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Abstract

In this thesis a new specification technique, called attributed algebraic specification, is
investigated closing the gap between the specification formalisms of algebraic specifi-
cations and attribute grammars to combine the advantages of algebraic specifications
(e.g. precise model class semantics, theorem proving techniques, deductive aspects,
abstraction, refinement relations) and those of attribute grammars (e.g. intuitivity,
efficiency, description of context dependent information, distinction of syntax and
semantics specification). The contribution of this thesis is the extension of algebraic spe-
cifications in such a way that the ideas of both specification techniques are combined and
extended, i.e. especially to describe context dependent informations and to prove their
correctness.

Undirected attribute equations, instead of directed attribute equations as in usual attri-
bute grammar systems, are allowed for an abstract specification of the attribute depen-
dencies in the proposed specification technique. These equations are solvable in the
considered logical framework. But they require the investigation of new dependency
notions and new attribute evaluation strategies.

For the new formalism specification building operations are defined and it is shown how
they can be normalized. Especially these operations take the notion of behaviour for
attributed trees as an abstraction mechanism into consideration.

A standard and a behavioural implementation relation are developed with proof theore-
tical characterizations and properties, like transitivity or monotonicity relative to the spe-
cification building operations.

Calculi for solving existentially and universally quantified formulae are presented. For
the universally quantified formulae an induction principle and a notion of complete set is
defined usable especially for showing the correctness of implementation relations.

Case studies show the applicability of the new approach in the area of specifying the
dynamics of user interfaces, compilers and document architecture systems.

The presented formalism can be used in a formal software engineering process. In this
framework a software engineering process starts with a loose attributed algebraic specifi-
cation which will be refined until a usual attribute grammar is reached from which an
executable program can be generated. In this process all aspects of the thesis can be app-
lied as the following considerations show:

Undirected attribute equations allow a loose and abstract specification. To execute such
specifications (catchword: rapid prototyping), calculi are necessary for solving exis-
tentially quantified formulae. To speed up execution time attribute evaluation algorithms
have to be proposed for undirected attribute equations. Specification building operations
allow modularization in the software development process resulting in readable specifi-
cations. To obtain correct software after several refinement steps first of all testing on a
high level of abstraction is necessary (usage of calculi for proving existentially and uni-
versally quantified formulae). Secondly, the correctness of the refinement steps must be
shown (proof theoretical handling of the refinement relations). In the considered case
studies these aspects are shown exemplarily.
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Introduction 3

1.2 Notion of Behaviour

In the framework of algebraic specifications the notion of behaviour has been proven to
be an adequate mechanism of abstraction. In the framework of attribute grammars no
abstraction mechanism can be found. But considering e.g. the specification of a compiler
abstraction is useful, too. Usually the compilation process is split into several phases
with one attribute grammar for each phase. In each phase more or less one attribute is
interesting, e.g. in the type analysis phase it is the attribute in which the type of an
expression is stored and in the code generation phase it is the attribute containing the cal-
culated code. But auxiliary attributes are necessary for deriving the type of an expression
or the code (see the case study of the compiler). Therefore attribute grammars can be
viewed as behaviourally equivalent, if the derived type or code is equivalent or beha-
viourally equivalent. Behavioural equivalence on attribute values is useful, since e.g.
optimized and unoptimized code should be equivalent. Thus the following notion of
behaviour for attributed algebraic specifications is obtained:

Two attributed trees are behaviourally equivalent, if the values of the corresponding ob-
servable attribute occurrences are behaviourally equivalent in the sense of algebraic
specifications.

1.3 Attribute Dependencies and Attribute Evaluation

In attribute grammar systems directed dependency graphs are used for analysing the
attribute dependencies and as a basis of the generation of efficient attribute evaluators.
Since attributed algebraic specifications allow undirected attribute equations (instead of
directed attribute equations as in attribute grammars) specifying only some relations on
the attribute occurrences dependency sets are defined for the description of the reciprocal
dependence of attribute occurrences. These dependency sets are the basis for the deter-
mination of the attribute evaluation ordering. In contrast to usual attribute grammars it is
not possible to determine the subordinate and superior characteristic set analogously to
graphs and use this knowledge to derive the attribute evaluation ordering. These charac-
teristic sets cannot be determined without the knowledge of the attribute evaluation orde-
ring. Let us consider an example showing this problem:

D

inh n synth inh n synth

—  »

Having a node » with an inherited attribute ink and a synthesized attribute synth and an
attribute equation ink(r) = synth(n), i.e. the inherited attribute value at node » is equal to
the synthesized attribute at this node, it depends on the attribute evaluation ordering
whether there is a subordinate (the inherited one is calculated before the synthesized one)
or a superior relation (the synthesized one is calculated before the inherited one) between
the two attribute occurrences. Therefore the attribute evaluation ordering has to be deter-
mined before the subordinate and superior characteristic set can be calculated. These sets
are consequently not involved in determining the attribute evaluation ordering, but can
be used as a basis for getting efficient heuristics of the calculi. Having determined such
an ordering for each node of a tree the visit sequences can be computed. Having calcula-
ted the visit sequences the generation of attribute evaluators can be performed as for
usual attribute grammars with the exception that a narrowing engine is necessary for the
calculation of the values of the attribute occurrences, because it is dealt with undirected
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1.5 Refinements

Two kinds of implementation relations for attributed algebraic specifications are investi-
gated. One standard implementation relation which does not take behavioural aspects
into consideration and a behavioural implementation notion based on the already presen-
ted idea of behaviour for attributed algebraic specifications. For both implementation
notions we show the transitivity and monotonicity relative to the proposed specification
building operations. In particular, proof theoretical characterizations of the standard and
behavioural implementation relation are developed.

The composability of the implementation relations allows to implement the algebraic
part, i.e. the part of an attributed algebraic specification, being a usual algebraic specifi-
cation, independent of the attribution part, i.e. the part of the attributed algebraic specifi-
cation defining attributions on constructor terms.

This property simplifies the verification effort for proving implementations. For example
let Spy, Sp, and Sp; be usual algebraic specifications stored in an algebraic specification
library. Suppose it was already shown that Sp, is an implementation of Sp, and Sp, is an
implementation of Sp;. In order to show that the enrichment of an algebraic specification
Sp; by an attribution A#tr, denoted by enrich Sp; by Atr, is implemented by enrich Sp,
by Attr which in turn is implemented by enrich Sp; by A#r it is sufficient to know that

Sp; is implemented by Sp, and Sp, is implemented by Sp;

Using transitivity and monotonicity it holds: enrich Sp; by Astr is implemented by
enrich Sp; by A#r. Thus algebraic specification libraries can be used in the new
approach without doing verification twice.

1.6 Related Work

The new specification technique is a combination of attribute grammars and algebraic
specifications thus we have to discuss related work of these two topics.

In the framework of attribute grammars higher-order attribute grammars [Vogt et al. 89;
Swierstra, Vogt 91] and attribute coupled grammars [Ganzinger, Giegerich 84] can be
found. Roughly speaking syntax trees are first class citizens, i.e. syntax trees can be the
result of an attribution and can be pasted into an incomplete syntax tree. Since in the new
approach syntax trees are usual terms, which can be the result of a calculation, these
extensions can also be expressed in attributed algebraic specifications.

Tree transformations [Alblas 89] for attribute grammars describe by rules the transfor-
mation of an attributed tree in a new attributed tree dependent on the values of attribute
occurrences of the syntax tree. In the new approach equations can be defined on con-
structor terms defining such transformation rules.

Primitive recursive schemes [Courcelle, Franchi-Zannettacci 82] being a restricted class
of algebraic specifications have been introduced to express attribute grammars in the
framework of algebraic specifications. Techniques from attribute grammars are trans-
lated into algebraic specifications [Klint 93; Meulen 94; Deursen 94]. But this specifi-
cation formalism needs a synthesized form of the attribute equations with the result that
usual techniques from algebraic specifications cannot be applied, like implementation
relations or proof principles. Thus with this technique only the advantages of attribute
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lying grammar. But e.g. in the area of algebraic specifications ,,real“ modularisation is
meant, ie. structuring mechanisms are considered for building specifications from
simpler ones. The same aim is persued in the new technique and using subterm identi-
fiers an abstraction from the underlying signature is obtained, too.

In usual attribute grammar systems it is dealt with directed attribute equations. For these
directed attribute equations there exist elaborated attribute evaluation techniques,
especially for handling cyclic attribute dependencies [Farrow 86; Jones 90; Walz, John-
son 95] and incremental attribute evaluation (cf. e.g. [Reps et al. 83]). Both aspects can
be considered in the new technique, performing a fixpoint computation for the attribute
values of cyclic dependencies and using the attribute dependencies and the visit
sequences for incremental attribute evaluation.

1.7 Case Studies

Among other case studies considered for this thesis, three case studies are presented
showing typical applications of the new specification technique.

One application area of the new approach can be seen in the specification and verifica-
tion of the dynamics of user interfaces. This case study comes up from a research project
with Siemens. Here the dynamics of the user interface for an ISDN telephone is given
and some properties of the specification are shown. One property is shown using the
proof principle of attributed term induction and other properties using the analysis
techniques for attributed algebraic specifications, namely attributed signature flow analy-
sis. The case study is more or less taken from [Bauer 95] and can be shown using the
system implemented in [Duschl 94; Wei8 95]. Attributed algebraic specifications have
been proven to be an adequate specification technique for the dynamics of user interfaces
and showing their correctness. Applying the attributed narrowing calculus it is also
shown how the derivation of intelligent help can be performed. In this case study more-
over we study how the dynamics of user interfaces can be generated from an algebraic
specification of the application [Bauer 96].

The next case study is taken from the framework of compiler construction. Here the
compilation of expressions into stack machine code and (un)optimized register code is
considered. It is shown that the compilation is semantics preserving. Afterwards the
implementation relation of the compilation into unoptimized register code and into opti-
mized register code is presented. Note, that the first translations, namely from
expressions to stack machine code and unoptimized register code is not an implemen-
tation because a signature change is performed, whereas the other compilations describe
a behavioural implementation from unoptimized to optimized register code.

Another typical application area of the new specification technique is its use in the area
of document architecture. Here the problem of calculating the length of inner boxes is
considered such that a given length of the whole box is reached. Implementations and
attribute evaluation aspects for these specifications are taken into consideration.

These case studies explain by typical examples how real problems can be solved and that
all aspects of the specification framework presented in this thesis are usable for them.
The main aspects of this work and their application in the case studies (denoted by: X)
















12 Organization of the Thesis




















































Attributed Algebraic Specifications 29

extension of v to attribute terms. L
Proof
The assertion can be shown using structural induction on the notion of attribute terms. ¢

With the notion of interpretation it is possible to define a satisfaction relation over
scheme formulae used as a basis for the definition of model classes. The attributed satis-
faction relation defines the validity of an equation between two attribute terms, i.e. an
equation is valid if the interpretation of the two terms is the same element in the algebra
and not valid otherwise. This satisfaction relation for equations can be extended to arbi-
trary scheme formulae.

Definition 3.3.4 (satisfaction relation)
For any 2, -algebra A = ((A;,); s, (f‘)fGCoCC u ) With signature X = (S, C, F), Z-scheme
formula ® and valuation v the relation A safisfies ® wrt. v (written A, v [F,q, @) is defined
by:
1) A, v t=risvalid, if I4 [f] = I4 [1],
() A, vy - @isvalid, if A, v [y @ is not valid,
(3) A, VEu @ AWisvalid, ifA, v, ®and A, v |y P is valid,
4) A, vEu ®v Wisvalid,if A, v, P 0r A, v [y W is valid,
(5) A, VFu ©=WPisvalid, if A, v [y (- D) v W is valid,
6) A, vEuw Y Vg s sp—s @isvalid,
if for all valuations v' with v(sv') = v'(sv") for all sv' €(SV5_. )5 ses s \ { sv }
holds: A, V' [y @
D) A VvEur A5V, .. 5y Pis valid, if ~(Vsvg, o, o (- D)) is valid

with ¢, r EAT5(SV);, for some sort s €S, Z-scheme formulae @, ¥.

A satisfies ax (written: A [, ax) iff for all valuations v: A, v |4y, ax is valid.

A satisfies Ax (written: A |, Ax) with a set of Z-scheme formulae Ax iff for all =-
scheme formulae ax EAx: A [, ax is valid.

A Epay; ¢ = 1 is the abbreviation for A |,y c[f] = c[r] for all observable contexts c[z]. ¢

Since occurrence terms are syntactical objects the reachability of the considered algebras
is assumed. An algebra is reachable on a sort s with a set of constructor symbols C, if
each element of the carrier set of this sort is the interpretation of some term built with
constructor symbols in C, distinguished occurrence constructor symbol and subterm
identifiers not of sort s.

Definition 3.3.5 (reachability)

Let A = ((Ay)ses, (f‘)fECOCC ur) be a Xy -algebra with signature X = (S, C, F) and SV =
(V5. 4);, ses» s be a family of sets SV; _, ; of subterm identifiers.

An algebra A is reachable on s with C,, if for each element of the carrier set a €A, there













Attributed Algebraic Specifications 33

attrs synth weight, leftlength, rightlength, cmaxdepth: Mobile — Nat
inh length, depth: Mobile — Nat
obs-attrs length, leftlength, rightlength, depth, cmaxdepth
axioms for all sv: Mobile — Mobile; m, m1, m2: Mobile; I: Nat.
(1)  weight(sv[oce(cube(l))]) =1,
(2) weight(svlocc(mobile(m1, m2))]) =
weight(sv[mobile(oce(m1), m2)]) + weight(sv[mobile(m1, occ(m2))]),

(3) length(svloce(mobile(m1, m2))]) =
leftlength(sv[occ(mobile(m1, m2))]) + rightlength(sviocc(mobile(m1, m2))]),

(4)  weight(sv[mobile(occ(m1), m2)]) * leftlength(svoce(mobile(m1, m2))]) =
weight(sv[mobile(m1, oce(m2))]) * rightlength(svioce(mobile(m1, m2))]),

(5) depth(oce(m)) =1,

(6) depth(sv[mobile(oce(m1), m2)]) = depth(sv[occ(mobile(m1, m2))]) + 1,

(7) depth(sv[mobile(m1, oce(m2))]) = depth(sv[occ(mobile(m1, m2))]) + 1,

(8) cmaxdepth(svlocc(cube(l))]) = depth(svjocc(cube(l))]),
(9) cmaxdepth(svfocc(mobile(m1, m2))]) =
max(cmaxdepth (sv[mobile(occ(m1), m2)]), cmaxdepth(sv[mobile(m1, oce(m2))])),

(10) length(svlocc(cube(l)]) = 0,
(11) leftlength(svlocc(cube(l))]) = O,
(12) rightlength(sv[occ(cube(}))]) = 0

endspec 14

In this example all sorts are observable. In the case studies (chapter 8) we will see
examples where only a subset of the sorts is observable.

3.4.3 Semantics
The intuitive notion of behavioural equivalence, shown for instance in the compiler, the
document architecture and the user interface example, can be expressed as follows:

Two attributed trees are behaviourally equivalent, if the values of the corresponding ob-
servable attribute occurrences trees are behaviourally equivalent in the sense of alge-
braic specifications.

Note, that behavioural equivalence is a kind of projection on the attribute occurrences.

In the non observable case a class of algebras was defined as the semantics of an attribu-
ted algebraic specification analogous to usual algebraic specifications.

For behavioural attributed algebraic specifications we define the semantics similar to
[Chirica, Martin 79] as the set of solutions for the attribute values and abstract to a class
of algebras afterwards.

However, the semantics is not defined as the set of solutions for all attribute occurrences,
but as the set of solutions for all observable attribute occurrences up to behavioural equi-
valence in the sense of algebraic specifications.

Definition 3.4.3.1 (semantics)

The semantics of a beh. attributed algebraic specification ASpec = <Z, Fyu, Sops Faurgps
Ax> is defined by its
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)

@

©)

a flat attributed algebraic specification

sorts S obs-sorts Sy, cons C opns Fattrs Fpy, obs-attrs Fattrops aXioms Ax

is a structured attributed algebraic specification if ASpec = <(S, C, F), Fjy Sops

Fyyrop AX> is a behavioural attributed algebraic specification.

Its semantics is defined by

sig(ASpec) = (S, Coc., F),

attr(ASpec) = Fy,,

obs-sorts(ASpec) = Spps,

obs-attrs(ASpec) = Fyy0p

Mod(ASpec) = { A €EAIZ((S, Coces F)) | AFEurCandA [, Ax } and

Beh(ASpec) = { A EAIg(Zoc) | A Fuw C; A Foen AlgAx(Ax),

A Epayr 501, sol ESolutions(ASpec) }.

the sum of two structured attributed algebraic specifications ASpec; and ASpec,

ASpec = ASpec, + ASpec,

is a structured attributed algebraic specification.

The semantics is defined by

sig(ASpec) = sig(ASpec;) U sig(ASpec,),

attr(ASpec) = attr(ASpec,) U attr(ASpec,),

obs-sorts(ASpec) = obs-sorts(ASpec;) U obs-sorts(ASpec,),

obs-attr(ASpec) = obs-attr(ASpec,) U obs-attr(ASpec,),

Mod(ASpec) = { A EAlg(sig(ASpec;) U sig(ASpec,)) |A|Sig(ASpec1) EMod(ASpec;)
andAlS,-g(Aspecz) EMod(ASpec,) } and

Beh(ASpec) = { A EAlg(sig(ASpec,) U sig(ASpec,)) IAlsis(ASPecn EBeh(ASpec;)
and Alsig(ASpecz) EBeh(ASpec,) }.

Note, that by deﬁnitionAlsig(Aspecl) is reachable.

an enrichment of a structured attributed algebraic specification ASpec'
ASpec = enrich ASpec' by

sorts S obs-sorts Spps cons C opns F attrs Fay, obs-attrs Fay,, . axioms Ax
is a structured attributed algebraic specification if S is a set of sort symbols, Sqp; is
the set of observable sort symbols with Sp,; © S U sorts(sig(ASpec')), C is a set of
constructor symbols, F is a set of function symbols, F,,, CF is a set of attribute
function symbols, Fy,, is a set of observable attribute function symbols with
Faungps © Famr U attrs(ASpec') and sig(ASpec') U (S, Co,., F) forms a signature. Ax is
a set of equations t = r with t, r EATsu s, c U ¢, F U (SV); for some sort s ES U §'
such that sig(ASpec') = (', C', F").
The enrich operator is viewed as an abbreviation for
enrich ASpec by sorts S obs-sorts Sp,s cons Copns F
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tions into the following form:
export X from sorts S obs-sorts Sp,s cons Copns Fatirs Fay, obs-attrs Fay,,, . axioms Ax

To show this fact the following lemma is necessary:

Lemma 3.5.2.1
It holds:
(1) ASpec; + ASpec, = ASpec, + ASpecy
(2) (ASpecy + ASpecy) + ASpecs = ASpec + (ASpec, + ASpecs)
(3) rename (rename ASpec by o4) by o, = rename ASpec by o10p
with structured attributed algebraic specification ASpec, T = sig(ASpec), bijective
signature morphisms o;: Z — X, and 0,: Z;, —> %, compatible with Occ. The com-
position of signature morphisms is defined by (040,)(x) = 0o(04(x)) for some sort,
constructor or function symbol x.
(4) ASpecy + ASpec;, =
(21U Zp, Fany U Fattry: Sobsy U Sobsy: Fattropsy Y Fattropsy A%t U AXg)
with ASpecy = (21, Fasry> Sobsy» Fattrops» AX1) and
ASpecy = (Z2, Fatty, Sobsp> Fattropsy AX2)
and for all f€atirs(ASpec,) N attrs(ASpec,) holds: f€F ;. iff fEFy ., and for
all s Esorts(24) N sorts(Zy) holds: consy(E1) = consy(2z) and s ESpps, iff 5 ESpy,-
In the behavioural case must hold additionally:
Solutions(ASpec;) U Solutions(ASpec,) =
Solutions((Z4 U Zp, Fatiy U Fattry, AXy U AXp))
(5) export 2 from ( export =, from ASpec) = export Z; from ASpec
with =y C 2, C sig(ASpec)
(6) (export Z; from ASpec; ) + (export X, from ASpec; ) =
export (Z{ U 2, ) from ( ASpec; + ASpec, )
sig(ASpec;) 2 2 2 sig(ASpec;) N sig(ASpec,),
sig(ASpec,) 2 2, 2 sig(ASpec,) N sig(ASpec,)
and for all f Eattrs(ASpec;) N attrs(ASpec,) holds: f Eobs-attrs(ASpec,) iff f Eobs-
attr(ASpec,), and for all s Esorts(Z4) N sorts(Zp) holds: consy(Z1) = consy(Z;) and
s Eobs-sorts(ASpec,) iff s Eobs-sorts(ASpec;).
(7) rename ASpecby o = (0(Z), o(Fard, 5(Sops), (Fattrops): O(AX)
with o = — X, is a bijective signature morphism compatible with Occ and
ASpec = (£, Fann Sobs Fatrops A9
(8) export sig(ASpec) from ASpec = ASpec
(9) rename (export = from ASpec) by o = export o(Z) from (rename ASpec by o')

with o: = — 2, being a bijective signature morphism compatible with Occ such that

sig(ASpec) 2 £ and o' is the extension of o to sig(ASpec).
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©®)

©)

A EMod(Z1 U Z, Fpyyy U Fyyypy, Axy U Axy)
Behavioural case:
Let A EBeh(ASpec, + ASpec,) iff
A E{ A EAlg(sig(ASpec,) U sig(ASpec,)) l
Alsigaspecr) EBeh(ASpecs) and Al igaspecy, EBeh(ASpecy) } iff
A EAlg(sig(ASpec,) U sig(ASpec,)) and
Alsigaspecr) EBeh(ASpecy) and Alsigaspecy) EBeh(ASpecy) iff

A €EAlg(Z4 U Zp) and

Als, E{BEAIZ(Z,) | B Faur C1, B Fen AlgAx(Axy),

B [y 01y, soly ESolutions(ASpec;) }

and

Als, E(B €Alg(Z;) | B Fu €, B oo AlgAx(Axy),

B Franr S0k, sol, ESolutions(ASpecs) } iff

A €Alg(Z U Zp) and

AIEI Faur C17A|).‘.1 |=beh AlgAx(Axl)7 A|)21 Fbaltr SOII’ SOll ESolutions(ASpecl)
and

Al;2 Ear Ca» AIZ2 Fuen AlgAx(Ax,), Al):2 Fuatr S0, sol, ESolutions(ASpecs) iff
A EAlg(Z4 U Zy) and

Ay C1 U Cp A ey AlgAx(Ax;) U AlgAx(Axy), A Fouyr sOI,

sol ESolutions(ASpec;) U Solutions(ASpec,) iff
(since consy(Z) = consy(Z,) for all s Esorts(Z) N sorts(Zp) and the conditions for
the solutions)
A € Beh(Zy U Zp, Fppyy U Fpgyy, Axy U Axy)
Let A EMod(export Z, from (export Z, from ASpec)) iff
A E{ Als, EAlg() | A EMod(export 3, from ASpec) } iff
3 B EMod(export 3, from ASpec). A = B|21 iff
3B €{ Cly, €Alg(=,) | C EMod(ASpec) }. A = B|s, iff
3 C EMod(ASpec). A = (:|22|21 iff
3 C EMod(ASpec). A = c|21 iff
A E{ Als, €Alg(S1) | A EMod(ASpec) } iff
A EMod(export Z, from ASpec)
analogous can be shown:
Beh(export Z, from (export %, from ASpec)) = Beh(export X, from ASpec)
Let A EMod(export X, from ASpec, + export %, from ASpec,) iff
AIZ1 EMod(export =, from ASpec;) and
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©®)

®

A EAlg(S,) and A|0 E{BEAlg(X) | By Cand B oy Ax } iff
A EAlg(S,) and A|0 Euw C andAlo Eaw Ax iff

A EAIg(Z,) and A oy 0(C) and A [y 0(Ax) iff

A EMod((0(2), 0(F 4sr), 0(AX)))

Behavioural case:
Let A EBeh(rename ASpec by o) iff

A E{ A EAIg(Z,) | A|, EBen(ASpec) } iff

A €Alg(2,) and A|, EBeh(ASpec) iff

A EAlg(S,) and A|<, €{ BEAIg(Z) | B Euq C; B Foen AlgAX(Ax), B e 501,
sol ESolutions(ASpec) } iff

A €AIG(Ee), AloFaur €, Al Foen AlgAX(AX), Ao o 50,
sol ESolutions(ASpec) iff

A EAIZ(Z5), A Fawr 9(C), A Fen AlgAX(0(A%)), A Fpanr 9(s00),
sol ESolutions((o(Z), o(F a), O(Ax))) iff

A EBeh((0(Z), o(Fpur), 0(AX)))

Mod(export sig(ASpec) from ASpec) =

{Alsig(ASpec) EAlg(sig(ASpec)) |A EMod(ASpec) } = Mod(ASpec)

analogous can be shown:

Beh(export sig(ASpec) from ASpec) = Beh(ASpec)

Let A EMod(rename (export Z from ASpec) by o) iff

A E{ A Alg(E,) | Al, EMod(export = from ASpec) } iff

A EAlg(S,) and A|0 €] Bl2 EAlg(Z) | BEMod(ASpec) } iff

3 B EMod(ASpec). 19'2 = A|o iff

3 B EMod(ASpec). Blo|os) = A iff

3B €{ A EAlg(Zy) | A|s EMod(ASpec) }. Bl = A it

3 B EMod(rename ASpec by O'). Blogs) = A iff

A E{ Ao EAIg(E; )| A EMod(rename ASpec by o) } iff

A EMod(export o(Z) from (rename ASpec by o"))
analogous can be shown:
Beh(rename (export T from ASpec) by o) =

Beh(export o(Z) from ( rename ASpec by o)) .
Corollary 3.5.2.2
Each structured attributed algebraic specification can be normalized into the following

form:
export = from sorts S obs-sorts Spp,s cons Copns F attrs Fpy, obs-attrs Fay,,,  axioms Ax
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Having a look at the use of specification building operations, we can distinguish mainly

two cases of application:

- specification building operations are used to extend loose specifications such that more
informations about the functions are defined, i.e. the specifications are refined. An ex-
ample is the extension of loose sets in such a way that we obtain sets which are imple-
mented as ordered lists.

