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Abstract
In this thesis a new specification technique, called attributed algebraic specification, is 
investigated closing the gap between the specification formalisms of algebraic specifi­
cations and attribute grammars to combine the advantages of algebraic specifications 
(e.g. precise model class semantics, theorem proving techniques, deductive aspects, 
abstraction, refinement relations) and those of attribute grammars (e.g. intuitivity, 
efficiency, description of context dependent information, distinction of syntax and 
semantics specification). The contribution of this thesis is the extension of algebraic spe­
cifications in such a way that the ideas of both specification techniques are combined and 
extended, i.e. especially to describe context dependent informations and to prove their 
correctness.

Undirected attribute equations, instead of directed attribute equations as in usual attri­
bute grammar systems, are allowed for an abstract specification of the attribute depen­
dencies in the proposed specification technique. These equations are solvable in the 
considered logical framework. But they require the investigation of new dependency 
notions and new attribute evaluation strategies.

For the new formalism specification building operations are defined and it is shown how 
they can be normalized. Especially these operations take the notion of behaviour for 
attributed trees as an abstraction mechanism into consideration.

A standard and a behavioural implementation relation are developed with proof theore­
tical characterizations and properties, like transitivity or monotonicity relative to the spe­
cification building operations.

Calculi for solving existentially and universally quantified formulae are presented. For 
the universally quantified formulae an induction principle and a notion of complete set is 
defined usable especially for showing the correctness of implementation relations.

Case studies show the applicability of the new approach in the area of specifying the 
dynamics of user interfaces, compilers and document architecture systems.

The presented formalism can be used in a formal software engineering process. In this 
framework a software engineering process starts with a loose attributed algebraic specifi­
cation which will be refined until a usual attribute grammar is reached from which an 
executable program can be generated. In this process all aspects of the thesis can be app­
lied as the following considerations show:

Undirected attribute equations allow a loose and abstract specification. To execute such 
specifications (catchword: rapid prototyping}, calculi are necessary for solving exis­
tentially quantified formulae. To speed up execution time attribute evaluation algorithms 
have to be proposed for undirected attribute equations. Specification building operations 
allow modularization in the software development process resulting in readable specifi­
cations. To obtain correct software after several refinement steps first of all testing on a 
high level o f abstraction is necessary (usage of calculi for proving existentially and uni­
versally quantified formulae). Secondly, the correctness o f the refinement steps must be 
shown (proof theoretical handling of the refinement relations). In the considered case 
studies these aspects are shown exemplarily.
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Introduction 1

1 Introduction

Attribute grammars as introduced in [Knuth 68] are a well accepted formalism, for e.g. 
specifying compilers [Aho et al. 86], language-based environments [Reps, Teitelbaum 
84], user interfaces [Krönert et al. 89; Schreiber 94a, 94b, 96; Bauer 95], document 
architecture [Eickel 90; SchreiberW 96] and (static) semantics of programming langua­
ges [Aho et al. 86] (for more details on attribute grammars see [Deransart et al. 88; Alb- 
las, Melichar 90]). The theory of attribute grammars and their application are well 
studied. Many extensions of pure attribute grammars can be found in the literature, e.g. 
attribute coupled grammars [Ganzinger, Giegerich 84], higher-order attribute grammars 
[Vogt et al. 89], declarative extended attribute grammars [Knopp 90; Liebl et al. 90], 
object-oriented extensions [Hedin 89, 92, 94] and formal specifications of context 
dependent syntax of programming languages [Poetzsch-Heffter 91a, 91b, 94, 96].

Moreover, a lot of attribute grammar systems have been implemented (cf. e.g. [Reps, Tei­
telbaum 84; Grosch 89; Magnusson et al. 90; Kastens 91; Gray et al. 92; Poetzsch-Heff­
ter 96]). The advantages of attribute grammars are efficiency (i.e. efficient algorithms 
exist for computing the attribute values), intuitivity (i.e. the notion of attribute grammars 
is easy to understand), detailed investigation (i.e. a lot of research has been done on this 
topic), wide use (e.g. attribute grammars are a well accepted technique for specifying 
compilers). Furthermore, attribute grammars are a highly declarative description which 
can be translated into efficient imperative programs.

On the other hand algebraic specifications (cf. e.g. [Ehrig, Mahr 85; Wirsing 90]) are 
used for the development of software systems (starting with [Liskov, Zilles 74; Guttag 
75; ADJ 76]), since stepwise refinement and structured programming introduced by 
Dijkstra and Wirth are supported. These specifications are used frequently for the step- 
wise refinement of high-level specifications to low-level programs or executable specifi­
cations (rapid prototyping). Especially algebraic specifications are used to obtain correct 
software. They allow the description of data structures and functions in an implementa­
tion independent way. An algebraic axiomatic specification consisting of a signature and 
the characteristic properties defines a class of algebras. Concerning refinement or imple­
mentation steps abstraction mechanisms are realized as notions of behaviour [Goguen, 
Meseguer 82; Reichel 81; Sannella, Wirsing 83; Wirsing 86; Bidoit et al. 94].

The main contribution of this thesis is to extend algebraic specifications in such a way 
that the ideas of algebraic specifications and attribute grammars are combined.

Our efforts are visualized in figure 1.

figure 1: combining attribute grammars and algebraic specifications



2 Extensions of Algebraic Specifications

The proposed specification technique, called attributed algebraic specification, closes 
the gap between the specification formalisms of attribute grammars and algebraic speci­
fications. The advantages of algebraic specifications, namely a precise model class 
semantics, theorem-proving techniques, deductive aspects, abstraction, refinement or 
implementation relations, and those of attribute grammars, namely intuitivity, efficiency, 
context dependent information, distinction of the syntax and semantics specification are 
obtained. Roughly speaking the shortcomings of the one approach are the advantages of 
the other approach and vice versa. Therefore the new technique subsumes the advantages 
of both techniques, neglecting more or less the shortcomings of both. In this framework a 
software engineering process starts with an attributed algebraic specification - being an 
extension of pure algebraic specifications. This specification will be refined until a speci­
fication is reached - being a usual attribute grammar - which can be used as a basis for 
generating an executable program. The following subsections give an overview of the 
investigated work.

1.1 Extensions of Algebraic Specifications

Pure algebraic specifications are extended to describe context dependent information and 
to specify its properties.

On the syntactical side the notion of term is extended to attribute term and formulae are 
defined over these attribute terms.

On the semantical side the interpretation function has to adapted to the new term notion.

Attribute terms allow the definition of context dependent information in the following 
way:
- A set of occurrence terms is associated with a usual ground constructor term, i.e. a term 

consisting only of constructor symbols and no identifiers, denoting the occurrences of 
the term, i.e. viewing a term as a tree, the nodes of the tree.

- Distinguished function symbols, namely attribute function symbols, can be applied to 
these occurrence terms representing the information to be assigned to the nodes of the 
tree. The application of an attribute function symbol to an occurrence term is called 
attribute occurrence.

- For technical reasons (e.g. for the proof principle, automatic term construction, imple­
mentation proofs, attribute evaluation,...) and to describe remote access of attribute oc­
currences a new kind of identifier is introduced, called subterm identifier, which can be 
substituted using any context in the sense of algebraic specifications.

Thus an attributed algebraic specification consists of a signature with a set of sort, con­
structor and function symbols with a distinguished subset of attribute function symbols 
and a set of axioms being equations over the extended term notion. In a logical frame­
work existentially quantified formulae can be solved, therefore undirected attribute equa­
tions specifying only some relations on the attribute occurrences can be used.

For attributed algebraic specifications the same structuring mechanisms are defined as in 
ASL [Wirsing 86]. Moreover, these structured specifications can be normalized like 
ASL-operations.
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1.2 Notion of Behaviour

In the framework of algebraic specifications the notion of behaviour has been proven to 
be an adequate mechanism of abstraction. In the framework of attribute grammars no 
abstraction mechanism can be found. But considering e.g. the specification of a compiler 
abstraction is useful, too. Usually the compilation process is split into several phases 
with one attribute grammar for each phase. In each phase more or less one attribute is 
interesting, e.g. in the type analysis phase it is the attribute in which the type of an 
expression is stored and in the code generation phase it is the attribute containing the cal­
culated code. But auxiliary attributes are necessary for deriving the type of an expression 
or the code (see the case study of the compiler). Therefore attribute grammars can be 
viewed as behaviourally equivalent, if the derived type or code is equivalent or beha- 
viourally equivalent. Behavioural equivalence on attribute values is useful, since e.g. 
optimized and unoptimized code should be equivalent. Thus the following notion of 
behaviour for attributed algebraic specifications is obtained:

Two attributed trees are behaviourally equivalent, if the values of the corresponding ob­
servable attribute occurrences are behaviourally equivalent in the sense of algebraic 
specifications.

13  Attribute Dependencies and Attribute Evaluation

In attribute grammar systems directed dependency graphs are used for analysing the 
attribute dependencies and as a basis of the generation of efficient attribute evaluators. 
Since attributed algebraic specifications allow undirected attribute equations (instead of 
directed attribute equations as in attribute grammars) specifying only some relations on 
the attribute occurrences dependency sets are defined for the description of the reciprocal 
dependence of attribute occurrences. These dependency sets are the basis for the deter­
mination of the attribute evaluation ordering. In contrast to usual attribute grammars it is 
not possible to determine the subordinate and superior characteristic set analogously to 
graphs and use this knowledge to derive the attribute evaluation ordering. These charac­
teristic sets cannot be determined without the knowledge of the attribute evaluation orde­
ring. Let us consider an example showing this problem:

ln h  n  ^ n th  IniT n synth

Having a node n with an inherited attribute inh and a synthesized attribute synth and an 
attribute equation inh(n) = synth(n), i.e. the inherited attribute value at node n is equal to 
the synthesized attribute at this node, it depends on the attribute evaluation ordering 
whether there is a subordinate (the inherited one is calculated before the synthesized one) 
or a superior relation (the synthesized one is calculated before the inherited one) between 
the two attribute occurrences. Therefore the attribute evaluation ordering has to be deter­
mined before the subordinate and superior characteristic set can be calculated. These sets 
are consequently not involved in determining the attribute evaluation ordering, but can 
be used as a basis for getting efficient heuristics of the calculi. Having determined such 
an ordering for each node of a tree the visit sequences can be computed. Having calcula­
ted the visit sequences the generation of attribute evaluators can be performed as for 
usual attribute grammars with the exception that a narrowing engine is necessary for the 
calculation of the values of the attribute occurrences, because it is dealt with undirected



4 Calculi

attribute equations. To use the specifications prototypically a dynamic attribute evalua­
tion algorithm is developed to determine without a generation process the attribute eva­
luation ordering and the attribute values of a given tree.

1.4 Calculi

Extending the notion of terms to attribute terms the usual unification algorithm has to be 
adapted. Especially the use of subterm identifiers (being place holders for terms with 
special insertion places, like contexts in an algebraic specification) induces major revises 
to the existing unification calculi. For two unifiable attribute terms there cannot be deter­
mined a most general unifier, but a complete set of minimal unifiers. A new unification 
algorithm will be given, computing such a complete set of minimal unifiers of a set of 
terms iff a set of terms is unifiable. The correctness and completeness of the unification 
calculus is shown. The obtained complete set of minimal unifiers is finite.

Since we are working with attributed algebraic specifications in a logical framework, it is 
possible to perform deductions. The values of the attribute occurrences specified using 
undirected attribute equations can be calculated solving existentially quantified formu­
lae.

In particular, it is possible to solve formulae of the form

with a subterm identifier sv and a property P  containing the subterm identifier sv, i.e. 
solutions of sv should be derived, such that P  is valid. An application of deduction is in 
the framework of automatic programming: Let the static semantics of a programming 
language be specified using an attributed algebraic specification. Solving such formulae 
a program fragment can be completed such that a correct program is obtained relative to 
the semantics definition. E.g. variables can be declared automatically or type information 
of functions can be inserted automatically. Another application is the derivation of intel­
ligent help in the framework of user interfaces: E.g. having a given state of the appli­
cation and an already performed dialogue the necessary dialogue steps can be 
determined to reach another state of the application.

In this thesis a calculus is presented for solving existentially quantified formulae. 
Beyond existentially quantified formulae, universally quantified formulae are of interest. 
Therefore the equational calculus is extended to handle the new term notion and an 
induction principle is presented, called attributed term induction, to prove properties 
over attribute occurrences of occurrence terms of a distinguished sort. For this proof 
principle a semi-algorithm is developed, which was the basis of the implementation of 
the proof principle [Duschl 94; Weiß 95]. With the induction principle e.g. invariants can 
be shown which have to hold between attribute occurrences.

A generalization of attributed term induction is obtained introducing an induction orde­
ring and a notion of complete sets o f occurrence terms and complete sets o f subterm 
identifiers (computable by the presented semi-algorithm). These notions allow to prove 
properties between occurrences of different sorts.

Efficient heuristics can be obtained taking the dependencies into consideration which are 
achieved in the analysing phase of the attributed algebraic specification.
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1.5 Refinements

Two kinds of implementation relations for attributed algebraic specifications are investi­
gated. One standard implementation relation which does not take behavioural aspects 
into consideration and a behavioural implementation notion based on the already presen­
ted idea of behaviour for attributed algebraic specifications. For both implementation 
notions we show the transitivity and monotonicity relative to the proposed specification 
building operations. In particular, proof theoretical characterizations of the standard and 
behavioural implementation relation are developed.

The composability of the implementation relations allows to implement the algebraic 
part, i.e. the part of an attributed algebraic specification, being a usual algebraic specifi­
cation, independent of the attribution part, i.e. the part of the attributed algebraic specifi­
cation defining attributions on constructor terms.

This property simplifies the verification effort for proving implementations. For example 
let Sp^ Sp2 and Sp3 be usual algebraic specifications stored in an algebraic specification 
library. Suppose it was already shown that Sp3 is an implementation of Sp2 and Sp2 is an 
implementation of Sp^  In order to show that the enrichment of an algebraic specification

by an attribution Attr, denoted by enrich Spv by Attr, is implemented by enrich Sp2 
by Attr which in turn is implemented by enrich Sp3 by Attr it is sufficient to know that

Spi is implemented by Sp2 and Sp2 is implemented by Sp3

Using transitivity and monotonicity it holds: enrich Sp± by Attr is implemented by 
enrich Sp3 by Attr. Thus algebraic specification libraries can be used in the new 
approach without doing verification twice.

1.6 Related Work

The new specification technique is a combination of attribute grammars and algebraic 
specifications thus we have to discuss related work of these two topics.

In the framework of attribute grammars higher-order attribute grammars [Vogt et al. 89; 
Swierstra, Vogt 91] and attribute coupled grammars [Ganzinger, Giegerich 84] can be 
found. Roughly speaking syntax trees are first class citizens, i.e. syntax trees can be the 
result of an attribution and can be pasted into an incomplete syntax tree. Since in the new 
approach syntax trees are usual terms, which can be the result of a calculation, these 
extensions can also be expressed in attributed algebraic specifications.

Tree transformations [Alblas 89] for attribute grammars describe by rules the transfor­
mation of an attributed tree in a new attributed tree dependent on the values of attribute 
occurrences of the syntax tree. In the new approach equations can be defined on con­
structor terms defining such transformation rules.

Primitive recursive schemes [Courcelle, Franchi-Zannettacci 82] being a restricted class 
of algebraic specifications have been introduced to express attribute grammars in the 
framework of algebraic specifications. Techniques from attribute grammars are trans­
lated into algebraic specifications [Klint 93; Meulen 94; Deursen 94]. But this specifi­
cation formalism needs a synthesized form of the attribute equations with the result that 
usual techniques from algebraic specifications cannot be applied, like implementation 
relations or proof principles. Thus with this technique only the advantages of attribute
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grammars are obtained for a restricted class of algebraic specifications and not vice 
versa.

