Exploring a Model of Gaze for Grounding in Multimodal HRI
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ABSTRACT Humans seek to ensure the grounding of their information states
with the least collaborative effort [9, 7, 8]. To achieve this, they
usually exploit multiple parallel information modalities. Among
those, gaze and its interplay with the other modalities plays versa-
tile important roles for grounding. Rendering account of and serv-
ing these roles is essential for social humanoid robots that interact
naturally with humans in collaborative shared workspaces, as in the
application that we describe and investigate in this paper.

Grounding is an important process that underlies all human inter-
action. Hence, it is crucial for building social robots that are ex-
pected to collaborate effectively with humans. Gaze behavior plays
versatile roles in establishing, maintaining and repairing the com-
mon ground. Integrating all these roles in a computational dialog
model is a complex task since gaze is generally combined with
multiple parallel information modalities and involved in multiple
processes for the generation and recognition of behavior. Going
beyond related work, we present a modeling approach focusing on
these multi-modal, parallel and bi-directional aspects of gaze that
need to be considered for grounding and their interleaving with the
dialog and task management. We illustrate and discuss the different
roles of gaze as well as advantages and drawbacks of our modeling
approach based on a first user study with a technically sophisticated
shared workspace application with a social humanoid robot.
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Figure 1: Our shared workspace setting with the NAO" robot.

Keywords
Human-Robot Interaction; Multi-Modal Fusion; Dialog Modeling Figure 1 shows the scenario of our application, a collaborative
game between a human user (Fig. 1 (1)) and the humanoid NAO"
1. INTRODUCTION robot Nali (Fig. 1 (2)) on a shared workspace realized with a Mi-
The participants of a human interaction constantly establish, .crosoftz sugface table (Fig. 1 (). The user wears SMI eye track-
main- tain and repair the common ground, which Herbert Clark ing glasses” and a microphone for speech recognition. The puzzle
defines as "the set of knowledge, beliefs and suppositions that the pieces have distinguishable features §uch as a shape, size, color and
partici- pants believe they share” [7]. Disruptions of this common position. They are marked on bqth 51d§s, to trgck their p051t19n and
ground mainly arise from misunderstandings, ambiguous to recognize the pieces the user is looking at via marke.r Frackmg on
utterances, miss- ing attention or whenever one of the participants Fhe video of the glasses. The robot is supposed to facﬂ}tate a sort-
presumes sensory, perceptive or cognitive abilities that the other ing task by instructing the user to move puzzle pieces into certain

cannot serve with. puzzle slots. Both interaction partners may use any combination
of gaze, pointing gestures and speech to multi-modally refer to the
objects, to regulate the speaker and listener roles and to draw the
other participant’s attention to the objects or even themselves.
Resembling human interaction, both partners exploit a variety of
gaze mechanisms during this collaboration. Thereby, gaze is com-
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bined with multiple parallel information modalities and involved in
a variety of parallel and bi-directional processes for the generation
and recognition of multi-modal behavior. Gaze cues are aligned
with verbal contributions to ground the speaker and listener roles
[22, 15, 10, 28] in a fluent conversation. Both partners use gaze
to continually give and elicit feedback signals [35, 5] and to fol-
low and direct the other’s attention to objects in the environment
or to themselves [3, 1, 19]. Finally, disruptions of the common
ground caused by ambiguous verbal referring expressions are dis-
ambiguated by considering the partner’s gaze [23, 24, 30].
Embedding all these parallel and bi-directional roles of gaze and
synchronizing them with each other and the task management in
a uniform dialog model is a complex task. Previous research on
dialog models in HRI considered these roles of gaze mainly in iso-
lation. We present a modeling approach focusing on the multi-
modal, parallel and bi-directional aspects of gaze and validate it
in our shared workspace application. We evaluate our approach in
an experimental study, discuss the results in detail and formulate
recommendations for future efforts in this research area.

2. RELATED WORK

During the past years, a number of researchers studied several
roles of gaze as conversational coordination mechanism that only
represent individual aspects of the grounding process in HRI .