- specification building are also used for re-use purposes. In this case we have specifica-
tions in a library and combine existing specifications and extend them with additional
data types to solve a complex task. But no information on the specifications of the libra-
ry is add. E.g. we use the specification for deriving the type of an expression and for cal-
culating the code of an expression and extend them such that a compiler for a complete
functional programming language is obtained.

The condition on the constructors is obvious, since we usually assume with a data type
special constructors from which informations over this data type can be built.

Condidering the behavioural restrictions, using the specifications in the re-use case the
re-used specifications solve a special task and therefore they have a distinguished obser-
vable behaviour which need not be changed, if two specifications are merged. The same
holds for refinements.

But the conditions on the solutions do not usually support the first application of specifi-
cation building operations. Having a loose specification we can get on the one side more
solutions (if e.g. in the loose specification no solution is obtained), and on the other side
less solutions (if e.g. the refined specification excludes older solutions).

The second case can be usually supported, since the solution condition states that specifi-
cations are independent. This is the case, if e.g. the re-used specifications are constructor
completely defined and the extension does not add additional axioms to the base specifi-
cations and e.g. defines itsself its function only constructor completely. I.e. combining
two specifications which contain only axioms stating constructor complete definitions of
functions or define only axioms on the new data type, the solution condition is satisfied.

3.6 Attributed Signature Flow Analysis

A well known analysis technique for grammars is grammar flow analysis. We extend this
notion to attributed algebraic specifications to derive informations about the underlying
signature and its attribution. Since in our context ,,signatures“ are used instead of ,,gram-
mars“, we call it attributed signature flow analysis. Therefore the following definitions

of bottom-up and top-down attributed signature flow analysis are an adaption and exten-
sion of [Mo6ncke, Wilhelm 91; Wilhelm, Maurer 92] to our notions:

Definition 3.6.1 (bottom-up attributed signature flow analysis problem)

Let ASpec = <(S, C, F), F,,,, Ax> be an attributed algebraic specification. A bottom-up
attributed signature flow analysis problem (for short: signature flow analysis) consists of

(1) aset of domains D = (D;), g5 with distinguished L, €D, (no information available)
(2) aset of propagation functions

P = (pf Dy Doy Do, ™ Do) 51, 52,.., 50— 5 €05
(3) a set of combination functions (A,: 2Ds Dy);es, and
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SFA[s] = A, { p :(SFA[s']) l (f: 515 $25.-0, 8, > SV EC, 1 sisn,s;=5}

for all s €S. The solution of the signature flow analysis is the solution of the recursive
equational system.

Sometimes information depends on the complete context of a node and not only on the
path from the root to that node. Therefore a new notion of signature flow analysis is
defined, called context-dependent attributed signature flow analysis, being a combina-
tion of bottom-up and top-down signature flow analysis. The solution of the signature
flow analysis problem is obtained in two phases: First a bottom-up signature flow analy-
sis is performed. After computing the solution of this problem the result is used in a top-
down signature flow analysis:

Definition 3.6.3 (context-dependent attributed signature flow analysis problem)

Let ASpec = <(S, C, F), Fy, Ax> be an attributed algebraic specification. A context-
dependent attributed signature flow analysis problem (for short: signature flow analysis)
consists of

(1) two sets of domains Dy, = (D, ;);es and D, = (D, ,); s
with distinguished L, €D, ,, L, €D, ; (no information available)
(2) two sets of propagation functions
Pt = ((pf, i Ds - Dsi)i €{1,2,.,n })(f 515 825, Sy —> 5) EC>
and
Pb = (pf: Ds17 Dsz?'"? Ds,, - Ds)(ﬁ 51, 8251, Sp — 5) EC>
such that p; ; can use the informations of the py, i.e. the solutions of
SFA[s] = Ay, s { PASFA[s], SFA[s;],..., SFA[s,]) I (f: 51 S350, S, —> S) EC },
(3) a set of combination functions (A, ;: 2Ds - Dy);esand (A, 2D; Dy es,
(4) two sets of relations (S, ;: Dy, Dy — Bool); g and (S, ;: Dy, Dy —> Bool), e,
(5) an initial value SFA, at the root: SFA[s,,,] = SFA, with
Sroor E{ s,l(ﬁm,: $,—>8)EFyy, }. *
A signature flow analysis problem defines a recursive equational system:
SFA[s] = A, { p; :(SFA[s']) I (f: $1, Sppevy Sp—=> SV EC, 1sisn, s;=5}
for all s €S. The solution of the signature flow analysis is the solution of the recursive
equational system.
Example 3.6.4

A realistic example for the signature flow analysis can be found in the user interface case
study where the set of reachable menu-items is calculated which is an important property
in the user interface verification.

Here we give again toy examples.

A bottom signature flow analysis problem of our mobile example is the calculation of all
function symbols which can be found below the root.
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4 Attribute Dependencies and Attribute Evaluation

In this chapter attribute dependency relations are defined on attribute occurrences. After-
wards an attribute evaluation ordering is defined based on these relations. The attribute
evaluation ordering is the starting point for generating efficient attribute evaluators.

4.1 Attribute Dependencies

In usual attribute grammar systems attribute dependencies are a basis for the attribute

evaluation and for the generation of efficient attribute evaluators (cf. e.g. [Wilhelm, Mau-

rer 92]. In these systems directed graphs describe the attribute dependencies since only
directed attribute equations are used (called: dependency graphs). The following depen-
dency graphs can be distinguished for attribute grammars with directed attribute equa-

tions [Wilhelm, Maurer 92]:

- The local dependency graph denotes the attribute dependencies stated in the attribution
of a single production.

- The global dependency graph describes the dependencies for a given tree ,,putting to-
gether the local dependency graphs.

- The superior and subordinate characteristic dependency graph of a non terminal des-
cribes the possible superior dependencies in all contexts, in which the non terminal
may appear, and the subordinate dependencies of all subtrees with a root marked with
this non terminal, respectively.

Since in our specification formalism it is dealt with undirected attribute equations, direc-
ted graphs cannot express the attribute dependencies. A new technique for the descrip-
tion of the attribute dependencies has to be developed. Moreover, the attribute equations
define no ordering on the attribute occurrences. Therefore none of the known evaluation
strategies can be applied in their pure form.

An undirected attribute equation is a predicate taking as arguments the attribute occur-
rences and stating that they reciprocally depend on each other. This fact can be expressed
by a dependency set containing all attribute occurrences of an undirected attribute equa-
tion.

The aims are to determine statically

- the attribute evaluation ordering,

- the (non-)circularity of the attribute dependencies and

- the superior and subordinate characteristic set within the scope of reducing the search
space for proofs.

The problems arising in the context of undirected attribute equations are:

- the attribute equations do not describe an ordering how the values of the attribute occur-
rences in this equation have to be computed and

- there may exist a set of correct attributions for a given tree.

In the following considerations the intra-term attribution of the considered attributed
algebraic specifications is assumed.

The following dependency sets are distinguished for undirected attribute equations:
- the local and global dependency set,
- the subordinate and superior characteristic dependency set,
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tion algorithm in this chapter). A possible attribute evaluation ordering for the example
term

mobile(mobile(cube(1), cube(3)), cube(2))

is shown in figure 9:

S, first pass v v N
"~ second pass /S
P I d mobile Il cmd w
d = depth
| = length
1l = rightlength
Il = leftlength
cmd = cmaxdepth !
w = weight | d mobiler I cmd w w
- v ¥ e
2
I deuber I cmd w | dcuber I cmd w
v | «w v | W e

3
figure 9: attribute evaluation ordering for CMOBILE

In the first pass the depth of the nodes is calculated in a depth first tree traversal until the
node mobile(mobile(occ(cube(1)), cube(3)), cube(2)) is reached. Now the value of the
weight and cmaxdepth attribute occurrences can be synthesized up the tree and the values
of depth attribute occurrences can be calculated. After the first pass the values of the
depth, cmaxdepth and weight attribute occurrences are known. In the second pass the
values of length, rightlength and leftlength are computed. They cannot be computed in
the first pass, since the attribute occurrences rightlength and leftlength depend on the
attribute occurrences length in turn depend on the attribute occurrences cmaxdepth at the
root of the mobile computed as the last attribute value in the first pass.

The second attributed algebraic specification CMOBILE?2 with a one-pass attribution is a
usual attribute grammar in the new notation. The obtained results are the same as in the
old dependency approaches. This examples enables a comparison of the new technique
with the old one. The specification is obtained from LMOBILE refining the undirected
balance equation (4) by directed attribute equations. Moreover, the weight of the cubes is
increased. We will see later (section 6.4) that CMOBILE? is a behavioural implementa-
tion of LMOBILE. Therefore CMOBILE? is defined as a behavioural attributed algebraic
specification. The observability issues have ro influence on the attribute dependency
analysis.
aspec CMOBILE2 =
enrich NAT by
sorts Mobile
obs-sorts Mobile, Nat
cons mobile: Mobile, Mobile — Mobile,
cube: Nat — Mobile,
fixed, fixedtop: — Nat
-attrs synth weight, leftlength, rightlength, cmaxdepth: Mobile — Nat
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The attribution of CMOBILE? is a one-pass attribution shown in figure 10:
“Sa. apossible attribute

evaluation ordering d | mobile w Il cmd
Ly
d = depth
I = length
1l = rightlength
It = leftlength
cmd = cmaxdepth
w = weight Y &) A A
d | mobile w |l

d lcube w r I cmd d lcube w r |

1 3

figure 10: attribute evaluation ordering for CMOBILE2

The attribute dependency graph for the specification CMOBILE? viewed as a usual attri-
bute grammar is given in figure 11 (note, that the arrows do not denote subordinate and
superior dependencies):

. attribute dependency graph v
d | mobile werl cmd
d = depth
| = length
w = weight
fl = rightlength
Il = leftlength
cmd = cmaxdepth
%g%ﬂ l CUbe w ’
Icube w 1 I cube w 1l cmd
1 3

figure 11: instantiated global dependency graph

But there cannot be given a directed dependency graph for the specification CMOBILE,
because of the undirected attribute equation:

weight(sv[mobile(oce(ml), m2)]) * leftlength(sv[oce(mobile(ml, m2))]) =
weight(sv[mobile(ml, occ(m2))]) * rightlength(sv[occ(mobile(ml, m2))])
which is an invariant of the mobile such that each floor of the mobile is in balance. In

particular, each ,directed attribute equation can be viewed as an undirected attribute
equation, too.

weight(sv[oce(mobile(ml, m2))]) =
weight(sv[mobile(occ(ml), m2)]) + weight(sv[mobile(m1, occ(m2))])
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A local dependency set describes the attribute dependencies relative to an attribute equa-
tion and contains all attribute occurrences of it. This notion can be extended to sets of
attribute equations.

Definition 4.1.1 (local dependency set)

The local dependency set for an attribute equation ¢ = r is defined as

DSetipeof(t = 1) = { famr (t') | t = c[fp (¢)] o1 7 = c[fyy (¢')] for some context c,

occe,

Jawr EFpgy, t €T, (SV) and s Enodesorts(fy, ) }

and for a set Ax of attribute equations as
DSetyy..(AX) = { DSety,cq(ax) | ax EAx } .

Example 4.1.2

The local dependency set for CMOBILE is defined as (note, that the identifiers are
renamed apart for later considerations):

{{ weight(sv1[occ(cube(I1))]) },

{ weight(sv2[occ(mobile(ml, m2))]), weight(sv2[mobile(occ(m1), m2))),
weight(sv2[mobile(m1, occ(m2))]) },

{ length(sv3[occ(mobile(m3, m4)))), leftlength(sv3[occ(mobile(m3, m4))]),
rightlength(sv3[occ(mobile(m3, m4))]) },

{ weight(sv4[mobile(occ(m5), m6))), leftlength(sv4[occ(mobile(m5, m6)))),
weight(sv4[mobile(m5, occ(mo6))]), rightlength(sv4[occ(mobile(mS, m6))]) },

{ depth(oce(m7)) },

{ depth(sv5[mobile(occ(m8), m9))), depth(sv5[oce(mobile(m8, m9))]) },

{ depth(sv6[mobile(m10, occ(m11))]), depth(sv6[occ(mobile(m10, m11))]) },

{ cmaxdepth(sv7[occ(cube(12))]), depth(svi[oce(cube(I2))]) },

{ cmaxdepth(sv8[occ(mobile(m12, m13))]),
cmaxdepth(sv8[mobile(occ(m12), m13)]),
cmaxdepth(sv8[mobile(m12, oce(m13))]) },

{ length(sv9[occ(cube(I3))]) },

{ leftlength(sv10[occ(cube(i4))]) },

{ rightlength(sv11{ecc(cube(I5))]) },

{ length(sv12[occ(mobile(m14, m15))]), cmaxdepth(occ(sv12[mobile(m14, m15)])),
depth(sv12[occ(mobile(m14, m15))]) } }

and for CMOBILE? as:

{{ weight(sv1[occ(cube(i1))]) },

{ weight(sv2[occ(mobile(m1, m2))]), weight(sv2[mobile(occ(m1), m2)]),
weight(sv2[mobile(m1, oce(m2))]) },

{ length(occ(mobile(m3, m4))) },

{ length(sv3[mobile(occ(mobile(mS, m6)), m7))),
length(sv3[occ(mobile(mobile(mS, m6), mT))]) },

{ length(sv4[mobile(m8, occ(mobile(m9, m10)))]),
length(sv4[occ(mobile(m8, mobile(m9, m10)))]) },

{ length(sv5[occ(cube(i2))]) }
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Definition 4.1.3 (instantiated local dependency set)

Given a ground constructor term ¢ and an attribute equation ax. The instantiated local
dependency set is defined as

DSety,c (2, ax) = { { o(DSet;y.(ax)) } | o ESubst and V ¢ ETerm(ax). o(t) =t }

and for a set of attribute equations Ax by
DSetipcqi(t, Ax) = { DSetioea(t; ax) | ax EAX }

and
Inst(ax, ) = { o(ax) | o ESubst and V ¢ ETerms(ax). o(t) =t }
such that Terms(ax) is the extension of the function Term to extract from an equation of

attribute terms the underlying term of the syntax tree. *

Thus the instantiated local dependency set for all attribute equations of a specification
defines the set of attribute dependencies for a given term.

The instantiated local dependency set for the term
t = mobile(mobile(cube(1), cube(3)), cube(2))

and the specification CMOBILE is obtained by instantiating the above local dependency
set for CMOBILE by the term ¢ (see Appendix B.1).

The local dependency set is the basis for determining which values of the attribute occur-
rences can be calculated in parallel defining the so-called global dependency set. There-
fore some operations on set of sets have to be defined. Trans defines the transitive
closure of a set of sets. UnifTrans defines the unified transitive closure of a set of sets in
such way that the elements of the set need not be identical but unifiable. The operation
DelRenamable deletes those elements of a set of sets which are identical up to renaming
of the identifiers.

Definition 4.1.4 (operations on sets)
LetS = {S},S,,.., 5, } be a set of sets.
Trans(S) = Trans({{ Uier, S+ Yier, i } | 1sjsnl={k |s,.ns,,¢g, 1sksnk=j}})

UnifTrans(S) = UnifTrans({{ Ui So-» Uier, S } | 1<j=n,
L={ klEIoESubst. o) NoSY=a,1sk=nk=j}})

DelRenamable(S) = { S;;, Sipp-+-» S;,} such that { S;, S,..., S, } €S and
Vs €{ 81, Sigs--r Si}- ﬂ s' &S\ { Sy, Sips-+» Sy }- 3 0 ERenaming. o(s) = o(s") and
Vs€ES. 35 €Sy, Sipp-ers Sy t- 1 0 ERenaming. o(s) = o(s")
w.l.0.g.: identifiers renamed apart! *

The global dependency set describes independently from the actual considered term
which attribute occurrences depend on each other. The global dependency set is obtained
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kind cube the attributes { length }, { leftlength } and { rightlength } and the other attri-
bute occurrences are independently to calculate and therefore can be computed in paral-
lel.

For the specification CMOBILE? it can be extracted from the global dependency set that
{ weight, length, leftlength, rightlength } and { depth, cmaxdepth } can be calculated in
parallel for attribute occurrences of kind mobile and { length }, { leftlength } and { right-
length } for attribute occurrences of kind cube. .

Given a term its instantiated global dependency set can be defined:
Definition 4.1.6 (instantiated global dependency set)

The instantiated global dependency set for a given term ¢ and a set of attribute equations
Ax is defined by

DSetgopat, Ax) = Trans(DSetye,(t, Ax)) .

The instantiated global dependency set for the term mobile(mobile(cube(1), cube(3)),
cube(2)) and the specifications CMOBILE and CMOBILE? is visualized in figure 16 and
figure 17, respectively.

cannot be calculated
in parallel

d = depth
| = length
rl = rightlength

Il = leftlength

cmd = cmaxdepth
w = weight

d i/mobilelw

1o

figure 16: instantiated global dependency set for CMOBILE

cannot be calculated
\.] in parallel

d = depth

| = length

rl = rightlength

Il = leftlength

cmd = cmaxdepth
w = weight

figure 17: instantiated global dependency set for CMOBILE?2
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a set of values for one attribute occurrence. Moreover, the attribution can be defined in
such a way, that two or more values of attribute occurrences must be simultaneously cal-
culated. In this case existentially quantified formulae have to be solved.

The starting point for the dynamic attribute evaluation is the instantiated local depen-
dency set of a term relative to a set of attribute equations. The smallest attribute occur-
rences are the elements of the local dependency sets with cardinality one. Having already
determined an ordering on some attribute occurrences O each element of O is smaller
than an element of a set of attribute occurrences O' iff there is a ds and no ds' in the local
dependency set such that|ds' N O | <|ds N O] and O' = ds\ O.le. O'is the smallest set
of attribute occurrences which have to be caleulated simultaneously. A data-driven algo-
rithm for the attribute evaluation ordering looks like:

procedure dynamic_attribute_evaluation_ordering

Input:
- term¢
- set of attribute equations Ax
Output:
- < attribute evaluation ordering
begin
(1) ordered ={a|{a} E DSetjycqlt, AX) }
(2) minimal elements wrt. <4 are all elements in ordered
(3) repeat
4) nextdset = { ds I ds € DSetjoca(t, AX) A ds' € DSetgeqt, AX).

| ds' Nordered | < | ds N ordered | }
(5) for all d €ordered do

(6) for all a Enextdset do
(7) d <eyq @\ ordered
8) od od

()] ordered = ordered U Ugs enextdset 95
(10) until ordered = Ugs epsetjogqt, Ax) 95
(11) return(<gya)

end

The input is the term ¢ for which the attribute evaluation ordering has to be determined
and a set of attribute equations Ax. The output is the evaluation ordering <, of the attri-
bute occurrences.

In (1) the sets of the instantiated dependency sets with cardinality one are defined as the
smallest elements in <.,,. Therefore the ordering of these attribute occurrences is already
known (2). (3)-(10) performs a loop until all attribute occurrences are ordered. (4) calcu-
lates the dependency sets of the instantiated local dependency set with minimal unor-
dered attribute occurrences which have to be considered next. All the already ordered
attribute occurrences are smaller than the unordered attribute occurrences of the consi-
dered dependency set (5)-(8). These attribute occurrences are ordered in the following
iterations (9). (11) returns the calculated attribute evaluation ordering for the input term.
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It can be visualized as:

— —~—
svi @ sv2®

culbe @ cl.ibe@
I

I 12
figure 18: characteristic term wrt. the attribute equations

To shorten notation the attribute occurrences are denoted by the attribute function sym-
bols and the circled numbers in the tree of figure 18, e.g. weight;;, denotes the attribute
occurrence weight(sv[mobile(svl[oce(cube(I1))], sv2[cube(i2)])])-

For the characteristic term the instantiated local attribute dependency set (wrt. the speci-
fication CMOBILE) is calculated:

{ { weighty1, }, { weightyy, }, { weight,, weighty;, weighty, },

{ length,, leftlength,, rightlength, }, { weight,,, leftlength,, weight,,, rightlength, },
{ depthy}, { depthy, depthy, }, { depthy, depthy, }, { cmaxdepthyyy, depthyy; },

{ cmaxdepth,,, depthyy }, { cmaxdepth,, cmaxdepthy,, cmaxdepth,, },

{ leftlengthy;, }, { leftlengthyy, }, { rightlength,y, }, { rightlengthyy, }, { lengthyy; },
{ lengthyy, }, { length,, cmaxdepthy, depth, } }.

We start with the sets containing only one element, since the values of the attribute
occurrences can be determined independently of the others and are therefore the smallest
elements in the attribute evaluation ordering:

{ { weighty1, }, { weightiz1 }, { depthy }, { leftlengthy, }, { leftlengthyz; },

{ rightlengthyy, }, { rightlengthy» }, { lengthyy; }, { lengthys; } }.

Now an ordering can be defined on the other elements analogous to the dynamic attribute
evaluation ordering idea:

depth < depth, < depthy; < depth,,; = cmaxdepth,,, < cmaxdepth,;

depth < depth; < depthy, < depthy,, < cmaxdepth,,; < cmaxdepth;, } s cmaxdepth,
cmaxdepth; < cmaxdepthy

cmaxdepthyg
depth, } < length, < length,

weight; 1, < weight,,

weight,y, < weighty, } < weight, < weight,

lengthy = { leftlength,, rightlength, }

weight,,

weightyy [ = { leftlength,, rightlength, }

The ordering depth, < depth,, depth,, < depth,,... is valid because depth is an inherited
attribute and using the trivial substitution for the subterm identifier results in the applica-
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Definition 4.2.3.2 (visit sequence)

Let < be a total attribute evaluation ordering on the attribute occurrences of occurrence
terms of sort s and
d 12 2 ki ki .
st ¥ (1sjsn)
be the ordered partition for (f: sy, 5,..., 5, = s) €C and constructor terms #,, f,,..., t, of
SOIt S, 82;-.+5 Spe

A visit sequence vseq for fand ¢y, t,,..., t, is an evaluation ordering of the following form:
vseq(sv[f(ty, ty---s t,)]) = i% dy s B dy 5% ... Podi 5

and
d, is a sequence of visits i]’- sj (1 =jsn)atsv[f(..., oce(),...)]- *

The attribute evaluation ordering can be defined updating the dynamic attribute evalua-
tion algorithm in the way shown by the example.

procedure attribute_evaluation_ordering

Input:

- one characteristic term ¢

- set of attribute equations Ax

Output:

- <.va attribute evaluation ordering for the characteristic term ¢

begin
(1) ordered ={a|{a} & DSetjyqt, Ax) }
(2) minimal elements wrt. <4 are all elements in ordered
(3) repeat
(4  nextdset={ds | ds EDSetgeq(t, AX) A ds' EDSetigeq(t, AX).
| o(ds') N ordered | < | o(ds) N ordered |
for some trivial subterm substitution o }

(6)  forall d €ordered do

6) for all a Enextdset do
7 d <gyq @\ U, o(ordered)
(8) od od

) ordered = ordered U Ugs enextdset S
(10) until ordered = Uys epsetjgeq(t, Ax) 95
(11) return(<eya)
end
A loose specification can result in an incomplete ordering, e.g. if no defining equation for
an attribute occurrence is given.

The obtained partial ordering can be normalized such that a visit sequence can be calcu-
lated.

The subordinate and superior characteristic set can be determined with the knowledge of
the attribute evaluation ordering.
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Example 4.2.4.2

The subordinate and superior characteristic set for the specification CMOBILE is compu-
ted in four steps:
- The characteristic set of scheme terms is calculated wrt. the attribute equations.
Term® o (Terms(AttrAx(Ax))) = { sv[mobile(sv1[cube(i1)], sv2[cube(i2)])] }
- The characteristic local dependency set is computed wrt. the characteristic set of sche-
me terms (using the numeration of figure 18.):
DSet, S (Ax) = { { weightyy }, { weightyy, }, { weight,, weight,, weighty; },
{ lengthy, leftlength,, rightlength, }, { weight,y, leftlength,, weight,,, rightlength, },
{ depthy}, { depthy, depth, }, { depth,, depthy, }, { cmaxdepthyy,, depthyq; },
{ cmaxdepth,y,, depthy,, }, { cmaxdepth,, cmaxdepth,,, cmaxdepth,, },
{ leftlength,y, }, { leftlengthyy, }, { rightlength,y, }, { rightlengthy,, }, { lengthy1, },
{ lengthyy, }, { length, cmaxdepthy, depth, } }.
- The set of characteristic occurrence terms is calculated wrt. the distinguished sort.
OccTerm®" (Ax) = OccTerms(sv[mobile(sv1[cube(i1)], sv2[cube(I2)])]),

- DSel’b™ = {1 weight, length, lefilength, rightlength }, { depth, cmaxdepth} }
- efoble = £ £ cmax epth, weight, lengtl
DSefiobite depth, weight, length 3

sup

Remark

In our considerations we have dealt with the worst case approximation whereby all equa-
tions of the form

Jaw(t) = rhs
(with attribute occurrence f,,(f) and arbitrary attribute term rhs) are undirected attribute
equations. But the proceeding can be simplified, if these equations are handled like

directed attribute equations. In this case the usual ordering can be used on the attribute
occurrences of these equations.