Proof principles for attribute grammars are rarely found in the literature. The main 
contributions are [Katayama, Hoshino 81] and [Courcelle, Deransart 88]. The idea is to 
assign invariants to each non terminal of the syntax trees and to prove the correctness of 
the attribute grammar relative to the invariants and the attribute dependencies. Since the 
proof principle is based on the attribute dependency graph, it cannot be applied for attri­
bute grammars with undirected attribute equations which are used in the new approach. 
Moreover, it is necessary to find invariants for each non terminal associated with nodes 
of a syntax tree making the proof much more complicated, since finding invariants is a 
hard work to do. These proof principles suffer from efficient heuristics because the proof 
has to be performed for all invariants.

In the proof principle of context induction [Hennicker 91], being an inspiration for the 
new proof principle, another ordering on contexts is used than in our approach. Further­
more, in the new approach it is combined with term induction.

Object-oriented extensions of attribute grammars are given in [Hedin 89, 92, 94]. The 
abstract syntax tree is modelled using objects in such a way that each production corres­
ponds to a class definition. Using inheritance (in the object-oriented sense) a kind of 
order-sortedness is defined. The main aims of G. Hedin can be obtained using order-sor­
ted signatures instead of usual signatures. Attributed algebraic specifications can be 
extended in such a way. In order to keep the formalism lean, especially for the definition 
of the calculi, order-sortedness was renounced in this thesis.

The MAX system (cf. e.g. [Poetzsch-Heffter 96]) and its formalism can be viewed as a 
first step embedding attribute grammars in a functional and algebraic framework. This 
formalism defines concrete algebras for specifying the occurrences of a tree and the trees 
themselves. Therefore new occurrence sort symbols are introduced beyond the usual sort 
symbols. It is referred to the occurrences of a term using selector functions on the argu­
ments of a function. Attributes are viewed as functions and are specified in a functional 
way with an extended pattern-matching mechanism, in comparison to functional pro­
gramming languages allowing to define context dependent informations. But there are no 
consideration for proving their correctness. Implementations or abstraction mechanisms 
are not supported. The output of the new approach can be a MAX specification which 
can be used as an input to generate an efficient program.

Comparing the new specification technique with higher-order algebraic specifications 
(cf. e.g. [Möller 87; Heering et al. 94; Kosiuczenko, Meinke 96]) the use of subterm 
identifiers is a very restricted application of higher-order algebraic specifications. But 
higher-order algebraic specifications do not concern context dependent informations.

Viewing attribute grammars as algebras [Chirica, Martin 79] explicit algebras are used 
instead of a class of algebras satisfying some properties. Moreover, the semantics is defi­
ned as the solution of the equational system obtained for a given derivation tree. They 
present a possibility converting an attribute grammar into its synthesized form.

Modularity and reusability issues for attribute grammars are considered e.g. in [Kastens, 
Waite 92]. In the framework of attribute grammars the notion of modularity is strongly 
connected with the possibility to define attribute dependencies independent of the under-
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lying grammar. But e.g. in the area of algebraic specifications „real“ modularisation is 
meant, i.e. structuring mechanisms are considered for building specifications from 
simpler ones. The same aim is persued in the new technique and using subterm identi­
fiers an abstraction from the underlying signature is obtained, too.

In usual attribute grammar systems it is dealt with directed attribute equations. For these 
directed attribute equations there exist elaborated attribute evaluation techniques, 
especially for handling cyclic attribute dependencies [Farrow 86; Jones 90; Walz, John­
son 95] and incremental attribute evaluation (cf. e.g. [Reps et al. 83]). Both aspects can 
be considered in the new technique, performing a fixpoint computation for the attribute 
values of cyclic dependencies and using the attribute dependencies and the visit 
sequences for incremental attribute evaluation.

1.7 Case Studies

Among other case studies considered for this thesis, three case studies are presented 
showing typical applications of the new specification technique.

One application area of the new approach can be seen in the specification and verifica­
tion of the dynamics of user interfaces. This case study comes up from a research project 
with Siemens. Here the dynamics of the user interface for an ISDN telephone is given 
and some properties of the specification are shown. One property is shown using the 
proof principle of attributed term induction and other properties using the analysis 
techniques for attributed algebraic specifications, namely attributed signature flow analy­
sis. The case study is more or less taken from [Bauer 95] and can be shown using the 
system implemented in [Duschl 94; Weiß 95]. Attributed algebraic specifications have 
been proven to be an adequate specification technique for the dynamics of user interfaces 
and showing their correctness. Applying the attributed narrowing calculus it is also 
shown how the derivation of intelligent help can be performed. In this case study more­
over we study how the dynamics of user interfaces can be generated from an algebraic 
specification of the application [Bauer 96].

The next case study is taken from the framework of compiler construction. Here the 
compilation of expressions into stack machine code and (un)optimized register code is 
considered. It is shown that the compilation is semantics preserving. Afterwards the 
implementation relation of the compilation into unoptimized register code and into opti­
mized register code is presented. Note, that the first translations, namely from 
expressions to stack machine code and unoptimized register code is not an implemen­
tation because a signature change is performed, whereas the other compilations describe 
a behavioural implementation from unoptimized to optimized register code.

Another typical application area of the new specification technique is its use in the area 
of document architecture. Here the problem of calculating the length of inner boxes is 
considered such that a given length of the whole box is reached. Implementations and 
attribute evaluation aspects for these specifications are taken into consideration.

These case studies explain by typical examples how real problems can be solved and that 
all aspects of the specification framework presented in this thesis are usable for them. 
The main aspects of this work and their application in the case studies (denoted by: X)
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are shown in table 1:

considered 
aspects

user interface 
specification

compiler 
specification

document 
architecture

remote access of attri­
bute values

X X X

undirected equations X

several correct 
attributions

X

observability 
issues

X X X

universally quantified 
formulae

X X X

existentially quantified 
formulae

X X

standard 
implementation

X

behavioural 
implementation

X

structuring 
mechanisms

X X X

attributed signature 
flow analysis

X

table 1: case studies show considered aspects

A detailed view is given in chapter 8.
1.8 Further Research

Up to now only some restricted implementations of the presented specification technique 
exist. The most elaborated implementation is a theorem prover for the presented proof 
principle of attributed term induction [Duschl 94; Weiß 95]. This theorem prover has 
shown some restrictions which have been overcome using complete sets and induction 
orderings. The system allows to show e.g. the properties of the ISDN telephone case 
study. Among the implementation of the attributed term induction the signature flow 
analysis problem of reachability is implemented.

It is planned to perform a prototypical implementation of the other aspects, especially 
implementation of the algorithms for narrowing and of the attribute evaluation algorithm 
in the functional programming language Gofer. First steps are already taken.

In usual attribute grammar systems the input is a file containing the text to be analysed. 
The scanner and parser transform the text file into an abstract syntax tree. This abstract 
syntax tree is attributed either while building the tree or after building the syntax tree. In
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the framework of user interface specification this proceeding is not sufficient, because 
the input is not a text file but a stream of tokens. Here parts of the syntax tree have to be 
built without knowing the complete input. In this case parts of the syntax tree or better 
called dialogue tree has to be transformed. Rewrite-rules can be defined which are appli­
cable, if a special token is delivered from the user interface. These rewrite rules are com­
parable with state-based rewrite rules found in cf. Maude [Meseguer 93a, 93b].

Attribute grammars define attribute dependencies within a syntax tree. With subterm 
identifiers attribute dependencies between different constructor terms can be expressed. 
Since traces of processes can be defined using grammars (cf. e.g. [Hirshfeld et al. 96]), 
attribute grammars allowing attribute dependencies between different trees can be used 
to specify communication between different processes.

In the proposed approach it is dealt with equations, which can be extended to conditional 
equations.

Assuming a system for attributed algebraic specifications some more complex case stu­
dies can be considered, like a complete compiler for a small imperative or functional pro­
gramming language. These examples would result in hints where the formalism has to be 
adapted.

With cyclic attribute dependencies the dynamics semantics of programming languages 
can be specified. But this implies the adaption of the attribute evaluation and attribute 
dependency strategies analogous to [Farrow 86; Jones 90]. In particular, the proof prin­
ciples have to be extended to handle cyclic dependencies by introducing some fixpoint 
induction rule.

Concerning attribute evaluation aspects, incremental attribute evaluation can be perfor­
med to shorten execution time in a system for prototypical use of the specifications. Here 
the well known ideas from incremental attribute evaluation (cf. e.g. [Reps et al. 83]) can 
be used in the new specification technique. To speed up unification and attribute evalua­
tion local attribute dependencies can be generated from the global attribute dependencies 
resulting in a more implementational look on the underlying attribute grammar.

Another point for further research is to add „specification sugar“ as it can be found in the 
other attribute grammar systems, like e.g. inheritance in the object-oriented sense.

1.9 Resume

This thesis shows how algebraic specifications can be extended in a uniform way to 
combine the advantages of algebraic specifications and attribute grammars, neglecting 
the shortcomings of both. In the new approach context dependent information can be 
defined in the same intuitive way as in attribute grammars.

The proposed specification technique can be used in a formal software engineering pro­
cess starting with an abstract specification and arriving after several refinement steps at a 
usual attribute grammar. The correctness of the software can be guaranteed if the correct­
ness of each refinement step is shown. For this purpose notions of implementation rela­
tions are introduced and proof theoretical characterizations are given. Especially, the 
new notion of behaviour based on an intuitive idea has been proven to be a good abstrac­
tion mechanism for attributed algebraic specifications. Starting with specifications where 
several design decisions are left open, undirected attribute equations are an essential
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component of the new technique.

The presented structuring mechanisms increase the re-use of specifications and allow to 
handle complex software projects. E.g. in the framework of compiler construction the 
problems of identification, typing and code optimization appear in nearly every compi­
ler. The specifications for these problems can be proven correct and put into libraries. 
Since the implementation relations are monotone relative to the specification building 
operations such a program development is supported.

Several well known extensions of attribute grammars are contained in the new approach. 
In particular, attributed algebraic specifications have the advantages of other techniques 
neglecting sometimes the disadvantages of them.

The presented calculi can be used for verification purposes and for prototypical use of 
the specifications. Using the specifications in a prototypical way, efficient attribute eva­
luation strategies were developed. Since visit sequences can be calculated efficient pro­
grams can be generated from the specifications.

Each case study shows some interesting aspects of the considered new specification tech­
nique. Especially the non trivial compiler example of register placing and its optimiza­
tion shows the usability of the calculi, proof principles and implementation relations.

This thesis opens new application areas for attribute grammars and algebraic specificati­
ons.

1.10 Organization of the Thesis

The rest of this thesis is organized as follows:

In chapter 2 the basic notions of algebraic specifications (section 2.1) and attribute gram­
mars (2.2) are summarized.

Chapter 3 starts with a motivation and an introduction into the new specification forma­
lism (section 3.1) and defines the syntax (section 3.2) and semantics (section 3.3) of the 
new technique afterwards. After investigating a notion of behaviour for attributed alge­
braic specifications in section 3.4, structuring mechanisms based on ASL are developed 
for attributed algebraic specifications in section 3.5. A technique for analysing the speci­
fications is presented in section 3.6.

Attribute dependencies and attribute evaluation are the subject of chapter 4. Starting with 
an introduction into attribute dependencies and attribute evaluation for usual attribute 
grammars in section 4.1. Afterwards attribute dependencies and the attribute evaluation 
for specifications with undirected attribute equations are taken into consideration (sec­
tion 4.2).

Calculi for attributed algebraic specifications are investigated in chapter 5. A unification 
algorithm for the extended term notion is given in section 5.1. To prove universally quan­
tified formulae a calculus is given in section 5.2 and to solve existentially quantified for­
mulae a calculus is presented in section 5.3.

To use the new specification technique in a formal software engineering process notions 
of implementation relations have to be developed (chapter 6). The aims are stated in sec­
tion 6.1. Section 6.2 and section 6.3 investigate a notion of standard and behavioural 
implementation relation, respectively. An example of an implementation proof is given
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in section 6.4. Properties of the implementation relations are discussed in section 6.5.

Chapter 7 compares the new approach with the related work in the literature. Since the 
new technique is a combination of attribute grammars and algebraic specifications, the 
differences are discussed in section 7.1 (attribute grammars) and section 7.2 (algebraic 
specifications).

Case studies showing all aspects of the specification technique are given in chapter 8, 
namely how to specify the dynamics of user interfaces (section 8.1), compilers (section 
8.2) and document architecture systems (section 8.3).

Chapter 9 deals with further research directions. A prototypical implementation of the 
presented theory is outlined in section 9.1. The use of state-based rewriting is shown in 
section 9.2. In section 9.3 it is discussed how communication between different proces­
ses can be handled and it is shown how communication can be defined using conditional 
equations. Section 9.4 deals with the topic of user interface. Ideas for further case studies 
are given in section 9.5 and hints for extensions concerning the attribute evaluation and 
the presented calculi are described in section 9.6. The chapter ends with some comments 
on „specification sugar“ to write specifications in a more elegant way (section 9.7).

Concluding remarks are given in chapter 10.
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2 Basic Notions

In this section we briefly summarize the basic notions of algebraic specifications and 
attribute grammars which will be used in the following (for more details see e.g. [Ehrig, 
Mahr 85; Wirsing 90; Deransart et al. 88; Wilhelm, Maurer 92]).

2.1 Algebraic Specifications

For more details on algebraic specifications see e.g. [Ehrig, Mahr 85; Wirsing 90]. The 
given definitions are based on [Wirsing 90].

A signature S = (S, C, F) consists of a non empty set 5 of sort symbols and non empty 
(5* x 5)-indexed sets C and F  of constructor and function symbols, respectively.

A functionality fct(f) = f: s1? 52,..., sn -* s is associated with every symbol /  EC U F  
where s2, . .., sn, s E(S* x S). The following selector functions are defined to extract the 
sort, functions, constructor and the operation symbols, i.e. function and constructor sym­
bols, of a signature:

sortsfX) = S, cons(E) = C, funcs(£) = F, opnsfZ) = C U F, conss(Z) are the constructors of 
S of sort 5.

Let S = (S, C, F) be a signature and X  = (X^)s &  a family of sets X s of identifiers of sort 
s ES. X, S and F  are pairwise distinct. The set of %-terms (for short: terms) of sort s with 
identifiers in If  is denoted by T^(X)S and is inductively defined by:
(1) each identifier x EXS is a S-term of sort s.
(2) i f « t2,..., tn are S-terms of sort s2,..., sn (n 0) and (f: s1? s2,..., sn -* s) EC U F, 

t h e n ^ ,  i2v ,  Q  is a  2-term of sort 5.

The set of S-terms with identifiers in X  is denoted by T^fX)s &  and abbreviated by 
W -

If X  = 0  then T2 (0) is abbreviated by and t ETZ is called ground term. 
var(t) denotes the set of identifiers in t.

Let S = (S, C, F) be a signature and X  = (JQS ̂ b e  an S-indexed set of sets of identifiers. 
The set of (well formed) S-formulae is inductively defined by:

(1) If t, r ET^(X)S are attribute terms of sort 5, then t = r is a S-formula (called equation),
(2) If d>, T  are S-formulae, then -> <E> and O A are S-formulae,
(3) If C> is a S-formula, then V xs . 0  is a S-formula.

All other logical operations such as disjunction v, implication => and the existential 
quantifier 3 are defined as usual.