Most of this research studied the roles of gaze for joint attention,
the "ability to follow the direction of the gaze and gestures of others
in order to share a common point of reference" and the "use of ges-
tures and eye contact to direct others’ attention to objects, to events,
and to themselves" [19]. Huang and Thomaz found that a robot that
continually ensures the user’s joint attention is perceived as more
natural [14] while Staudte and Crocker found that exploiting the
speaker’s focus of visual attention via gaze-following has a pos-
itive influence on utterance comprehension to anticipate, ground,
and disambiguate spoken references [30]. Mutlu et al. investi-
gated the importance of joint attention for collaborative settings
in which human and robot are performing joint actions [21] on a
shared workspace. Mutlu et al. also studied gaze mechanisms that
are used for the regulation of the dialog structure and for grounding
different speaker and listener roles [20] in human-robot dialog.

Rich et al. studied computational models of recognizing and
generating engagement [25, 13], a process "by which two (or more)
participants establish, maintain and end their perceived connection
during interactions they jointly undertake" [29]. This work cap-
tures the role of directed gaze and mutual gaze for the connectivity
status of interaction partners but not the role of gaze for the disam-
biguation of speech or the use of gaze for eliciting feedback.

Other related research focuses on generic modeling languages
for multi-modal fusion or dialog logic for multi-modal user in-
terfaces [16], embodied conversational agents [6, 32] and human-
robot interaction [31] but does not focus on grounding or similar
concepts or sub-concepts, such as joint attention or engagement.

The related efforts either studied individual roles of gaze for
grounding in human-robot interaction in isolation or presented a
generic modeling approach without focusing on grounding at all.
The work in this paper draws on valuable ideas from this related
work but goes beyond it because it combines those individual as-
pects of grounding in a novel uniform modeling approach.

3. GROUNDING IN HRI

In this section we systematically review the roles of gaze that
contribute to grounding in human-robot interaction and illustrate
them based on our representative application shown in Figure 1.
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3.1 Disambiguating Speech

Humans distribute information across different modalities, de-
pending on the effort and the expressive power of each channel and
rely on their partners’ ability to combine this information in order
to resolve ambiguities [23, 24]. Isolated verbal referring expres-
sions can be ambiguous and thus cause a disruption of the com-
mon ground. In this case, a listener usually tries to combine the
speaker’s verbal statement with his gestures and eye gaze into an
unambiguous interpretation before asking for a clarification. Refer-
ential gaze in speech typically precedes the corresponding linguis-
tic reference by approximately 800-1000 milliseconds and people
look at what they hear after about 200 milliseconds [18, 12].

User Gaze—e

2]
User Speech—
NAO Gaze—j

Figure 2: Producing an object reference with speech and gaze.

In our application, the robot is able to combine an ambiguous
verbal referring expression with the user’s eye gaze during this time
window. For example, in Figure 2 the user starts looking (Fig. 2
@) at an object (Fig. 2 (D) and the robot follows the user’s gaze
(Fig. 2 ®). The user asks the clarification question "do you mean
this yellow object there?" (Fig. 2 (©) and afterwards looks (Fig. 2
D) to the robot (Fig. 2 (2)) in order to yield the floor. Although
there are several objects on the table that match the verbal referring
expression, the robot infers that the user referred to the large yellow
triangle by considering the user’s gaze direction at the right time.

3.2 Joint Visual Attention

During collaborative activities, humans seek to direct their part-
ners’ attention to objects in the environment or to themselves [8].
Beside verbal references and pointing gestures they often use gaze
and a combination of these modalities to reach that goal [9, 4, 26].
They also follow their partners’ gaze to share their point of refer-
ence [19] which usually results in directed gaze and joint attention
to an object [15]. In this way they signal their partners that they
are engaged in the joint activity and able to identify the referred
objects. When the partners pay attention to each other they per-
form mutual gaze [1]. Both gaze mechanisms for joint attention
are essential for maintaining the common ground.

NAO Gaze—{

ol |

NAO Point
User Gaze [1]

Figure 3: Drawing the user’s attention to an object using gaze.

The robot in our application is able to draw the user’s attention to



an object which is relevant for the next step in the task or to itself
whenever it starts an instruction or clarification. Figure 3 shows
such a situation in which the user is looking (Fig. 3 @) at the
robot (Fig. 3 (D) expecting an instruction. The robot starts looking
(Fig. 3 ®) at an object (Fig. 3 (2)) and points to it (Fig. 3 ©) a
few moments later. The user immediately follows the robot’s gaze
(Fig.3 @) which leads to directed gaze and attention to the object.

User Gaze
NAO Gaze

Figure 4: Following the user’s gaze to focus to the same objects.