Generating Efficient Attribute Evaluators

The generation of efficient attribute evaluators can be performed like in usual attribute
grammars using the visit sequences or the superior and subordinate characteristic sets.

Attribute Dependencies and Structured Attributed Algebraic Specifications

Using the structuring mechanisms presented in section 3.5 not only the specifications but
also the attribute dependencies for these specifications should be stored in libraries.
Some considerations have to be made to get correct attribute dependency relations for
the combined specifications:
- Flat specifications do not influence the determined attribute dependencies.
- Inthe case of an enrichment of an attributed algebraic specification the following cases
have to be differentiated:
+ The attribute dependencies can be merged, if in the axioms of the enrich-part attribu-
tes are used which are not defined or used in the basic specification, otherwise
+ a new attribute dependency analysis has to be performed for the normalized specifi-
cation.
- The rename operation causes no problems, since only the signature morphism has to be
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applied to the dependency sets and visit sequences.

- The export of a subsignature does not influence the attribute dependencies.
- The sum operation causes the same problems as the enrich operation:

+ if the specifications do not share common attributes then the attribute dependencies
can be merged and

+ otherwise a new attribute dependency analysis has to be started for the normalized
specification.
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5 Calculi for Attributed Algebraic Specifications

This chapter deals with three kinds of calculi: one for determining the complete set of
minimal unifiers for a set of attribute terms, one for dealing with universally quantified
formulae including induction principles and a narrowing calculus for dealing with exi-
stentially quantified formulae.

5.1 Unification Calculus

Note the fundamental difference to the work on the topic of unification done in the
framework of higher-order algebraic specifications, see e.g. [Heering et al. 94].

Unification solves the problem of making two terms syntactic equal, i.e. a substitution is
computed, which applied to both terms, results in two syntactic equal terms, if the two
terms are unifiable. Unification was first discussed in [Herbrand 30] and an algorithmic
form of the computation was given in [Robinson 65]. In [Martelli, Montanari 82] unifi-
cation was described by a set of rules manipulating a set of equations to obtain a most
general unifier.

Since in attributed algebraic specifications the notion of terms was extended to attribute
terms admitting subterm identifiers, the unification algorithm has to be adapted to handle
such identifiers, too.

The following considerations are based on [Hofbauer, Kutsche 89] extended to manage
subterm identifiers.

Definition 5.1.1 (unifier)
A unifier for two attribute terms #; and ¢, is a scheme substitution o such that
o(ty) = o(ty)-

A unifier o is more general than a unifier o' (written: o = o), iff there exists a substi-
tution o" ESubst such that 60" = o'

A unifier for a set of attribute terms {t,, £,,..., ¢, } is a scheme substitution & such that
o(t)) = o(t;) = ... = o(t,1) = o(t,). *
Let us consider the attribute terms

t = weight(svl[mobile(sv2[mobile(occ(m1), m2)], m3)]) and

r = weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), m5), m6), m7)], m8)])

E.g. (using the usual abbreviations, i.e. neglecting the functionality of the subterm identi-
fiers)

O = [ SV1pgopite - Mobite | SV3Mobite — Mobiles
SV2ppobite — Mobile | SVA[mobile(mobile(zysopite, m6), mT)],
ml/md, m2/mS, m3/m8]and

O' = [ sV1ppopite - Mobite ! SV3[mobile(svausopize — mobites M8)],
SV2pobite = Mobite | MObIle(Zygopite; M), m1 [ md, m2 [ mS, m3 [ m7 ]

are unifiers of ¢ and r, since it holds:
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o(t) = weight(svl[mobile(sv2[mobile(occ(ml), m2)], m3)])
[ V1stobite — Mobite ! SV3Mobite - Mobites
SV2obite — Mobile | SV4[mobile(mobile(zygop;., m6), mT)],
ml/m4, m2/mS,m3/m8]=
weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), mS), m6), mT)], m8)])
and
o(r) = weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), m5), m6), m7)], m8)])
[ SV1pobite — Mobite | SV3pobite — Mobiter
SV2uobite — Mobite | SVA[mobile(mobile(zpopie, m6), mT)],

ml/m4, m2/m5, m3/m8]=
weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), mS), m6), mT)], m8)])

and
O'(t) = weight(sv1[mobile(sv2[mobile(occ(m1), m2)], m3])
[ V1 atobite —» Mobite | SV3[mobile(svAyopite — mobiter M8B)];

SV2ptobite — Mobite | MODile(Zyopize, m6), m1 [ m4, m2 [ m5, m3 | m7 ] =
weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), mS), m6), m7)], m8)])

and

a'(r) = weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), m5), m6), m7)], m8)])
[ sV1aobite — Mobite / SV3[mobile(svapsopite — Mobiter M8)],
SV2obite — Mobile | MObile(Zygopite, mT), m1 | m4, m2 [ m5, m3 [ m7 ] =
weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), mS), m6), mT)], m8)])

But neither o = o', nor 6' s o holds. Therefore there is no most general unifier for a set of
attribute terms. Nevertheless we will see that a complete set of minimal unifiers exists!

Definition 5.1.2 (set of unifiers)

A set unifSet C Subst is a set of unifiers for two attribute terms ¢ and r iff for all
o EunifSet holds: o(t) = o(r).

A unifier set unifSet is more general than a unifier set unifSet' (written: unifSet < unifSet"),
iff for all o' EunifSet' exists a o EunifSet such that ¢ < o'

By unifSet(t, r) the set of all unifiers for ¢ and r is denoted. *
Definition 5.1.3 (equivalence, variants of sets of unifiers)

Two unifier sets unifSet and unifSet' are equivalent (denoted by: unifSet = unifSet'), iff
unifSet < unifSet' and unifSet' < unifSet holds.

Two unifier sets unifSet and unifSet' are variants (denoted by: unifSet ~ unifSet'), iff for
all o EunifSet there exists a ¢’ EunifSet' and a bijective substitution T ESubst with o = o't
and vice versa.

Definition 5.1.4 (complete set of minimal unifiers)

The complete set of minimal unifiers for two attribute terms ¢, r EAT5(SV) (written: mgu-
Set(t, r)) is the minimal set in the sense of < on sets of unifiers, i.e.
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(1) mguSet(t, r) C unifSet(t, r) (correctness)
(2) for all o EunifSet(t, r) exists a o' EmguSet(t, r) such that 6' < ¢ (completeness)
(3) for all o, o' EmgusSe(t, r) with c < ¢' holds ¢ = ¢ (minimal)
Lemma 5.1.5
It holds:

unifSet = unifSet' iff unifSet ~ unifSet
Proof

Holds, since lemma 2.5 of [Hofbauer, Kutsche 89] at page 35 and lemma 1.13(v) at page
6 can be extended to sets of unifiers. *

Theorem 5.1.6 (uniqueness of the complete set of minimal unifiers)

Let 1, r EAT5(SV). If ¢ and r are unifiable and mguSet and mguSet' are two complete sets
of minimal unifiers then there exists a renaming substitution o ERenaming such that
o(mguSet) = mguSet', i.e. the complete set of minimal unifiers is unique up to renaming
of the identifiers. *

Proof
Let unifSet and unifSet' be two complete sets of minimal unifiers for ¢ and r. It holds:
unifSet < unifSet' and unifSet' < unifSet

since both sets are complete minimal sets. Implying unifSet = unifSet' and with Lemma
5.1.5 holds unifSet ~ unifSet'.

Thus there exists a renaming substitution  with n(unifSet) = m(unifSet') L4

For the existence of the complete set of minimal unifiers a constructive approach is per-
formed.

The idea of the unification algorithm is to start with a configuration { { ¢ = r } } with uni-
fiers oy,..., G, and apply as long as possible rules until a set { E,..., E,, } is obtained such
that o, is most general unifier of E; (1 = i = n).

The unification algorithm for attribute terms is a generalization of [Martelli, Montanari
82] to handle subterm identifiers and to get a complete set of minimal unifiers.

Definition 5.1.7 (unification calculus for attributed terms)

The unification calculus |, for attribute terms consists of the following rules with (f: s;,
S350+ Sy > 8) ECoc U F, t EAT5(SV), 1, r; EAT:(SV)y; (1 = i < n), sv subterm identifier, x
usual identifier, ¢ context over the notion of attribute terms:

{oon Lo flty s 8,) = f Py oes 1)y i b}

1)
oy =, =, 100
ifn=0
w2 {...,{el,...,ej_l,x=t,ej+1,..‘,ek},..‘}

hY
{..{eo, ., €j_10,x=te; 40, .., €0}, ...}
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X1 = rw0+ 1oeees xlwl =lwy+wy+1 Sv2[tv1 + 1000y tvz] = rwo W2 e
Svp[tvp_l P PR tp] =Twg 4wy g +p> Xnl =Twg s +wp g +p+ 1 xpwp =Tm

SVsy, R

1y Xy sesy X sV X |
a1 e Sy, 827 2 p-10 p,svp_l“,...,sp—»sp" p] }

r— —
Lid [xO’ svl, Sy ees S"l —=s5," X1, 8V

x;and sv;are new identifiers and subterm identifiers, respectively (0 si s n,
1 Sj = n): svl[th"‘, tvl] and rw0+ 1 SVZ[tvl + 10000y tvz] and rw0+w1 +25000s
svp[tvp_1 s plandr, L, | pare unifiable, 0 sv; <y, <. <v,sn,
Osw,sn}u
{{t=sV[ryees Iyl Vs s =2, Y| R = 1, £y = sV[ry,..., T,] are unifiable } U
{ { %o1 = 15005 Xouy = by Vil 150005 1oy] = B 415
X11 = two + 10y xlwl =hwg+wi+ o SVZ[rvl + 19000y rv2] = two Wy o
Svp[rvp_l PR TR rp] = two botwy g 4p Xpt g s Wp.q+p+ 100 xpwp =ty
Sv's], $eees Sy S =

——52"x2""’xp—1’svp,sv o ...,SF%SP"XP]} l

oS
7Ty p-1

SV[XO’ Svl, Sprees s‘,l -5 1 SVstl TR

x; and sv;are new identifiers and subterm identifiers, respectively (0 =i < n,
1=jsn), svi[ry,.... ry,] and by + 15 SVa[Tyy + 150005 r,] and B+ wy + 2000
svp[rvp_l + 1oy rp] and two totwp 1 +p
are unifiable, 0 sv,<v,<..<v,sm,0sw,=m} U
{{ri=sV[ty,, t,}, sv=z} | m =1, ry = sV'[ty,..., t,] are unifiable }
Remarks:
Note, that (U1)-(U4) is the usual unification, (U5) is the extension of (U1) to subterm

identifiers and (U6) the extension of (U2) to subterm identifiers. (U7)-(U9) are rules for
subterm identifiers. (U8) is the reverse of (U7) therefore a rule

{...{egs s €1 f(ry ) =svlty, ...t €y RN
{...{eps - ej_psvlty, ot 1= flr, oy ejy g RO T

o

is enough, but then the proof of termination is more complicated.

The idea of (U7)-(U9) is the same. All possible splittings of the subterm identifier depen-
dending on the right hand side of the equation have to be constructed. All these cases
have to be considered in the rule. But the number of splitting is restricted, because only
sort-correct terms are assumed.

Definition 5.1.8 (unifiablity of a set of sets of equations)
A set of sets of equations SE = { { #11 = Fi1yeees tiny = Fiag Fooves { o1 = Tktseees Gy = Thy } } 18
unifiable with a set of unifiers unifset = {0y, 0,,..., G, } iff

(i) V se€&SE. 3o Eunifset. o is unifier of se and

(ii) V o Eunifset. 3 se ESE. o is unifier of se. *
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Lemma 5.1.9 (unification invariance)

Let SE; be a set of set of equations and SE;,; the set of set of equations obtained by
applying a rule (U1)-(U9) to SE;. It holds:

(1) SE;is unifiable with a set of unifiers unifset, if SE;,; is unifiable with unifset.
(2) If unifset is a complete set of minimal unifiers of SE;, then unifset is a complete set
of minimal unifiers of SE;, ;. *

Proof of (1)
It holds:
V se €SE;. 3 6 Eunifset. o is unifier of se
implies )
V se €SE;N SE;,;. 3 ¢ Eunifset. o is unifier of se
Thus it is sufficient to show:
V se ESE;. 3 o Eunifset. o is unifier of se
implies
V se €SE;,; \ SE;. 3 o Eunifset. o is unifier of se
(AN O]

It holds:

SE;1 = SE;\ {€1es €)1, f(t1s b5 1) =f(115 72005 Tu)s €4150s €k })

U {€1ses €1y 1= T5enes By =Ty €410, €1 }

J
Since V se €SE;. 3 ¢ Eunifset. o is unifier of se, especially for

{617"-, ej-17 f(tlv e tn) Eﬂrla L& X rn)’ ej+17"" ek}
exists a substitution in unifset. Let o Eunifset be such a substitution.
o is also a unifier of the set
{€150s €115 LLE T 5enes By = Ty €1y € }
because the application of the substitution is defined inductively.
(i)
Let o Eunifset be an arbitrary substitution. There exists an se &SE; such that o is
unifier of se. If se = {ey,..., €1, f(t1, Ly--+» &) =f(F1, 250> 1)y €ju1se-s € } then there
exists also an equation in SE;,; such that o is unifier of the equation.
Otherwise let us assume that
o is unifier of {ey,..., €1, f(ti, Lseees 1) = (715 T25eees T), €jatses €1 }
Again since the application of the substitution is inductively defined, o is also a
unifier of ¢;and r; (0 < i = n) and therefore there exists also a se €SE;,; such that o
is unifier of se, namely
5€ = {€150s €11y B = Tpyees By = Ty €jugpees € }-
©2) ()
It holds:
SE;q = (SE;\ { e,..., €1, X = 1, €410, € }) U { €10,..., €10, X = 1, €,,10,..., €, O }
Since V se €SE;. 3 ¢ Eunifset. o is unifier of se, especially for
{ e15es €1, X =1, €jig5eees € }
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there exists a substitution in unifset. Let 0 Eunifset be such a substitution.
Furthermore, © = [ x / ¢ ] is a unifier for x = ¢. Thus o can be written as o = tx for
some substitution . Because x is not in ¢, it holds: Tt =<
Therefore o = Tn = Tt = 10 is valid leading to the fact that o is unifier of
{ €1yeeey e]-_l, x=1, €jrlsees €k }
iff
{ €0,..., €10, x =1, €;,10,..., €, C }
is unifiable with o. Therefore o is also unifier of
{ €10;..., €10, x =1, €;,10,..., &, 0 }
(ii)
Let o Eunifset be an arbitrary substitution, then there exists an se €SE; such that o
is a unifier of se. If se = { ey,..., €i.1, X =1, €,1,..., € } then there exists an equation
in SE;,; such that o is unifier of this equation.
Otherwise let us assume that
o is unifier of { ey,..., €14, X =1, €1, € }
Since { ey,..., €1, X =1, €41,-.-, € }O = { €,0,..., €}.10, XO = [0, €},10;..., €O } is valid
o is also unifier of se = { €,0;,..., €10, X = 1, €,,10,..., & O } and therefore there
exists a se ESE;,; such that o is unifier of se.
(U3) and (U4) satisfy trivially the unification invariance.
(U5) can be proved analogous to (U1).
(U6) can be proved analogous to (U2).
@ @
It holds:
SEi1 = (SE;\ { €155 €11, (T30 T) = V[t L], €415 €6 })
U Uszicu ({ €155 €15 €415 € F U Ej)
Since V se €SE;. 3 o Eunifset. o is unifier of se, especially for
{ €1sees €1y [ 10w T) = SV[t1yeery ], €ja15ees €1}
there exists a substitution in unifset. Let o Eunifset be such a substitution.
Since attributed terms are defined inductively, o is a unifier of f(ry,..., r,,) and
sv[ty,..., t,] if either (notations as in Definition 5.1.7)
(a) f(ry,--» rm) and ¢, are unifiable with o, i.e. sv is trivial,

or
(b) sv[ty,..., t,] has the form
F(g, sviltgs ey t,) * svalty, 41ty ) X3 ""’T—l’s"p[’vp_ﬁl’ ...,tp],x_p)
@
Lett =[sv/z]. o canbe written as o =t x for some substitution . It holds:
O=TR=TTR=TOC (sincet=171)
Therefore o is also unifier of { ey,..., €1, t; = f(F1seees Ta)s SV = Z, €150 €1 }

If sv[t,,..., t,] has the form

fxg, svqltgs ooy t"l]’ Xy svz[tv1 FETRISR tv2], Xps e Xp_ g5 svp[tl',,_, TR tp], xp)
then f(ry,..., 7,)
and f(x, sv[1;, ""tvl]’ xl,svz[tvl+1, s tvz], Xgy e Xp_ 1 svp[tvp_l s 1o Byl x,) are
unifiable if
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I = Sum of the sizes of all equations
m= | { x| xin SE only once in an equation of the formx =7} U

{ sv| sv in SE only once in an equation of the form sv,, ;, . .=t} I

with the lexicographical ordering.

The size of an equation is defined as the size of the attribute terms on the left- and right-
hand side of an equation being defined by

size(f(ty,..., t,)) = (size(t;) + ... + size(t,) + 1) * height(f(t,..., t,))

size(sv[ty,..., t,]) = (size(ty) + ... + size(t,) + 1) * height(f(t,,..., t,)) * combinations® + 1
height(f) =1

height(f(t,,..., t,)) = max { height(t,),..., height(t,) } + 1

It holds:

(U1) k constant, [ smaller

(U2), (U3), (U4) k smaller

(US) k constant, [ smaller

(U6) k smaller

(U7), (U8) k constant, I smaller

(U9) k constant, [ smaller *

Theorem 5.1.12 (existence, calculation of the complete set of minimal unifiers)

Let ¢ and r be two attribute terms. Let SE, be the start configuration { { t=r} } and SE,
be the result of the unification algorithm. It holds:
(1) If each se €SE, has the form
{ X1 =ty X Sy Vi1 5 sy 51'= Cloes SV 51,59, sp =55t = Ch }
and the x;'s and svj's are all pairwise distinct and all x; and sv; do not appear in ¢, and
c,, (then se is called completely solved) then t and r are unifiable with the complete
set of minimal unifiers (associated substitution):
[ X0/ tiyees X ] by SV, 51, 55, sy =51 Clovees SV 51, 59, 5n s €]
(2) Otherwise ¢ and r are not unifiable. .
Proof

Since the unification algorithm terminates (Lemma 5.1.11) there exists an end configura-
tion SE,, for every start configuration SE,.

proof of (1)

Let SE, be completely solved. SE, is unifiable with the associated substitution of SE,,
since for all se ESE,, holds:

se has the form

(X0 b X0 =y VL 5y 5,55y = Clovves Vi sy, s, sy ¢ = Cic }

8. By combinations the number of possible splittings of a subterm identifier is meant.
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The derivation looks like

7\{{mobtle(occ(cube(n)), mobile(cube(2), cube(3))) = svl[mobile(occ(ml),m2)]1}}
{svl=z,

1\mobtl(»:(occ(cube(n)), mobtle(cubei{({2), cube(3))) = mobile(occ(ml),m2)} }
svl=z,
occ(cube(n)) = occ(ml), mobile(cube(2), cube(3))=m2}}
{{ svli=z

\occ(cube(n)) = occ(ml), m2 = mobile(cube(2), cube(3)) } }

{{ svl=z
\cube(n) =ml, m2 = mobile(cube(2), cube(3))} }

{svli=z

m1 = cube(n), m2 = mobile(cube(2), cube(3)) } }

(U

(U3)

(U1)

(U3)

and the obtained substitution is
[ sv1/z, ml/ cube(n), m2 | mobile(cube(2), cube(3)) ]
For the terms
t = sv[cube(n), cube(2), cube(3)]
and
r = mobile(mml, m2)
the derivation is

{{svlcube(n), cube(2), cube(3)]=mobile(ml,m2)}}

vs) {{svi[cube(n), cube(2),cube(3)]=mi, m3 =m2,

SVMobile, Mobile, Mobile — Mobile = ™Y 1e(sV1pr01i10 Mobile, Mobile — Mobile ™3) b
{m=m1,svi[cube(n), cube(2), cube(3)]=m2,

Y Mobile, Mobile, Mobile - Mobile = ™°b1e(m3, sV1yr0 100 Mobile, Mobile — Mobile) b
{sv1[cube(n), cube(2)]=m1, sv2[cube(3)]=m2,

SYMobile, Mobile, Mobile —» Mobile = PV, bi10 Mobile — Mobile S¥2Mobile — Mobile)
{svi[cube(n)]=m1, sv2[cube(2), cube(3)]=m2,

us") . Mobile, Mobile, Mobile = Mobile ™ mobile(svlyropite — Mobile SY2Mobile, Mobile — Mobile)}}

( {{m1 =sv1[cube(n), cube(2), cube(3)],m3 =m2,
SYMobile, Mobile, Mobile — Mobile = ™bie(SVyro1i10 Mobile, Mobile — Mobile ™) b
{m3 =m1,m2=svl[cube(n), cube(2), cube(3)],
VMobile, Mobile, Mobile — Mobile = MOb1e(m3, sVlyropi10 Mobile, Mobile — Mobile) b
{m1=sv1[cube(n), cube(2)], m2 = sv2[cube(3)],
S¥Mobile, Mobile, Mobile — Mobile = ™Y€V xropi10 Mobile — Mobile "2 Mobile — Mobile) b
{m1=svli[cube(n)], m2 =sv2[cube(2), cube(3)],
5VMobile, Mobile, Mobile — Mobile = ™Y1e(V1 0110 . Mobile SV Mobile, Mobile — Mobile) } ¥
and the obtained substitutions are
[ m1 / svi[cube(n), cube(2), cube(3)], m3 / m2, sv | mobile(svl, m3) ],
[ m3 / m1, m2 [ svl[cube(n), cube(2), cube(3)], sv / mobile(m3, sv1) ],

[ m1/ svl[cube(n), cube(2)], m2 / sv2[cube(3)], sv / mobile(sv1, sv2) ],
[ m1/ svi[cube(n)], m2 / sv2[cube(2), cube(3)], sv / mobile(sv1, sv2) ].

81
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Proof

Using fact 5.2.1 of [Ehrig, Mahr 85] it is sufficient to show that the rules of the attributed
equational calculus are correct.

Let A be an arbitrary model for the axioms Ax and v an arbitrary valuation for A.

(ax) is valid since I4 [t] = I4 [r] and therefore Mod(ASpec) |z e t = T,
because A is a model of ASpec satisfying all axioms.

(vefl) is valid since I [f] = I [¢] and therefore Mod(ASpec) |z £ = ¢

(sym)is valid since I4 [¢] = I4 [r] implies I4 [r] = I4 [£] and therefore
Mod(ASpec) |z ar = ¢

(rans) A, v eyt =rand A, v | 7 = u, ie. 4 [f] = F4 [r] and I4 [r] = I4 [u] is valid and
therefore 14 [£] = I4 [u] implying Mod(ASpec) | yu t = u.

(subst) A, v | 4y t = 1, Le. I4 [t] = 4 [r] is valid for all valuations v.
Especially for a valuation v' with v'(sv') = v(sv') with s»' €SV'\ { sv } and
Vi(sv) =4 [c] holds A, V' [z, t =1, i.e. T4 [f] = I4 [r]. Since the substitution and the
interpretation are analogously defined, it follows I4 [t [sv / c]] = T4 [t] = I4 [r] =
F4[r [sv / c]] (complete proof by induction on the attribute term notion) and there-
fore A, v |=au t [sv / c] = r [sv / c] holds for all valuations v.

(fun) A, v Ean i =1L AV Fa b2 = 120 A,V Eat By = Ty
ie I4[4] =14 [r], IA [,] = T4 [r5),--, 14 [t,] = 4 [r,] and therefore
1'3 [ﬂtly byeees tn)] =]ﬂ(l‘3 [tl]’ Pe [tZ]’"" 1’3 [tn]) =fq(le [rI]’ Ie [rZ]""a Ié [rn]) =
L [f(ry 2o r)] and thus A, v | o, f(t, b,y £) = f(Fy, Ty, 1), L
Mod(ASpec) |F aur f(t1s trseees 1) =1 T2seees 1)

(D) LetA,vE.t[sv/c]=r[sv/c]forall c EST(5 ¢ ¢)(SV)s i€.
B[e[sv/cll=F [r[sv/c]] for all c EST(s ¢, ¢y (SV),, Le.
for all valuations v' with v'(sv') = v(sv") with sv' €V \ { sv } and v'(sv') = 4 [c]
holds: I4 [f] = I4 [r]
Thus A, V' [Fae V 55, Sy
reachable and bacause of the definition of v'.
MOd(ASPeC) Fam V svsl,sz,u t=r ‘

t = r is valid because the considered algebras are

S

aSp st

Moreover, the attributed equational calculus is complete.