A ^-context is any term c[zs] over the signature S containing a distinguished identifier zs 
of some sort s E5 such that zs occurs exactly once in c[zs]. The application of a context 
c[zj to a term t E(T^)S is defined by substituting the context identifier zs by t. To shorten 
notation e[ zs / 1 ] is abbreviated by c[Z]. In particular, for any sort s, the identifier zs is a



14 Algebraic Specifications

S-context (called trivial context) of sort 5 and it holds zs[t] = t. A behavioural context is a 
context of behavioural sort SObs C S.

A (partial) ^-algebra A  = ((A5)5&s> (^ )/6 cu f) consists of a family of carrier sets (Af)s ^s 
and a family of (partial) functions (f^)f&c u F s u c h that /*: A s v  A S2,..., A Sn -* A s if /h a s  
functionality s2,..., sn ~* s (if the arity o f / is  zero then/^ denotes a constant object of

In this presentation we assume that A s * 0  for all s ES (for a discussion of empty carrier 
sets see [Goguen, Meseguer 82; Padawitz, Wirsing 84]).

If X  = (Xs)s e s is an S-indexed set of sets of identifiers and A = ((As)s e s , a  2-
algebra, then a family of mappings v = (v/. X s As)s e S is called valuation of X.

Let v = (vs : X s -> A5)s Q - be a valuation for identifiers and A  a S-algebra of the form 
«A s)s e s , (/^^GCUF) with 2  = (S, C, F). Then the interpretation for terms of T ^ fX )^  wrt. 
v is a family of mappings

IA  = {IA
S- W S ^ A S)S &

defined by

(1) for each x EXS holds: I* s [x] = vs(x).
(2) I \ s [fft, t„)] [r j, IA

S2 IA
VtSn [f„]) for each ( I s i s  n)

and (f. Sj, s2, . . s„ -► s) EC U F, f :  A S i, A^,..., A Sn -*

Let 2  = (5, C, F) be a signature and A, B  be S-algebras.

A family of mappings h = (hs : A s -* Bs)s e s  is called ^homomorphism, iff for all
(/: s2, . . s n -> s) EC  U F  and for all a r EAS1, a2 EA^,..., an ^ A Sn holds:

«2>-> O )  = f B{hs l(ai), hS2(a2),—, hSn(a„))

The interpretation of terms is for a given valuation v and an algebra A  the unique S- 
homomorphic extension of v to T^(X).

For any S-algebra A  over a signature (S, C, F), valuation v = (vs : X s -* A5)5 and 2-for- 
mula 0  the relation A satisfies 0  wrt. v (written A, v |= 0 )  is defined by:

(1) A, v |= t = r holds, if 1^ [i] = Z  ̂[r],
(2) A, v |= -« 0  holds, if A, v [= 0  does not hold,
(3) A, v |= 0  A 0  holds, if A, v |= 0  and A, v |= 0  holds,
(4) A, v [= Vx5. 0  holds, if for all valuations v’ with v(x’) = v’(x’) for all xs x \

A, v' |= 0  holds,

with t, r c  pfX) and S-formulae 0 , 0 .

A satisfies 0  (written: A |= 0 )  iff for all valuations v holds: A, v |= 0

A satisfies behaviourally t = r (written: A  f=beh t = r) iff for all behavioural contexts c[zs]



Basic Notions 15

holds: A |= V var(c). c[i] = c[r].

Let S = (S, C, F) be a signature and A x  a set of S-equations of the form t = r with 
i, r ^T^(X)S for some 5 ES. An algebraic specification is a pair <5, Ax>. The semantics is 
described by its signature

sig(<Y, Ax>) = 2

and its class of models

Mod(<£, Ax>) = { A  EAlg(Y) | A |= ax for all ax EAx }.

A signature morphism o: S -* IQ between a signature 5  = (S, C, F) and a signature 
Si = (Si, C19 Ff) consists of mappings o sor1: S ~^S l and C U F  -* Q U  F 19 such that 
for a ll/E C  U F  w\\hfct(f) = f. s^, s2,..., sn ~* s holds:
OfunJf) has the functionality/ct(aA „c(/)) = oS()„(si), 0 ^ 2 ) , —> ^sor^n) - •  o ^ s ) ,  i.e. the 
renaming of the operation symbols is consistent with the renaming of the sort symbols.

A substitution o: X  -* T^(X) is a family of mappings (a5: X s -* T ^fX )^  & . For any term 
t ET^(X), the instantiation o(t) is defined by simultaneously replacing all identifiers xb  
x2, . . . ,x n E X  occurring in t by the terms cyQi), o(x2),..., a(xM). Substitutions are denoted 
by [ Xi / o(xf), x2 / a(x2), . . . ,x n / o(xn) ] if the domain of a  is { x1? x2, ..., x„ }.

A substitution a: X  -* is called ground substitution.

Let a: 5  -> be a signature morphism.
The o-reduct of an S-algebra A  = ((A5)s & orts(1), ( f ) f &opns(z)\ written A |a , is the S r algebra 

with the carrier sets (A|a )s = A ^ a n d  functions/1^  =

Let S = (S, C, F) and = (S^, C 1? F ^  be signatures with S x C 2 and S-algebra 
= ((A5)5 e s , A  th611 A |si = ((A5)s esr  (f^feciUFi)-

2.2 Attribute Grammars

In this section we briefly summarize the basic notions of attribute grammars (for more 
details see e.g. [Deransart et al. 88]). We follow here more or less [Wilhelm, Maurer 92].

With context free grammars the syntactical structure of e.g. a programming language can 
be defined:

A context free grammar is a tuple G = (N, T, P, S), with N, T  finite alphabets, whereby N  
is the set of non terminals, T is the set of terminals, P Q N  x (N U  T)* is the set of pro­
duction rules and S QV is the axiom or start symbol. The />-th production is denoted by 
p '.X - ^ w  with X  EN  and w Ei(N U T)*.

An attribute grammar AG  over a context free grammar G consists of the following com­
ponents:

(1) Two distinct sets are associated with each symbol X  EN  U T, namely the set of inhe­
rited attributes, denoted by Inh(X), and the set of synthesized attributes, denoted by 
Syn(X). The set of attributes of a symbol X, denoted by Attr(X), is defined as the 
union of the inherited and synthesized attributes, i.e. Attr(X) = Inh(X) U Syn(X). If
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a EAttr(Xt)  (0 i np ) then a has an occurrence in productionp: X o —* X r X 2 ... X np 
at the occurrence of Xb  denoted by ab Occ(p) is the set of attribute occurrences in 
production p.
Inh = UXQV u T Inh(X), Syn = E)X E N J  iS y n (X f Attr = Inh U Syn

(2) For each a EAttr we associate a domain D a which is the sort of the attribute value.
(3) For each a EInh(Xf) with 1 i: £ np  and for each a ESyn(X^ of a production rule 

p'. X Q -> X r X 2 ... X np we define a semantic rule’.
a i = fp, a, with 0 s  j, s  np , 1 s  I s  k

such that fPi a, i is a function with functionality D bi, D b2,..., D bk —> D a.

Let AG be an attribute grammar and p: Xo -> X t X 2 ... X np be a production. The attribute 
occurrence a t with a EInh(X^) and 1 <, i np  and with a ESyn(X0) are called defining 
occurrence of an attribute. Otherwise it is called applied occurrence. AG  is called in nor­
malform, if all arguments of a semantic rule are applied occurrences.

The production local dependency relation Dp(p) C Occ(p) x Occ(p), denoted by -> local, 
of a productionp  is defined by:

bj -*iocai«« a i = fP, a, i f - ,  bj,...) for a semantic rule ofp.

An occurrence of the attribute b at Xj is in relation with an occurrence of a at X t or at 
depends on bj, if bj is an argument in the semantical rule of ab The visualization of the 
relation is performed using a graph, called production local dependency graph.

Let t be a tree of the underlying context free grammar. The individual dependency graph 
on the attribute occurrences of t, denoted by DGraph(t), is obtained putting together the 
production local dependency graphs of the productions used in t.

An attribute grammar is called cycle free, if DGraphf) contains for all trees of the under­
lying context free grammar no cycles.

An attribute grammar is well formed if it is cycle free.

Let t be a tree of the underlying context free grammar such that the root is marked with 
X. Restricting the transitive closure of DGraphft) to the attribute occurrences of the root, 
a relation DGraphsub(t) C Inh(X) x Syn(X) is obtained, whose graph we call the subordi­
nate characteristic graph of X  induced by t. There is an edge from a E lnhfX) to 
b ESyn(X) in DGraphsub(t) if there is a way from a to b in DGraph(f) in the considered 
subordinate tree fragment.

Let n be an inner node of a tree t marked with the non terminal X  EN. Let us consider the 
superior tree fragment of t at n, by t \ n the tree is denoted obtained from t by deleting the 
subtree at n without n itself. The restriction of the transitive closure of D G raphf \ n) to 
the attribute occurrences of n defines a relation DGraphsup(X) C Syn(X) x InhfX), whose 
graph we call the superior characteristic graph at n for X  induced by t. There is an edge 
from a ESyn(X) to b ElnhfX) in DGraphsup(t) if there is a way from a to b in DGraphft) 
in the considered superior tree fragment.
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3 Attributed Algebraic Specifications

In this chapter a motivation for the new specification technique of attributed algebraic 
specifications is given. Afterwards the syntax and semantics of pure attributed algebraic 
specifications are defined. After developing a notion of behaviour for the new approach, 
structured attributed algebraic specifications are introduced to define complex specifi­
cations from smaller ones and a possibility is described to normalize them. The notion of 
attributed signature flow analysis is defined to analyse attributed algebraic specifica­
tions.

3.1 Motivation

The starting point for the new approach is the idea to embed attribute grammars into the 
notion of algebraic specifications to obtain the advantages of both specification tech­
niques, because the advantages of the one formalism are more or less the shortcomings 
of the other one and vice versa shown in figure 2 (repeated from the introduction).

precise modelclass semantics 
theorem proving techniques 

implementation relations 
deductive aspects 

straction

efficiency 
intuitivity 
context dependent information 
distinction of syntax and semantics specification

figure 2: combining attribute grammars and algebraic specifications

A combination of both approaches allows
- the specification of context dependent information,
- the distinction between the syntax and semantics specification,
- the efficient implementation using usual attribute grammars,
- the use of abstraction mechanisms like behaviour,
- the use of undirected attribute equations and
- a precise modelclass semantics with performing deductions and proving implementa­

tion relations,

because of the notion of attribute grammars (first three items) and algebraic specifi­
cations (rest of the items).

The components of an attribute grammar are:
- a context free grammar for describing the syntax,
- attributes assigning special informations to each node of a syntax tree,
- directed attribute equations defining functional dependencies between attribute occur­

rences and
- external semantical sorts and functions used in the attribute equations.

Pure algebraic specifications have the following components:
- a signature with sort, constructor and function symbols and
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- a set of axioms specifying the semantics of the constructor and function symbols.

Since
- context free grammars can be expressed by signatures (cf. e.g. [Chirica, Martin 76, 

79]1),
- attributes can be viewed as functions,
- directed attribute equations are special equations and
- external sorts and functions can be seen as a usual algebraic specification,

1 Therefore the notion term and tree are used adequately in this thesis.
2 The following simplifications concerning the weight of a mobile are made:

The weight of a cube is the length of the cube. Only the weight of the cubes is considered, i.e. 
the weight of the other mobile elements is neglected.

it suggests itself to extend algebraic specifications in such a way that context dependent 
information can be expressed.

Let us consider a mobile as a running example (visualized in figure 3).

■ T 1̂11 cube with length 3

--- r  x
X TZ LSP [ y  cube with length 2

I— 0  cube with length 1

figure 3: mobile

This mobile can be seen in an abstract way as a tree/term shown in figure 4. 
im m obile

'(IT*CUbe

( 5 )  cube ( X  cube

I X
1 3

figure 4: mobile as a tree/term

A term representation for this mobile could be:

mobile(mobile(cube(l), cube(3)), cube(2))

Furthermore, special informations (attributes) can be assigned to the nodes of the mobile. 
Possible attributes are weight, describing the weight of the cubes in the submobiles 
below the actual node, leftlength and rightlength, describing the left length and right 
length from the fixing of a submobile, length, describing the length of a floor of a sub- 
mobile, and depth, the depth of a submobile. The values of the attribute occurrences of 
the weight attribute can be specified using recursive equations2 :

weight(cube(f)) = /,

weight(mobile(ml, m2)) = weightftnl) + weight(m2).

with identifier I denoting an arbitrary length I of a cube and identifiers m l and m2 for 
arbitrary mobiles.

But the equations for the context dependent information depth cannot be described in
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such a way. Here another strategy has to be investigated.

Informations are assigned to nodes of a tree. These occurrences have to be distinguished 
in the corresponding term. Therefore a set of occurrence terms is associated with a given 
constructor term denoting its occurrences. For each sort a distinguished constructor sym­
bol occs '. s —> s is introduced to denote such occurrences. If the sort s is obvious usually 
occ is written instead of occs .

Given the constructor term mobile(mobile(cube(l), cube(3)), cube(2)) the associated 
occurrence terms are

occ(mobile(mobile(cube(l), cube(3)), cube(2))), denoting node (T) of the tree in figure 4,

mobile(occ(mobile(cube(l), cube(3))), cube(2)), denoting node @ ,

mobile(mobile(pcc(cube(ty cube(3)), cube(2)) denoting node (3), 

mobile(mobile(cube(l), occ(cwbe(3))), cube(2)) denoting node (J) and 

mobile(piobile(cube(l), cube(3)), occ(cube(2))), denoting node @ .

The information (attribute) associated with an occurrence in a term is viewed as a 
function (called attribute function) applied to the associated occurrence term yielding the 
attribute value. An attribute function applied to an occurrence term is called attribute 
occurrence. E.g. to describe that the value of the attribute occurrence of the attribute 
depth at node (3) is the value of the attribute occurrence of the attribute depth at node @  
plus one is denoted by

depth{mobile(mobile(pcc(cube(l)), cube(3)), cube(2))) = 
depth(mobile(pcc(mobile(cube(l), cube(3))), cube(2))) + 1

whereby depth is a function with functionality depth'. Mobile -* Nat and the sort of the 
occurrence term is Mobile as for the constructor term mobile(mobile(cube(l), cube(3)), 
cube(2)).

Like in algebraic specifications axioms (in this context: attribute equations) have to be 
defined for a set of terms and not only for one concrete term. Therefore a possible nota­
tion for an attribute equation is

depth(mobile(pcc(ml), m2)) = depth(pcc(mobile(ml, m2))) + 1

with identifiers m l and m2 for arbitrary mobiles, denoting that with every submobile the 
depth is incremented.

However, in algebraic specifications identifiers are used for describing subterms. In the 
new approach the information to be specified is often context dependent. Therefore it 
would be desirable to allow identifiers describing some context in which a term appears, 
especially for remote access of attribute occurrences. Because of that the notion of term 
is extended to scheme term allowing subterm identifiers3 being place holders for arbi­
trary terms with special insertion places. Other reasons for introducing subterm identi­
fiers are: The use of subterm identifiers allows the change of the underlying grammar

Such an identifier is not called higher-order identifier since it is viewed in a very syntactical 
level (cf. related work 7.2.4 and unification 5.1).
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with minimal changes in the specification concerning the remote access of attributes. 
Defining remote access using parent-children-pathes forces to change the whole attribu­
tion when a production is inserted or deleted which influences the parent-children- 
pathes. Properties of attribute occurrences, which have to be proven, can be formulated 
using subterm identifiers. Furthermore, in the framework of deduction it is possible to 
describe e.g. program fragments which have to be completed. The property, which must 
be valid for the derived term, can be formulated using subterm identifiers. Moreover, 
subterm identifiers have advantages for showing the correctness of implementation rela­
tions if the attribution changes.

