prototype, generate, implement, evaluate user inter-
faces with the help of dedicated CADUI tools.

This includes the definition and use of Model-Based
Interface Development Environments (MB-IDEs),
task aspects in CADUI, automated user interface
generation and evaluation, computer-aided design of
Graphical User Interfaces (GUIs), and CADUI tech-
niques from a research & development perspective.

After these chapters, the book ends up with the
reports from the working groups and a complete
bibliography of the domain along with WWW refe-
rences.

These proceedings are the final outcome of the 2
Internat1onal Workshop on Computer-Aided Design of
User Interfaces held in Namur (Belgium), 5-7 June 1996.

ISBN 2-87037-232-9

7828707372326

	R6C-0038_001
	R6C-0038_003
	R6C-0038_005
	R6C-0038_007
	R6C-0038_009
	R6C-0038_011
	R6C-0038_013
	R6C-0038_015
	R6C-0038_017
	R6C-0038_019
	R6C-0038_021