Analogous to the direction of attention, the robot can also pay
constant attention to the user’s gaze shifts and manipulations of the
objects on the workspace. It is able to follow the user’s gaze and to
focus on the objects that the user looks or points to while it answers
with mutual gaze whenever the user looks at the robot. In Figure
4 the user looks (Fig. 4 ®) at an object (Fig. 4 (D) and a few
moments later the robot follows the user’s gaze by looking (Fig. 4
®) at the same object. Next, the user moves his gaze (Fig. 4 ©)
to another object (Fig. 4 (2)) and again the robot follows the user’s
gaze (Fig. 4 @) to the second object for joint attention.

3.3 Regulating Turn-Taking

A fluent conversation requires successful regulation mechanisms
for grounding the speaker and listener roles [15, 10]. Thereby, gaze
direction serves as a key signal in managing or inhibiting the ex-
changes of these roles. Speakers usually look away from their ad-
dressees to indicate that they want to keep the floor and look at one
of their partners to pass the floor [22]. The exchange of turns can be
delayed if a contribution does not end with gaze at a partner [15].

/ 2 e )
User Gaze D [)
User Speech | I I I

NAO Gaze—

Figure 5: Passing the floor to the robot after the contribution.

In our application, the robot avoids mutual gaze while giving an
instruction or clarification and looks to the human partner to pass
the floor when finishing its turn. In return, it is able to detect the
user’s end of speech and whenever the user looks to the robot via
a marker on its chest. Both events in close temporal alignment are
the signal for the robot that the user wants to pass the floor. Such a
situation is shown in Figure 5 in which the user is asking a question
(Fig. 5 ®) and afterwards looks (Fig. 5 ®)) at the robot (Fig. 5 (D)
to yield the turn. The robot (Fig. 5 ©) then answers with mutual
gaze (Fig. 5 ) to signal that it is going to take the turn now.
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The interaction partners continually produce back-channel sig-
nals to let the partner know that they are still engaged and under-
stand what has been said and done [35] to ground their information
states. This feedback is provided by the listener via nonverbal cues
such as head nods or short verbal statements while the partner is
speaking or performing an activity. In return, speakers occasion-
ally perform a short glance of mutual gaze to the listener with the
aim to elicit feedback cues at specific points in time [15, 5]. Al-
though the gaze cues for feedback eliciting and turn-yielding might
look very similar at first sight, it is very important not to confuse
these signals and to handle them differently in the dialog model.

Figure 6: The user elicits a head nod feedback from the robot.

In this work we are not further investigating the role of feedback
eliciting for grounding but of turn-regulating gaze signals. There-
fore, in our application, the robot is able to recognize the user’s
behavior pattern that are supposed to elicit feedback, to distinguish
them from turn-yielding cues and to react with an adequate feed-
back signal. Figure 6 shows such a situation in which both the user
(Fig. 6 ®) and the robot (Fig. 6 ®) look at an object (Fig. 6 (D)
before a few moments later the user starts moving the object (Fig.
6 ©) and looking at the robot (Fig. 6 @) nearly simultaneously.
The robot reacts to this behavior pattern with mutual gaze (Fig. 6
®) and a feedback signal in form of a head nod (Fig. 6 ®).

4. REALIZATION

The dialog flow and interaction logic in our application are mod-
eled with a Sceneflow [11, 17]. This is a hierarchical and concurrent
state chart which is used to control and synchronize multiple par-
allel processes modeling the robot’s behavior and input processing
on different abstraction levels. This model decomposition divides
the responsibilities in the model so that each process resembles a
single role of gaze, a fusion process or a dialog phase. The robot’s
context knowledge and user inputs are represented as feature struc-
tures in a Prolog [34] fact base. The fact base defines domain
specific logic predicates that are called from within the Sceneflow.
This logic is used for multi-modal fusion, knowledge reasoning and
for the exchange of information between parallel processes. This
highly modular modeling approach makes already modeled state
chart components and predicates easily reusable and adaptable.

4.1 Input Processing

The movement of puzzle pieces and other touch events are di-
rectly forwarded from the surface table to the fact base. All other
user input events are first processed and interpreted by the SSI/
framework [33]. The resulting interpretations are then asserted as
events to the fact base. They carry modality-independent features,
such as timestamps and confidence values, and modality-specific
semantic information, such as gaze distributions and dialog acts.