Let us consider the scheme term

sv[cube(l)]

such that svMobUe — Mobile (for short: sv) is a subterm identifier unifiable, i.e. can be made 
syntactically equal, with any term having an insertion place of sort Mobile and / is a 
usual identifier of sort Mobile (see figure 5).

cube 
A

figure 5: subterm idenufier and scheme term

This scheme term sv[cube(l)] with the subterm identifier sv is unifiable with 
mobile{mobile(cube(\\ cube(3)), cube(2)) with the following substitutions (figure 6 and 
figure 7, the insertion place is marked with the distinguished identifier zMobi!e):

®  [ svMobile -> Mobile I mobile(mobile(zMobiie, cube(3)), cube(2)), I / 1 ],

@  [ ^Mobile-Mobile I mobile(mobile(cube(l), zMobil^  cube(2)\ / / 3 ] and

@  [ svMobile -.Mobile I mobile(mobile(cube(l), cube(3)), zMobile), 1 /2 ] .

I .e. e.g. the subterm identifier svMobUe Mobile is replaced by mobile(mobile(zMohile, 
cube(3)), cube(2)) and I is replaced by 1 in case (T).

figure 6: subterm identifier and unification with a given term - part 1
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figure 7: subterm identifier and unification with a given term - part 2

This example illustrates that for scheme terms with subterm identifiers there exists no 
most general unifier. Nevertheless, it can be shown that a complete set of minimal uni­
fiers can be computed. A formal definition of substitution and unification is given later.

Typical problems can be solved with the notion of a subterm identifier. E.g. in the mobile 
example the following attribution could be specified: The depth of each mobile is calcu­
lated from the root of the mobile to the tips (attribute: depth). The maximal depth of each 
submobile is computed from the tips to the root (attribute: cmaxdepth). Now the maximal 
depth of the mobile can be specified for each occurrence term of sort Mobile as the 
calculated maximal depth at the root of the mobile (attribute: maxdepth', visualized in 
figure 8).

cmaxdepth jb  sv subterm identifier

.x  sv N. m identifier for arbitrary 
X  x  terms of sort Mobile

maxdepth r  
m

figure 8: visualized attribute equation

The corresponding attribute equation looks like: 

maxdepth(sv[occ(m)]) = cmaxdepth(occ(sv[m]))

3.2 Syntax

It is a well known fact from [Chirica, Martin 76] that grammars can be translated into 
signatures viewing the abstract syntax tree as a term over a corresponding signature.

Therefore it is not dealt with grammars, but with signatures corresponding to them. 
Terms representing such an abstract syntax tree are ground constructor terms, i.e. usual 
terms built with constructor symbols, but without identifiers. Beyond ground occurrence 
terms other terms, like attribute occurrences, have to be built in the framework of attribu­
ted algebraic specifications as seen in the motivation.

For the definition of a scheme term the notion of a subterm identifier has to be charac­
terized.

Definition 3.2.1 (subterm identifier)

A subterm identifier 52 Sn (for short: sv and 5v- is an identifier with a given 
functionality
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fct(svs l ,S2.-,>„-») = s l> s2, - , s n ^ s

If n = 0 then s v ^ s is abbreviated by svs, i.e. sv js  a usual identifier.

With SVi h  s2,..., sn -*s (for short: SV- _> 5) a set of subterm identifiers is denoted such that

for all sv GSVs lt Sn s holds fct(sv) = s2,..., sn -+s. ♦

Terms allowing subterm identifiers are called scheme terms and are defined by:

Definition 3.2.2 (scheme term)

Let SV = (SVj 5 es* s  be a family of sets SV- s of subterm identifiers. The set of S- 
scheme terms (for short: scheme terms) of sort s with identifiers SV  is denoted by 
ST^(SV)s and is inductively defined by:

(1) if t19 t2, . . . , tn are S-scheme terms of sort sb  s2, ..., sn (n 0) and sv GSVs h s is
a subterm identifier, then t2,..., tn] is a S-scheme term of sort s.
Especially each (usual) identifier svs ESVs is a S-scheme term of sort 5.

(2) if t17 t2, . . . , tn are S-scheme terms of sort s2, ..., sn and (f: s19 s2,..., sn -* s) EC U F  
(n s  0), th e n /^ , t29. .., t^) is a S-scheme term of sort s.
Especially each constant (f: -> s) EC  U F  is a S-scheme term of sort s.

The set of S-scheme terms is denoted by ST^(SV)s &  and abbreviated by ST^(SV).

Notation: Instead of S 2 S n  _> s[zs l , z S2,...,zSn] with distinguished identifiers zs l , z S2,...9 
zs we write sv„ s„ ^ s . ♦

But for pragmatic reasons the class of terms considered in this thesis is restricted, i.e. 
they are a proper subset of scheme terms. The signature over which the scheme terms for 
attributed algebraic specifications are built contains the distinguished occurrence con­
structor symbols, too. Thus with this term notion it is possible to construct scheme terms 
of the form

weight(occ(mobile(occ(cube(2)), cube(3))))

with no intuitive meaning. Especially on the proof theoretical side one has to consider 
such terms leading to a property which is for intuitive terms valid, but would not be valid 
for such terms. These terms can be excluded adding conditions to the properties which 
result in more complex properties.

Therefore the notion of term is restricted from the beginning to „intuitively well formed“ 
ones, called attribute terms, defined as:

Definition 3.2.3 (attribute term, occurrence term)

Let S = (S, C, F) be a signature with a distinguished set of function symbols FAttr C F, 
called attribute function symbols, e a c h /^  ^F Attr has a functionality fAttr: sroot -> 5 for 
some sort s, sroot ES. Let the function nodesorts: FAttr -* P(S) yield the sorts of the occur­
rences the attributes are associated with, SV = (SV-s s)j s 5 be a family of sets SV-s 5 
of subterm identifiers with 5, s ES*, S.
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Moreover, let Occ = ( o c c ' . s ^ s )  । , . be a set of dis-5 nodesorts(fA t t r )
1  A ttr  A ttr

tinguished constructor symbols not in C, i.e. C A Occ = 0. By COcc the set C U Occ and 
by 2 Occ the signature 5  = (S, COcc, F) is denoted.

The set of attribute terms over 2 of sort 5 with identifiers in SV  is denoted by AT^(SV)s 
and is inductively defined as:

(1) each scheme term t ^ S T ^  c,F\FAttr)(SV)s is a n  attribute term of sort s.
(2) if (fA ltr- Si s) GFAttr and (fAtlrr «2 ®i) ^ A a r  ‘hen /^ (ctocc^ i)]) and

A«r(o c c site«ri(c i[o c c 4 ii^ ^  are attribute terms of sort s,
with contexts c[zs3] EST (X c  0 ) (SV U { zs} })s p  c ^ z j  eST (S c , e^SV  U { zs4

t &ST(s_ c , 0 ) (SV)s y  tY GST(S, c , es)(SV)s4, s3 enodesorts(fAnr) and s4 &iodesorts(fA m i). 
c[occS3(r)] is called occurrence term with such c and t. The set of all occurrence 
terms with the distinguished occurrence constructor occ5 is denoted by 

r « 'c . 0 ) ( 5 V ) - B y  T ?S,CC,0 ^ V ) t h e s e t  ^T ( S ^ C , 0 ) ^ \ e S  is denoted.

(3) if (f: s19 s2,..., sn ^  s) EC  U (F 1 FAttr) and r2,..., tn are attribute terms of sort 
s1? s2, ..•, sn (n 0), then t2,..., tn) is an attribute term of sort s.

The set of attribute terms is denoted (AT^(SV)s)s and abbreviated by AT^fSV). ♦

Informally an attribute term is a term with subterm identifiers and occurrence constructor 
symbols, restricted to those terms formulating properties between attribute occurrences.

Note, that this definition allows to define attribute dependencies between different terms, 
since e.g.

is allowed whereby the sort of context c is s and the sort of context cr is with different 
sorts 5 and (for some fA ttn fA ttrl EFAttn  fE F  \ FAttr and terms t and t± of appropriate sort). 
The attribute occurrences A«r(c [o c c X0]) a R d Aiiri(c i[o c c 5(i i)]) belong to different terms 
since the root sorts of the occurrence terms are different. In the following it is assumed 
that the considered specifications describe only attribute dependencies between attribute 
occurrences of a single term, called intra-attributed.

The function Term(f) yields the corresponding term of a given occurrence term t and the 
function OccTerms(t) yields all occurrence terms of a given term t.

Definition 3.2.4 (Term(i), OccTermsif})

The function

Term-. T ^ C 0 ) (SV) ST(S ^ 0 )(SV)

yields the corresponding term of an occurrence term and is inductively defined as

4 This definition subsumes higher-order attribute grammars.
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Term(sv[t1, ¿n]) = sv[Term(t^, Termit^),..., Term(t^\,
if SV S2 ,..., sn  -» s’

T e r m ^ ,  t2,..., Q ) = f(Term(t1), Termit^,..., Term(tn)),
i f ( f i s i , s 2, . . . ,s n ^ - s ) ec,

Term(occs(t)) = t

and a function

OccTerms: ST(S, c ,^ (SV )  -  P (T (̂  0 } (SV ))

yields the corresponding set of occurrence terms of a given term and is inductively defi­
ned as:

OccTerms(t) = OccTermsWithContext(t, zs),

OccTermsWithContex^svl^, t2,..., t„], c[zj) =
U iS Z £n  OccTermsWithContext(tb  c[sv[..., zs .,...]]) U { c[occs(sv[ib  t2,..., i„])] }, 

if svGSK.

OccTermsWithContextif^ t2,..., tn),c[zs]) =
U i s j OccTermsWithContext(ti, c[f(..., zs p ...)]) U { c ^ c c ^ ^ , t2,..., Q)] }, 

i f ( f : s 1, s 2, . . . ,s n-* s )^ C  ♦

Because of the extension of terms the notion of substitution has to be adapted:

Definition 3.2.5 (scheme substitution, well formedness)

L etW = (5V r _ 5X s ^ 5 be a family of sets SV- 5 of subterm identifiers.

A scheme substitution (for short: substitution) is a family of mappings

“ (Os* S2,—> s n -* s * ^ s 2 ’“ ’’ %sn  })s)si, s2 ,..., sn , s GS* S’

A scheme substitution a  = (a5:5VSh _  S n-+S ^  A T ^{  zs p  zS2,..., zSn })5)51> S2^  Sn> s s  is
called ground scheme substitution.

A scheme substitution a  is denoted by

[ svr ! ^[zn,..., z lw i],..., svm / cm[zm l,..., zmnm] ] if

dom(a) = {sv1?..., svm }.

and 0 ( ^ 0  = 0^..., o(svm) = cm .

A bijective substitution o  is called renaming scheme substitution.

The extension of o  to attribute terms and scheme terms is denoted by a* and defined by

(1) t2,..., Q ) =f(G*(t1), O \ t 2\ . . . ,  O*(Zn))>
with (f: s1? s2,..., sn ^  s) ^ C Occ U F  and tt EAT%(SV)S i(l ^ i ^ n )
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(2) a*(sv[ib  i„]) = c[a*(f1), a*(t2),...,
with sv 6SVsl> s2i^  Sn _  „  ti eA T z (SV)sl with 1 s  i s  n
and o(sv) = c[zn , z^,..., zSn],

especially Q *(5V) = o(sv).

A substitution o  is called well formed for an attributed term tEAT^fSV), if o(t) EATZ (SV).

Notation: t o r  is used for T(O(0) with t EATZ(SV).

Usually instead of a* a  is used.

a  and the notion of well formedness can be inductively extended to sets of terms and for­
mulae.

The set of all substitutions, ground substitutions and renaming substitutions is denoted 
by Subst, GrdSubst and Renaming, respectively. ♦

In the following the well formedness of the considered substitutions is assumed.

Formulae which can be built over attribute terms are defined by:

Definition 3.2.6 (scheme formula)

Let S = (S, C, F) be a signature and SV  = (SV-^ 5)- s 5 be a family of sets SVg_+s of 
subterm identifiers. The set of (well formed) ^-scheme formulae (for short: formulae) is 
inductively defined as:

(1) If t, r EATz (SV)s are attribute terms of sort 5 GS, then t = r is a S-scheme formula 
(called equation).

(2) If 0 , 0  are S-scheme formulae, then --0, 0  A T, 0  V 0 , 0  => 0  are S-scheme for­
mulae.

(3) If is a S-scheme formula, then V svv1 „  0  and 3 v 0  are S-
scheme formulae, if svsl>S2i_ ^S n^ s ^SV sliS2>^ S n^ s, especially V svs . 0  and 3 svs . 0  
are S-scheme formulae. ♦

Thus we have the necessary notations to define an attributed algebraic specification.

Definition 3.2.7 (attributed algebraic specification)

An attributed algebraic specification is a tuple ASpec = <5, FAttr, Ax> whereby

(1) 5 = (S, C, F) is a signature consisting of a set of sort symbols S, a set of constructor 
symbols C and a set of function symbols F.

(2) FAttr C F  is a set of function symbols denoting the attribute function symbols, split 
into inherited FA ttr.nh and synthesized attribute function symbols FAttr nih with 

^A ttr  ^A ttrSyn th ^^d FAttr^  A ^Attrsyni^ —

(3) Ax  is a set of axioms describing the properties of the constructor and (attribute) 
functions having the form t = r with t, r EATz (SV)s for some s ES. ♦
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This definition allows undirected attribute equations. Undirected attribute equations can 
result in a set of correct attributions for a given tree (see section 8.3).
Notations for Attributed Algebraic Specifications

In the following attributed algebraic specifications are named and written as 
aspec specname =

sorts S cons Copns Fattrs synth FAttr inh FAttrjnh axioms Ax
endspec ♦

The axioms specify on the one side the properties of the functions as in a usual equa- 
tional algebraic specification, denoted by AlgAx(Ax) = { t = r 11, r ET^(SV)s }, and on the 
other side the (undirected) attribute equations, denoted by AttrAx(Ax) = Ax \ AlgAxfAx). 
Furthermore, in the axioms term/tree transformations and higher-order attribute equa­
tions can be described (see related work section 7.1.2 and 7.1.1).

Attribute grammars are a special case of attributed algebraic specifications.

If
- the algebraic specification of the functions is described in a functional way,
- only local attribute dependencies exist,
- only directed attributed equations are used and
- the usual conditions for attribute grammars hold on the attribute equations,

then a usual functional attribute grammar is obtained. Therefore the following considera­
tions like behaviour, proving techniques, implementation relations and so on can also be 
applied to usual attribute grammar systems where the semantical functions are written in 
a functional way.