Theorem 5.2.1.3 (completeness of the attributed equational calculus)

Let ASpec = <3, F,,,, Ax> be an attributed algebraic specification associated with the

axioms Ax. The attributed equational calculus } .4 is complete wrt. Mod(ASpec), i.e.
Mod(ASpec) | gy t = rimplies Ax }oeqt = 1 .

Proof

The proof of the completeness of the attributed equational calculus is similar to the proof
of the completeness of the equational calculus given e.g. in [Ehrich et al. 89] and of the
equational calculus with infinite induction given in [Wirsing 90].

In order to show the completeness of the attributed equational calculus the following
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congruence ~; is defined on AT5(SV); for all s €S with SV = (SV;, o, o = )51, 52, 5ps 5 €5%
Sigsy

t~s 1 iff Ax }oeq £ = r for some £, r EATH(SV),
The fact, that ~; defines a congruence relation, immediately results from the rules (refl),
(sym), (trans) and (fun).
For all terms ¢, r EATx(SV), holds: Mod(ASpec) k oy t = r implies Ax |yt = 1
Since: :
Obviously ATy(SV), / ~,satisfies the axioms, i.e. AT5(SV), / ~, EMod(ASpec).
Therefore Mod(ASpec) [y, t = r implies AT5(SV), / ~; [ a ¢ = 7 implies AX |oeqt = 1
Let ¢, r EAT5(SV), such that Mod(ASpec) o, t =1

For each instance of ¢ = r there exists a derivation with (refl), (sym), (trans), (fun) and
(subst). Applying the rule (II) yields a proof for ¢ = r by |5eq-

Thus we have shown:

Corollary 5.2.1.4 (soundness, completeness of the attributed equational calculus)
The attributed equational calculus is sound and complete. L4
5.2.2 Attributed Term Induction

Attributed term induction, developed as a proof principle for attributed algebraic specifi-
cations [Bauer 94a, 94b, 95], can be used to prove properties between attributes of occur-
rence terms of a distinguished sort. Attributed term induction is a special case for
computing the complete set of occurrence terms of a distinguished sort.

The idea of the proof principle is to split an occurrence term into a subordinate and a
superior term as visualized in figure 19. Two kinds of induction are combined for buil-
ding the superior term (a special kind of context induction with another ordering) and for
building the subordinate term (a special kind of term induction).

occurrence property OQuter context ¢y of context c:_
at an arbitrary node n: The context ¢ can be divided into:

c[f] = cifeafdl]

figure 19: splitting the abstract syntax tree and the notion of an outer context

Since an occurrence term can be written as c[occ(f)], it is sufficient to show that

V clz, ] ETs, ¢, 2{{ 25, Dsroor ¥ E ET s, ¢, )5 Plcl0CC(D)])
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is valid and P is a property for occurrence terms of sort s, and root sort s,,,, (called occur-
rence property).

The notion of an outer context is needed for the definition of the attributed term induc-
tion which is the induction ordering on contexts:

Definition 5.2.2.1 (outer context)

¢1[z,] is an outer context of c|z] if there exists a (non-trivial) context c,[z;] such that
c[z,] = ¢i[c,[z,]]. More graphically speaking on the path from the root of ¢,[z] to the con-
text identifier z; the number of nodes of sort s is smaller than the number of nodes of sort
s on the path from the root of c[z] to the context identifier z,. The notion of an outer con-
text defines a Noetherian relation on contexts.

The attributed term induction can be explained in an abstract way considering the case
analyses which have to be performed. At the outermost level a kind of context induction

[Hennicker 91] with the same notion of context, but with another ordering, and at the
innermost level term induction (cf. e.g. [Ehrich et al. 89]) is performed:

(1) Base of the context induction:
In this case a context with minimal insertion place of sort s, has to be considered, i.e.
the set of minimal outer contexts.

Let be such minimal contexts for terms of sort s,. A term induction has to

Zs

t

be performed for this sort.
(1.1) Base of the term induction:

Let denote all constants of appropriate sort s,. The proof obligation

is the occurrence property at the node marked with P? in the abstract term”:

P? denotes that at this node the occurrence property has to be valid.
(1.2) Induction step of the term induction:

The induction assertion is (P! denotes that at this node the occur-

rence property is valid) such that ¢, is any subterm of sort s, of the term ¢ of the

proof obligation

9. Note, that the abstract term is an abbreviation for a set of terms.
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(2) Context induction step:

In (1) the property has been shown for contexts with minimal insertion place depth.
The induction step starts with an insertion place of depth n for which the property is
valid (induction assertion) and considers an insertion place of depth n + 1 for which
the occurrence property has to be proved.

be a given outer context for terms of sort s, with insertion place of

St
depth n. It is abstracted from the concrete representation of the context, i.e. an arbi-

trary context c,[z, ] of depth n is considered. The induction assertion is

for arbitrary terms ¢ of sort s,. Since in (1) we have shown that the property is valid
for all minimal contexts and for all terms.

denote contexts for terms of sort s, with insertion place of depth

n+l.
Now a term induction for this sort is performed.

(2.1) Base of the term induction:

Let denote all constants of appropriate sort. In the proof obligation
the following term have to be considered:
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(5) rightlength(svfoce(mobile(m1, m2))]) = length(svfocc(mobile(m1, m2))]) *
weight(sv[mobile(occ(m1), m2)]) / weight(svfocc(mobile(m1, m2))]),

(6) leftlength(svlocc(cube(l))]) = O,

(7) rightlength(svloce(cube(l))]) = 0,

(8) depth(oce(m)) =1,
(9) depth(sv[mobile(oce(m1), m2)]) = depth(svocc(mobile(m1, m2))]) + 1,
(10) depth(sv[mobile(m1, occ(m2))]) = depth(svlocc(mobile(mt, m2))]) + 1,
(11) cmaxdepth(sv[occ(cube(l))]) = depth(sv[oce(cube())]),
(12) cmaxdepth(sv[oce(mobile(m1, m2))]) =
max(cmaxdepth(svmobile(occ(m1), m2)]), cmaxdepth(sv[mobile(m1, occ(m2))])),

(13) length(oce(m)) = fixed * maxdepth(oce(m)),
(14) length(sv[mobile(oce(m1), m2)]) = length(svfoce(mobile(m1, m2))]) - fixed,
(15) length(svmobile(m1, oce(m2))]) = length(svocc(mobile(m1, m2))]) - fixed,

(16) maxdepth(oce(m)) = cmaxdepth(occ(m)),

(17) maxdepth(sv[mobile(occ(m1), m2)]) = maxdepth(svocc(mobile(m1, m2))]),

(18) maxdepth(svmobile(m1, oce(m2))]) = maxdepth(sv[occ(mobile(m1, m2))])
endspec

The specification is a two-pass attribution without remote access of the attribute values.
The following property is necessary for the proof of the implementation relation:

It holds all nodes, i.e. for all occurrence terms of sort Mobile:

The sum of the attribute occurrences of left length and right length of a submobile is
equal to the attribute occurrence of the maximal depth of the mobile minus the actual
depth plus one multiplied with the constant fixed, or the sum of the left length and right
length of a submobile is zero.

Formally:

Y Vatobite — Mobiter ¥ Maobite:
li(sv[oce(m)] + ri(sv]oce(m)]) = fixed * (md(sv[oce(m)]) - d(sv[oce(m)]) + 1)
\'Z
li(sv[oce(m)]) + ri(sv[oce(m)]) =0
Denoted by P(sv[ecc(m)]).
(Using the abbreviations sv, m, [, Il rl, d, md and cmd ot SVyepie - pobites Matovites lENgth,
leftlength, rightlength, depth, maxdepth and cmaxdepth, respectively.)
Informally we can say:

The length (= Il + rl) of a mobile is
- at the top level fixed * md,

- at the next level fixed * (mmd - 1)
and so on.

This property can be shown by attributed term induction:

(1) The minimal contexts to consider is: Zyz,p,

(1.1) No constants of sort Mobile exist. Therefore nothing is to show.

(1.2) The constructor symbols to consider are cube and mobile. Thus the occurrence
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P(s) follows from the assumption that P(f) is true for all £ < s.

The assumption P(f) for all ¢ < s is called the induction assertion. There may be s €S
with no ¢ <s. For such elements the principle says that we must show P(s) with no
assumptions.

Having a complete set of occurrence terms with subterm identifiers the notion of a stable
ordering is necessary to get an induction ordering:

Definition 5.2.3.3 (stable ordering)
A partial ordering < C § x S is called stable iff it is closed under substitution. .
Definition 5.2.3.4 (induction ordering)
Every Noetherian and stable partial ordering is an induction ordering. *
The aim is the definition of an induction ordering on occurrence terms:
Definition 5.2.3.5 (induction ordering on occurrence terms)
The relation ¢ <, r on occurrence terms ¢, r € TE) SC cé, Q)(S V) is defined as:
t <ge, 1 iff
(1) t = c[oce,(t)] and r = c[ocey(c'[£'])] for some contexts c[z], c'[z,] # z, and term ¢
11

or

(2) t = c[oce,(t')] and r = c[c'[oce,(r")]] for some contexts c[z], c'[z;] # z, and term ¢ and
r. *

To prove that <, is an induction ordering it has to be a partial ordering.

Lemma 5.2.3.6

<occ, 1S @ partial ordering on occurrence terms Tfsc Cé, Q,)(S V).

Proof

Transitivity:

occ,

Lett,ty, t3€T X Q)(SV) be arbitrary such that ; <,.. £, and £, <, ts.
1 <pcc, 1 holds if
t, = cq[oce(t")] and 1, = c;[oce (c,'[#,'])] for some contexts ¢,[z], ¢;'[z,] # z, and term #'
or

1, = cyfocey(t,)] and 1, = c;[c;'[oce(t;')]] for some contexts c,[z,], ¢,'[z] # 2z, and term
t,' and &'

and

11 Because of the condition ¢1'[z] # 2z, in (2) the ,,0r“ can be read as ,either-or*.
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1y <pce, 13 holds if
1, = cs[ocey(2y)] and £ = cs[ocey(c,'[#4'])] for some contexts c[z,], ¢3'[z,] # z, and term ¢z’
or

I = cyfocey(ts')] and t3 = c4[cy'[ocey(t6)]] for some contexts c[z], c4'[z,] # z, and terms
t5'a tﬁv

is equivalent to (with the same restrictions)!2

1 = cq[ocey(t,")] and £, = ¢ [oce(c;'[£1'])] and £, = c;[occ ()] and £; = cs[oce(c3' [t ])]
or

t = cyfocey(ty)] and ¢, = ¢;[c,'[oce(t;")]] and £, = c;[oce(ty')] and #; = c;[oce,(cs'[4'])]
or

t = ¢4[ocey(ty")] and 4, = ci[ocey(c'[t1'])] and £, = csfocey(ts')] and #; = cyfcy'[oce(t6)]]
or

1 = cxfoce(ty')] and 1, = cyfc;'[oce(t3")]] and £, = cs[occy(t5")] and £ = c4[cy'[ocey(t6)]]
implies

ty = cyoccy(t))] and £, = ¢; [oce(c,'[#])] and £, = c;[oce ()] and £ = ¢ [ocey(cs'[e; [1'1])]
or

t = efocey(t)] and 1, = ¢ c;'[oce(t3)]] and £, = c3[oce(t)] and £ = ¢;[c;'[oce (c3'[t, D]
or

t = cifocey(t;")] and ¢, = ci[ocey(c'[t;'])] and ¢, = cy[oce(ts")] and #; = ci[c'[oce(ts)]]
or

t = cxfocey(ty')] and £, = c;[c;'[oce(t5')]] and £, = c4[oce(ts")] and £ = ¢, c,'[c4'[oce (t:)]]]
implies

by <oceg B30T 11 <pce 13 O 1y oo b3 OF By oo B3
implies

b <oces I3
Anti-Symmetric:
To show: £ <, r does not imply r <, ¢

Lett <, rie.

occg 'y

t = c[oce(t)] and r = c[ocey(c'[¢'])] for some contexts c[z], c'[z,] # z, and term ¢,
which implies that (1) and (2) of the definition of 7 <, ¢ is not valid, since otherwise

12‘(avb)/\(cvd) =((avb)ac)v((avb)ad) =(anc)v(bac)v(and)v(bad)
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c'[z;] = z, has to be valid, being a constradiction to the assumption
or

t = c[ocey(t)] and r = c[c'[ocey(r")]] for some contexts c[z], c'[z,] # 2z, and term ¢ and 7',
which implies that (1) and (2) of the definition of r <, # is not valid, since otherwise
c'[z,] = z, has to be valid, being a constradiction to the assumption. L4

As a next step we show that the ordering <, is closed under substitution.
Lemma 5.2.3.7

<oceg 18 closed under substitution, i.e. under the assumption ¢ <, r it must be shown for
all o ESubst:

O(t) <oces O(7)- *
Proof
Follows immediately from the inductive definition of the substitution:
Let t <, 1 ie.

t = c[ocey(t')] and r = c[ocey(c'[£])] for some contexts c[z], c'[z,] # z, and term ¢
or

t = c[ocey(t)] and r = c[c'[ocey(r')]] for some contexts c[z], c'[z,] # z; and term ¢' and 7'
implies

a(t) = o(c[ocey(t)]) and o(r) = o(c[ocey(c'[#])]) for some contexts o(c[z]), o(c'[z]) # z

and term o(t')

or

o(t) = o(c[oce,(r)]) and o(r) = o(c[c'[oce,(r")]]) for some contexts o(c[z,]), o(c'[z]) # 2z,
and term o(¢') and o(r')

and therefore O(f) <., o(r) is valid. *
Lemma 5.2.3.8

<occ, is @ well founded ordering, i.e. a Noetherian ordering. *
Proof

In order to show that there are no decreasing infinite chains wrt. <., we define the set of
minimal elements wrt. <, and show that no ordering exists on this set of minimal ele-
ments:

The minimal set MS of occurrence terms ¢t € TE’SC’ cg’ g)(S V) is defined as

MS = { c[ocey(9)] | cfz,] # ci[ca[z]] with arbitrary contexts ¢;[z,] # z, and
Cofz;] # z;and t £ c;['] with context c;[z,] and term ¢ of sort s }
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(1) P(oce(cube(l)), oce(cube(l))),

(2) P(oce(mobile(m1, m2)), occ(mobile(m1, m2)))

(3) P(sv[mobile(occ(cube(l)), m)], occ(sv[mobile(cube(l), m)]))

(4) P(sv[mobile(m, occ(cube(l)))], occ(sv[mobile(m, cube(l))]))

(5) P(sv[mobile(occ(mobile(ml, m2)), m)], oce(sv[mobile(mobile(m1, m2), m)]))
(6) P(sv[mobile(m, occ(mobile(m1, m2)))], occ(sv[mobile(m, mobile(m1, m2))]))

proof of (1)

P(oce(cube(l)), occ(cube(l))) is valid since ll(occ(cube(l))) and ri(oce(cube(l))) are both
Zero.

proof of (2)
Using the abbreviations

Ily = li(occ(mobile(m1, m2))), rly = ri(occ(mobile(ml, m2))), I, = l(occ(mobile(m1, m2)))
mdy = md(occ(mobile(m1, m2))), d, = d(oce(mobile(ml, m2))),
wy = w(mobile(occ(ml), m2)), w, = w(mobile(m1, occ(m2)))

and the axioms of the specification:
do=1, wo=wy +wy, llg =1y * (Wy / wo), rlo = Io * (W1 / wo), ly = fixed * md,

it holds:
Hy+rly=1o* (wy/ wo) + o * (W / wo) = |y = fixed * md,, = fixed * (mdy -1+ 1) =
ﬁxed * (mdo -dy+ 1)

proof of (3)

li(sv[mobile(occ(cube(l)), m)]) and ri(sv[mobile(occ(cube(l)), m)]) are both zero.
proof of (4)

analogous to (3).
proof of (5)

The induction assertion is for the considered case:
P(sv[occ(mobile(ml, m2))], occ(sv[mobile(ml, m2)))]) for identifiers m1 and m2 of sort
Mobile.

Using the abbreviations:

md = md(occ(sv[mobile(mobile(m1, m2), m)))),

lly = ll(sv[occ(mobile(mobile(m1, m2), m))), rly = ri(sv[oce(mobile(mobile(m1, m2), m)]),
Iy = I(sv[oce(mobile(mobile(m1, m2), m)]), wy = w(sv[occ(mobile(mobile(m1, m2), m)1)
I, = li(sv[mobile(oce(mobile(ml, m2)), m)]),

rly = ri(sv[mobile(occ(mobile(m1, m2)), m)]),

1, = l(sv[mobile(occ(mobile(m1, m2)), m))),

md = md(sv[mobile(occ(mobile(m1, m2)), m))),

d, = d(sv[mobile(occ(mobile(m1, m2)), m)]), d, = d(sv[mobile(mobile(m1, m2), occ(m))])
wy = w(sv[mobile(occ(mobile(ml, m2)), m)]),

w, = w(sv[mobile(mobile(m1, m2), oce(m))]),

wy1 = w(sv[mobile(mobile(occ(m1), m2), m)]),
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Pc[er] = true, if V t €(T (s, ¢, z))s, and all ground substitutions o over (S, C, @)
P(o(c[oce(?)))) is valid.
Starting with a given context c[z, ] the quantification over all ground terms and all ground

substitutions has to be discussed. The proof is done by induction using the syntactical
subterm ordering as an ordering. Therefore all smallest terms have to be considered in
the base of the induction. Le. it must be shown that P(o(c[oce(f)])) is valid for all con-
stants f of sort s, and all ground substitutions o with given context c[z,]. In the term
induction step terms must have the form f(t,, t,,..., t,) with f: sy, s,..., 5, = s of C and
arbitrary terms t,, t,,..., t, of appropriate sort. Thus all constructor symbols with result
sort s have to be considered and a nested term induction must be performed for the argu-
ment sorts. If the base of the term induction was performed for a sort s; then the nested
term induction can be neglected and a new constant of sort s; can be introduced which
simulates all ground terms of that sort. Otherwise the procedure nested_term_induction
is invoked which successively performs for all identifiers of the term a term induction.

If a ground occurrence term is reached the property must be valid for the actual occur-
rence term.

Several induction assertions are valid depending on the case analysis of the context
induction. We generalize the induction assertions of the attributed term induction using
the presented induction ordering. The notation IH(f) = { Po | o(sv[oce(x)]) <, ¢ and
o ESubst } is used for the induction assertions of a term .

procedure term_induction

Input:
- ¢[z,,] actual context
begin
(1) for all (f: — s;) €C do
(2) if c4[f] is ground
then P(c4[occ(f)]) has to be valid under the assumption that the induction assertions
IH(c4[oce(f)]) are valid
else nested_term_induction(c4[occ(f)], { s }, @) fi od
(8) for all (: sy, s5,..., 5, — sy) EC do

Ay I S=s,

4) t; = f(xy, Xp,..., X,) Such that = .
(At =Xy, X000y Xg) Xm {va otherwise

with (new) identifiers x;, X,,..., X, and (new) constants o, a,,..., o,
() NC ={ o | ais new constantin t; }
(6) if c4[t;] is ground
then P(c,[occ(t;)]) has to be valid under the assumption that the induction assertions
IH(c4[occe(ty)]) are valid
else nested_term_induction(c,[occ(t;)], { s;}, NC) fi od
end

In the procedure nested_term_induction on the one side all ground substitutions and on
the other side all ground terms of the occurrence terms are constructed. This is done
fixing an identifier and performing for the sort of the identifier a term induction. It is
achieved usingrecursion that step by step all identifiers are substituted by ground terms.










102 Universally Quantified Formulae

Up to now the context induction step was neglected. Pc{zs,] must be valid under the

assumption that Pcﬂ,sf) is valid for all outer context c4[z,] of [z, ].

Starting with a given context c,[z,] a context c;[c,[z,,]] must be constructed. The set of
contexts for c,[z, ] is

CHICeos x5 €lz5)s Xia1se-) | (f: 51, 825+, Sy = Syo0r) EC and c[z,] is an element of the

minimal contexts of sort s; and fresh identifiers ..., x;; and x;,,... }

Again constructor symbols with an argument sort s; can exist such that there is no context
¢z, ] of sort s;. Therefore the nested induction can be neglected for these argument sorts.

All minimal contexts of sort s; have to be considered for the other argument sorts s;. This
is done using a nested context induction on sort s;. An appropriate context can be selec-
ted before the recursive call.

procedure context_induction_step
begin
(1) for all (f: sy, s5,..., 5, — 5y) EC do
@@forallic{1,2,..,n}do
(3) if 3 context clzs] ETs({ zg, Vs
(4) then cyfzg] = ¢4[f(x), X,,-.., X,)[2zg; / X{l] for an arbitrary context ¢4 of the root sort and
(new) identifiers x;, Xa,..., X,-

(5) select a 2-context cg[zg] such that Poyrezey is valid if Pealclzsl is valid for all
contexts cfzg].

6) nested_context_induction_step(cs[zg)) fi od od

end

In the nested context induction we start with an actual context c[z,] of the form
¢i[ea[z,,]] with the context ¢y[z,;] of depth n and some context c,[z,]. If s; is the sort s,
Pcﬂcz[zs’]] must be valid, since ¢,[z,;] is a minimal context. Otherwise, i.e. s, is not the sort
s, the proof obligation is Pcﬂcz[cs[zS,]]] for some context c;[z;] with minimal context
cy[cs[z,,]]- The contexts c;[z,] are the set (*) from above.

Again a constructor symbol with an argument sort s; can exist such that there is no con-

text c[z,] of sort s;. Therefore the nested induction can be neglected for these argument
sorts.

All minimal contexts of sort s; have to be considered for the other argument sorts s;. This
is done using a nested context induction on sort s;. An appropriate context can be selec-
ted before a nested induction is done.

procedure nested_context_induction_step

Input:
- ¢4z;] actual context
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begin
(1) ifs;=s
then term_induction(c4[occ(z,)])
(2) else forall (f: sy, 5,,..., 5, > 5) EC do

3) forallie{1,2,..,n}do

4) if 3 context cfz] ETx({ 25, Dy

(5) then colzg] = f(xy, X,,..., X,)[2s; / Xi] with (new) identifiers x;, Xp,..., X,

(6) select a Z-context csfzg] such that Peyyepze g is valid if PCS[O[ZS‘]] is valid for all
contexts clzg].

(7) nested_context_induction_step(c,[c[zs]]) fi od od fi

end

Thus the whole semi-algorithm for the attributed term induction is developed. In order to
show that an occurrence property P is valid for an attributed algebraic specification
ASpec, the procedure context_induction has to be called. Note, that the semi-algorithm
calculates a complete set of occurrence terms.

5.2.5 Heuristics

Efficient heuristics for the semi-algorithm and the attributed term induction can be obtai-
ned using attributed signature flow analysis.

Attributed signature flow analysis can be used
- to optimize and
- to generalize

the proofs.
The application of signature flow analysis can be optimizable and necessary.

The use of signature flow analysis is necessary either if

- an infinite proof would be obtained, e.g. an insertion place is tried to be constructed but
in this subterm no such insertion place exists, or

- the obtained induction assertion are too restrictive.

In the first case the system can realize that no insertion place exists in the subterm or that
the the construction of the subterm is infinite. In the case of infiniteness the information
from the analysis technique can be used to generalize the context to get a finite proof.

The obtained informations and the generalizations can also be necessary, if the induction
assertions are too weak, since generalized contexts deliver stronger induction assertions
to finish the proof successfully.

The technique can be helpful and optimizable in cases where the search space can be cut
knowing the signature flow analysis information, e.g. no insertion place exists in this
subterm or the context can be generalized such that a context is obtained, for which the
proof was already performed.

Other heuristics of the proof principle can take into consideration the knowledge of the
attribute dependencies. E.g. the knowledge, that the attributes of the property to prove
are only passed through and not changed in a subtree, implies that the subterms can be
neglected for the proof.
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IdEq(3-closure(t=r)) = { x; = a3, Xy = Ap,.. X, = Ay }
if the 3-closure has the form (*) and
AttrEq(3-closure(E, t=r)) =('=r"),
IdEq(3-closure(E, t =r)) = { X, = @y Xy = Ay, Y1 = by, y, =0y }
if the 3-closure has the form (**). ¢

The solutions obtained for the 3-closure of an equation (restricted to the identifiers of the
original equation) are the same solutions as for the equation itself:

Lemma 5.3.3

Let ASpec be an attributed algebraic specification, E be a set of equations over ASpec and
o be a solution for E, then it holds
Mod(ASpec) F u (t = r)o for all (¢ = r) €EF iff
Mod(ASpec) [y 3-closure(t = r)o' for all (¢ = r) EE with o is the restriction of o' to

the identifiers of ¢ and r. *
Proof
obvious *

5.3.1 Solving Equations with Subterm Identifiers

In this section a motivation and application areas for solving equations with subterm
identifiers are given. Afterwards we present a small example showing the idea how such
equations can be solved. These considerations lead to the attributed narrowing calculus.