For gaze recognition we rely on Algorithm 1 that reduces the
influence of recognition errors that arise whenever the user blinks,



Algorithm 1 Compute Fixation Events from Input Streams
1: procedure TRANSFORM(Video v, Point g, List 1)

2: Amae < /03 + 0}

3: ifg: >0A gz <vwAgy > 0A gy < vy, then
4: for all m € [ do

5: if visible(m) then

6: Am = /(g2 —ma)? + (gy —my)?
7. else

8: Ap —min(d - Am, Amaz)

9: end if

10: (I):n — (1 - (Am/Amaz))qb

11: Dy 0Py + (1 —0)P,

12: end for

13: end if

14: end procedure

rolls his eyes or is shortly distracted. In each frame we compute
the distances of all recognized markers on the puzzle pieces and
the robot’s chest to the user’s gaze position (Alg. 1 (6)). Then
we compute a fixation confidence for each marker based on this
distance and the respective confidences in the past few frames (Alg.
1 @). We assume the user is looking at the environment if all
confidences are below a certain threshold. Every couple of frames
we produce an event carrying this fixation confidence distribution
and assert it to the fact base where it is processed by the logic.

[type: event, # This feature structure is an event
sent: ssiv2, # The sender is the SSI framework
mode: eyegaze, # A marker probability distribution
dist: 121, #The event has started 121 ms ago
life: 43, #The event’s total lifetime is 43 ms
time: 62946, # The VSM framework arrival time
conf: 1.0, #The event’s confidence value is 1.0
type: marker, type: marker,
data: @ name: [, s e |Name: 9,
conf: 0.88 conf: 0.001

Figure 7: A gaze distribution event as a feature structure.

Figure 7 shows the representation of a gaze distribution event
containing the confidence values for all markers (Fig. 7 (D). Within
our interaction model these events are then used to realize gaze fol-
lowing, recognize when the user yields the turn and elicits feedback
and for the disambiguation of speech. For this reason, they are hold
in the fact base for some seconds so that they can be combined with
the user’s speech input that usually needs longer to be interpreted.

The user’s speech is processed by a semantic parser plug-in of
SSI which is based on the Microsoft® speech platform*. Utter-
ances are translated into abstract dialog acts with communicative
functions from the information seeking category of the DiIAML clas-
sification scheme®. Ser questions ask for a decision between a num-
ber of puzzle pieces, choice questions prompt a decision between a
list of candidates, while propositional questions seek confirmation
for exactly one proposed puzzle piece. Figure 8 shows the repre-
sentation of the choice (Fig. 8 (D)) question "the green triangle or
the yellow object there?" with the included location referent (Fig. 8
@). Our robot can resolve unimodal referring expressions such as
"the green triangle" (Fig. 8 (2)) using an algorithm similar to that
described by Ros er al. [27]. It determines a set of puzzle pieces
on the table that match the list of features from the user’s verbal

*http://msdn.microsoft.com/library/hh361572.aspx
Shttp://semantic-annotation.uvt.nl
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description and computes the optimal set of discriminating features
to correct the user with an unambiguous answer.

[type: event,

# General event properties, i.e. timestamp, modality, etc.

[type: dialog # A dialog act feature structure 1
category: seeking # Information seeking category
function: choice @ # Choice question function

type: description # The Ist object

data: @ data: color: gr'een #is gret?n and | |,
shape: triangle # a triangle
contents: i
type: description # The 2nd object
@ color: yellow # is yellow

data: . . y

location: reference @

Figure 8: A choice question dialog act as a feature structure.

fuseWithGaze (SpeechEvent, FusedAct) :—
// Get The Speech Act Of The Speech Event
getSpeechAct(SpeechEvent, SpeechAct),
// Get The Speech Act’s Object Description
getDescription (SpeechAct, Description),
// Get The Gaze Fixation During The Speech
getBestFixation (SpeechEvent, GazeFixation),
// Update The Object Description With Gaze
has(Description, 'location’, ‘reference ),
set(Description, “fixation , GazeFixation).
// Update The Object Description Of The Speech
// Act And Return The Fused Multi—Modal Action
update (SpeechAct, Description, FusedAct).

fuseWithGaze (SpeechEvent ,
getSpeechAct(SpeechEvent,

SpeechAct) :—

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 SpeechAct).

Figure 9: The predicate combining user’s speech and gaze.