Definition 3.2.8 (functional attribute grammar)

An attributed algebraic specification is afunctional attribute grammar iff

(1) all functions /  GF \ FAttr are constructor completely defined, i.e. can be viewed as a 
functional program,

(2) the attribute equations define only local attribute dependencies and are directed, i.e. 
the attribute equations are of the form
/t„ r(sv[occ(f(x1,x 2,...,x„))]) = to r fA ,„.(sv\f(..., o c c ^ ),...)]) = t, such that

Occ(t) C { sv[occ(/(x1; x„))], occ(x,),...)] }
such that Occ(f) yields the occurrence terms of the term t, sv ESVs h  s s, 
t EATY(SV)s for some sort s ES, (f: sn -^  s) EC  and f=SVSi with 1 ^ i  ^ n ,
and

(3) the usual conditions on attribute grammars hold, i.e. for all attribute occurrences 
exists a defining occurrence. ♦

Example 3.2.9

An attributed algebraic specification defining the mobile example with the described 
attribution looks like:
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aspec LMOBILE =
enrich NAT by

sorts Mobile
cons mobile: Mobile, Mobile -> Mobile, 

cube: Nat -» Mobile
attrs synth weight, leftlength, rightlength, cmaxdepth: Mobile -* Nat 

inh length, depth: Mobile -*  Nat
axioms for all sv: Mobile -*  Mobile; m, m l, m2: Mobile; I: Nat.
(1) weight(sv[occ(cube(l))]) = I, 
(2) weight(sv[occ(mobile(m1, m2))]) = 

weight(sv[mobile(occ(m1), m2)]) + weight(sv[mobile(m1, occ(m2))]),

(3) Iength(sv[occ(mobile(m1, m2))]) =
Ieftlength(sv[occ(mobile(m1, m2))]) + rightlength(sv[occ(mobile(m1, m2))]),

(4) weight(sv[mobile(occ(m1), m2)]) * leftlength(sv[occ(mobile(m1, m2))]) = 
weight(sv[mobile(m1, occ(m2))]) * rightlength(sv[occ(mobile(m1, m2))]),

(5) depth(occ(m)) = 1,
(6) depth(sv[mobile(occ(m1), m2)]) = depth(sv[occ(mobile(m1, m2))]) + 1,
(7) depth(sv[mobile(m1, occ(m2))j) = depth(sv[occ(mobile(m1, m2))]) + 1,

(8) cmaxdepth (sv[occ(cube(l))]) = depth(sv[occ(cube(l))]), 
(9) cmaxdepth(sv[occ(mobile(m1, m2))]) =

max(cmaxdepth(sv[mobile(occ(m1), m2)]), cmaxdepth(sv[mobile(m1, occ(m2))])) 
endspec

The specification LMOBILE is an enrichment of the natural numbers NAT. A formal 
definition of the specification building operation enrich is given in section 3.5. The 
signature consists of the sort Mobile expressing a mobile with two submobiles or cubes. 
The constructor mobile takes the left and the right submobile of a floor and yields a new 
mobile, cube takes the length of cube as a natural number. The attributes are the attribu­
tes described above such that Mobile defines the node sort of the considered constructor 
terms. Axiom (1) defines the weight of a cube as its length (simplification!). Axiom (2) 
states that the weight of a mobile with two submobiles is the sum of the weights of the 
submobiles (simplification!). Axiom (3) specifies the length of a mobile as the sum of the 
left and the right length of this mobile from the fixing of the mobile. Axiom (4) denotes 
the balance equation for a mobile depending on the fixing of the mobile. The depth of a 
top mobile is one (axiom (5)) and for each submobile of a mobile the depth is incremen­
ted by one (axioms (6) and (7)). The maximal depth of a submobile (cmaxdepth) for a 
cube is the actual depth of the cube (axioms (8)) and for a mobile the maximum of the 
maximal depths of the left and right submobile (axiom (9)). ♦

3.3 Semantics

The semantics of an attributed algebraic specification consists of its signature and its 
model class like in standard algebraic specifications. But the attribution part has to be 
considered for the new specification technique, too.

The signature of an attributed algebraic specification is the given signature of the specifi­
cation extended with the distinguished constructor symbols to denote the occurrences of 
a term.
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Definition 3.3.1 (signature of an attributed algebraic specification)

Let ASpec = <2, FAttn  Ax> be an attributed algebraic specification with 2 = (S, C, F). The 
signature of ASpec is defined as

sig(ASpec) = (5, COcc, F) ♦

Because of the new notion of formulae, a new satisfaction relation has to be defined to 
characterize the model class of an attributed algebraic specification as the set of algebras 
satisfying the axioms of the specification. Therefore the notion of valuation has to be 
adapted to handle subterm identifiers. This valuation can be extended to an interpreta­
tion for attribute terms being the unique 2-homomorphic extension of the valuation to 
attribute terms. Given an algebra and a valuation each attribute term is mapped to an ele­
ment of the algebra by the interpretation function.

Definition 3.3.2 (valuation, attributed interpretation)

Let 2  = (S, C, F) be a signature, SV = (SV; ̂ s)s, s es* s be a family of sets SVg 5 of sub­
term identifiers, A = ((As)s ( f ) f ecOcc u F) be a 2 Occ-algebra and FAttr C F  be a dis­
tinguished set of attribute function symbols.

A family of mappings
—  0 ^ 1 ,  S2,—, sn  -» s ' $ s2,—, sn ^ s  ~ * [A s p  A s n ~ * A sJterm )si, S2,—, sn , s GS*

is called valuation for SV  Especially for all sv GSVs the usual valuation is obtained.

[As l ,A S2,...,ASn-* A s]term denotes the domain of all constructor term functions5 .

5 Term functions are sufficient in this context, because the subterm identifiers are viewed in a 
syntactical way.

The interpretation of attribute terms wrt. v is a family of mappings

IA
V = (IA ; . A T ^ ^

defined as

(1) Iv,s M i l ,  h ,—, in]] = ^ (^ ,> 1  RiL ,̂.>2 M . - ,  M )  such that
sv Sn and svA = vsi> Sn _ /sv).

Especially for each GSVs holds 5 [svs] = v5(svs).
(2) t„)J [ i j , / i , S2 [i2],..„ I \ Sn [i„])

with (/■; s l t  s2, . . s„ -» s) e C Occ U F, f :  A ^ A ^ ,. . . ,  A Sn -»

with ti EAT%(SV)Si (1 i ri). ♦

The interpretation of attribute terms is for given valuation v and algebra A  the unique 2- 
homomorphic extension of v to AT%(SV).

Lemma 3.3.3

The interpretation function IA : AT^(SV) -> A is the well defined unique 2-homomorphic
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extension of v to attribute terms. ♦

Proof
The assertion can be shown using structural induction on the notion of attribute terms. ♦

With the notion of interpretation it is possible to define a satisfaction relation over 
scheme formulae used as a basis for the definition of model classes. The attributed satis­
faction relation defines the validity of an equation between two attribute terms, i.e. an 
equation is valid if the interpretation of the two terms is the same element in the algebra 
and not valid otherwise. This satisfaction relation for equations can be extended to arbi­
trary scheme formulae.

Definition 3.3.4 (satisfaction relation)

For any 2 0 cc-algebra A = ((As)s ( f) fe c Occ u F) w i t h  signature 2  = (5, C, F), S-scheme 
formula and valuation v the relation A satisfies wrt. v (written A, v |=attr 0 )  is defined 
by:

(1) A, v |=attr t = r is valid, if I* [i] = 1^ [r],
(2) A, v |=attr -> O is valid, if A, v |=attr is not valid,
(3) A, v |=attr 0  A T  is valid, if A, v |=attr <E> and A, v |=attr T  is valid,
(4) A, v |=attr <b v W is valid, if A, v |=attr or A, v |=attr T  is valid,
(5) A, v |=attr O => T  is valid, if A, v |=attr (-i<E>) v T  is valid,
(6) A ,v |= at t r V 52»- • •> sn -* s’ is valid,

if for all valuations v' with v(sv') = v'(sv') for all sv' G(SVj s  \ { sv }

holds: A, v’ |=attr
(7) A, v |=attr 3 s2j.. „ Sn _  s . 0  is valid, if -  (V svsl> S2>.. „ Sn _  5. ( -  0 ))  is valid

with t, r eAT%(SV)s for some sort 5 GS, S-scheme formulae 0 , T.

A  satisfies ax (written: A |=attr ax) iff for all valuations v: A, v |=attr ax is valid.

A  satisfies Ax  (written: A  |=attr Ax) with a set of S-scheme formulae Ax  iff for all 5- 
scheme formulae ax ^Ax\ A  |=attr ax is valid.

A |=battr t = r is the abbreviation for A |=attr c[i] = c[r] for all observable contexts c[z]. ♦

Since occurrence terms are syntactical objects the reachability of the considered algebras 
is assumed. An algebra is reachable on a sort 5 with a set of constructor symbols C, if 
each element of the carrier set of this sort is the interpretation of some term built with 
constructor symbols in C, distinguished occurrence constructor symbol and subterm 
identifiers not of sort s.

Definition 3.3.5 (reachability)

Let A = ((As)s (f^&jocc u F) be a SOcc-algebra with signature S = (S, C, F) and SV = 
(SVg s)s} s 5 be a family of sets SV- s of subterm identifiers.

An algebra A  is reachable on s with if for each element of the carrier set a EAS there
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is an attribute term iGAT(5 jC 1 U O cc 0 )(SV)s withSV = (SV-s _+s\ s E S * s \ {5} and a valuation 
vwith ly  [i] = a.

If A is reachable on all sorts 5 ES with C, then A is called term generated.

The range of the constructors is defined by

range^C) = { s E S \ ( f \  s r, s2,^ ., sn ^  s)E C  }.

A is reachable on range^, c,F)(C) with C is denoted by A |=attr C.

Let A GA/g(S2) and C S2. <A|S1> denotes the reachable 5 1-algebra which is obtained 

from A by first forgetting all sort and operation symbols of S2 not belonging to Si and 
then restricting to those elements which are reachable by the constructors of Sp ♦

The semantics of an attributed algebraic specification consists of its signature extended 
with the distinguished occurrence constructor symbols, the attribution part being the set 
of attribute function symbols and the model class being the set of reachable algebras 
satisfying the axioms.

Definition 3.3.6 (semantics of an attributed algebraic specification)

The semantics of an attributed algebraic specification ASpec = <(S, C, F), FA ttn Ax> is 
defined by its

(1) signature sig(ASpec) = (S, COcc, F),
(2) attribution part attr(ASpec) = FAttr and
(3) model class Mod(ASpec) = { A  EAlg(^Occ) | A |=attr C and A |=attr A x } . ♦

3.4 Behavioural Attributed Algebraic Specifications

The notion of behaviour has been proven to be an adequate abstraction mechanism in the 
framework of algebraic specifications. In this section firstly, the background of beha­
viour is presented in the area of algebraic specifications and afterwards a motivation is 
given for applying the notion of behaviour to attribute grammars and especially to the 
new specification technique. The considerations on behaviour end with the discussion of 
the syntax and semantics of behavioural attributed algebraic specifications.

3.4.1 Background and Motivation

The idea of behaviour as an abstraction mechanism goes back to early papers on auto­
mata theory (cf. e.g. [Moore 56]). In the last ten years the notion of behaviour has attrac­
ted continuous interest in the area of algebraic specifications (cf. e.g. [Bernot, Bidoit 91; 
Knapik 91; Hennicker, Wirsing 93; Bidoit et al. 94, 95; Bidoit, Hennicker 94, 95]). The 
main application field of behavioural algebraic specifications is the definition of imple­
mentation relations and proving their correctness, since only the input/output behaviour 
of systems have to be considered performing implementation steps. A good overview 
over behavioural specifications and implementations is given in [Orejas et al. 91].

The most common notion in describing the behaviour is to distinguish a subset of the 
sorts as observable (e.g. [Reichel 81; Goguen, Meseguer 82; Hennicker 88; Bidoit et al. 
94]). The idea is that some sorts or - in the context of programming languages - data
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types are observable and others are not observable. This notion was extended in [Bemot, 
Bidoit 91] to observable subsignatures.

Especially considering object-oriented programming languages satisfying the encapsula­
tion principle, observability aspects can be considered. In this framework the state of 
objects can only be observed using methods being declared as public methods, i.e. obser­
vable methods. But the internal state or representation of an object can only be changed 
by method calls [Hennicker, Schmitz 96].

In the literature two main approaches for defining the semantics of behavioural algebraic 
specifications are distinguished.

In the first approach the observable semantics is defined by constructing the closure of 
the model class of a specification wrt. an observational equivalence relation on algebras 
(cf. e.g. [Reichel 81; Sannella, Tarlecki 85, 88; Wirsing 86]).

In the other approach a new satisfaction relation, called behavioural or observable satis­
faction, is defined interpreting equations not as identities on the carrier sets but as beha­
vioural equivalences on the elements of the carrier sets (cf. e.g. [Nivela, Orejas 88; 
Bernot, Bidoit 91; Hennicker 91]).

In [Bidoit et al. 94, 95] the connection of both approaches is studied.

Considering observability issues in the framework of attribute grammars is new. But in 
this area observability aspects are important and interesting to study, too.

Let us consider as an example the specification of a compiler using attribute grammars. 
Usually, the compilation process is split into several phases with one attribute grammar 
for each phase. In each phase more or less one attribute is interesting, e.g. in the type 
analysis phase the attribute storing the type of an expression and in the code generation 
phase the attribute containing the calculated code. Therefore attribute grammars can be 
viewed as behaviourally equivalent if the derived type or code is equivalent. But no 
distinction between e.g. optimized and unoptimized code should be made resulting in the 
behavioural equivalence of the attribute values (see the case study).

In the framework of user interface specification the only observable attribute could be 
the abstract specification of the user interface which must be visualized to the end user 
describing implicitly the next performable step of the user interface (see the case study).

The analogous fact holds for the use of attribute grammars in the framework of document 
architecture where only the layout of the text is observable and not the computation of 
the layout (again a case study).
3.4.2 Syntax

The compiler, the user interface and the document architecture example indicate already 
how a notion of behaviour has to be defined for attributed algebraic specifications:

Firstly, only a subset of the attributes is observable and the other ones are not observable.

Secondly, an observable attribute is not observable at all nodes of a tree, but at a distin­
guished set of nodes.

Finally, the values of the attribute occurrences are considered up to behavioural equiva­
lence, based on the behavioural satisfaction relation of e.g. [Nivela, Orejas 88; Hennik-
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ker 91].

Example 3.4.2.1

Let us consider the above mobile example. A mobile is behaviourally equivalent to 
another mobile having the same outlook. But the density of the cube material may be dif­
ferent. I.e. the behaviour of the mobile specification is expressed by
- the set of observable attribute symbols length, leftlength, rightlength, cmaxdepth and 

depth,
- the set of observable sort symbols Mobile and Nat and 
- the term representing the mobile.

But the attribute weight is not observable. ♦

Because of pragmatic reasons a set of attribute function symbols is distinguished, too. 
Auxiliary attributes can have the same sort as attributes which should be observed. 
Therefore observable attribute symbols are distinguished explicitly and not implicitly 
such that those attribute function symbols with observable result sorts are observable. 
Moreover, the code attribute can be an observable attribute as in the compiler example, 
but the value of this attribute has to be considered up to behavioural equivalence, since 
optimized and unoptimized code are behaviourally equivalent.

Therefore a behavioural attributed algebraic specification is an attributed algebraic spe­
cification with distinguished sets of observable sort and attribute function symbols.