5.3.1.1 Motivation and Application Areas

Pure attribute grammars are called static since the attribution has no influence on the
analysis of the syntax and building the abstract syntax tree. Therefore in [Ganzinger 78]
dynamic attribute grammars are introduced. The main difference to pure attribute gram-
mars consists in assigning conditions over the attribute values of a non terminal to the
various productions of that non terminal. Abstract syntax trees satisfying the conditions
may be constructed, i.e. partial attribute grammars are obtained.

We extend the notion of dynamic attribute grammars in the following way: Firstly, we
abstract from the analysis of the syntax, i.e. parsing. The conditions are used for deduc-
tion to derive programs. Secondly, in [Ganzinger 78] the applicability of a production
rule is determined by so-called comparison attributes which are inherited attributes (!).
Depending on their values a production rule is selected. In the new approach a term is
completed such that a given attribution is satisfied.

The main advantage using attributed algebraic specifications instead of algebraic specifi-
cations in this area is the clear distinction between the syntax (to be constructed) and the
attribution, describing the semantics of it.

Parsers use error recovery strategies to obtain a syntactical correct program. The new
approach completes a syntax tree to obtain a program with correct (statical) semantics.

Application areas of the new technique are e.g.:
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Ax [z oy EOp
Thus op is solution of E. Since o EmgusSet(t,, t,)
AX |54 O = 0 implying Ax |= 4 H,0p = LOP
is valid and therefore
Axfa(EU { =, })op
Consequently op is solution for EU { ¢; =1, }.
WN3):EVU{(t1=t)x] }, v Atr U {x=fx(® }) Fav3)

(Ec' U { ((t, = )[x])0' } U E', 10, Attra' U { x = f, ()} o' U Attr')
|'narrow (Q’ Top, Attr")

The induction assertion states:
Ax Fan (B0 U { (1 = R)Ix])o' } U EYp
Since o is the restriction of o' to the identifiers of f,,,(¢) (x is a new identifier) and f;,,(¢)
isnot in E, Ec' = Ec and (¢, = t,)[x])o = (t; = ;)[x])0" is valid, especially:
Ax [Fa (Eo U { (( = )lx])o }p
Consequently op is a solution for E U { (t; = ,)[x] }. *
Theorem 5.3.2.1.4 (completeness of the attributed narrowing calculus)

Let R be a confluent rewriting system, AEg be an acyclic attribution and E be a set of
equations, then for each normalized substitution o for E wrt. R and AEq a substitution ©
can be derived from (AttrEq(3-closure(E)), [], IdEq(3-closure(E))) with T < G.

(A substitution o is called normalized, if svo is in normal form wrt. R for all identifiers
sv &SV, i.e. cannot be reduced.)

Proof

Let Ax = Equs(R) U AEq. By assumption Ax |z, 1,0 = 1,0,

iff Ax =4 110 = 6O A AttrAx(AX)

especially Ax |z, 1,0 = £,0 A AttrAx(Ax)o

iff Ax |= 4 3-closure(t = r) for all t = r E{ 1,0 = £,0 } U AttrAx(Ax)o

Since R is a set of confluent rewrite rules it holds:

1o ro
¢
and because rewriting is a special case of (N1), it holds:

({t0=r0}, [}, Atr) oy ({1 =2}, [ Attr) by @ [1, Attr")

This derivation is valid for all equations inthe 3-closure(t=r)forall t=r E{ ;o = 1,0 } U
AttrAx(Ax)o, since 3-closure contains only usual terms which are rewritten.

With (N3) each (t = r) EAttrAx(Ax) can be derived, i.e.
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6 Refinements

Using attributed algebraic specifications in the software engineering process the notion
of implementation relation has to be formalized and a proof theoretical characterization
has to be investigated. The starting point in the software engineering process is an
abstract attributed algebraic specification ASpec;. ASpec; can be implemented by a
specification ASpec, which in turn is refined until a functional attribute grammar ASpec,,
is reached after several implementation steps from which an efficient program can be
generated (see figure 20):

correct implementation step

correct implementation step

correct generation

program
figure 20: software engineering process with attributed algebraic specifications

The result of this software engineering process is a correct program if the implementa-
tion relation is transitive, the correctness of each implementation step is shown and the
generation process is correct.

This software engineering process is comparable to a process in which it is started with a
loose algebraic specification and it is reached an algebraic specification in a functional
way after several implementation steps from which a program can be generated. But an
attribute grammar is more abstract than a functional program.

Several design decisions are made proceeding from a specification to an attribute gram-
mar. These include decisions how to perform the attribution (attributes and attribute
dependencies, but not phases), concerning the concrete representation of the abstract
data types of the included algebraic specification, or choice of algorithms which are left
open using high-level specifications.

6.1 Aims

The aims of the implementation relations for attributed algebraic specifications are:

- The attribution of a specification may be changed, especially new attributes may be in-
troduced, a several pass attribution may be replaced by a one pass attribution and vice
versa and the attribute dependencies may be modified.

- The implementation relation has to be transitive to use the implementation relation in
the described software engineering process.

- The intuitive notion of behaviour has to be supported by a behavioural implementation
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axioms of CMOBILE not belonging to the axioms of CMOBILE1 are

(1) length(sv[oce(mobile(ml, m2))]) =
leftlength(sv[occ(mobile(m1, m2))]) + rightlenght(sv[occ(mobile(m1, m2))])

(2) weight(sv[mobile(occ(ml, m2))]) * leftlength(sv[occ(mobile(ml, m2))]) =
weight(sv[mobile(m1, occ(m2))]) * rightlength(sv[oce(mobile(m1, m2))])

(3) length(sv[occ(mobile(ml, m2))]) =
fixed * (cmaxdepth(oce(sv[mobile(m1, m2)])) - depth(sv[oce(mobile(m1, m2))]))

(1) and (2) are left to the reader. (3) was shown in section 5.2.
Fact 6.2.7
It holds:
LMOBILE ~» CMOBILE1 .
Proof

The axioms of LMOBILE must be derived with the axioms of CMOBILE1. The only
axioms of LMOBILE not belonging to the axioms of CMOBILE1 are

(1) length(sv[occ(mobile(ml, m2))]) =
leftlength(sv[occ(mobile(m1, m2))]) + rightlenght(sv[occ(mobile(ml, m2))])
(2) weight(sv[mobile(occ(mml, m2))]) * leftlength(sv[occ(mobile(ml, m2))]) =
weight(sv[mobile(m1, oce(m2))]) * rightlength(sv[occ(mobile(m1, m2))])

The proofs of (1) and (2) are the same as in the implementation proof of CMOBILE
~> CMOBILE1, since in specification CMOBILE only the axioms (10)-(13) are added to
LMOBILE which are not used in the proof. *

But BEHLMOBILE cannot be implemented by CMOBILE2
Fact 6.2.8
It does not hold:
BEHLMOBILE ~» CMOBILE2 L 4
Proof
It holds:
LMOBILE [, weight(oce(cube(2))]) = 2
and
CMOBILE? [, weight(occ(cube(2))])) =2*2 =4 ¢

But CMOBILE? is an implementation of LMOBILE from our intuitive notion of beha-
viour since the weights of the cubes and submobiles are not observable.

6.3 Behavioural Implementations

The small running example of the mobile shows that the specification CMOBILE? is not
an implementation of LMOBILE but it is an implementation from the specifiers point of
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Proof
According to the proof theoretical characterization we have to show:
Solutions(ASpec;) C Solutions(ASpec;)

‘We rewrite this condition to
for all T €part((T5 “(SV))s ess,,, ) Solutions'¥*|(T) C Solutions™**(T)

such that

fact(T) = { Ty, Ty,..., T, } iff
T=VU i, Tiand V 1sisn It ESTg ¢ ¢(SV). V ,ET,. Term(t) = ¢

We show this new property with a complete set of occurrence terms. The proof is given
in Appendix B.2. .

6.5 Properties of the Implementation Relations

In this section properties of the presented implementation relations for attributed alge-
braic specifications are considered, namely the transitivity of the implementation relation
and the monotonicity of the implementation relations wrt. the specification building ope-
rations.

The implementation relations are transitive:

Theorem 6.5.1

The implementation relation ~» and ~»;, are transitive. .
Proof

Let ASpec,, ASpec, and ASpec; be attributed algebraic specifications with ASpec;
~» ASpec, and ASpec, ~> ASpec;.

Obvious: sig(ASpec;) C sig(ASpec,)
Let A EMod(ASpec;). <A
Furthermore, <(<A I siga Spec2)>)|

sighSpecy)> EMod(ASpec;) is valid, since ASpec, ~> ASpecs.
sigtaspecy)™ EMod(ASpec,) holds, since ASpec, ~> ASpec;.
Since sig(ASpec;) C sig(ASpec,) follows: <A|S,~g(A Specyy> EMod(ASpec,).

Thus it holds for all A EMod(ASpecs) <A|S,~gmpe01)> EMod(ASpec;) and therefore
ASpec, ~» ASpec;.

The transitivity of ~»,, can be shown analogously. .
Lemma 6.5.2

The implementation relations ~» and ~», are monotone wrt. sum, i.e.

ASpec,~> ASpec,  ASpecy;~> ASpec,

ASpecy + ASpecy~> ASpec, + ASpec,
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Since ASpec; ~> ASpec; and ASpec; ~»y., ASpec; are trivially valid the conclusions

ASpec ~» ASpec, P
an

ASpec| + ASpecy~> ASpec, + ASpec,

ASpec{~>y,;, ASpec, hold .

ASpecy + ASpecy~>, ., ASpec, + ASpecy

Lemma 6.5.3

The implementation relations ~> and ~»;, are monotone wrt. enrich, i.e.
ASpec;~> ASpec,

enrich ASpec, by A ~> enrich ASpec, by A and
ASpec|~>,., ASpec,

enrich ASpec; by A ~>,, enrich ASpec, by A’
Proof

Follows from the lemma that the implementation relations ~> and ~sy, are monotone
wrt. sum and that enrich is a special case of sum. *

Lemma 6.5.4

The implementation relations ~» and ~»,, are monotone wrt. rename, if o is a bijec-
tive renaming morphism compatible with Occ, i.e.

ASpec,~> ASpec,

rename ASpec; by ¢ ~> rename ASpec, by o' and

ASpec{~>,,, ASpec,

rename ASpec by o ~>, , rename ASpec, by '’

and G is the restriction of o' to sig(ASpec;). .
Proof
Let ASpec, ~> ASpec,, i.e. V A EMod(ASpec,) holds <A|sig(ASpec1)> EMod(ASpec;).
The signature inclusion is trivially valid.
Remains to show

V A EMod(rename ASpec, by o") holds <A|0> EMod(rename ASpec; by o)

with o: sig(ASpec,) — Z

Let A EMod(rename ASpec, by o), i.e.

A €{ B €Alg(sig(rename ASpec, by c')) | Bld EMod(ASpec,) }
since V B EMod(ASpecs) <B|S,~8(Aspeq)> EMod(ASpec,) is valid. Thus it follows

A EAlg(Z) and <A|d|sig(AS,,ecl)> EMod(ASpec).







Refinements 123

CMOBILE ~» CMOBILE1 and the transitivity of ~». .
This implementation step was directly shown in section 6.2.

This corollary simplifies the software engineering process, since the implementation
proof can be split in the following way. Let Sp;, Sp,,..., Sp, be usual algebraic specifica-
tions and Aftr an attribution based on the signature of these specifications.

In order to show
enrich Sp; by Attr ~> enrich Sp, by Attr ~> ... ~> enrich Sp, by Attr
it is sufficient to prove
Spy~» Sp,~» ...~» Sp,
inducing
enrich Sp, by Attr ~» enrich Sp, by Arr.
Example 6.5.9

Let us consider the specification of a compiler. In this framework we have to deal with
the problem of symbol tables. As a first approximation a symbol table can be viewed as a
set of tuples (specification T.SET) containing the necessary informations. As a next step
these sets can be implemented by ordered lists (specification OLIST) which in turn are
implemented by a hashtable (specification HTABLE). In order to show

enrich 7SET by Attr ~> enrich OLIST by Attr ~> enrich HTABLE by Attr (*)

(whereby Attr defines the attribution of the complete compiler or the attribution to fill the
symbol table) it is sufficient to prove

TSET ~> OLIST ~» HTABLE

and to induce (*) with the corollary.
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[Swierstra, Vogt 91] stated that attribute coupled grammars can be considered as limited
applications of higher-order attribute grammars. Therefore we can restrict our reflections
on the comparison of higher-order attribute grammars with the new approach.

In attributed algebraic specifications the syntax of the context free grammar as well as
the semantics of the semantic functions are specified by terms, thus attribute values can
be abstract syntax trees, i.e. terms, and vice versa. Therefore higher-order attribute gram-
mars are subsumed by attributed algebraic specifications.

The possibility to describe this connection can be visualized by the following examples:

(1) Attribute values are grafted into the abstract syntax tree as e.g.

sv[x] = sv[fam(sv[ocex)])]

(2) Attribute values can store part of the syntax tree as e.g.
Jau(sv[oce(sv2[1D)]) =1

7.1.2 Tree Transformations

Tree transformation systems can be used, e.g. to describe parts of compiler optimiza-
tions. Pure attribute grammars are extended with attributed tree transformation rules,
where predicates on the values of attribute occurrences specify whether a tree transfor-
mation rule may be applied. In [Alblas 89] a conditional tree transformation rule con-
sists of an input template, describing the structure of the subtree to which the
transformation is applicable, an output template, describing the structure of the trans-
formed subtree, application conditions being predicates on the values of attribute occur-
rences of the input template, and rules defining the values of the attribute occurrences
available before the evaluation process starts. A tree transformation is applicable to a
subtree #; of an abstract syntax tree, if the input template matches the top of ¢, and the
output template fits in the surrounding tree, i.e. if A and B label the roots of the input and
output template, respectively, and (X — o A ) EP is the production applied immediately
above ¢, then X — o B § must be in P.

The example
transform <whilestat, while, <cond, boolconst>, do, stats, od>
cond boolval of boolconst = true
into <loop-forever, forever, do, stats, od>
cond boolval of boolconst = false
into <no-operation>
end

given in [Alblas 89] can be translated into our notion (allowing mixfix notation instead of
the usual prefix-notation):

while boolexpr do stats od = while value(boolexpr) do stats od,

while true do stats od = loop-forever stats od,

while false do stats od = nop

The main differences between tree transformations and the specification of tree transfor-
mations using axioms are the use of unification instead of matching and the axioms
define an equivalence relation on constructor terms on the semantical side.
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7.1.3 Proof Principles for Attribute Grammars

[Katayama, Hoshino 81] present a verification technique for attribute grammars which
can be used for the class of absolutely noncircular ones. The verification is done on the
ordering of the dependency relation of the attributes. Firstly, they assign assertions to
each non terminal, satisfying special conditions on used attributes. Secondly a set of
verification conditions for each production is generated depending on its dependency
graph. As a last step these proof obligations are verified.

[Courcelle, Deransart 88] extend the assertion method of [Katayama, Hoshino 81] to
cyclic dependencies for proving the partial correctness of an attribute grammar relative
to a specification, i.e. relative to the assertions. The proof is performed by fixpoint induc-
tion. They associate again a logical formula with each non terminal.

Attributed term induction - presented in this thesis - can be easily refined such that a
mechanical support is possible [Duschl 94, Weif3 95], against [Courcelle, Deransart 88]
state: ,,the practical usability of the proof method of Theorem (3.2.5) suffers from its
theoretical simplicity” whereby this proof method is refined afterwards, but it remains
difficult to find strong enough assertions for each non terminal. The implemented system
generates proof obligations which are verified by the TIP system [Fraus 94a, 94b]. The
related work proves the correctness relative to a given specification, namely the asser-
tions, whereby attributed term induction proves theorems over an attribute grammar. Per-
forming proofs using attributed term induction often lemmas are necessary which are
similar to the assertions of [Katayama, Hoshino 81; Courcelle, Deransart 88]. In the
assertion method the proof is performed production local and therefore assertions have to
describe informations of the context in which a non terminal appears. This context is
concretely given in the new approach.

Drawbacks of [Katayama, Hoshino 81; Courcelle, Deransart 88] are: The proof principle
is only usable for directed attribute equations, since the dependency graph is used as a
basis for the proof principles. There are restrictions on the attributes allowed in the pro-
perties to be verified, namely only inherited/synthesized attributes and proper predeces-
sor in the dependency graph can be used in the properties. No properties with remote
access of attribute occurrences can be shown. Furthermore, it is not usable for implemen-
tation relations and stepwise refinement, since abstraction is not supported. Moreover,
they suffer from efficient heuristics (for cutting the search space) and machine support.

They cannot be applied to attributed algebraic specification since the proof principles are
based on the directed dependency graph and therefore are not usable for specifications
with undirected attribute equations.

We have presented a proof principle usable for undirected attribute equations; with no
restrictions on the properties. No invariants must be given, system support can be
obtained and efficient heuristics using the attribute dependencies and signature flow ana-
lysis can be developed.

7.1.4 Object-Oriented Extensions

The main contributions in viewing attribute grammars in an object-oriented way are
[Hedin 89, 92, 94].

Following [Hedin 89] nodes of an abstract syntax tree are regarded as instances of
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The first one allows the definition of static and dynamics specifications without con-
cerning correctness aspects and implementation relations. Whereas the aim of the second
one reflects on the formal development of software in this area.

Nevertheless the MAX system (cf. e.g. [Poetzsch-Heffter 96]) and its formalism can be
seen as a first step embedding attribute grammars in a functional and algebraic frame-
work. This formalism defines concrete algebras for specifying the occurrences in a tree
and the trees themselves, therefore new occurrence sort symbols are introduced beyond
the usual sort symbols. It is referred to the occurrences of a term using selector functions
on the arguments of a function. Attributes are viewed as functions and are specified in a
functional way with an extended pattern-matching mechanism to define context depen-
dent informations, in comparison to functional programming languages.

But proving the correctness of attribute grammars and their implementations or abstrac-
tion mechanisms are not supported. The output of the new approach can be a MAX
specification from which an efficient program can be generated.

In the proofs the context is explicitly necessary to get induction assertions, which are
strong enougth. The context is not explicitly given in the MAX system approach.

Furthermore, changing the grammar influences the attribution in a strong way, especially
if is dealt with remote access of attributes, since the reference to remote attributes is via
parent, sibling and child selectors depending extremly on the underlying grammar. In the
new approach a more elegant view on remote access is taken. But the MAX specification
formalism is more implementation oriented, especially since no unification is necessary.

7.1.6 Modularity and Reusability in Attribute Grammars

[Kastens, Waite 92] summarize extensions of attribute grammars [Dueck, Gormack 90;
Farrow et al. 92] for increasing modularity in their framework and develop new specifi-
cation principles for reusing attribute grammars. The main issue is the simplification of
the specifications, i.e. especially ,,specification sugar“ is added. Firstly, they present tech-
niques for remote access:

- arestricted remote access to attributes at the root of a subtree in a special context are
possible, e.g. the reference to the enclosing block, i.e. attribute equations have the form

Jaur(svilsval0ee@)]]) = frury(svi[oce(sv2lx])])
with some restrictions on sv;, sv,and x.

- an attribute value is the union of the attribute values at occurrences which are descen-
dants of the subtree rooted in the local context. Such a notation can be seen as ,,specifi-
cation sugar“ and can be put in the specification mechanism of attributed algebraic
specifications.

- attribute equations can be formulated for some iterative computation visiting nodes in
(depth-first) left-to-right order, such dependencies can be expressed in attributed alge-
braic specifications using subterm identifiers and an attribute equation describing the
leftmost occurrence.

Moreover, symbol computation and inheritance are introduced as a kind of subterm iden-
tifier and a kind of super non terminal for which attribute equations are defined and inhe-
rited to the sub non terminals. The sub non terminal can use the attribute equations of the
super non terminal or can overwrite them. Inheritance can be expressed as discussed for
[Hedin 891].
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point based on the Scott and Strachey approach [Scott, Strachey 71; Stoy 77].

We abstracted from the explicit definition of those algebras describing the semantic
functions algebraically. Futhermore the semantics is defined as the set of algebras satis-
fying the attribute equations. The proof principle for attribute grammars presented there
is the usual structural induction with the drawback that the attribute grammar has to be
converted into synthesized form. A possibility is shown how to change attribute gram-
mars into synthesized form.

7.2.2 Context Induction

[Hennicker 91] uses the same notion of a context. But he uses context induction in the
framework of proving the correctness of behavioural algebraic implementations as
implemented in the ISAR system [Bauer, Hennicker 93]. In his framework the Noethe-
rian ordering is the syntactical subterm ordering on the contexts. When his context
induction is not defined with the syntactical subterm ordering but with an arbitrary
Noetherian relation, both cases are special cases. We start like in the context induction
principle with the ,trivial“ context expressed by (1). The ,trivial“ context is a context of
minimal depth of the insertion place for the context identifier. (2) expresses: If the cor-
rectness of the attribute property of a depth smaller than # is known, the property has to
be proved for the depth  + 1.

7.2.3 Primitive Recursive Schemes and ASF+SDF

[Courcelle, Franchi-Zannettacci 82] introduced primitive recursive schemes (p.r.s.s) to
express attribute grammars in the framework of algebraic specifications. p.r.s.s can be
seen as restricted algebraic specifications. A p.r.s. has beyond the usual equations of an
algebraic specification attribute equations of the form

<synthesized attribute>(<subterm>, <list of values for the inherited attributes>) = ...

i.e. the value of a synthesized attribute is expressed by the actual subterm and the inheri-
ted attributes for this subterm. In this notion the context is only expressed by the inheri-
ted attributes and more than one attribute equation of a usual attribute grammar is
encoded in such an equation.

For this class of algebraic specifications the techniques of attribute grammars are adapted
e.g. [Klint 93; Meulen 94; Deursen 94]. Being a good method applying the techniques of
attribute grammars to algebraic specifications they have several drawbacks:

- Global attribute dependencies cannot be expressed;

- Attribute grammars must be ,translated“ into a primitive recursive scheme resulting in
the loss of the intuitivity of attribute grammars, since several usual attribute equations
are coded into one equation;

- The usual implementation relations for algebraic specifications are not usable for those
specifications, since the definition of the attribute computation rules are viewed too lo-
cal in sense of an implementation, i.e. new inherited attributes are not allowed to be in-
troduced, e.g. to simplify the attribution, because this fact leads to a change of the
functionality of the synthesized attribute functions;

- From a software engineering point of view the translation of an attribute grammar into
an algebraic specification and afterwards the implementation of this specification can
lead to a specification which cannot be translated back after the refinement into an attri-
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Profiax),o(@) = azand profey (@) = a;

For each function type (o — t) €S we have an evaluation function
eVally o A up Ag— Ag

on the function space A, _,  defined by
evall, . (a, ) = a(n)

for each a €A, _. ;yand n €A,

Let S be a type structure over a type basis B and let Z be an S-typed signature and let X be
an S-indexed family of infinite sets of identifiers. The set Ext = Exty of extensionality
sentences over X is the set of all 2-sentences of the form

VX EXGony VY EXg oy (V2 EX,. evaly (X, 2) = evalg . oy, 2) => x = y)
and

Vx E/Y(oxt)' Vy eA’(cxt)' (proj(oxr), o(x) =pr0j(ox1:), G(Y) A
proj(cxr),m(x) =Pr0j(cx1:),t(y)) =x=Yy

By a higher-order equational specification a pair (Z, E) is meant consisting of an S-typed
signature X and a set E of Z-equations.

Let S be a type structure over a type basis B, Z be an S-typed signature, X be an S-indexed
family of infinite sets of identifiers and E be any set of higher-order equations over Z and
X. Define the class Alg,.(Z, E) of all extensional models of E by

Alg.(Z,E)y={A€AIgZ)|A|FE UExt}
The infinitary higher-order equational calculus has the following rules of inference:

(refl), (sym), (trans), (subst) as in the usual equational calculus with the extended term
notion and

1 1 2 2
(proj)BLel (t) = proj (r), proj (t) = proj (r), for each ¢, r of the same

t=r
product type
(w- ext)eval(t, u) = eval(r, u) for all terms u
t=r

It strikes into the eye that the use of subterm identifiers describes a kind of restricted
higher-order algebraic specification, but the use of subterm identifiers is on a very syn-
tactical level, especially the eval-function state that two functions are equal if they are
syntactical equal in the new approach. Therefore the extensionality equations have not to
be considered in the new approach. Considering the definition of the valuation of sub-
term identifiers coincides with the interpretation of identifiers in the higher-order specifi-
cation framework.
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Observability issues can be considered in all three case studies, but only in the compiler
example it is explained in detail: In the user interface example the input/output of the
user interface can be described using observable sorts, i.e. the abstract menu-items and
the telephone numbers. In the compiler case study the generation of optimized and unop-
timized code are behaviourally equivalent. An observability aspect for the box example
can be the concrete layout.

Universally quantified formulae are used showing the correctness of the user interface
specification, the correctness of the compilation process and the invariant of the docu-
ment architecture example.

Existentially quantified formulae are used deriving intelligent help (user interface
example) and for performing an inverse compilation process (compiler specification).
Thus an inverse compilation process can be used to guarantee that a compiler performs
the correct translation wrt. the compiler specification.

Standard implementation relations are considered in the document architecture example.
Behavioural implementation steps are discussed in the compiler example. Here the
implementation of a compiler generating unoptimized code by a compiler generating
optimized code is proved.