If the utterance contains location referents such as "there” or
"here" (Fig. 8 (3)), then we additionally consider the user’s ref-
erential gaze to resolve this multi-modal referring expression using
the logic predicates shown in Figures 9 and 10. We determine the
focused object based on the gaze events during a time window rel-
ative to the user’s utterance (Fig. 9 3)-(7) and Fig. 10 (D-(9)) and
add the reference to the object description (Fig. 9 ©-03).

getBestFixation (SpeechEvent, GazeFixation) :—
// Get The Time Interval Of The SpeechEvent
start (SpeechEvent, Start),
end (SpeechEvent, End).

// Infer All Gaze Events In The Time Window
findall (EyeGaze, (during(EyeGaze, SpeechEvent),
mode (EyeGaze, “eyegaze ' )), GazeEventList),

// Compute The Object With The Most Fixations
fixationMajority (GazeEventList, GazeFixation).

O 00 dA NN -

Figure 10: Predicate inferring eye gaze aligned to speech.

4.2 Interaction Modeling

Figure 11 shows an overview of our application’s interaction
model consisting of three parallel state charts that are exchanging
information via the fact base. The first state chart (Fig. 11 ®&)
is used for monitoring the system time and for retracting outdated
events that are not needed any more. The second state chart (Fig.
11 ®) is processing touch, speech and gaze distribution events in
three parallel processes. They are updating the fact base positions



of objects that have been moved on the surface table and produce
higher-level events carrying the user’s last speech act and discrete
fixation change events from the continuous gaze distribution events.
These events are consumed by the processes in a third state chart
(Fig. 11 ©) that is modeling higher-level event processing. It en-
folds a process for the multi-modal fusion of gaze and speech as
well as processes for the detection of turn-taking and feedback elic-
iting signals. A last state chart (Fig. 11 @) is modeling the dialog
flow in two separate states for the user’s and the robot’s turn.

Event Running
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Game

Process
Sensor
Input

Dialogue
Flow
Logic

Fusion
Logic

Detect
Feedback
Eliciting

Process
Touch
Events

System
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Execute
Nali
Turn
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) Turn Yield
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Process
Speech
Events

Movement ||
SpeechAct

Vi

Execute
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)
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Retract
Outdated
Gaze

Perform
Multimodal
Fusion

Process

User
Gaze

Turn

Events

Figure 11: The high-level view of the application’s sceneflow.

Figure 12 shows these processes modeling the dialog flow in
more detail. When the user has the turn, the robot either follows the
user’s gaze fixations and object placements or performs feedback
while waiting for a turn-yielding event from the process detecting
the relevant behavior pattern. When the user finishes his turn by
moving an object to a field or speaking an utterance and looking
to the robot, then these processes are immediately interrupted and
the turn is assigned to the robot. The robot then checks the type of
the user’s contribution and performs an adequate reaction, such as
answering a question or giving the next instruction.

Movement
R

Execute
Nali
Turn

Give
Next
Instruction

Reaction
To Verbal

Reaction
To Move

SpeechAct

Movement ||
SpeechAct

ObjectPlacement
ﬁ@dbackaicm{‘

/ FixationChange
7 N

Execute
Perform

Feedback

Generation

Await Perform Perform
Placement

Following

User
Turn User

Interaction

Fixation
Following

Figure 12: The sceneflow modeling the dialog flow logic.

The robot’s verbal and nonverbal behavior is specified in a multi-
modal Scenescript, resembling a movie script with dialog utter-
ances and stage directions for gestures, postures, and facial ex-
pressions. Individual Scenes from this script are executed from the
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nodes in the Sceneflow and then scheduled on the robot to generate
the behavior. Figure 13 shows an example of such a script and the
corresponding scheduling. It shows that nonverbal behavior can be
executed either in parallel with speech or sequentially. This speci-
fication method allows us to generate the robot’s gaze behavior for
directing and following the user’s gaze and yielding the speaker
role. In addition, is allows us to easily align the robot’s gaze and
other nonverbal behavior such as feedback cues and pointing ges-
tures with its speech in a very intuitive but also effective way.

scene_en: Feedback # Name and language of the scene
Nali:[gaze x=5x y=8y]. # First ook to the user and then ...

( Nali:[anim name=nod] Keep it up! # ... nod while speakin,
Gaze- I | | | |
I i
1
I
L

Head
Speech

P

Figure 13: A feedback scene and the corresponding schedule.