Definition 3.4.2.2 (behavioural attributed algebraic specification)

A behavioural attributed algebraic specification is a tuple

ASpec — <(S, C, F), FAttr, ^obs  ̂-̂ Attrobs-> Ax>

with observable sort symbols SObs Q S and observable attribute function symbols

^Attrobs —^Attr — F. ♦
Notation for Behavioural Attributed Algebraic Specifications

In the following a behavioural attributed algebraic specification is written as 
aspec <name> =

sorts Sobs-sorts S ic o n s  Copns Fattrs FA ttrobs-attrs FA ttro b saxioms Ax 
endspec ♦

Example 3.4.2.3

With this notation the behavioural specification ioxLMOBILE of section 3.2 with obser­
vable sort symbols Mobile and Nat and observable attribute symbols length, leftlength, 
rightlength, cmaxdepth and depth can be written as:

aspec BEHLMOBILE =
enrich NAT by

sorts Mobile
obs-sorts Mobile, Nat
cons mobile: Mobile, Mobile Mobile,

cube: Nat -> Mobile
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attrs synth weight, leftlength, rightlength, cmaxdepth: Mobile -*  Nat
inh length, depth: Mobile -*  Nat

obs-attrs length, leftlength, rightlength, depth, cmaxdepth
axioms for all sv: Mobile -* Mobile; m, m l, m2: Mobile; I: Nat.
(1) weight(sv[occ(cube(l))]) = I,
(2) weight(sv[occ(mobile(m1, m2))]) =

weight(sv[mobile(occ(m1), m2)]) + weight(sv[mobile(m1, occ(m2))]),

(3) Iength(sv[occ(mobile(m1, m2))]) =
Ieftlength(sv[occ(mobile(m1, m2))]) + rightlength(sv[occ(mobile(m1, m2))]),

(4) weight(sv[mobile(occ(m1), m2)]) * leftlength(sv[occ(mobile(m1, m2))]) = 
weight(sv[mobile(m1, occ(m2))]) * rightlength(sv[occ(mobile(m1, m2))]),

(5) depth(occ(m)) = 1,
(6) depth(sv[mobile(occ(m1), m2)]) = depth(sv[occ(mobile(m1, m2))]) + 1,
(7) depth(sv[mobile(m1, occ(m2))j) = depth(sv[occ(mobile(m1, m2))]) + 1,

(8) cmaxdepth (sv[occ(cube(l))]) = depth(sv[occ(cube(l))]),
(9) cmaxdepth(sv[occ(mobile(m1, m2))]) =

max(cmaxdepth(sv[mobile(occ(m1), m2)]), cmaxdepth(sv[mobile(m1, occ(m2))])),

(10) length(sv[occ(cube(l))]) = 0,
(11) leftlength(sv[occ(cube(l))]) = 0,
(12) rightlength(sv[occ(cube(l))]) = 0

endspec ♦

In this example all sorts are observable. In the case studies (chapter 8) we will see 
examples where only a subset of the sorts is observable.

3.4.3 Semantics

The intuitive notion of behavioural equivalence, shown for instance in the compiler, the 
document architecture and the user interface example, can be expressed as follows:

Two attributed trees are behaviourally equivalent, if the values of the corresponding ob­
servable attribute occurrences trees are behaviourally equivalent in the sense of alge­
braic specifications.

Note, that behavioural equivalence is a kind of projection on the attribute occurrences.

In the non observable case a class of algebras was defined as the semantics of an attribu­
ted algebraic specification analogous to usual algebraic specifications.

For behavioural attributed algebraic specifications we define the semantics similar to 
[Chirica, Martin 79] as the set of solutions for the attribute values and abstract to a class 
of algebras afterwards.

However, the semantics is not defined as the set of solutions for all attribute occurrences, 
but as the set of solutions for all observable attribute occurrences up to behavioural equi­
valence in the sense of algebraic specifications.

Definition 3.4.3.1 (semantics)

The semantics of a beh. attributed algebraic specification ASpec = <S, FA ttn SObs, FAttrobs^ 

Ax> is defined by its
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(1) signature sig(ASpec) = SOcc,
(2) attribution part attr(ASpec) = FA ttn

(3) observable part obs-sorts(ASpec) = SObs and obs-attrs(ASpec) = FAttrobs a n d
(4) behavioural models Beh(ASpec) = { A GAlg(YOcc) | A  |=attr C, A |=beh AlgAx(Ax),

A |=battr sol, sol Evolutions (ASpec) } such that,

SolutionsfASpec) = { { ̂ ( < 0  = rb ..., fAtlr„(tn) = r„ }, | fAttrt ^F A m o b s , t  Ct 0 )  

Mod(ASpec) |=attr fA ttri(h) = r1 A  ... A fAttrn(tn) = r„

^ T ( s ‘c , 0 ) h  6  node S orts(fA U r )  > r ‘ & T ^C , 0) (term generated!) and

OccTerms(t) = { t^ ..., tn} }. ♦

An example for such a behavioural algebraic specification where the observable attribute 
values have to be considered up to behavioural equivalence is given in the compiler case 
study.

3.5 Structured Attributed Algebraic Specifications

Modularization concepts can be found as well in programming languages such as 
MODULA-2 [Wirth 85], C [Kernighan, Ritchie 78] and ADA [Ada 83] as in specifica­
tion languages such as CLEAR [Burstall, Goguen 77, 80], OBJ2 [Futatsugi et al. 85], 
Maude [Meseguer, Winkler 92; Meseguer 90, 93a, 93b] and ASL [Wirsing 83, 86]. 
Handling complex software systems the advantages of modular construction are well 
known: Systematic reuse of components, separate realisation of modules, increase of 
understandability.

But in the area of attribute grammar systems structuring mechanisms are more or less 
neglected, only a few papers deal with this topic (cf. e.g. [Kastens, Waite 92; Dueck, 
Gormack 90; Farrow et al. 92]).

But considering again the specification of a compiler always the same problems have to 
be solved, e.g. type derivation, code generation for expressions and standard statements 
of imperative programming languages. The concrete syntax may be different, but from a 
more abstract point of view imperative programming languages like C, Pascal, 
MODULA-2,... share a common sublanguage. Having a library and specification 
modules dealing with such common parts of the languages and its analysis only the par­
ser has to be adapted and the specification extended or restricted to the necessary func­
tionality.

3.5.1 Structuring Mechanisms

We follow the structuring mechanisms of ASL presented e.g. in [Wirsing 86]. To shorten 
explanation the non behavioural and behavioural case are commonly treated. Therefore it 
is assumed for the non observable case that the specifications have no observable sort 
and attribute function symbols.

Definition 3.5.1.1 (structured (behavioural) attributed algebraic specifications)

The syntax and semantics of structured (behavioural) attributed algebraic specifications 
is defined inductively over the structure of the specifications:
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(1) a flat attributed algebraic specification
sorts S obs-sorts SObs cons C  opns Fattrs FAttr obs-attrs FAttrQbs axioms Ax

is a structured attributed algebraic specification if ASpec = <(S, C, F), FA ttn  SObs, 
FAttrobs, Ax> is a behavioural attributed algebraic specification.
Its semantics is defined by 
sig(ASpec) = (S, COcc, F), 
attr(ASpec) = FAttn 
obs-sorts(ASpec) = SObs, 
obs-attrs(ASpec) = FAttrObs, 
Mod(ASpec) = { A  EAlg((S, COcc, F)) | A  |=a ttrCandA |= attrAx } and 

Beh(ASpec) = { A  EAlg(XOcc) | A  |=attr C, A  |=beh AlgAx(Ax),

A |=battr sol, sol ESo hit ions (ASpec) }.
(2) the sum of two structured attributed algebraic specifications ASpec^ and ASpec2 

ASpec = ASpec  ̂ + ASpecQ
is a structured attributed algebraic specification.
The semantics is defined by
sig(ASpec) = sigiASpec^ U sig(ASpec2), 
attr(ASpec) = attr(ASpecx) U attr(ASpec2), 
obs-sorts(ASpec) = obs-sorts(ASpecf) U obs-sorts(ASpec2), 
obs-attr(ASpec) = obs-attr(ASpecf) U obs-attr(ASpec2), 
Mod(ASpec) = { A  EAlg(sig(ASpec1) U sig(ASpec2)) | A |5/g(A5peci) EMod(ASpecr)

and A|s/g(ASpec2) EMod(ASpec2) } and

Beh(ASpec) = { A EAlg(sig(ASpec1) U sig(ASpec2)) | A |5/g(A5peci) E Be^A Spec^  

and A|szg(A^ ec2) EBeh(ASpec2) }.

Note, that by definition A |5/g(A5pec i) is reachable.

(3) an enrichment of a structured attributed algebraic specification ASpec’
ASpec = enrich ASpec' by

sorts S obs-sorts SObs cons C opns Fattrs FAttr obs-attrs FAttrobs axioms Ax

is a structured attributed algebraic specification if 5 is a set of sort symbols, SObs is 
the set of observable sort symbols with SObs Q S  U sorts(sig(ASpec')), C is a set of 
constructor symbols, F  is a set of function symbols, FAttr C F  is a set of attribute 
function symbols, FAttrobs is a set of observable attribute function symbols with 
FAttrobs Q FAttr U attrs(ASpec') and sig (ASpec') U (5, COcc, F) forms a signature. Ax  is 
a set of equations t = r with t, r EAT(S u s1, c u c, F U for some sort s GS U S' 
such that sig(ASpec') = (S', C , F ).
The enrich operator is viewed as an abbreviation for 
enrich ASpec by sorts S obs-sorts SObs cons C opns F
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attrs FAttr obs-attrs FAttrQbs axioms Ax =
A spec t (sig(ASpec) u (S,C,F),

FA ttrU attrs(ASpec), SO b sU obs-sorts(ASpec), FA ttrO bsU obs-attrs(ASpec), AX) 
if for all f^attrs^ASpec^) Cl FAttr holds:/ ̂ obs-attrs(ASpec}) iff f  EFAttrQbs, and 
for all 5 &orts(sig(ASpecl )) A sorts(£) holds: conss(sig(ASpec1)) = COH55(S) and 
s GSObs iff s ^obs-sorts(ASpec1).
Therefore the semantics of the enrich expression is the semantics of the sum expres­
sions.

(4) a renaming of a structured attributed algebraic specification ASped
ASpec = rename ASped by a
is a structured attributed algebraic specification, where ASped is a structured attri­
buted algebraic specification and Q : sig(ASped) -* 2  is a bijective signature mor­
phism with o(ocCs) = occo(^  for all s Enodesorts(pttr(ASpedy), called compatible 
with Occ.
The semantics is defined by
sig(ASpec) = 2,
attr(ASpec) = o(attr(ASped)),
obs-sortsfASpec) = o(pbs-sorts(ASped)), 
obs-attrs(ASpec) = <j(pbs-attrs(ASpedy), 
Mod(ASpec) = { A  EAlg(Z) | A |a  EMod(ASped) } and 

Beh(ASpec) = { A  eAlg(2) | A |CT EBeh(ASped) }.

(5) an export of a signature 2  C sig(ASpec') from a structured attributed algebraic speci­
fication ASped
ASpec = export S from ASped
is a structured attributed algebraic specification such that 2  contains all occs with 
s Enodesorts(attr(ASped) A funcsQty.
The semantics is defined by
sig(ASpec) = 2,
attr(ASpec) = attr(ASpec') A funcs(£),
obs-sorts(ASpec) = obs-sorts(ASpec') A sorts(Z), 
obs-attr(ASpec) = obs-attr(ASped) A funcs(Z), 
Mod(ASpec) = { A |z  EAlg(Y) | A EMod(ASped) } and 

Beh(ASpec) = { A|s  EAlgl^) | A  ^Beh(ASped) }.

3.5.2 Normalization

In this section it is shown that each structured (behavioural) attributed algebraic specifi­
cation can be transformed into a special normal form as described for ASL in [Wirsing 
86; Breu 89], i.e. it holds:

Each structured attributed algebraic specification can be normalized under some restric-
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tions into the fo llow ing form:
export S from sorts Sobs-sorts S ic o n s  Copns Fattrs FA ttr obs-attrs FA ttro b  axioms Ax

To show this fact the fo llow ing lemma is necessary:

Lemma 3.5.2.1

It holds:

(1) ASpec^ + ASpec2 = ASpec2 + ASpec^

(2) {ASpec^ + ASpec^ + ASpec^ = ASpec^ + (ASpet^ + ASpec^)

(3) rename (rename ASpec by 01) by o2 = rename ASpec by o^o2

w ith  structured attributed algebraic specification ASpec, S = sig(ASpec), bijective 
signature morphisms o f  2 ->  5 a i  and o 2 : Sa i  ->  Sa2 compatible w ith  Occ. The com­

position o f signature morphisms is defined by (OI <J2)(X) = a 2 (a i( x )) for some sort, 
constructor or function symbol x.

(4) ASpecy + ASpe^ =
(Si U S2 , FA ttr  ̂ U FA ttr ,̂ SObs  ̂ U Sobs2 , ^Attrot)^ U ^Attrob^’

w ith  Aspect = (21? FA t t r v  SO b s v  FA t t ro b s y  AxJ and

ASpet^ = (S2 , F S o bS2, FAttrobs^ ^ 2 )

and for all fE ia ttrs  (ASpec A  attrs(ASpec2) holds: f € F A ttrO b s i if£ fE F AttrObs2, and for 

a ll 5 B so rts fa )  A  sorts(Z2) holds: cons5(2 i )  = conss(^2) and s GSo b s l i f f  s GSObs2 - 

In the behavioural case must hold additionally:
SolutionsfASpec!) U Solutions(ASpec2) =

S o lu t io n s ^  U S2 , FA ttr i U FA ttr2 , Ax  ̂ U Ax2))

(5) export S1 from ( export S2 from ASpec) = export from ASpec

w ith  Sj C  22 C  sig(ASpec)

(6) ( export S1 from ASpec^) + ( export S2 from ASpefy) =
export ( S-i U S2 ) from ( ASpec^ + ASpec2 )

sigfASpeCi) 2  2  sigiASpec^ A  sig(ASpec2),
sig(ASpec2) 3  S2 2  sig(ASpec^ A  sigiASpec^
and for al\ f  ̂ attrs(ASpecx)  A  attrs(ASpec2) holds: f  Eiobs-attrsfASpec^ if f f ^ o b s -  
attr(ASpec2'), and for a ll s G s o rts ^ )  A  sortsi?^) holds: conss^ )  = c o n s ^ ^  and 
5 E:obs-sorts(ASpec^ i f f  s Gobs-sortsfASpec^.