The only considered structuring mechanisms are enrich and sum. Only these operations
are used, because it is not presented a complete software project. But the use of structu-
ring mechanisms for reuse are obvious.

Examples from different areas illustrate the applicability of the new technique to diffe-
rent problem domains.

Attributed signature flow analysis is applied for showing the reachability of the abstract
menu-items in the user interface example and is implicitly used in the proofs.

considered user interface compiler document
aspects specification specification architecture
remote access of shortening of the environment for the | global jolting
attribute values specification used identifiers factor of boxes
undirected equations invariant:
given length
several correct depending on the
attributions given length
observability input/output unoptimized/ concrete layout
issues shown to user optimized code of the boxes
universally correctness: correctness: validity of
quantified formulae | user interface compilation invariant
existentially deriving inverse
quantified formulae | intelligent help compilation process
standard refinement
implementation
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considered user interface compiler document
aspects specification specification architecture

behavioural unoptimized by
implementation optimized code
structuring enrich enrich and enrich
mechanisms sum
attributed signature | user interface
flow analysis properties

table 2: case studies show considered aspects

8.1 Specifying User Interfaces

This case study was part of a larger case study considered in a project called ,,generating
intelligent user interfaces®, which has been supported by Siemens Corporate Research
and Development (ZFE ST SN 51).

In the first subsection the use of attributed algebraic specifications for the specification of
user interfaces is described following [Bauer 95]. Moreover we will see how the dyna-
mics of a user interface can be generated from an algebraic specification, based on
[Bauer 96].

Nowadays nearly every software project has to deal with the implementation of user
interfaces, because the end-users of such systems are often computer novices using the
program with little or less knowledge about the computer technology. But the
development of a graphical user interface is not a trivial task. The implementation is a
time-consuming, error-prone work to do and complex software engineering process.
Morover it is a very critical point in the software engineering process, because the com-
plete interaction between the user and the application is via the user interface. According
to [Myers 88] 50-88% of the code of an interactive application is the code for the user
interface. Furthermore, the result would be damnable having a correct proven application
and an incorrect user interface. Therefore formal methods must be applied in the frame-
work of user interface development to consider correctness aspects. Using formal
methods allows the generation of user interfaces out of a declarative description (model)
of the properties of an interactive application. This fact allows to enter into competition
with other software developers, since the price for individual software should be low and
generating software is cheaper than programming code. These generation aspects can be
found in the model based user interface tools (e.g. [Bodart et al. 94; Balzert 93, 94, 95;
Janssen et al. 93, 91, 93; Schreiber 94a, 94b]). We will see how the dialogue description
can be generated from a formal specification of the application. The new specification
formalism can be used (under some restrictions) 6 as an input for the system presented in
[Schreiber 94a, 94b, 96] for the generation of a presentation and dialogue control compo-
nent of an interactive system.

16. undirected attribute equations, algebraic specification in a functional way.
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(22.5).

22.3 entering a number

22.4 talking 22.5 ending a call
figure 22: making a telephone call

Viewing the telephone call in an abstract way the sentence
CALL 2021 END

was built such that CALL is the token yielded from the presentation clicking on the hand-
set, 2021 entering the phone number and END clicking on the handset place. Therefore
we have an abstract description of our telephone call independent of the actual presenta-
tion. The distinction between the abstract specification of the dialogue and the concrete
presentation (layout) allows to have one dialogue specification and several concrete user
interfaces, e.g.:

and

figure 23: two alternative concrete presentations

Now we can define an abstract grammar or signature for the specification of the above
dialogue. A possible abstract syntax tree for the above sentence is shown in figure 24,
corresponding to the term mkCallTask(mkCall(CALL, mkEnterTNumber(2021)), END):

mkCallTask
/P_) ~ ®
mkCal END
HORN
CALL™ mkEnterTNumber

20f®
figure 24: dialogue
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call: Nat, State — State,
secondCall: Nat, State -» State,
conference: State - State,
endCalls: State — State
axioms for all nr, nr2: Nat; s: State.
call(nr, s) = mkState(mkCon(nr, telephoning), mtCon),
secondCall(nr, call(nr2, s)) = mkState(mkCon(nr2, waiting), mkCon(nr, telephoning)),
conference(secondCall(nr, call(nr2, s))) =
mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
endCalls(s) = mkState(mtCon, mtCon)
endspec

The following simplifications are made:

- each telephone call is realized,

- telephone numbers are denoted by natural numbers and
- no switching between two participants is possible.

As a next step we specify the possible dialogues of the telephone.
aspec ISDN-Dialogue =
enrich NAT by
sorts Dialogue, Task, Call, SecondCall, Conference, EnterTNumber, CallMenu,
SecondCallMenu, ConferenceMenu, EndMenu

obs-sorts CallMenu, SecondCallMenu, ConferenceMenu, EndMenu

cons
mtDialogue: — Dialogue,
mkDialogue: Task, Dialogue — Dialogue,
mkCaliTask: Call, EndMenu — Task,
mkConferenceTask: Conference, EndMenu — Task,
mkCall: CallMenu, EnterTNumber — Call,
mkSecondCall: SecondCallMenu, EnterTNumber — SecondCall,
mkConference: Call, SecondCall, ConferenceMenu — Conference,
mkEnterTNumber: Nat — EnterTNumber,
CALL: — CallMenu,
SECONDCALL: — SecondCallMenu,
CONFERENCE: — ConferenceMenu,
END: - EndMenu

endspec

A dialogue can be seen as a sequence of tasks. Therefore a dialogue is either an mtDia-
logue or a Task followed by a Dialogue. The task of a telephone call consists of the tele-
phone call and the ending of the call (mkCallTask). The task of the conference session
consists of performing the conference call and ending the calls (mkConference). To per-
form either a call or a call with a second participant an abstract menu-item'” must be sel-
ected and afterwards the telephone number must be entered (mkCall, mkSecondCall,
mkEnterTNumber). In the case of a conference the abstract CONFERENCE-menu must
be selected after performing the first and second call. All calls are ended with the abstract
menu-item END. The abstract menu-items are CALL, SECONDCALL, CONFERENCE
and END and are characterized by the observable sorts.

The link between the application and the dialogue is defined using attribution:

17 By an ,abstract menu-item“ we mean a token which is yielded from the concrete representa-
tion, i.e. an abstract menu-item can be e.g. a ,,concrete” menu-item, a pushbutton or a clicking
on the handset in our direct manipulation user interface.
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(2) the set of propagation functions is
Py (SFA[s], SFA[s;),..., SFA[s,]) = used(f) U U, ., ., SFA[s]]
such that used(f) computes the interesting application functions used in the attribu-
tion of the function f with (f: sy, s,,..., 5, —= 5) €EC.

(3) for all sorts s €S the set of combination functions is the usual set union.

(4) a set of relations the usual set inclusion.

The solution can be obtained using the presented algorithm of section 3.6 resulting in the
set D for the rootsort Dialogue, i.e. dialogues exist such that all exported functions can
be applied.

Proving Occurence Properties v

The properties which can be shown using the proof principle of attributed term induction

are, e.g.:

- does the application have a given state before/after a special action is performed,

- does the dialogue description ensure the applicability of an application function,

- does the validity of local context conditions result in the validity of global context con-
ditions,

- is aspecial property valid before an action is performed?

For the telephone specification the first two items are shown by an example.

An occurrence property P (see section 5.2.2) for occurrence terms of sort s, i.e. of the
form c[occ,(t)] for some context c[z;] and some term ¢ of sort s, is a formulae over the

attribute occurrences of sort s and the semantic functions of the attributed algebraic
specification, describing dependencies between attribute occurrences at these nodes. In
the framework of user interface verification ,,dependencies between attribute occurrences
at these nodes“ can be interpreted as ,,the application has a special state after/before a
distinguished subdialogue®, or ,,the inputs satisfy special restrictions®.

In the telephone example we prove that after selecting the abstract conference menu-
item, the state of the application is the telephoning of all three participants. Beyond it the
parameter restriction for the application function conference is satisfied. This property
can again be shown using the system of [Duschl 94; WeiB 95].

Mathematically:
Fact 8.1.3.1
For all occurrence terms ¢ of sort ConferenceMenu holds:
stateafter(t) = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning))
and
statebefore(t) = mkState(mkCon(nr, waiting), mkCon(nr2, telephoning))
for some telephone numbers nr and nr2. This formula is the occurrence property P(¢).
Proof

We use attributed term induction for the proof of the theorem. It can be alternatively
shown using a complete set of occurrence terms.
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user),
- the application functions and
- the description of constraints and relationships that hold among conceptual objects.

I.e. more or less an abstract datatype with a special observable interface is defined in the
structural and functional decision class. Such an abstract datatype can be easily specified
using an algebraic specification. We assume that parameter restrictions, denoted as equa-
tions, are associated with each function symbol, i.e. we have a functionality of the form

Jet(f) = xp5y 2 81, Xp 55 2 S2y oy Xp 5 Sy - EQXE 515 Xp gm0 Xp5,) > S

such that fis only defined if Eq((x s, Xf, s, X}, 5,,) is valid, whereby
Eqf(xg, 5, X1 50> X, 5,,) I an equation with the only identifiers in { x7 g, X7, 5.0 X5 5, }-

The sort and constructor symbols define the conceptual objects, the function symbols
define the application functions, the observable sorts characterize those objects which
are observable by the end-user and the parameter restrictions with the axioms describe
the constraints and relationships between the conceptual objects.

The notion of algebraic specifications has to be extended by a set of distinguished
function symbols applicable to the conceptual objects (called in the following interface
functions) which have to be supported by the user interface and the sort of the applica-
tion state, i.e. the sort of the terms representing the state of the functional core. The use
of interface functions cannot be neglected identifying those function symbols with obser-
vable result sort as the interface function, since it would be desirable to use application
functions only changing the internal state of the application. Furthermore the initial state
of an application may be defined.

Note, that the meaning of the functions (by defining the semantics of the functions by
axioms and parameter restrictions) is specified, but not their format or sequencing of
invocation is defined.

The three important kinds of decisions made in the dialogue decision class are

- what are the units of information exchanged between the user and the application (de-
fined by the observable sorts and the interface functions),

- how this units of information are structured into messages between the user and the ap-
plication (not considered here) and ,

- what the appropriate sequences of message exchange are (main issue of this contribu-
tion).

The aim of the new approach is to generate the sequence of information exchanged bet-
ween the user and the application, namely to automate part of the dialogue decision
class.

Specification of the Application: An Example

We start with the algebraic specification ISDN-Application of the application of section
8.1.2. and add the parameter restrictions and interface functions, which are necessary for
the generation process. In constrast to the former specifications call, secondCall and
conference have parameter restrictions denoted by a first order formulae after pre.
emptyConnections, singleConnections and doubleConnections are predicates stating
none, one and two connections. The interface functions, i.e. the set of functions which
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have to be supported by the user interface are call, secondCall, conference and endCalls.
spec |ISDN-Application2 =
enrich NAT by
sorts Connection, CState, State
obs-sorts Nat
cons
mkState: Connection, Connection — State,
mtCon: — Connection,
mkCon: Nat, CState — Connection,
waiting, telephoning: — CState
opns
call: Nat, Xcay, state : State. pre emptyConnections(Xcq), state) = true — State,
secondCall: Nat, Xsgcondcal, State * State.
pre singleConnections (Xsecondcall, State) = true — State,
conference: Xeonference, State - State.
pre doubleConnections(Xgonference, State) = true —> State,
endCalls: State — State,
emptyConnections: State — Bool,
singleConnections: State — Bool,
doubleConnections: State — Bool
interface functions call, secondCall, conference, endCalls
axioms forall nr, nr2: Nat, s: State.
emptyConnections(mkState(mtCon, mtCon)) = true,
emptyConnections(mkState(mkCon(nr, cs), c)) = false,
singleConnections(mkState(mkCon(nr, cs), miCon)) = true,
singleConnections(mkState(mtCon, c)) = false,
singleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = false,
doubleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = true,
doubleConnections(mkState(c, mtCon)) = false,
call(nr, s) = mkState(mkCon(nr, telephoning), mtCon),
secondCall(nr, call(nr2, s)) = mkState(mkCon(nr2, waiting), mkCon(nr, telephoning)),
conference(secondCall(nr, call(nr2, s))) =
mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
endCalls(s) = mkState(mtCon, mtCon)
endspec

8.1.5.2 Generation Idea of the Dialogue Specification

In this section the idea for the generation of the dialogue specifications and their restric-
tions to different user groups are informally described.

Generation of the Dialogue Specifications

The generation process consists of several steps:

As a first step a graph is constructed with nodes marked with function symbols, identi-
fiers for the arguments and the resulting term for each interface function. The only non-
observable sort is the sort of the state of the functional core, namely State, marked with

and observable arguments are marked with C— .
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Since the parameter restrictions of call and secondCall influence only the second argu-
ment of sort State and not the first argument of sort Nat there is no restriction on the tele-
phone numbers. Thus a natural number can be used as an input for the first argument of
call and the first argument of secondCall. The same holds for the function endCalls
which can be applied in every state.

The result term of the function call is call(x 4y ngp» mkState(mtCon, mtCon)), of the
function secondCall is secondCall(xseconacall, Nav MkState(mkCon(nr, telephoning),

mtCon)) and of the function conference is conference(mkState(mkCon(nr, waiting),
mkCon(nr2, telephoning))). Moreover it holds

call(nr, mkState(mtCon, mtCon)) = mkState(mkCon(nr, telephoning), mtCon)),

secondCall(nr, mkState(mkCon(nr2, telephoning), mtCon)) =
mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)),

conference(mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)) =
mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)))

and endCalls(s) = mkState(mtCon, mtCon) for all States s.

Now the graphs can be merged together

TKTAte(mICon, MICon)

XsecondCall, Nat mkState(mkConi(X . Nap tclephoning), miCon)

secondCall

mkState(mkCon(Xei, Na» Wailing), mikCon(X,cconacah, Nao tclephoning)) >

endCalls

figure 28: putting the instantiated dependency graph together

and the non-observable state of the application can be omitted resulting in the graph:
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Restricting the Dialogue Specification to Different User Groups
Usual different user groups with a different functionality use a software product.

In the ISDN-example a special user group may only use the interface functions call and
endCalls but not secondCall and conference.

One solution of this problem is to generate for each user group a different dialogue des-
cription, but some work has to be done twice. Therefore a more elegant way is to restrict
the generated dialogue description to the interface functions of the user groups. Le. all
the nodes marked with interface functions, which are not usable by a special user group,
and their argument nodes are “deleted:

mkState(mtCon, miCon
( XsecondCall, Nat )

endCalls

figure 31: restricting the dialogue specification to different user groups

resulting in:

MKSTAte(mICon, MiCon)

|
g

}

endCalls
figure 32: restricted dialogue specification

with the corresponding HIT specification.
mkState(mtCon, mtCon

initial state
call 4"\?/
endCalls (—ﬁ/

mkState(mtCon, mtCon)
termination state

figure 33: restricted HIT specification

g
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3 Xf sy P S0 Xf 550 825 e Xfy5, i Sn qu(xﬁ s> X, sp0000 X, Sn)

If the parameter restrictions cannot be solved at generation time (because information is
missing, e.g. it is dealt with loose specifications) the run-time system of BOSS controls
the parameter restrictions (therefore the parameter restrictions have to be implemented
by Boolean functions).

Thus for every interface function f with parameter restriction the following set of solu-
tions is obtained:

Of =4t { O | Mod(Spec) |= Eqy o such that o ESubst is the most general solution }
with fet(f) = xg s, : S1, X 55 2 52, s X5, * Sn - EQYXp 51, X p0e- X, 5,,) —> 5 and Subst is the
set of all substitutions.
Instantiation of the pure dependency graph with the obtained solutions

Now for every graph graph; obtained from an interface function f the set of instantiated
graphs instgraphy is defined by:

graphf if Op=0
instgraphf = { U

o€a, o(graph f) otherwise

such that o(graphy) is defined for graph; by:

f

\J
(ot - 063 ) 0055 )
figure 35: applying a substitution to a graph

Merging of the instantiated dependency graphs
After calculating the instantiated set of graphs

InstGraphs = U instgraph ;
f Einterface(Sp)

whereby interface(Sp) calculates the interface functions of the application. The set of
instantiated graphs InstGraphs is examined whether nodes of sort N,,,,, can be connec-

ted. An edge between two nodes t;, t, € Ny, is drawn if it holds:
Mod(Sp) | t;=t, canbe shown and
there exists an edge e; € Eyppmyofinc and an edge €; € Efpciorerm With

e, = (t, fy) and e, = (f5, t,) for some function symbols f; and f,.

If there is already an edge from ¢, to another term ¢ of N, then instgraphyis duplicated.
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The new obtained graph is now merged together in the following way:

If there is an edge e; = (f;, t;) €F and e, = (t,, f>) €E then

- if there is no edge e; = (t,, f;) EE (with f3# f;) then e; and e, are deleted in E and (f}, f5) is
added to E.

- ifthere is an edge e; = (¢, f3) EF (with f3# f;) then (f;, f,) is added to E.

Obtaining a BOSS specification

The obtained graph of the merging phase is converted into a HIT-specification as fol-
lows:

Each node of an interface function f is converted into a transaction rule
f

1T -1 1] 1 T ]
}z if f is interface functions and an equational rule other-
———— 1 —— 1

wise.

The restriction of the dialogue description for special user groups is done deleting the
non-usable interface functions from the obtained HIT specification.

8.1.6 Remarks

We have pointed out how to specify interactive systems using attributed algebraic speci-
fications and their verification using attributed term induction and attributed signature
flow analysis. The specification formalism allows the distinction between the application
and the dialogue description. The whole specification of an interactive application with a
user interface can be described using the new approach, but the clear distinction between
the three layers (application, user interface dynamics and concrete layout) is preserved.

Correctness aspects can only be considered in the framework of model based user inter-
face tools [Balzert 93, 94, 95; Bodart et al. 94; Foley et al. 91, 93; Janssen et al. 93], since
the layout oriented tools are too low-level. But there are model based tools which employ
a specification technique with a missing logical framework, e.g. [Balzert 93, 94, 95;
Bodart et al. 94; Janssen et al. 93]. Furthermore, the dialogues are sometimes specified
independent of the effects on the application. Working with pre- and postconditions as in
[Foley et al. 91, 93] makes the verification more difficult, since the property of the
reachability test presented in this chapter is a semantical problem and not a syntactical
one. Specifying dialogues in the temporal logical framework makes proving properties
more complicated than reasoning in the classical logic.

Using the structuring mechanisms well-known from algebraic specifications allows to
use these technique also for larger projects. The experience shows that the generation of
the dialogue description for subspecifications can often be put together without conside-
ring the context in which the subspecifications are used. Otherwise normalization techni-
ques exists for the structured algebraic specifications and the normalized specification
can be used as the starting point for the generation process.

Related work on the topic of user interface generation is discussed in [Bauer 96].
8.2 Specifying Compilers

In this case study we present compiler specifications describing the translation of expres-
sions into usual stack machine code and for the translation of the same expression lan-
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guage into register code. For both compilers we show the correctness of the translation.
Moreover, the correctness of the behavioural implementation of a compiler for the trans-
lation of expressions into register machine code by a compiler for the translation of
expressions into optimized register code is shown.

Attribute grammars are a well accepted tool for the specification of compilers. But pure
attribute grammar systems suffer from the possibility to verify the compilation, i.e. to
prove that the attribution yields a correct target program. In the framework of attributed
algebraic specifications we can use the outlined theorem proving techniques to verify a
compiler specification.

A specification of a compiler (by an attribute grammar) can be divided into three com-

ponents:

- acontext free grammar describing the source language,

- acontext free grammar describing the target language,

- an attribute grammar with distinguished code attribute containing the compiled pro-
gram.

In order to prove the correctness of the compiler, the semantics of the source and the tar-
get language have to be specified. We define the dynamic semantics of the languages in
an algebraic way like shown in [Berghammer et al. 87] using already the advantages of
the new technique.

8.2.1 Syntax and Semantics of the Source Language

Expressions are translated into stack machine code as described in [McCarthy, Painter
67; Berghammer et al. 87]. The syntax of the source language is the description of
expressions consisting of natural numbers, identifiers having a value relative to a given
environment and addition, subtraction and multiplication of expressions (SOURCE).

aspec SOURCE =
enrich NAT + ID by
sorts Expr, Op
cons
natexpr: Nat — Expr,
idexpr: |d — Expr,
add, sub, mult: — Op,
comp: Expr, Op, Expr — Expr
endspec

Its semantics is defined in SOURCE_SEM.

aspec SOURCE_SEM =
enrich NAT + ID + SOURCE + ENVIRONMENT by
attrs inh env: Expr — Env,
synth value: Expr — Nat

axioms for all n: Nat; id: Id; e, e1, e2: Expr.
(1)  value(svlocc(natexpr(n))]) = n,
(2) value(svlocc(idexpr(id))]) = lookup(id, env(occ(sviidexpr(id)]))),
(3) value(svjocc(comp(el, add, e2))]) =

value(svicomp(oce(el), add, e2)]) + value(svicomp(e1, add, occ(e2))]),
(4) value(sv[oce(comp(e1, sub, e2))]) =

value(svicomp(oce(e1), sub, e2)]) - value(svfcomp(e1, sub, occ(e2))]),
(5) value(svfocc(comp(el, mult, e2))]) =
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The attribute equations for the root of terms of sort Instr denote that at the beginning the
stack is empty and it is started with a given environment givenEnv.
aspec TARGET_SEM =
enrich NAT + ID + STACK + TARGET by
attrs synth value: Instr — Nat,
stacka: Instr — Stack,
inh stackb: Instr — Stack,
env: Instr — Env
axioms for all i, i1, i2: Instr; n: Nat; id: Id.
(1) stackb(occ(i)) = miStack,
(2) stackb(svloce(i1);i2]) = stackb(sv[oce(i1; i2)]),
(3) stackb(sv[i1; occ(i2)]) = stacka(sv[occ(il); i2]),

(4) env(occ(i)) = givenEnv,

(5) stacka(svjocc(ADD)]) = push(top(pop(stackb(svfocc(ADD)]))) +
top(stackb(sv[occ(ADD)])), pop(pop(stackb(svocc(ADD)])))),
(6) stacka(svlocc(SUB)]) = push(top(pop(stackb(svocc(SUB))))) -
top(stackb(svfocc(SUBY)])), pop(pop(stackb(sviocc(SUB)I)))),
(7) stacka(svfocc(MULT)]) = push(top(pop(stackb(svfocec(MULT)]))) *
top(stackb(svioce(MULT)])), pop(pop(stackb(sviocc(MULT)])))),
(8) stacka(svlocc(IST(id))]) =
push(lookup(id, env(oce(sv[IST(id)]))), stackb(svloce(IST (id))])),
(9) stacka(sv[occ(NST(n))]) = push(n, stackb(svfocc(NST(n))])),
(10) stacka(svloce(mtinstr)]) = stackb(svjocc(mtinstr)]),
(11) stacka(svfoce(i1;i2)]) = stacka(sv[i1; occ(i2)]),

(12) value(sv[occ(i)]) = top(stacka(svlocc(i)]))
endspec

A compiler can be formally described by a function

compile: Ty, -Ts

ource target

which translates programs denoted by terms over X, .. into terms over X, The con-

dition which has to be satisfied is

VieTy Asource(t) = Ligrgel(compile(t))
source

target*

with the semantic functions

Tource Tzsoume — M and I, szrger —-M

whereby M is the semantic domain of the programming languages.

The interpretation mappings I, and I,,,,,, are specified by two attributed algebraic spe-
cifications, namely SOURCE_SEM and TARGET SEM, with distinguished attribute
value of sort Nat, which is the semantic domain of the small languages.

The function compile is defined by the attribute code of the following attributed algebraic
specification COMPILER which is a syntactical enrichment of the attributed algebraic
specification SOURCE and TARGET, i.e. the new attribute code and the new attribution
is added to SOURCE and TARGET.
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The semantics of the register code machine is specified as follows: regval calculates the
value of a register after performing a sequence of instructions, val yields the value of a
register depending on the used register before and value the value stored in register 1. .&.
is the overwriting operation. isdefined tests whether a register is defined after a sequence
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of instructions is executed.

aspec REG_SEM =
enrich NAT + ID + OPT + ENV + REG by
obs-sorts Nat
opns .&.: Nat, Nat — Nat,

isdefined: Nat, Code — Bool.
error: — Nat

obs-attrs value
attrs synth regval: Nat, Instr — Nat,

val: Nat — Nat,
value: Instr — Nat

axioms for all n, m, r, r1, r2: Nat; i1, i2: Code; e: Expr.