5. EVALUATION

We evaluated our application and the underlying computational
dialog model in order to answer two questions. First, we wanted
to validate our modeling approach as described in Section 4 and
check to what extent our computational model covers the aspects
of gaze for grounding presented in Section 3. Second, we wanted
to find out how the different roles of gaze influence the subjective
perception and the efficiency of the interaction in our application.
Thereby, we were interested in the effect of two independent vari-
ables that were manipulated in a 222 within-subjects design:

e Referential gaze with the levels O" and O™ : In condition O,
the robot always looked at the puzzle pieces it was referencing
during the instructions and was able to disambiguate the user’s
ambiguous clarification requests by considering the user’s ref-
erential gaze. In condition O™, the robot did not look at any
particular puzzle piece on the shared workspace to facilitate ob-
ject grounding during instructions. Furthermore, it was not able
to resolve the user’s multi-modal references by considering the
user’s referential gaze during the user’s clarification requests.

e Social gaze with the levels U and U™: In condition U™, the
robot tried to establish mutual gaze with the user, reacted to turn-
yielding gaze cues and followed the user’s gaze or hand move-
ments to signal attentiveness. It reacted to speech acts and place-
ment attempts after the user looked at it in order to pass the floor,
or after a maximum delay of 3.1 seconds [25]. In condition U ~,
the robot did not react to the user’s gaze for turn-taking or at-
tention following. Instead, it simulated ideal gaze behavior by
looking at the shared workspace for 70% of the time and at the
user otherwise as suggested by the literature [2]. It waited for 1
second before taking the turn and answering a question [25].

Accordingly, we implemented four variations of the dialog model
and conducted a within-subjects experiment with each subject par-
ticipating in all four conditions in a randomized order. A total of
13 subjects, 3 female and 10 male, in age from 19 to 34 years
(M = 26.4, SD = 4.41) participated in the experiment. Most
of them were students or researchers in Computer Science and
Multimedia. For each participant and condition, we recorded the
speech and gaze fixation events, the raw input streams from which
they were derived and the video and audio from an external cam-
era which captured the whole scene and synchronized these data
streams prior to the annotation. In total, we collected 3 hours



and 8 minutes of material per channel. Afterwards, multivariate
analysis of variance (MANOVA) and univariate analysis of variance
(ANOVA) tests were conducted to assess differences on mean user
scores across the two categories of referential and social gaze.

5.1 Objective Measures

In order to measure the efficiency of the human-robot dialog,
the system automatically logged the duration as well as the num-
ber of placement attempts and clarification questions that the users
asked. Results of a Two-Way Repeated Measure MANOVA revealed
no significant multivariate effect of referential gaze or social gaze
on the three dependent variables we investigated as objective mea-
surements. However, we observed a univariate effect for referential
gaze on all three dependent variables. Overall, the efficiency was
significantly improved by adding gaze for disambiguation. The par-
ticipants asked fewer clarification questions (/' = 11.636, p =
0.005), the dialog was shorter (F' = 11.128, p = 0.006) and less
placement attempts were made (F' = 9.794, p = 0.009) by the
users when referential gaze was recognized by the robot.

. = UJ-0- U-0+ = U+0- = U+0+
8 {
? {
6 {
5 L {
4 { {
3 {
i im
i I
0 {
duration placement clarification
{minutes) attempts questions

Figure 14: Results of the objective task performance measures.

As shown in Figure 14, the O™ conditions took only about half
of the time that was used in the O~ conditions. The number of
placement attempts was reduced by about one third and the number
of clarification questions even by two thirds.

5.2 Subjective Measures

After each condition the subjects filled in a questionnaire, rat-
ing several aspects of their interaction experience and the robot’s
behavior in the condition on 7-point Likert scales. Depending on
the question, these ranged either from 1 for never to 7 for always
or from 1 for complete disagreement to 7 for full agreement. As
shown in Figure 15, their answers confirmed the trend that had
already been observed for the objective measures, demonstrating
again an advantage of the O™ conditions over the O~ conditions.

Results of a Two-Way Repeated Measure MANOVA revealed that
there were no significant multivariate effects for referential or so-
cial gaze on the set of dependent variables. Apart from two ex-
ceptions, all univariate effects for referential gaze were, however,
significant and showed that referential gaze was associated with
positive user ratings of the robot. Participants stated that the robot
appeared more natural (/' = 8.348, p = 0.014), more interested
(F = 13.5, p = 0.003) and more understanding (F' = 14.990,
p = 0.002). They also thought that the dialog with the robot
was more fluent (F' = 8.794, p = 0.012). Furthermore, they
believed more often that the robot was following their hand move-
ments (/' = 6,464, p = 0.026) as well as their gaze movements
(F = 14.495, p < 0.002) and that it was more often trying to
establish eye contact with them (F' = 27.307, p < 0.0005).
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Figure 15: Results of the subjective questionnaire ratings.