(7) rename ASpec by o = (a(S), o(FA ttr), c(SObs), ^ A ttro b ^, o{A^)

w ith  0: 2 2a  is a bijective signature morphism compatible w ith  Occ and
ASpec = (2, FA t tn  Sob s , FA t t rO b s , Ax)

(8) export sig(ASpec) from ASpec = ASpec
(9) rename (export 5 from ASpec) by 0 = export 0(2) from (rename ASpec by 0')

w ith  0: S being a bijective signature morphism compatible w ith  Occ such that 
sig(ASpec) 3  S and 0' is the extension o f 0 to sig(ASpec).
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Proof

(1) Mod(ASpec1 + ASpec2) = { A EAlg^sigiASpec^ U sig(ASpec2)) | 

and GMod(ASpec2) } =

{ A  EAlg(sig(ASpec1) U sig(ASpec2)) | A|sig05pec2) GMod(ASpec2) and

EModfASpeci) } = Mod(ASpec2 +ASpec1)

analogous can be shown:
Beh(ASpecr + ASpec^ = Beh(ASpec2 + ASpec^

(2) analogous to (1)

(3) Let A EMod(rename (rename ASpec by by a 2) iff

A ^ A G A l g ^ )

A GAlg(SO2) and A

A EAlg(£O2) and A

A|a2 EMod(rename ASpec by Oj) } iff 

a, G{ B ^ A lg (^ )  | B|O1 GModfASpec) } iff 

^ ( E A / ^ )  and ( A p ^  EMod(ASpec) iff

A EAlg(YO2) and A O1O2 EMod(ASpec) iff

A  G{ A GAlg(Xa2) A|O1 a2 &Mod(ASpec) } =

A €Mod(rename ASpec by a x o 2)
analogous can be shown:
Beh(rename (rename ASpec by by a 2) = Beh(rename ASpec by Q2)

(4) Let A  €Mod(ASpeci +ASpeci) iff
A G{ A EAlg(sig(ASpec^ U sig^Spec^) |

ZModtASpecd and A ^ ^ ^  &Mod(ASpec2) } iff

A GA/g(sig(ASpec1) U sig(ASpec2)) and
l̂s/g(Â eCi) EMod(ASpec1) and A|5Zg(4S>C2) £Mod(ASpec2) iff

A E A lg Q  U S2) and
A ^ i B E A l g ^ )  |B httr Q a n d B  h ^ A ^  }

and
A|Z2 £ {B  €Alg(S2) |B hmr C2 andB } iff

(since = conss(^2) for all 5 E so rts^ )  A sorts(Z2))
A ^Alg(^  U S2) and

^ | l l  ^ a ttr  Q  and A|21 ^ a ttr  A ti

and
1̂ 2̂ Hattr C2 andA|22 |=attr Ax2 iff

A E A lg fr  U S2) and
A  b a ttr  u  c 2 and A |=attr Ax± U Ax2.

iff
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A  G M o d ^  U S2 , FA ttri U FAttr2, u  A x 2>
Behavioural case:
Let A EBeh(ASpec. + ASpec2) iff
A  G{ A EAlg(sig(ASpec})  U sig(ASpec2)) |

^|szg(A5̂ Ci) ^Beh(ASpec.) and A |5/g(A5pec2) EBeh(ASpec2) } iff

A EAlg(sig(ASpec.) U sig(ASpec2)) and
ÎszgfASpeci) ^Beh(ASpeC\) and A|s/g^5pec2  ̂EBehdASpec^ iff

A EAlg(L. U S2) and
A ^ B E A / g ^ )  ¡B |=attr Q , B AlgAx(Ax1),

B |=battr sol., sol. ESolutions(ASpec.) } 
and
A|Ï 2 £{B EAlgÇ^) |B  |=attr C2, B K h  AlgAx(Ax2),

B |=battr sol2, sol2 ESolutions(ASpec2) } iff
A EAlg(Z. U S2) and

A|21 k a ttr  C IM|21 |=beh AlgAx(Ax.), A |21 |=BATTR sol., sol. ESolutions(ASpec.) 

and
A |22 l=attr G , ̂ | s 2  ^ b eh  AlgAx(Ax2), Â |S2 |=BATTR sol2, sol2 ESolutions(ASpec2) iff

A EAlg(£. U S2) and
A  hattr Cl U C2, A  |=beh AlgAx(Ax.) U AlgAx(Ax2), A  |=battr sol,

sol ESolutions(ASpec.) U Solutions(ASpec^) iff
(since conss^ )  = co n s^? )  for all 5 E sorts(^) A sorts(h2) a n ^ the conditions for 
the solutions)
A  G BehÇ^ U S2 , FA ttrl U FAttr2, Ax. U Ax2)

(5) Let A EMod(export Si from  (export S2 from  ASpec)) iff
A  G{ A|21 EAlg(Z.) I A EMod(export ^ 2 from  ASpec) } iff

3 B EMod(export Z2 from  ASpec). A  = B |21 iff

3 B e {  c | ï2  EAlg(Z2) I C eMod(ASpec) }. A = iff

3 C ^Mod(ASpec). A  = c | Ï 2 |S1 iff

3 C EMod(ASpec). A  = c | Z] iff

A  G{ A|Z1 E A lg ^ )  I A ^Mod(ASpec) } iff

A EMod(export from  ASpec)
analogous can be shown:
Beh(export from  (export Y2 from  ASpec)) = Beh(export Si from  ASpec)

(6) Let A EMod(export from  ASpec. + export S2 from  ASpec^) iff
A Z1 EM od(exportH .fromASpec^ and
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A|22 EMod(export Y2 fromASpec2) iff

A|21 G{ B|21 E A lg ^ )  | B EModÇASpec^ } and

A|Ï 2 6 {  B|Z2 EAlg(£2) | B eMod(ASpec2) } iff

(3 B EMod^SpeCi). Â|Z1 = B|Z1) and (3 D  &fod(ASpec2). Â|Ï2 - .D|Ï2) iff

(3 B eA lg(^ ). B  |=attI C 1( B  K »  A q  and A|Z| = B ^ )

and (3 D G A lg ^ . D |=attr C2, D  |=anr Av2 andA|22 = D|22) iff

(because of the restrictions)
(3 E EAlg(^  U S 2). E  |=attr Ci U C2 and

E  K ttr^ i u ^ 2  andA|21 =E|2 1 andA|22 =E|22) iff

(3 E EMod(ASpecr + ASpec^). A|21 = E|21 and A|22 = E|22) iff

(3 E EMod(ASpec1 + ASpecA). A|2I □ S2 = E|21 o  l 2 ) iff

A EMod(export U 'Z2 fromASpec1 +ASpec2)
Behavioural case:
Let A EBeh(export ^ from A Speci + export Y2 from ASpec2) iff
A|S1 EBeh^export^fromASpec^) and

A|S2 EBeh(export H2 from ASpec^ iff

A|S1 G{ B|21 EAlgÇZÿ | B EBeh(ASpecx) } and

A|22 E{ B|22 EAlgÇ£2) | B EBeh(ASpec2) } iff

(3 B EBehiASpec^. A|21 = B|2 1) and (3 D EBeh(ASpec2). A|22 = iff

(3 B EAlgÇ^). B |=attr C 17 B Keh AlgAxÇAx^, B f=battr solx, 

soly ESolutions(ASpeci) and A|21 =
and (3 D EAlg(Y2). D |=attr C2, D |=beh AlgAx(Ax2), D  |=battr sol2, 

sol2 ESolutions(ASpec2) andA|22 =

(because of the restrictions)
(3 E eAlgÇ^i U S 2)- E  Kitt Cl U C2 , E |=beh AlgAxlAx^) U AlgAx(Ax2), E |=battr sol, 

sol ESolutionsiASpec^ U SolutionsÇASpec^

and A|21 = E|21 and A|22 = £|22) iff

(3 E EBeh(ASpec1 + ASpec2). A E|Z1 and A|22 = 4 2>iff

(3 E EBeh(ASpecr + ASpec^). A 21 u S2 = E|21 □ 22) iff

A EBeh(export U Y2 from ASpecx + ASpec^

(7) Let A EMod(rename ASpec by a) iff
A  G{ A E A lg ^ )  | A|a  EMod(ASpec) } iff

A EAlg(2^) and A|a  EMod(ASpec) iff
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A GAlg(2a) and A|a  G{ B GAlg(£) | B |=a,lr C and B  Ax } iff

A  & dg(£ a) andA|o |=attI C  and A|CT|=attT Ax iff

A EAlg(Ya) and A |=attr a (Q  and A |=attr o(Ax) iff

A EMod((0(£), 0(FAttr), 0(Ax)))
Behavioural case:
Let A EBeh(rename ASpec by a) iff
A  G{ A EAlg(Za) A|a  EBeh(ASpec) } iff

A EAlg(Zo) and A a  EBeh(ASpec) iff

A e A l g p j  and A a  G{ B GAlg(X) | B |=attI C, B |=beh AlgAx(Ax), B |=battr sol, 

sol ESolutions (ASpec) } iff

A EAlg(^o), A|a |=attr C, A |Q |=beh AlgAx(Ax), A|a |=battr sol, 

sol ESolutions(ASpec) iff

A GAlg(Sa), A  battr A  Hah AlgAx(a(Ax'p, A |=battr a(sol),

sol ESolutions((o(Z), o(FAttr), 0(Ax))) iff

A EBeh((o(£), 0(FAttr), 0(Ax)))
(8) Mod(export sig(ASpec) from ASpec) =

{ EAlg(sig(ASpec)) \A EMod(ASpec) } = Mod(ASpec)

analogous can be shown:
Beh(export sig(ASpec) from ASpec) = Beh(ASpec)

(9) Let A  EMod(rename (export 2 from ASpec) by 0) iff
A E{ A EAlg(^o) | A|a  EMod(export 2 from ASpec) } iff

A E A lg ^ )  and A |CT G{ BL GAlg(X) | B EMod(ASpec) } iff

3 B GMod(ASpec). B|z  = A |CT iff

3 B ^ModfASpec). B|C, |O(E) = A  iff

3 B  G{ A eAlg(ZA  | A |o . GMod(ASpec) }. = A iff

3 B EMod(rename ASpec by 0'). BL(2) = A iff

A  G{ A|a (2 )eAZg(2a )| A EMod(rename ASpec by 0') } iff

A EMod(export a(2) from (rename ASpec by 0'))
analogous can be shown:
Beh(rename (export 2 from ASpec) by 0) =

Beh(export o(2) from ( rename ASpec by a ’)) ♦

Corollary 3.5.2.2

Each structured attributed algebraic specification can be normalized into the following 
form:

export 2 from sorts S obs-sorts SObs cons Copns Fattrs FAttr obs-attrs FAttrQbs axioms Ax
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if the considered specification satisfies the restrictions stated in Lemma 3.5.2.1. ♦

Proof

The proof is done using structural induction on the definition of the structured attributed 
algebraic specifications:

(1) a flat attributed algebraic specification
sorts Sobs-sorts SOZ)Scons Copns Fattrs F^^ obs-attrs FAttrobs axioms Ax

is in normal form because it can be written with lemma (8) as
export (S, C, F) from

sorts Sobs-sorts S ic o n s  Copns Fattrs FA ttrobs-attrs FA ttrQ bsaxioms Ax
(2) an enrichment Qi a structured attributed algebraic specification

enrich ASpec by
sorts Sobs-sorts S ic o n s  Copns Fattrs FA ttrobs-attrs FA ttro b saxioms Ax

can be normalized because it is a special case of the normalizable sum operation 
(lemma (6)).

(3) a renaming of a structured attributed algebraic specification
rename ASpec by a

can be normalized since it holds:
It can be assumed that ASpec is already in normal form (induction assertion), i.e.
ASpec can be written as:

export S from ASpecfiat

with
ASpecf ia t^

sorts S obs-sorts SObs cons C opns Fattrs FA ttrobs-attrs FAttrQbs axioms Ax
With (9) of the lemma holds:

rename (export 2 from ASpec^  by a = export a(S) from (rename ASpec^t by o') 
derivable with (7) to

export a(S) from
sorts o'(S) obs-sorts o'(S0b s) cons a'(Q opns o'(F)
attrs a'(FAtt  ̂obs-attrs o'(FAttrob^ axioms o'(Ax)

(4) an export of a subsignature S of a structured attributed algebraic specification 
export 5 from ASpec

can be normalized since we can assumed the ASpec is already in normal form and 
with (5) of the lemma follows immediately the normal form.

(5) the sum of two attributed algebraic specifications
ASpec  ̂ + ASpec2

can be normalized (under the assumption that the conditions stated in the above 
lemma hold) because it can be assumed that ASpec1 and ASpec2 are already in nor­
mal form. With (6) of the lemma follows immediately that the sum can be norma­
lized. ♦

Remark

The condition of the behavioural case is a strong one. The critical point is the sum opera­
tion.
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Having a look at the use of specification building operations, we can distinguish mainly 
two cases of application:
- specification building operations are used to extend loose specifications such that more 

informations about the functions are defined, i.e. the specifications are refined. An ex­
ample is the extension of loose sets in such a way that we obtain sets which are imple­
mented as ordered lists.

- specification building are also used for re-use purposes. In this case we have specifica­
tions in a library and combine existing specifications and extend them with additional 
data types to solve a complex task. But no information on the specifications of the libra­
ry is add. E.g. we use the specification for deriving the type of an expression and for cal­
culating the code of an expression and extend them such that a compiler for a complete 
functional programming language is obtained.

The condition on the constructors is obvious, since we usually assume with a data type 
special constructors from which informations over this data type can be built.

Condidering the behavioural restrictions, using the specifications in the re-use case the 
re-used specifications solve a special task and therefore they have a distinguished obser­
vable behaviour which need not be changed, if two specifications are merged. The same 
holds for refinements.

But the conditions on the solutions do not usually support the first application of specifi­
cation building operations. Having a loose specification we can get on the one side more 
solutions (if e.g. in the loose specification no solution is obtained), and on the other side 
less solutions (if e.g. the refined specification excludes older solutions).

The second case can be usually supported, since the solution condition states that specifi­
cations are independent. This is the case, if e.g. the re-used specifications are constructor 
completely defined and the extension does not add additional axioms to the base specifi­
cations and e.g. defines itsself its function only constructor completely. I.e. combining 
two specifications which contain only axioms stating constructor complete definitions of 
functions or define only axioms on the new data type, the solution condition is satisfied.
3.6 Attributed Signature Flow Analysis

A well known analysis technique for grammars is grammar flow analysis. We extend this 
notion to attributed algebraic specifications to derive informations about the underlying 
signature and its attribution. Since in our context „signatures“ are used instead of „gram­
mars“, we call it attributed signature flow analysis. Therefore the following definitions 
of bottom-up and top-down attributed signature flow analysis are an adaption and exten­
sion of [Moncke, Wilhelm 91; Wilhelm, Maurer 92] to our notions:

Definition 3.6.1 (bottom-up attributed signature flow analysis problem)

Let ASpec = <(S, C, F f  FAttr, Ax> be an attributed algebraic specification. A bottom-up 
attributed signature flow analysis problem (for short: signature flow analysis) consists of

(1) a set of domains D = (Ds)s &  with distinguished EDS (no information available)
(2) a set of propagation functions

P  “ (Pf' D sn ~ ^  s±, S2,-; sn  -» s) CC?
(3) a set of combination functions (A5: 2 ^  D s)s and
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(4) a set of relations (Ç5: Ds, D s -> Booï)s ♦

A (bottom-up) attributed signature flow analysis problem defines a recursive equational 
system:

= As { SK4[S2],-., SK4[5„]) | (ft s2,..., s „ ^ s )  S C  }

for all s ES. The solution of the signature flow analysis is the solution of the recursive 
equational system.

Note, that the propagation functions can include informations about the attribution, too. 

A simple algorithm for a bottom-up attributed signature flow analysis problem is: 

The initialization is done assigning the information ±5 to all sorts: 
procedure I nit 
begin

forall s eS do SFA[s] := ± s od 
end

The real computation is done in the procedure SFA:
procedure SFA 
begin 

change := true; 
while change do 

change := false; 
forall s eS do

SFAs  = A s  { PffSFAIsfl, SFA[S2]....SFA[sn]) | (f: s2 ......sn ->  s) EC } 
if SFA[s] ç s  SFAs  and SFAs  c s  SFA[s] 

then nop 
else SFA[s] := SFAs  A s  SFA[s];

change := true fi od od
end

Calling the procedure Init for the initialization and then the procedure SFA results in 
computing the signature flow information for each sort.

Definition 3.6.2 (top-down attributed signature flow analysis problem)

Let ASpec = <(S, C, F), FA ttn  Ax> be an attributed algebraic specification. A top-down 
attributed signature flow analysis problem (for short: signature flow analysis) consists of

(1) a set of domains D = (Ds)s &  with distinguished EDS (no information available),
(2) a set of propagation functions

P = ((Pf, i' D s —* Ds^i 2,..., n  })(/: 5 i, 52,. ., sn -*  5) G O

(3) a set of combination functions (As : 2 ^ —> D s)s

(4) a set of relations (Çv: Ds, D s -> Bool)s and
(5) an initial value SFAQ at the root: = SFAQ with

^root ^ { s r \ ( f A t t r : s r ^ S ) & A t „ } .  ♦

A signature flow analysis problem defines a recursive equational system:
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SFA[s] = As {p f  i (5FA[s’]) | (f: 51? 52 V  •., sn -> 5’) EC, 1 i <; n, st = s }

for all 5 ES. The solution of the signature flow analysis is the solution of the recursive 
equational system.