©)
(10)

(1)

regval(r, mitinstr) = error,

regval(r, regls(r, n)) = n,

regval(r, ADD(r, r1, r2)) = val(r1) + val(r2),
regval(r, SUB(r, r1, r2)) = val(r1) + val(r2),
regval(r, MULT(r, r1, r2)) = val(r1) + val(r2),
regval(r, seq(i1, i2)) = regval(r, i1) & regval(r, i2)

n&m=m,

n &error=n,

error & error = error,

val(usedregb(sv[occ(e)])) = regval(usedregb(svjoce(e)]), code(svloce(e)])),

value(occ(code(oce(e)))) = regval(1, occ(code(occ(e))),

(12) isdef(usedregb(svlocc(e)])) = isdefined(usedregb(svocc(e)]), code(svlocc(e)])),
(13) isdefined(r, mtinstr) = false,
(14) isdefined(r, regis(r, n)) = true,
(15) isdefined(r, ADD(r1, r2, r3)) = if eq(r, r1) then isdef(r2) and isdef(r3) else false fi,
(16) isdefined(r, SUB(r1, r2, r3)) = if eq(r, r1) then isdef(r2) and isdef(r3) else false fi,
(17) isdefined(r, MULT(r1, r2, r3)) = if eq(r, r1) then isdef(r2) and isdef(r3) else false fi,
(18) isdefined(r, seq(i1, i2)) = isdefined(r, i1) or isdefined(r, i2)

endspec

The compilation for the unoptimized case can be specified in the following way:

aspec NOPT =
enrich SOURCE + REG by
attrs synth code: Expr — Code,

usedrega: Expr — Nat
inh usedregb: Expr — Nat

axioms for all n: Nat; id: Id; e, e1, e2: Expr.

M
()
(O]

code(sv[oce(natexpr(n))]) = regls(usedregb(sv[occ(natexpr(n))]), n),

code(svlocc(idexpr(id))]) = regls(usedregb(svlocc(idexpr(id))]), lookup(id, givenEnv)),

code(sv[occ(comp(e1, add, e2))]) = seq(code(svicomp(occ(el), add, e2)]),
seq(code(sv[comp(el, add, occ(e2))]),
ADD(usedregb(svjocc(comp(e1, add, e2))]),
usedregb(sviocc(comp(el, add, e2))]),
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usedregb(svjcomp(e1, add, occ(e2))])))),
(4) code(sv[occ(comp(e1, sub, e2))]) = seq(code(svfcomp(occ(el), sub, e2)]),
seq(code(sv[comp(el, sub, occ(e2))]),
SUB(usedregb(svlocc(comp(e1, sub, e2))]),
usedregb(svjocc(comp(e1, sub, e2))]),
usedregb(sv[comp(e1, sub, occ(e2))])))),
(5) code(svlocc(comp(el, mult, €2))]) = seq(code(svicomp(oce(el), mult, e2)]),
seq(code(svcomp(e1, mult, occ(e2))]),
MULT (usedregb(svfocc(comp(e1, muit, e2))]),
usedregb(svloce(comp(e1, mult, e2))]),
usedregb(sv[comp(e1, mult, occ(e2))])))),

(6) usedregb(occ(e)) =1,
(7) usedregb(sv[comp(occ(e1), op, €2)]) = usedregb(svfocc(comp(et, op, e2))]),
(8) usedregb(svicomp(e1, op, occ(e2))]) = usedrega(svjcomp(oce(el), op, e2)]),

(9) usedrega(svlocc(natexpr(n))]) = usedregb(sviocc(natexpr(n))]) + 1,

(10) usedrega(svlocc(idexpr(id))]) = usedregb(svloce(idexpr(id))]) + 1,

(11) usedrega(svlocc(comp(e1, op, e2))]) = usedregb(comp(occ(et), op, e2)
endspec

For the optimized case the needed registers have to be calculated and depending on the
needed registers the code is generated:
aspec OPT =
enrich SOURCE + REG by
attrs synth code: Expr — Code,
usedrega: Expr — Nat,
needed: Expr — Nat,
inh usedregb: Expr — Nat
axioms for all n: Nat; id: Id; e, e1, e2: Expr.
(1) code(svlocc(natexpr(n))]) = regls(usedregb(sv[occ(natexpr(n))]), n),
(2) code(svloce(idexpr(id))]) = regls(usedregb(sv[occ(idexpr(id))]), lookup(id, givenEnv)),
(3) code(svoce(comp(et, add, e2))]) =
if less(needed(sv[comp(e1, add, occ(e2))]), needed(svfcomp(occ(et), add, e2)])))
then seq(code(svcomp(occ(et), add, e2)]),
seq(code(sv[comp(el, add, occ(e2))]),
ADD(usedregb(svfocc(comp(e1, add, e2))]),
usedregb(sv[comp(occ(el), sub, e2)]),
usedregb(sv[comp(e1, add, occ(e2))]))))
else seq(code(sv[comp(e1, add, occ(e?2))]),
seq(code(sv[comp(occ(el), add, e2)]),
ADD(usedregb(sv[ocec(comp(e1, add, e2))]),
usedregb(sv[comp(occ(el), sub, e2)]),
usedregb(svicomp(e1, add, occ(e2))])))) fi,
(4) code(svlocc(comp(e1, sub, e2))]) =
if less(needed(sv[comp(e1, sub, occ(e2))]), needed(svicomp(oce(el), sub, e2)])))
then seq(code(svicomp(occ(el), sub, e2)]),
seq(code(sv[comp(et, sub, oce(e2))]),
SUB(usedregb(sv[occ(comp(et, sub, e2))]),
usedregb(svicomp(occ(el), sub, e2)]),
usedregb(svfcomp(el, sub, oce(e2))]))))
else seq(code(svlcomp(el, sub, occ(e2))]),
seq(code(svcomp(occ(el), sub, e2)]),
SUB(usedregb(svlocc(comp(et, sub, e2))]),
usedregb(sv[comp(occ(el), sub, e2)]),
usedregb(sv[comp(e1, sub, occ(e2))])))) fi,
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Proof

Appendix B.4 *
Fact 8.2.3.3

The following equation stating a connection between the specifications OPT and NOPT
is valid:

v SVExpr — Expr V eppr

val(usedregb®F(sv[oce(e)))) = val(usedregh"OF (sv[oce(e)])) .
Proof
Appendix B.4 .
Fact 8.2.3.4
After performing the computation in register 1 the result of the expression is stored as
well in OPT as in NOPT. 1 4
Proof

Follows immediately from the fact:

Y SVEapr — Bxpre V epyp
val(usedregb®TT(sv[occ(e)])) = val(usedregbNOFT(sv[oce(e)]))
A usedregb®FT(occ(sv[e]) = 1 = usedregb™°(oce(sv]e]) .

Fact 8.2.3.5

The following equation stating a connection between the specifications NOPT and
SOURCE is valid:

VY SVgpr — Brpr ¥ €gapr
val(usedregb"°F(sv[occ(e)])) = value(sv[oce(e)]) .

Proof
analogous to the fact

Vs, Expr — Expr+ v €Expre
regval(usedregh®(sv[oec(e)])) =
regval(usedregb"FI(sv[occ(e)]), codeOF (sv[oce(e)])) .

Fact 8.2.3.6

The following equation stating a connection between the specifications SOURCE and
NOPT is valid:

v SVExpr — Expr* v eExpr'
regval(1, code™°F(occ(sv]e))) = value(oce(sve])) .

Proof

Follows immediately from the fact:

v sy, Expr — Expr- v eExpr'
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formatting a text is to jolt a list of boxes such that the sum of the sizes of the boxes is
conform with a given size. An illustrative example is the computation of the justification
of a line:

[Thisis an example] | task: the sentence should fill the whole box.

[ 1
[This fis Jan fxample/ desired result.
L 1]

figure 37: justification example

This problem can be specified using the following loose attributed algebraic specifi-
cation. Hbox defines a horizontal box with the constructor mkhbox taking the length to be
obtained and a list of horizontal boxes Hlist. A Hlist is either an empty list (mthlist) or
built by the constructor mkhlist with first argument being the local jolting factor, second
argument the natural length and the rest of sort Hlist. The attribute jlength contains the
computed size of the inner boxes which depends on the global jolting factor jfactor (in
the next specification). hboxlength is the length which should be obtained by jlength of
the boxes. nlength is the natural length of the boxes.

aspec LBOXES =
enrich NAT by
sorts Hbox, Hlist
cons mkhbox: Nat, Hlist — Hbox,
mthlist: — Hlist,
mkhlist: Nat, Nat, Hlist — Hlist
attrs synth hboxlength, jlength, nlength: Hbox — Nat
axioms for all i: Nat; I:Hlist.
(1)  hboxlength(oce(mkhbox(i, 1)) =
ifnat eq_Nat(nlength(mkhbox(i, occ(l))), zero)
then zero
else jlength(mkhbox(i, oce(l))) fi
endspec

Another loose specification is:

aspec LBOXES2 =
enrich NAT by
sorts Hbox, Hlist
cons mkhbox: Nat, Hlist — Hbox,
mthlist: — Hlist,
mkhlist: Nat, Nat, Hlist — Hlist
attrs synth hboxlength, jlength, niength, lifactor: Hbox — Nat
inh jfactor: Hbox — Nat
axioms for all i, i1, i2: Nat; I: Hlist.
(1)  jfactor(mkhbox(i, occ(hl))) * nlength(mkhbox(i, oce(hl))) =
hboxlength(oce(mkhbox(, hl))) - ljffactor(mkhbox(i, oce(hl))),
(2) nlength(svjoce(mthlist)]) = zero,
(3) jlength(svfocc(mthlist)]) = zero,
(4) lifactor(svfoce(mthlist)]) = zero,
(56) nlength(sviocc(mkhlist(i1, i2, hl))]) = i2 + nlength(svimkhlist(i1, i2, oce(hl))]),
(6) jlength(mkhbox(i, svfoce(mkhlist(it, i2, hi))])) =
i1 + i2 * jfactor(mkhbox (i, oce(svimkhlist(i1, i2, hi)]))) +
jlength(mkhbox(i, sv[mkhlist(i1, i2, occ(hl))])),
(7) ljfactor(svoce(mkhlist(i1, i2, hi))]) = i1 + lifactor(sv[mkhlist(i1, i2, oce(hl))])
endspec
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Therefore the following fact is necessary:
Fact 8.3.1

VY SViiise — mtise ¥ Xepise-

Jjlength(mkhbox(i, sv[oce(x)))) - lifactor(mkhbox(i, sv[oce(x)])) =
Jfactor(mkhbox(i, occ(sv[x]))) * nlength(mkhbox(i, sv[oce(x)])).

Proof

The complete set being considered is:
CS, = { SVhis » st }
CS, = { mthlist, mkhlist(i1, i2, I) }**

mthlist:

lhs:  jlength(mkhbox(i, sv[occ(mthlist)])) - lifactor(mkhbox(i, sv[occ(mthlist)])) =
zero - zero = zero

rhs:  jfactor(mkhbox(i, oce(svmthlist]))) * nlength(mkhbox(i, sv[occ(mthlist)])) =
Jfactor(mkhbox(i, occ(sv{mthlist]))) * zero = zero

mkhlist(il, i2, Iy:
induction assertion:

Jjlength(mkhbox(i, sv[mkhlist(il, i2, oce(l))])) -
lifactor(mkhbox(i, sv[mkhlist(il, i2, oce(]))])) =
Jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, )]))) *
nlength(mkhbox(i, svmkhlist(i1, i2, oce())]))

Thus we get:

jlength(mkhbox(i, sv[occ(mkhlist(il, i2, [)])) -

lifactor(mkhbox(i, sv[occ(mkhlist(il, i2, I))])) =

il + i2 * jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, I)]))) +
Jjlength(mkhbox(i, sv[mkhlist(il, i2, occ(l)))])) -
lifactor(mkhbox(i, sv[oce(mkhlist(il, i2, I))])) =

il + i2 * jfactor(mkhbox(i, occ(sv[mkhlis«(il, i2, I)]))) +
Jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, )]))) *
nlength(mkhbox(i, sv[mkhlist(i1, i2, occ(l))])) +
lifactor(mkhbox(i, sv[mkhlist(il, i2, occ(]))])) -
lifactor(mkhbox(i, sv[oce(mkhlist(il, i2, I))])) =

il + i2 * jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, occ(D)]))) +
Jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, )]))) *
(nlength(mkhbox(i, sv[oce(mkhlist(il, i2, I))])) - i2) +
lifactor(mkhbox(i, sv[mkhlist(i1, i2, oce(]))])) -
lifactor(mkhbox(i, sv[oce(mkhlist(il, i2, I))])) =

il + i2 * jfactor(mkhbox(i, occ(sv[mkhlisK(il, i2, I)]))) +
Jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, I)])))) *
(nlength(mkhbox(i, sv[oec(mkhlist(il, i2, [)])) - i2) +

21- Stating that the usual term induction is sufficient for the proof of the property.
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{ lifactor(mkhbox(il, svl[occ(mkhlist(i2, i3, sv2[mthlist]))])),
lifactor(mkhbox(il, sv1[mkhlist(i2, i3, occ(sv2[mthiist]))])) }}

This set is the basis for determining the attribute evaluation ordering.
The set of minimal elements me is

{ hboxlength(occ(mkhbox(il, sv1[mkhlist(i2, i3, sv2[mthlist])]))),
nlength(mkhbox(il, sv1[mkhlist(i2, i3, sv2[occ(mthlist)])])),
Jjlength(mkhbox(il, sv1[mkhlist(i2, i3, sv2[oce(mthlist)])])),
lifactor(mkhbox(il, sv1[mkhlist(i2, i3, sv2[occ(mthlist)])])) }

resulting in:

me < ljfactor(mkhbox(il, sv1[mkhlist(i2, i3, occ(sv2[mthlist]))])) <
lifactor(mkhbox(il, sv1[occ(mkhlist(i2, i3, sv2[mthlist]))])) <
lifactor(mkhbox(il, occ(sv1[mkhlist(i2, i3, sv2[mthlist])])))) and

me < nlength(mkhbox(il, sv1[mkhlist(i2, i3, occ(sv2[mthlist]))])) <
nlength(mkhbox(il, svl[occ(mkhlist(i2, i3, sv2[mthlist]))])) <
nlength(mkhbox(il, occ(sv1[mkhlist(i2, i3, sv2[mthlist])])))

me < { nlength(mkhbox(il, occ(svi[mkhlist(i2, i3, sv2[mthlist])]))),
hboxlength(oce(mkhbox(il, svl[mkhlist(i2, i3, sv2[mthlist])])),
ljfactor(mkhbox(il, occ(sv1[mkhlist(i2, i3, sv2[mthlist])])))) } <
Jfactor(mkhbox(il, occ(sv1[mkhlist(i2, i3, sv2[mthlist])]))) and

me < { jfactor(mkhbox(il, occ(sv1[mkhlist(i2, i3, sv2[mthlist])]))) ,
Jjlength(mkhbox(il, sv1[mkhlist(i2, i3, occ(sv2[mthlist]))])) } <
Jjlength(mkhbox(il, svi[occ(mkhlist(i2, i3, sv2[mthlist]))])) <
Jjlength(mkhbox(il, occ(sv1[mkhlist(i2, i3, sv2[mthlist])]))),

This partial ordering is changed to a total ordering:

hboxlength(occ(mkhbox(il, svl[mkhlist(i2, i3, sv2[mthlist])]))) <

nlength(mkhbox(il, sv1[mkhlist(i2, i3, sv2[occ(mthlist)])])) <
lifactor(mkhbox(il, sv1[mkhlist(i2, i3, sv2[occ(mthlist)])])) <
Jjlength(mkhbox(il, sv1[mkhlist(i2, i3, sv2[occ(mthlist)])])) <
nlength(mkhbox(il, sv1[mkhlist(i2, i3, occ(sv2[mthlist]))])) <
lifactor(mkhbox(il, sv1[mkhlist(i2, i3, oce(sv2[mthlist]))])) <
nlength(mkhbox(il, svl[occ(mkhlist(i2, i3, sv2[mthlist]))])) <
lifactor(mkhbox(il, sv1[oec(mkhlist(i2, i3, sv2[mthlist]))])) <
nlength(mkhbox(il, occ(sv1{mkhlist(i2, i3, sv2[mthlist])]))) <
lifactor(mkhbox(il, occ(sv1[mkhlist(i2, i3, sv2[mthlist])])))) <
Jfactor(mkhbox(il, oce(svi[mkhlist(i2, i3, sv2[mthlist])]))) <
Jjlength(mkhbox(il, sv1[mkhlist(i2, i3, occ(sv2[mthlist]))])) <
Jjlength(mkhbox(il, svi[occ(mkhlist(i2, i3, sv2[mthlist]))])) <
Jjlength(mkhbox(il, occ(sv1[mkhlis(i2, i3, sv2[mthlist])]))),

with corresponding visit sequence:

hboxlength for nodes marked with mkhbox

nlength, ljfactor, (jfactor), jlength for nodes marked with mthlist and mkhlist. The global
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9 Further Research Directions

In this chapter some ideas are discussed for further research in the presented framework
and several points of extensions are studied.

9.1 Prototypical Implementations

Up to now only some restricted implementations of the presented specification technique
exist. The most elaborated implementation is a theorem prover for the presented proof
principle of attributed term induction [Duschl 94; WeiB8 95] calculating proof obligations
which are shown by the TIP system [Fraus 94a, 94b]. This theorem prover has delivered
some restrictions which have been overcome using complete sets and induction orde-
rings. This system allows to show e.g. the properties of the ISDN telephone case study.
Beyond the implementation of the attributed term induction the attributed signature flow
analysis problem of reachability is implemented.

It is planned to perform a prototypical implementation of the other aspects, especially
narrowing and attribute evaluation in the functional programming language Gofer. First
steps are already taken. It exists a rudimental scanner, parser and unparser for the specifi-
cations and a first implementation of the unification calculus.

9.2 State-Based Rewriting

In usual attribute grammar systems scanners and parsers build from a text file the
abstract syntax tree. The attribution is performed either while the syntax tree is construc-
ted or after the syntax tree is built.

But e.g. in the framework of user interface specifications rules should be defined how
interactions change the dialogue tree. A rule is applied to a tree, if the action on the user
interface is fired. These rules are similar to the state-based rewrite rules applied in Maude
(cf. e.g. [Meseguer 90, 93a, 93b}).

Example 9.2.1 (state-based rewriting)

An example showing the use of state-based rewrite-rules is the extension of the tele-
phone case study of section 8.1 using rewrite-rules for the transformation of the dialogue
tree.

Assuming the following (conditional) state-based rewrite-rules
(1) mtDialog — mkCall(CALL, x)
(2) mkCall(CALL, x) - mkCall(CALL, EnterTNumber(y))
(8) istelephoning(svlocc(mkCall(x, y))]) = true =
mkCall(x, y) — mkTask(mkCall(x, y), END)

the following dialogue sequence is derivable (We assume that each rewrite rule is fired
by a particular user interaction.):

user interaction actual attributed tree

L == &z

... figure 41

figure 40: dialogue sequence - part 1
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aspec PRODUCER-CONSUMER =
enrich NAT by

sorts Producer, Consumer

cons producer: Producer — Producer,
consumer: Consumer — Consumer,
stopProducer: — Producer,
stopConsumer: — Consumer

opns produce: Nat — Nat,
consume: Nat — Nat

attrs inh counterProducer, produceResult: Producer — Nat,

counterConsumer, consumeResult: Consumer — Nat
axioms for all svP: Producer — Producer; svC: Consumer — Consumer;
p: Producer; c: Consumer.

(1) counterProducer(oce(p)) =0,

(2) counterConsumer(occ(c)) =0,

(3) counterProducer(svP[producer(occ(p))]) = counterProducer(svP[occ(producer(p))]) + 1,

(4) counterConsumer(svC[consumer(occ(c))]) =
counterConsumer(svC[oce(consumer(c))]) + 1,

(5) produceResult(svP[oce(p)]) = produce(counterProducer(svP[occ(p)])),
(6) counterProducer(svP[oce(p)]) = counterConsumer(svCloce(c)])
= consumeResult(svC[oce(c)]) = consume(produceResult(svP[oce(p)]))
endspec

The attributed algebraic specification PRODUCER-CONSUMER describes the beha-
viour of two processes, one producer process (sort Producer) and one consumer process
(sort Consumer). Furthermore, each produced value of the producer process is consumed
by the consumer process. The synchronisation is performed with the counterProducer
and counterConsumer attribute. '

The initialization of the counters is performed in the axioms (1) and (2). Axioms (3) and
(4) define the increment of the counters. Axiom (5) specifies the result of the produced
value at a node of sort Producer depending on the actual counter of this node. If the
counters of both processes are equal then the produced result of the producer process is
consumed by the operation consume and stored in the attribute consumeResult of the
consumer process (axiom (6)). The functions produce and consume are not specified,
since arbitrary functions can be used. Note, that axiom (6) is a conditional equation to
shorten notation, but we can also give an equational specification for it. But handling
communication of processes in a practical way it is necessary to deal with conditional
equations.

Given two terms
t, = producer(producer(producer(producer(stopProducer))))
and

t, = consumer(consumer(consumer(consumer(stopConsumer))))

the attribution looks like (with the producer function doubling the counter and the con-
sumer function incrementing the delivered value):
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10 Conclusions

We have investigated a new specification framework combining and extending the speci-
fication formalism of attribute grammars and algebraic specifications. Algebraic specifi-
cations are extended to describe context dependent information in an intuitive way and
showing their correctness.

The new specifications technique can be applied in a formal software engineering pro-
cess starting with an abstract specification and arriving at a usual attribute grammar after
several implementation steps. The correctness of the software can be guaranteed if the
correctness of each refinement step is shown. For this purpose notions of implementation
relations are introduced and proof theoretical characterizations are given. Especially the
new notion of behaviour - based on an intuitive idea - has been proven to be a good
abstraction mechanism for attributed algebraic specifications. To start with specifications
where several design decisions are left open undirected attribute equations are an essen-
tial component of the new technique.

The presented structuring mechanisms increase the re-use of specifications and allow the
handling of complex software projects. E.g. in the framework of compiler construction
the specification for the problems of identification, typing or code optimizations can be
proved correct and can be put in libraries. Since the implementation relations are mono-
tone wrt. the specification building operations such a proceeding is supported. Moreover,
well known extensions of attribute grammars are subsumed in the proposed approach.
Advantages of other techniques are contained in attributed algebraic specifications neg-
lecting sometimes their shortcomings.

The presented calculi can be used for the verification and the prototypical use of the spe-
cifications. Using the specifications in a prototypical way efficient attribute evaluation
strategies were developed. The calculated visit sequence can be used as an input for
usual systems generating attribute evaluators.

Each case study shows some interesting aspects of the considered new specification tech-
nique. Especially the non trivial compiler example of register placing and its optimiza-
tions shows the usability of the calculi, proof principles and implementation relations.