Unfortunately, we obtained two significant univariate effects for
social gaze that reflected some synchronization issues between the
user and the robot. In both cases, U™ scored significantly better
than U ™. For U™, participants stated that they thought less often
that the robot responded to their questions at the right point in time
(F = 7.870, p = 0.016). They also said that they knew less often
when they were supposed to continue (/' = 4.697, p = 0.051).

There was also a significant interaction effect between referential
and social gaze for "The robot tried to establish eye contact with
me." (F = 6.936, p = 0.022). The use of referential gaze had
a positive effect on the rating of this item. The additional use of
social gaze then led to a further increase of this improvement.

6. DISCUSSION

Our evaluation revealed that the robot’s dialog behavior was rated
better when it made use of referential gaze and considered the user’s
referential gaze. In line with the subjective assessments, the ob-
jective measurements demonstrated that task performance was im-
proved by referential gaze as well. The users indeed noticed that
the robot was following their gaze towards the focused objects and
also believed that the robot understood them better when it was
able to disambiguate speech with gaze. The results of both sub-
jective and objective measures confirmed our expectations that the
gaze mechanisms for speech disambiguation and joint visual atten-
tion, realized with our modeling approach as described in Section
4, had a positive influence on user experience and performance.

However, our expectations for the effect of social gaze were dis-
appointed. The key difference between the conditions with and
without social gaze, and also the main difference in the users’ as-
sessment of those conditions, lied in the robot’s turn-taking behav-
ior, or more precisely in the robot’s reaction to the users’ gaze sig-
nals for yielding the turn. We had hoped that responding to the
user’s turn-regulating gaze cues in the U™ conditions would im-
prove the interaction compared to the idealized turn-taking in the
U™ conditions. However, the opposite was the case, as the condi-
tions without social gaze were often perceived as equal to or even
better than their counterparts. Although the robot was not adapting



to any gaze cues the user employed for turn-taking, the timing of
the robot’s responses was considered to be more appropriate.

6.1 Corpus Analysis

In order to explain the results of our experiment, we analyzed
our video recordings of the three conditions U~O%, UTO™ and
UTO™ for all thirteen participants. We annotated the robot’s and
users’ speech behavior as well as the users’ gaze behavior which ac-
companied a total of 209 clarification requests during 2 hours and
14 minutes of video corpus. This analysis revealed that the users
yielded their turn using mutual gaze after 78% of the questions. For
this purpose, they looked at the robot shortly before (60%) or af-
ter (18%) they finished speaking. For about 20% of the questions,
they did not look towards the robot at all. While this observation is
mainly in line with previous studies and our own expectations, we
found that 83% of the questions which were not accompanied by a
turn-yielding gaze at the robot contained location referents which
required additional information to be resolved. For example, refer-
ential gaze had to be considered to disambiguate questions such as
"This one here?" or "Do you mean the one over there?".

In contrast to that, for the great majority of unambiguous ques-
tions, the users gazed towards the robot as a turn-yielding signal as
we had expected. A second interesting observation was that those
users who made use of pointing gestures tended to employ gaze for
the purpose of turn-regulation more frequently. Obviously, the is-
sues with social gaze were not caused by technical limitations of
the modeling approach. Rather they can be ascribed to some mis-
conceptions included in the robot’s behavior model. These issues
could be resolved by giving up specific assumptions regarding the
use of gaze cues for turn-regulation that did not hold for all users.

6.2 Interpretation

A reason for the minor role of social gaze might be the empha-
sis on the task-oriented nature of the dialog. The users knew that
they were supposed to collaboratively solve a task as opposed to
engaging in a purely social interaction. They were also aware that
the robot was able to disambiguate verbal utterances by consider-
ing their gaze behavior. Therefore, the users might have devoted a
lot of their attention to the production of non-ambiguous references
using both speech and gaze, thus focusing on the functional aspect
of gaze rather than making use of gaze for turn-regulation. The ef-
fect might have been reinforced by the structure of the dialog that
did not require sophisticated turn-taking behaviors. An interesting
topic for a follow-up experiment would be to investigate the effect
of social gaze during interactions with a much more social compo-
nent, such as discussing photos displayed on the surface table.