The presented approach combines the advantages of attribute grammars:

- intuitivity, since attributes are associated with nodes of a tree;

- efficiency, since an efficient attribute evaluation algorithm for undirected attribute
equations is presented;

- context dependent information, since synthesized and inherited attributes are suppor-
ted and

- distinction of syntax and semantics specification, since the syntax is defined by con-
structor terms and their semantics using attribution;

with those of algebraic specifications:

- precise model class semantics, since a model class and behavioural class semantics is
given for the new technique;

- theorem-proving techniques, since calculi are investigated for existentially and univer-
sally quantified formulae;

- deductive aspects, since the calculus for existentially formulae can be used to derive
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Table of Notations and Abbreviations

The following notations and abbreviations are used:

#

ISI
dom(f)
codom(f)
P

S+

;

2s
beh.
cf.
ed.
eds.
e.g.
ie.

iff
LNCS
pp-
Proc.
p.r.s.
s.t.
wlog.

denotes the syntactical equality

denotes the syntactical inequality

denotes the cardinality of a set S

denotes the domain of a function f

denotes the codomain of a function f

denotes the set of all words over S including the empty word €
denotes the set of all words over S without the empty word €
denotes the projection to the i-th component of a tuple

denotes the powerset of S

is the abbreviation for behaviour or behavioural
is the abbreviation for confer

is the abbreviation for editor

is the abbreviation for editors

is the abbreviation for for example

is the abbreviation for id est

is the abbreviation for if and only if

is the abbreviation for Lecture Notes in Computer Science
is the abbreviation for pages

is the abbreviation for Proceedings

is the abbreviation for primitive recursive scheme
is the abbreviation for such that

is the abbreviation for without loss of generality
is the abbreviation for with respect to




186







188 References

[Bidoit et al. 94] M. Bidoit, R. Hennicker, M. Wirsing: Characterizing behavioural se-
mantics and abstractor semantics, in: Proc. ESOP '94, 4th European Symposium on
Programming, LNCS 788, Springer, Berlin, pp. 105-119, 1994

[Bidoit et al. 95] M. Bidoit, R. Hennicker, M. Wirsing: Behavioural and abstractor spe-
cifications, in: Science of Computer Programming, 25 (2-3), pp. 149-186, 1995

[Bidoit, Hennicker 94] M. Bidoit, R. Hennicker: Proving Behavioural Theorems with
Standard First-Order Logic, in: Proc. Algebraic and Logic Programming, 4th Inter-
national Conference, ALP 94, LNCS 850, Springer, Berlin, pp. 41-58, 1994

[Bidoit, Hennicker 95] M. Bidoit, R. Hennicker: Proving the Correctness of Behavioural
Implementations, in: Proc. AMAST 95, 4th International Conference on Algebraic
Methodology and Software Technology, LNCS 906, Springer, Berlin, pp. 152-168,
1995

[Bodart et al. 94] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, 1. Provot, J. M. Vander-
donckt: A Model-Based Approach to Presentation: A Continuum from Task Analysis
to Prototype, in: Proc. of the Eurographics Workshop on Design, Specification and
Verification of Interactive Systems, pp. 25-39, 1994

[Breu 89] R. Breu: A Normal Form for Structured Algebraic Specifications, technical re-
port, MIP-8917, Fakultit fiir Mathematik und Informatik, Universitit Passau, 1989

[Breu 91] R. Breu: Algebraic Specification Techniques in Object Oriented Programming
Environments, LNCS 562, Springer, Berlin, 1991

[Burstall, Goguen 77] R. M. Burstall, J. A. Goguen: Putting theories together to make
specifications, in: Proc. 5th International Joint Conference on Artificial Intelligence,
pp. 1045-1058, 1977

[Burstall, Goguen 80] R. M. Burstall, J. A. Goguen: The semantics of CLEAR, a specifi-
cation language, in: Proc. Advanced Course on Abstract Software Specification,
LNCS 86, Springer, Berlin, pp. 292-332, 1980

[Chirica, Martin 76] L. M. Chirica, D. F. Martin: An Algebraic Formulation of Knuthian
Semantics, in: Proc. of 17th Annual Symposium on Foundations of Computer
Science, IEEE, Houston, Texas, 1976

[Chirica, Martin 79] L. M. Chirica, D. F. Martin: An Order-Algebraic Definition of
Knuthian Semantics, in: Math. Systems Theory, 13, pp. 1-27, 1979

[Courcelle, Deransart 88] B. Courcelle, P. Deransart: Proofs of Partial Correctness for
Attribute Grammars with Application to Recursive Procedures and Logic Pro-
gramming, in: Information and Computation, 78, pp. 1-55, 1988

[Courcelle, Franchi-Zannettacci 82] B. Courcelle, P. Franchi-Zannettacci: Attribute
Grammars and Recursive Program Schemes I, I1, in: Theoretical Computer Science,
17, North-Holland, pp. 163-191 and pp. 235-257, 1982

[Deransart et al. 88] P. Deransart, M. Jourdan, B. Lorho: A#ribute Grammars: Defini-
tions, Systems and Bibliography, LNCS 323, Springer, Berlin, 1988

[Deursen 94] A. van Deursen: Origin tracking in primitive recursive schemes, report CS-
R9401, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1994, an earlier
version appeared in: Proc. CSN '93, (ed.) H. A. Wijshof, pp. 132-143, 1993

[Dueck, Gormack 90] G. D. P. Dueck, G. V. Gormack: Modular Attribute Grammars, in:
The Computer Journal, 33, pp. 164-172, 1990

[Duschl 94] S. Duschl: Ein interaktives System fiir Beweise iiber attributierten algebra-
ischen Spezifikationen, diploma thesis, Institut fiir Informatik, Technische Universi-
tat Miinchen, 1994

[Ehrich et al. 89] H.-D. Ehrich, M. Gogolla, U. W. Lipeck: Algebraische Spezifikation ab-
strakter Datentypen, B.G. Teubner, Stuttgart, 1989

[Ehrig, Mahr 85] H. Ehrig, B. Mahr: Fundamentals of algebraic specifications 1, EATCS
Monographs on Theoretical Computer Science, 6, Springer, Berlin, 1985







190 References

816, Springer, Berlin, 1994
[Heering, Klint 89] J. Heering, P. Klint: The syntax definition formalism SDF, in:
[Bergstra et al. 89], 1989

[Hennicker 88] R. Hennicker: Beobachtungsorientierte Spezifikationen, Ph. D. thesis, Fa-
kultat fiir Mathematik und Informatik, Universitit Passau, 1988

[Hennicker 91] R. Hennicker: Context induction: a proof principle for behavioural ab-
stractions and algebraic implementations, in: Formal Aspects of Computing, 3(4),
pp- 326-345, 1991.

[Hennicker 92] R. Hennicker: A Semi-Algorithm for Algebraic Implementation Proofs, in:
Theoretical Computer Science, 104, pp. 53-87, 1992

[Hennicker, Schmitz 96] R. Hennicker, C. Schmitz: Object-oriented implementation of
abstract data type specifications, in: Proc. AMAST 96, 5th International Conference
on Algebraic Methodology and Software Technology, Munich, July 1996. To appear
in: Lecture Notes in Computer Science, 1996.

[Hennicker, Wirsing 93] R. Hennicker, M. Wirsing: Behavioural specifications, Working
Material for the lectures of Marting Wirsing, Marktoberdorf, Institut fiir Informatik,
Technische Universitit Miinchen, 1993

[Herbrand 30] J. Herbrand: Recherches sur la théorie de la démonstration, in: J. Her-
brand, Logical Writings, (ed.) W. Goldfarb, Harvard University Press, 1930

[Hirshfeld et al. 96] Y. Hirshfeld, M. Jerrum, F. Moller: A polynomial-time algorithm for
deciding bisimulation equivalence of normed context-free processes, in: Journal of
Theoretical Computer Science, 158, April 1996

[Hofbauer, Kutsche 89] D. Hofbauer, R.-D. Kutsche: Grundlagen des maschinellen Be-
weisens, Vieweg, Braunschweig, Wiesbaden, 1989

[Hoppe 88] H. U. Hoppe: Task-Oriented Parsing - A Diagnostic Method to be Used by
Adaptive Systems, in: Proc. of ACM CHI’88 Conference on Human Factors in Com-
puting Systems, pp. 241-247, 1988

[Janssen et al. 93] Ch. Janssen, A. Weisbecker, J. Ziegler: Generating User Interfaces
from Data Models and Dialogue Net Specifications, in: Proc. ACM INTERCHI 93,
Conference on Human Factors in Computing Systems, Automated User Interface
Generation, pp. 418-423, 1993

[Jones 90] L. G. Jones: Efficient Evaluation of Circular Attribute Grammars, in: ACM
Transactions on Programming Languages and Systems, 12(3), pp. 429-462, July
1990

[Kastens 91] U. Kastens: Implementation of Visit-Oriented Attribute Evaluators, in: Proc.
of the International Summer School on Attribute Grammars, Application and Sy-
stems, LNCS 545, Springer, Berlin, pp. 114-139, 1991

[Kastens, Waite 92] U. Kastens und W. M. Waite: Modularity and Reusability in Attribute
Grammars, technical report, Reihe Informatik tr-ri-92-102, Universitit-GH Pader-
born, Fachbereich Mathematik-Informatik, July 1992, also in: Acta Informatica, 31,
pp. 601-627, 1994

[Katayama, Hoshino 81] T. Katayama, Y. Hoshino: Verification of Attribute Grammars,
in: Proc. 8th POPL, Williamsburg, VA, pp. 177-186, January 1981

[Kernighan, Ritchie 78] B. W. Kernighan, D. M. Ritchie: The C Programming Language,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978

[Klint 93] P. Klint: A meta-environment for generating programming environments, in:
ACM Transactions on Software Engineering and Methodology, 2(2), pp. 176-201,
1993

[Knapik 91] T. Knapik: Specifications with observable formulae and observational satis-

faction relation, in: Recent Trends in Data Type Specification, (eds.) M. Bidoit, C.
Choppy, LNCS 655, Springer, Berlin, pp. 271-291, 1991




References 191

[Knopp 90] J. W. Knopp: Deklarativ erweiterte Attributgrammatiken: Funktionale Se-
mantik und Implementierungskonzepte, technical report, Institut fiir Informatik,
TUM-I9030, Technische Universitdt Miinchen, 1990

[Knuth 68] D. E. Knuth: Semantics of context-free languages, in: Mathematical Systems
Theory, 2, pp. 127-145, 1968

[Kosiuczenko, Meinke 96] P. Kosiuczenko, K. Meinke: On the Power of Higher-Order
Algebraic Specification Methods, in: Information and Computation, 124, pp. 85-101,
1996

[Kronert et al. 89] G. Kronert, G. Lauber, H.-G. Mannes: Spezifikation, Prototyping und
Implementierung von interaktiven Systemen und Verwendung von attributierten
Grammatiken, in: Software-Entwicklung, pp. 225-238, 1989

[Liebl et al. 90] A. Liebl, J. Knopp, A. Poetzsch-Heffter: Delayed evaluation: Making
functional attribute grammars directly executable, technical report, Institut fiir Infor-
matik, Technische Universitit Miinchen, 1990

[Liskov, Zilles 74] B. H. Liskov, S. N. Zilles: Programming with abstract data types. in:
ACM SIGPLAN Notices, 9, pp. 50-59, 1974

[Lonczewski 95] F. Lonczewski: Using a WWW browser as an Alternative User Interface
for Interactive Applications, in: Poster Proceedings of the 3rd World Wide Web Con-
ference, Roland Holzapfel (ed), Fraunhofer Institute for Computer Graphics, Darm-
stadt, Germany, 1995

[Lonczewski, Schreiber 96] F. Lonczewski, S. Schreiber: The FUSE-System: an Integra-
ted User Interface Design Environment, in: Proceedings of the 2nd International
Workshop on Computer-Aided Design of User Interfaces CADUI‘96, Namur, 5-7
June 1996, J. Vanderdonckt (ed.), Presses Universitaires de Namur, Namur, 1996

[Magnusson et al. 90] B. Magnusson, M. Bengtsson, L. O. Dahlin, G. Fries, A. Gustavs-
son, G. Hedin, S. Minor, D. Oscarsson, M. Taube: An Overview of the Mjolner/Orm
Environment: Incremental Language and Software Development, technical report,
LU-CS-TR:90:57, Lund University, 1990

[Martelli, Montanari 82] A. Martelli, U. Montanari: An efficicient unification algorithm,
in: ACM Transactions on Programming Languages Systems, 4(2), pp. 258-282, 1982

[McCarthy, Painter 67] J. McCarthy, J. Painter: Correctness of a Compiler for Arithmetic
Expressions, in: Mathematical aspects of computer science, (ed.) J. T. Schwartz,
Proc. of symposia in applied mathematics, 19, pp. 33-41, 1967

[Meulen 94] E. A. van der Meulen: Incremental Rewriting, Ph. D. thesis, University of
Amsterdam, 1994

[Meseguer 90] J. Meseguer: A logical theory of concurrent objects, in: ACM SIGPLAN
Notices, 25(10), Proc. OOPSLA/ECOOP '90, pp. 101-115, Oktober 1990

[Meseguer 93a] J. Meseguer: A logical theory of concurrent objects and its realization in
the Maude language, in: Research Directions in Object-Based Concurrency, (eds.) G.
Agha, P. Wegner, A. Yonezawa, MIT Press, 1993

[Meseguer 93b] J. Meseguer: Solving the inheritance anomaly on concurrent object-
oriented programming, in: ECOOP '93, Object Oriented Programming, (ed.) O. Nier-
strasz, LNCS 707, Springer, Berlin, pp. 220-246, 1993

[Meseguer, Winkler 92] J. Meseguer, T. Winkler: Parallel programming in Maude, in:
Research Directions in High-level Parallel Programming Languages, (eds.) J.-P.
Banitre, D. Le Métayer, LNCS 574, Springer Verlag, pp. 253-293, 1992

[Moller 87] B. Moller: Higher-Order Algebraic Specifications, Habilitationsschrift, Fa-
kultdt fiir Mathematik und Informatik, Technische Universitit Miinchen, 1987

[Moncke, Wilhelm 91] U. Moncke, R. Wilhelm: Grammar Flow Analysis, in: Proc. At-
tribute Grammars, Application and Systems, International Summer School SAGA,
LNCS 545, Springer, Berlin, 1991










194 References













198 Behavioural Implementation Proof

depth(mobile(mobile(occ(cube(1)), cube(3)), cube(2))) },
{ cmaxdepth(mobile(mobile(cube(1), occ(cube(3))), cube(2))),
depth(mobile(mobile(cube(1), occ(cube(3))), cube(2))) },
{ cmaxdepth(mobile(mobile(cube(1), cube(3)), occ(cube(2)))),
depth(mobile(mobile(cube(1), cube(3)), occ(cube(2)))) },

{ cmaxdepth(occ(mobile(mobile(cube(1), cube(3)), cube(2)))),
cmaxdepth(mobile(occ(mobile(cube(1), cube(3))), cube(2))),
cmaxdepth(mobile(mobile(cube(1), cube(3)), occ(cube(2)))) },

{ cmaxdepth(mobile(occ(mobile(cube(1), cube(3))), cube(2))),
cmaxdepth(mobile(mobile(occ(cube(1)), cube(3)), cube(2))),
cmaxdepth(mobile(mobile(cube(1), occ(cube(3))), cube(2))) },

{ length(mobile(mobile(occ(cube(1)), cube(3)), cube(2))) },
{ length(mobile(mobile(cube(1), occ(cube(3))), cube(2))) },
{ length(mobile(mobile(cube(1), cube(3)), occ(cube(2)))) },

{ leftlength(mobile(mobile(occ(cube(1)), cube(3)), cube(2))) },
{ leftlength(mobile(mobile(cube(1), occ(cube(3))), cube(2))) },
{ leftlength(mobile(mobile(cube(1), cube(3)), occ(cube(2)))) },

{ rightlength(mobile(mobile(occ(cube(1)), cube(3)), cube(2))) },
{ rightlength(mobile(mobile(cube(1), occ(cube(3))), cube(2))) },
{ rightlength(mobile(mobile(cube(1), cube(3)), occ(cube(2)))) },

{ length(occ(mobile(mobile(cube(1), cube(3)), cube(2)))),
cmaxdepth(occ(mobile(mobile(cube(1), cube(3)), cube(2)))),
depth(occ(mobile(mobile(cube(1), cube(3)), cube(2)))) },

{ length(mobile(occ(mobile(cube(1), cube(3))), cube(2))),
cmaxdepth(occ(mobile(mobile(cube(1), cube(3)), cube(2)))),
depth(mobile(occ(mobile(cube(1), cube(3))), cube(2))) } }

Appendix B.2 Behavioural Implementation Proof

Fact:
It holds:
BEHLMOBILE is implemented by CMOBILE?2

Proof

For the proof the following complete sets of occurrence terms is used:

CS = { occ(cube(l)), occ(mobile(ml, m2)), sv[mobile(occ(cube(I1)), cube(i2))],
sv[mobile(cube(l1), occ(cube(l2)))], sv[mobile(occ(mobile(m1, m2)), cube(l))],
sv[mobile(mobile(m1, m2), occ(cube(l)))],
sv[mobile(occ(cube(l)), mobile(m1, m2))],
sv[mobile(cube(l), occ(mobile(mml, m2)))],
sv[mobile(occ(mobile(ml, m2)), mobile(m3, m4))},
sv[mobile(mobile(m1, m2), occ(mobile(m3, m4)))] }

The proof that CS is a complete set of occurrence terms is left to the reader. The partition

B T2
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proof:
Solutions®MOBLEX({ occ(cube(l)) }) =
{ 0| Mod(CMOBILE2) |z, leftlength(occ(cube(l))) = o(xy),
rightlength(occ(cube(l))) = o(x,), length(occ(cube(l))) = o(x3),
depth(occ(cube(l))) = o(x4), cmaxdepth(occ(cube(l))) = o(xs) }
={ [xl/o)xz/o) x3/0,x4/1,x5/1 ] }
2{[x1/0,x,/0,x3/0,x4/1,x5/1]}
= { o | Mod(BEHLMOBILE) [ , leftlength(occ(cube(l))) = o(x,),
rightlength(occ(cube(l))) = o(x,), length(occ(cube(l))) = o(xs),
depth(occ(cube(l))) = o(x,), cmaxdepth(occ(cube(l))) = o(xs) }
= SolutionsPEHLMOBILE( [ occ(cube(l)) })
Since in CMOBILE?2 holds
leftlength(occ(cube(l))) = 0,
rightlength(occ(cube(l))) = 0,
length(occ(cube(l))) = 0,
depth(occ(cube(l))) = 1,
cmaxdepth(occ(cube(l))) = depth(occ(cube(l))) = 1
and in BEHLMOBILE holds:
leftlength(occ(cube(l))) = 0,
rightlength(occ(cube(l))) = 0,
length(occ(cube(l))) = 0,
depth(occ(cube(l)) = 1, |
cmaxdepth(occ(cube(l))) = depth(occ(cube(l))) = 1

Proof obligation (2):
SolutionsMOBILEX({ occ(mobile(ml, m2)) }) 2
SolutionsPPHLMOBILE({ occ(mobile(m1, m2)) })

induction assertion:
SolutionsMOBILEX({ mobile(occ(ml), m2), mobile(m1, occ(m2)) }) C
SolutionsPFHIMOBILE({ mobile(occ(ml), m2), mobile(m1, occ(m2)) })

proof:
SolutionsPFHLMOBILE({ occ(mobile(m1, m2))}) =
{ o | Mod(BEHLMOBILE) |z ., leftlength(occ(mobile(m1, m2))) = o(x,),
rightlength(occ(mobile(ml, m2))) = o(x,),
length(occ(mobile(ml, m2))) = o(xs),
depth(occ(mobile(ml, m2))) = o(x,),
cmaxdepth(occ(mobile(ml, m2))) = o(xs) }
= { [ x,/ length(occ(mobile(m1, m2))) * weight®EHLMOBILE(mobile(m1, occ(m2))) /
weightPEHLMOBILE (gcc(mobile(m1, m2))),
x, [ length(occ(mobile(m1, m2))) * weightPEHLMOBILE mobile(occ(ml), m2)) /
weighPEHLMOBLLE (occ(mobile(ml, m2))), x4/ 1,
X5 / max(cmaxdepth(mobile(occ(ml), m2)), cmaxdepth(mobile(m1, occ(m2)))) }
Putting this solutions into the attribute equations for the considered term in CMOBILE?2
and showing that the attribute equations with these solutions are valid. The inclusion fol-













204 Solving Existentially Quantified Formulae

|3, 1SDN-Attribution (18))
({ x1 = mkState(mkCon(nr, telephoning), mtCon),
x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
x2 = conference(x3),
x3=x5},
[ cm / CONFERENCE,
sv/ Wl[mkconfer ence(ZCalh x4: ZConferenceMenu)] ]’
{ x1 = stateafter(mkDialog(sv1[mkConference(occ(mkCall(CALL,
mkEnterTNumber(nr))), x4, CONFERENCEY)),
x2 = stateafter(mkDialog(sv1[mkConference(mkCall(CALL,
mkEnterTNumber(nr)), x4, occ(CONFERENCE))))),
x3 = statebefore(mkDialog(sv1[mkConference(mkCall(CALL,
mkEnterTNumber(nr)), x4, occ(CONFERENCE))))),
x5 = stateafter(mkDialog(sv1[mkConference(mkCall(CALL,
mkEnterTNumber(nr)), occ(x4), CONFERENCE)))) })
F s, 18DN- Auibution (1)
({ x1 = mkState(mkCon(nr, telephoning), mtCon),
x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
x2 = conference(x3),
x3 =x5,
x5 = secondCall(x6, x7) },
[ cm /| CONFERENCE,
sv [ svl[mkConference(zc,y, mkSecondCallSECONDCALL,
mkEnterTNumber(x8)), Zconferencettens) )
x4 | mkSecondCall(SECONDCALL, mkEnterTNumber(x8)) ],

{ x1 = stateafter(mkDialog(sv1[{mkConference(occ(mkCall(CALL,
mkEnterTNumber(nr))), mkSecondCallSECONDCALL,
mkEnterTNumber(x8)), CONFERENCE)Y))),

x2 = stateafter(mkDialog(sv1[mkConference(mkCall(CALL,
mkEnterTNumber(nr)),
mkSecondCall(SECONDCALL, mkEnterTNumber(x8)),
occ(CONFERENCE))))),
x3 = statebefore(mkDialog(sv1[mkConference(mkCall(CALL,
mkEnterTNumber(nr)), mkSecondCall(SECONDCALL,
mkEnterTNumber(x8)), occ(CONFERENCE))))),
x5 = stateafter(mkDialog(sv1[mkConference(mkCall(CALL,
mkEnterTNumber(nr)), occ(mkSecondCall(SECONDCALL,
mkEnterTNumber(x8))), CONFERENCE)Y))),
x7 = statebefore(mkDialog(sv1[mkConference(mkCall(CALL,
mkEnterTNumber(nr)), occ(mkSecondCall(SECONDCALL,
mkEnterTNumber(x8))), CONFERENCE)))) } )
Fona, 1sDN-Adribution 17)
({ x1 = mkState(mkCon(nr, telephoning), mtCon),
x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
x2 = conference(x3),
x3 = x5,
x5 = secondCall(x6, x1) },
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statebefore(mkDialog(sv1[mkConference(mkCall(CALL,
mkEnterTNumber(nr)), occ(mkSecondCallSECONDCALL,
mkEnterTNumber(x8))), CONFERENCE)])) } )

As next steps the attribute equations have only be solved without complicated transfor-
mations.

Appendix B.4 Proving the Correctness of the Compiler Specifications

Fact:
It holds:

V sy Instr — Instr+ V sv! 'Expr — Expr* v eExpr'
stacka(sv[occ(code(sv'[occ(e)]))]) =
push(value(sv[occ(code(sv'[occ(e)]))]), stackb(sv[occ(code(sv'[occ(e)]))]))

Proof
This property is shown using the following complete sets of occurrence terms:

CSsy = { Vpstr s }

CSsv={ VExpr —Bxpr }

CS, = { natexpr(n), idexpr(id), comp(el, add, e2), comp(el, sub, e2), comp(el, mult, e2) }
natexpr(n):

Ihs: stacka(sv[occ(code(sv'[occ(natexpr(n))]))]) = stacka(sv[occ(NST(n))]) =

push(n, stackb(sv[occ(NST(n))]))

rhs: push(value(sv[occ(code(sv'[occ(natexpr(n))]))]),
stackb(sv[occ(code(sv'[occ(natexpr(n))]))])) =
push(value(sv[occ(NST(n))]), stackb(svocc(NST(n))])) =
push(top(stacka(sv[occ(NST(n))])), stackb(sv[occ(NST(n))])) =
push(n, stackb(sv[occ(NST(n))]))

idexpr(id):

lhs: stacka(sv[occ(code(sv'[occ(idexpr(id))]))]) = stacka(sv[occ(IST(id))]) =
push(lookup(id, givenEny), stackb(sv]occ(IST(id))]))

rhs: push(value(svocc(code(sv'[occ(idexpr(id))]))]),
stackb(sv[occ(code(sv'[occ(idexpr(id))]))])) =
push(value(sv[occ(IST(id))]), stackb(sv[occ(IST(id))])) =
push(top(stacka(sv{occ(IST(id))])), stackb(sv[occ(IST(id))])) =
push(lookup(id, givenEnv), stackb(sv[occ(IST(id))]))

comp(el, add, e2):
lhs: stacka(sv[occ(code(sv'[occ(comp(el, add, e2))]))]) =
stacka(sv[occ(code(sv'[comp(occ(el), add, e2)]) ;

code(sv'[comp(el, add, occ(e2))]))]) ; ADD)]) =
stacka(sv[code(sv'[comp(occ(el), add, e2)]);
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val(usedregb"°FI(sv[comp(occ(el), add, e2)])) +
val(usedregb™FT(sv[comp(el, add, occ(e2))]))
rhs:
val(usedregb™°F (sv[occ(comp(el, add, e2))])) =
regval(usedregb"OFI(sv[occ(comp(el, add, e2)))),
codeNOF (sv[occ(comp(el, add, €2))])) =
regval(usedregb"°FT(sv[occ(comp(el, add, e2))]),
seq(code°FT(sv[comp(occ(el), add, e2)]),
seq(code"OFI(sv[comp(el, add, occ(e2)))),
ADD(usedregb"°F(sv[occ(comp(el, add, e2))]),
usedregb"oF1(sv[occ(comp(el, add, e2)))),
usedregb"OP!(sv[comp(el, add, occ(e2))]))))) =
regval(usedregbNoFI(sv[occ(comp(el, add, e2))]),
codeNOFT(sv[comp(occ(el), add, e2)]))
& regval(usedregb"°FI(sv[occ(comp(el, add, e2))]),
codeNOF (sv[comp(el, add, occ(e2))]))
& regval(usedregb™°TT(sv[occ(comp(el, add, e2))]),
ADD(usedregb"°FT(sv[occ(comp(el, add, €2)))),
usedregb"°F(sv[occ(comp(el, add, e2))]),
usedregb"°FI(sv[comp(el, add, occ(e2))]))
val(usedregb™°F (sv[occ(comp(el, add, e2))])) +
val(usedregb™°FT(sv[comp(el, add, occ(e2))])) =
val(usedregb"°FT(sv[comp(occ(el), add, e2)])) +
val(usedregb™NT(sv[comp(el, add, occ(e2))]))

svlocc(comp(el, sub, e2))] and sv[occ(comp(el, mult, e2))]:
analogous to add *
Fact:

The following equation holds between the specifications OPT and NOPT

Y SVespr — Expre ¥ €Expre
val(usedregb®(sv{occ(e)])) = val(usedregh’ T (sv[occ(e)])) .

Proof
The proof is done using the following complete set of occurrence terms:

{ sv[occ(natexpr(n))], sv[occ(idexpr(id))], svfocc(comp(el, add, e2))],
sv[occ(comp(el, sub, €2))], svfocc(comp(el, mult, e2))] }

svlocc(natexpr(n))]:
val(usedregb®"(sv[occ(natexpr(n))])) =
regval(usedregb®FI(sv[occ(natexpr(n))]),
regls(usedregb®(sv[occ(natexpr(n))]), n)) = n =
regval(usedregb"FT(sv[occ(natexpr(n)))),
regls(usedregb"OF (sv[occ(natexpr(n)))), n)) =
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