Another factor to consider is the robot’s inability to detect point-
ing gestures. To fill the role of pointing gestures, some users might
have relied more heavily on gaze behaviors. As described in [25],
a common pattern for directing a listener’s gaze is to start looking
at the target object, pointing at it shortly afterwards and then look-
ing back up to monitor the partner’s behavior while continuing the
gesture. In the absence of gesture recognition, the gaze fixation
becomes the only modality capable of maintaining the focus this
way. Thus, it appears plausible that gaze was employed in a similar
manner as gestures. Four users indeed tried placing their finger on
the object or picking the object up and then displayed the regular
gaze behavior, looking at the robot near the end of their utterance.
Consequently, it might be worthwhile to explore the effect of ges-
ture recognition on the user’s gaze behavior. Our generic modeling
approach would easily allow for the addition of a gestural input de-
vice. This extension would enable us to investigate the interplay of
gaze and gestures in both social and task-oriented types of dialogs.
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6.3 Technical Issues

The evaluation also revealed some technical issues with our cur-
rent implementation that we would like to share at this point.

6.3.1 Eye-Tracking Approach

Our eye tracking solution worked well with most of the partici-
pants, but we also observed some effects which might cause prob-
lems in the long run. For instance, identifying the user’s gaze target
using ARTK" markers only works if they are clearly recognizable
in the input video. It will be hard to prevent them from being oc-
cluded when we are going to add pointing gestures. In the current
study, two participants already made the markers unreadable by
placing their fingers on the puzzle pieces during a pointing gesture.

Another problem is the limited field of view of the SMI glasses.
If participants move only their eyes rather than their head, they are
able to look at a target outside these boundaries which can not be
detected by the system. For 21 of the 209 annotated turns, it was
impossible to detect the turn-yielding gaze because the marker on
the robot’s chest was partially or even fully outside the video image.
This might depend on individual preferences since it only happened
with 4 of the 13 participants, but also on other factors, such as the
distance between the referent and the partner’s face.

6.3.2 Speech Understanding

To avoid recognition problems, we had limited the grammar to
questions that could be answered with "yes" or "no" and gave the
participants example sentences that were understood by our speech
recognition. However, about 44% of the users’ questions were
still not covered by our grammar. For example, our system was
able to understand phrasings like "Do you mean the red one?", but
not "Is the color red?". About half of these utterances were still
matched with the correct attributes, allowing the interaction to con-
tinue without any problems. The others, however, were either ig-
nored or interpreted as referring to a wrong object. The former led
to additional delays because the users spent several seconds wait-
ing for a reaction, whereas the latter led to answers which appeared
to be inappropriate. Both might have interfered with the effect of
the robot’s gaze behavior. To counter these problems, we are go-
ing to expand our grammar based on the utterances we collected in
our experiment. We are also thinking of adding a feedback signal
when an utterance is being processed, such as the flashing ear LEDs
described by Huang and Thomaz [14], so that users can repeat or
rephrase an utterance which was not understood by the robot.

7. CONCLUSION

In this paper, we reviewed the roles of gaze that are essential for
grounding in collaborative and situated human-robot interaction.
Going beyond previous work on computational models of human-
robot dialog that covers only certain subsets of these roles, we il-
lustrated a modeling approach which copes with all of them. Our
approach combines the flexibility and re-usability of hierarchical
and concurrent state charts with the expressiveness and declarative
nature of logic programming. We evaluated and discussed our ap-
proach based on our collaborative shared workspace scenario.

In line with previous studies, the evaluation confirms that adding
gaze tracking to enable crucial task-oriented functions of gaze, specif-
ically gaze following to referenced objects and the disambiguation
of spoken referring expressions, improves the interaction with a
robot by making it more natural, pleasant and efficient.

However, we made very interesting and unexpected observations
for the role of gaze as turn-yielding signal. Our findings suggest
that it depends on the combination of modalities used and whether
the dialog is task-oriented or social. Gaze is preferably used as a



turn-yielding cue for most of the unimodal questions and for most
of those multi-modal questions in which the user decides to use
a pointing gesture rather than gaze for disambiguating speech. In
those utterances which require referential gaze for disambiguation,
this functional aspect of gaze has priority over the use as a turn-
yielding signal. In future work, we will use our modeling approach
to investigate whether these behavior patterns are grounded in the
task-oriented nature of our scenario and if they can still be observed
in dialogs with a more pronounced social component.
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