Sometimes information depends on the complete context of a node and not only on the 
path from the root to that node. Therefore a new notion of signature flow analysis is 
defined, called context-dependent attributed signature flow analysis, being a combina­
tion of bottom-up and top-down signature flow analysis. The solution of the signature 
flow analysis problem is obtained in two phases: First a bottom-up signature flow analy­
sis is performed. After computing the solution of this problem the result is used in a top- 
down signature flow analysis:

Definition 3.6.3 (context-dependent attributed signature flow analysis problem)
Let ASpec = <(S, C, F), FAttr, Ax> be an attributed algebraic specification. A context- 
dependent attributed signature flow analysis problem (for short: signature flow analysis) 
consists of

(1) two sets of domains D b = (Db> s)s &  and D t = (Dt s)s

with distinguished ±5 ^ D b s, ED t s (no information available)
(2) two sets of propagation functions

P f  =  ( (p f ,  i' & S  - *  2,..., n })(f: s i, S2,..; sn  -> s) GC?

and
= (Pf' DSn —* D s)^. sn  -» s) e o

such that p f i can use the informations of the p^ i.e. the solutions of
SFA[s] = Ab s { p ^ F A ^ ] ,  SFA[s2],..., SFA[sn]) | (f: s2, . . sn -  5) EC },

(3) a set of combination functions (Ah 5: 2 ^  D s)s and (A, 5: 2 ^  D s)s

(4) two sets of relations (Eb s: D s, D s -* Bool)s &  and (C, s : Ds, D s -* Bool)s

(5) an initial value SFA0 at the root: SFA[sraJ  = SFA0 with
^root $r | (fAttt- $r ~ * ^ )  ^ ^ A t t r  } •  ♦

A signature flow analysis problem defines a recursive equational system:

SFA[s] = At>s { Pf t (SFAfs']) | (f: s19 s2, ^ . , s n ^  s') EC, 1 i ^ n , s t = s }

for all s ES. The solution of the signature flow analysis is the solution of the recursive 
equational system.

Example 3.6.4
A realistic example for the signature flow analysis can be found in the user interface case 
study where the set of reachable menu-items is calculated which is an important property 
in the user interface verification.

Here we give again toy examples.

A bottom signature flow analysis problem of our mobile example is the calculation of all 
function symbols which can be found below the root.
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The domain for all sort symbols is D = { mobile, cube, succ, zero }.

The set of propagation functions is defined as
Pzero =  {  } ,

= SFA[Nat] U { succ },
= SKAfW] U { cube }, 

p,M(SFA[M obile], SFA[Mobile]) = SFA[Mobile] U { mobile }

The set of combination functions is the usual set union.

The set of relations is the usual set inclusion.

The result of this recursive equational system is the set { zero, succ, cube, mobile }.

It can be analogously calculated using a top-down analysis which function symbols are 
above a node marked with cube.

The domain for all sort symbols is D = { mobile, cube, succ, zero }.

The set of propagation functions is defined as
p succ(SFA[Nat]) = SFA[Nat] U { succ },
p cub2sFA[MobileJ) = SFA[Mobile],

Pmobu^SFA\Mobiley) = SFA\Mobile\ U { mobile }

The set of combination functions is the usual set union.

The set of relations is the usual set inclusion.

The result of this recursive equational system is the set { mobile }. ♦

Application areas of the analysis technique are e.g.
- the verification of the underlying signature, see the case study of the user interface veri­

fication, and
- use in heuristics of the proof and deduction principles, see the section about heuristics.
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4 Attribute Dependencies and Attribute Evaluation

In this chapter attribute dependency relations are defined on attribute occurrences. After­
wards an attribute evaluation ordering is defined based on these relations. The attribute 
evaluation ordering is the starting point for generating efficient attribute evaluators.

4.1 Attribute Dependencies

In usual attribute grammar systems attribute dependencies are a basis for the attribute 
evaluation and for the generation of efficient attribute evaluators (cf. e.g. [Wilhelm, Mau­
rer 92]. In these systems directed graphs describe the attribute dependencies since only 
directed attribute equations are used (called: dependency graphs). The following depen­
dency graphs can be distinguished for attribute grammars with directed attribute equa­
tions [Wilhelm, Maurer 92]:
- The local dependency graph denotes the attribute dependencies stated in the attribution 

of a single production.
- The global dependency graph describes the dependencies for a given tree „putting to­

gether“ the local dependency graphs.
- The superior and subordinate characteristic dependency graph of a non terminal des­

cribes the possible superior dependencies in all contexts, in which the non terminal 
may appear, and the subordinate dependencies of all subtrees with a root marked with 
this non terminal, respectively.

Since in our specification formalism it is dealt with undirected attribute equations, direc­
ted graphs cannot express the attribute dependencies. A new technique for the descrip­
tion of the attribute dependencies has to be developed. Moreover, the attribute equations 
define no ordering on the attribute occurrences. Therefore none of the known evaluation 
strategies can be applied in their pure form.

An undirected attribute equation is a predicate taking as arguments the attribute occur­
rences and stating that they reciprocally depend on each other. This fact can be expressed 
by a dependency set containing all attribute occurrences of an undirected attribute equa­
tion.

The aims are to determine statically
- the attribute evaluation ordering,
- the (non-)circularity of the attribute dependencies and
- the superior and subordinate characteristic set within the scope of reducing the search 

space for proofs.

The problems arising in the context of undirected attribute equations are:
- the attribute equations do not describe an ordering how the values of the attribute occur­

rences in this equation have to be computed and
- there may exist a set of correct attributions for a given tree.

In the following considerations the intra-term attribution of the considered attributed 
algebraic specifications is assumed.

The following dependency sets are distinguished for undirected attribute equations:
- the local and global dependency set,
- the subordinate and superior characteristic dependency set,
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- the characteristic dependency set,
- the instantiated local and global dependency set,
- the instantiated subordinate and superior characteristic dependency set and
- the instantiated characteristic dependency set,

The explanations are based on two running examples having a one-pass and a two-pass 
attribution. The specification LMOBILE (Example 3.2.9) is a good starting point from 
the software engineering point of view because it is a loose specification where several 
design decisions are left open. But in order to get a two-pass attribution additional 
axioms are necessary resulting in the specification CMOBILE'.

aspec CMOBILE =
enrich NAT by

sorts Mobile
cons mobile: Mobile, Mobile -* Mobile,

cube: Nat -*  Mobile, 
fixed: Nat

attrs synth weight, leftlength, rightlength, cmaxdepth: Mobile -» Nat 
inh length, depth: Mobile -*  Nat

axioms for all sv: Mobile Mobile; m, m l, m2: Mobile; I: Nat.
(1) weight(sv[occ(cube(l))]) = I,
(2) weight(sv[occ(mobile(m1, m2))]) = 

weight(sv[mobile(occ(m1), m2)]) + weight(sv[mobile(m1, occ(m2))]),

(3) Iength(sv[occ(mobile(m1, m2))]) =
Ieftlength(sv[occ(mobile(m1, m2))]) + rightlength(sv[occ(mobile(m1, m2))]),

(4) weight(sv[mobile(occ(m1), m2)]) * leftlength(sv[occ(mobile(m1, m2))]) = 
weight(sv[mobile(m1, occ(m2))]) * rightlength(sv[occ(mobile(m1, m2))]),

(5) depth(occ(m)) = 1,
(6) depth(sv[mobile(occ(m1), m2)]) = depth(sv[occ(mobile(m1, m2))]) + 1,
(7) depth(sv[mobile(m1, occ(m2))j) = depth(sv[occ(mobile(m1, m2))]) + 1,

(8) cmaxdepth (sv[occ(cube(l))]) = depth(sv[occ(cube(l))]),
(9) cmaxdepth(sv[occ(mobile(m1, m2))]) =

max(cmaxdepth(sv[mobile(occ(m1), m2)]), cmaxdepth(sv[mobile(m 1, occ(m2))])),

(10) length(sv[occ(cube(l))]) = 0,
(11) leftlength(sv[occ(cube(l))]) = 0,
(12) rightlength(sv[occ(cube(l))]) =0,

(13) Iength(sv[occ(mobile(m1, m2))]) =
fixed * (cmaxdepth(occ(sv[mobile(m1, m2)]))) - depth(sv[occ(mobile(m1, m2))]) + 1) 

endspec

The axioms (l)-(9) of CMOBILE can be found in the specification LMOBILE of section 
3.2. The axioms (10)-(12) state that the length, left length and right length of cubes is 
zero. (13) describes the length of a submobile depending on the maximal depth of the 
complete mobile, the actual depth of the submobile and a constant fixed. Note, that (13) 
describes a global attribute dependency. Because of this axiom a two-pass attribution 
with remote access is obtained if an efficient attribute evaluation should be performed. 
By efficient attribute evaluation we mean that only a minimum of unknown values of 
attribute values has to be determined using deduction (see the dynamic attribute evalua-
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tion algorithm in this chapter). A possible attribute evaluation ordering for the example 
term 

mobile(pwbile(cube(\f cube(S)f cube(2f) 

is shown in figure 9:
first pass

' ' second pass
d mobile rl II

d cube rl II cmd w

I d cube rl II cmd w cube rl II cmd w

3
figure 9: attribute evaluation ordering for CMOBILE

d = depth 
I = length 
rl = rightlength 
II = leftlength 
cmd = cmaxdepth 
w = weight d mobile rl II cmd w

In the first pass the depth of the nodes is calculated in a depth first tree traversal until the 
node mobile(mobile(occ(cube(l)), cube(3)), cube(2)) is reached. Now the value of the 
weight and cmaxdepth attribute occurrences can be synthesized up the tree and the values 
of depth attribute occurrences can be calculated. After the first pass the values of the 
depth, cmaxdepth and weight attribute occurrences are known. In the second pass the 
values of length, rightlength and leftlength are computed. They cannot be computed in 
the first pass, since the attribute occurrences rightlength and leftlength depend on the 
attribute occurrences length in turn depend on the attribute occurrences cmaxdepth at the 
root of the mobile computed as the last attribute value in the first pass.

The second attributed algebraic specification CMOBILE2 with a one-pass attribution is a 
usual attribute grammar in the new notation. The obtained results are the same as in the 
old dependency approaches. This examples enables a comparison of the new technique 
with the old one. The specification is obtained from LMOBILE refining the undirected 
balance equation (4) by directed attribute equations. Moreover, the weight of the cubes is 
increased. We will see later (section 6.4) that CMOBILE2 is a behavioural implementa­
tion of LMOBILE. Therefore CMOBILE2 is defined as a behavioural attributed algebraic 
specification. The observability issues have no influence on the attribute dependency 
analysis.

aspec CMOBILE2 =
enrich NAT by

sorts Mobile
obs-sorts Mobile, Nat
cons mobile: Mobile, Mobile -> Mobile,

cube: Nat Mobile, 
fixed, fixedtop: Nat 

attrs synth weight, leftlength, rightlength, cmaxdepth: Mobile Nat
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inh length, depth: Mobile -*  Nat
obs-attrs length, leftlength, rightlength, depth, cmaxdepth
axiom s for all sv: Mobile Mobile; m, m l, m2: Mobile; I: Nat.
(1) weight(sv[occ(cube(l))]) = I * 2,
(2) weight(sv[occ(mobile(m1, m2))]) = 

weight(sv[mobile(occ(m1), m2)]) + weight(sv[mobile(m1, occ(m2))]),

(3) depth(occ(m)) = 1,
(4) depth(sv[mobile(occ(m1), m2)]) = depth(sv[occ(mobile(m1, m2))]) + 1,
(5) depth(sv[mobile(m1, occ(m2))]) = depth(sv[occ(mobile(m1, m2))]) + 1,

(6) cmaxdepth (sv[occ(cube(l))]) = depth(sv[occ(cube(l))]),
(7) cmaxdepth(sv[occ(mobile(m1, m2))]) = 

max(cmaxdepth(sv[mobile(occ(m1), m2)]), cmaxdepth(sv[mobile(m 1, occ(m2))])),

(8) length(sv[occ(cube(l))]) = 0,
(9) leftlength(sv[occ(cube(l))]) = 0,
(10) rightlength(sv[occ(cube(l))]) =0 ,

(11) Ieftlength(sv[occ(mobile(m1, m2))]) = Iength(sv[occ(mobile(m1, m2))]) * 
weight(sv[mobile(m1, occ(m2))]) / weight(sv[occ(mobile(m1, m2))]), 

(12) rightlength(sv[occ(mobile(m1, m2))]) = length(sv[occ(mobile(m1, m2))]) * 
weight(sv[mobile(occ(m1), m2)]) /  weight(sv[occ(mobile(m1, m2))]),

(13) Iength(occ(mobile(m1, m2))) = fixedtop,
(14) Iength(sv[mobile(occ(mobile(m1, m2)), m)]) = 

length(sv[occ(mobile(mobile(m1, m2), m))]) - fixed, 
(15) length(sv[mobile(m, occ(mobile(m1, m2)))]) = 

length(sv[occ(mobile(m, mobile(m1, m2)))]) - fixed 
endspec

Axioms (l)-(7) are identical to the axioms in LMOBILE, with the exception that the 
weight of the cubes is increased in (1). (8)-(10) state that the length, left and right length 
of cubes is zero. The attribute equation (4) of LMOBILE is directed using the attribute 
equations (11) and (12) of CMOBILE2 to get a usual attribute grammar. The length of the 
mobiles is computed in a different way to get a one-pass attribution. The length of the 
top mobile has a fixed value denoted by the constant fixedtop (axiom (13)). From a 
mobile to its submobiles the length is reduced by the constant fixed  (axioms (14) and 
(15)).
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The attribution of CMOBILE2 is a one-pass attribution shown in figure 10:

figure 10: attribute evaluation ordering for CMOBILE2

The attribute dependency graph for the specification CMOBILE2 viewed as a usual attri­
bute grammar is given in figure 11 (note, that the arrows do not denote subordinate and 
superior dependencies):

attribute dependency graph

d = depth 
I = length 
w = weight 
rl = rightlength 
II = leftlength 
cmd = cmaxdepth

I mobile w->rl II cmd

d Immobile w->ri
.¿{s. z|s___

d I cube w rl

I cube w

cmd d I cube w rl cmd

figure 11: instantiated global dependency graph

But there cannot be given a directed dependency graph for the specification CMOBILE, 
because of the undirected attribute equation:

weight(sv[mobile(occ(ml), m2)]) * leftlength(sv[occ(mobile(ml, m2))]) = 
weight(sv[mobile(ml, occ(m2))]) * rightlength(sv[occ(mobile(ml, m2))])

which is an invariant of the mobile such that each floor of the mobile is in balance. In 
particular, each „directed“ attribute equation can be viewed as an undirected attribute 
equation, too.

weight(sv[occ(mobile(ml, m2))]) =
weight(sv[mobile(occ(ml), m2)]) + weight(sv[mobile(ml, occ(m2))])
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can be used to calculate weight(sv[mobile(occ(ml), m2)]) knowing the values of 
weight(sv[occ(mobile(ml, m2))]) and weight(sv[mobile(ml, occ(m2))]), since in a logical 
framework - as in the new specification technique - undirected attribute equations can be 
solved. We obtain the following undirected dependency graph for the invariant and the 
running example term:

undirected attribute dependencies
d I mobile w rl II cmd

d I mobile w rl

d I cube w rl II cmd
I 1̂ _______________

3
figure 12: undirected dependency graph

Le. each attribute occurrence of the attribute equation reciprocally depends on each 
other. Therefore directed graphs are not the appropriate method for picturing the attribute 
dependencies.

d I mobile w Jrl II \cm d
local dependency set

d = depth
I = length 
rl = rightlength
II = leftlength s / / r
cmd = cmaxdepth d I mobile^ w J/rl 
w = weight .S'

d I cube\ w I rl

cube!w

2
figure 13: local dependency sets

But sets describing the dependencies are more appropriate (figure 13), because they 
express that the attribute occurrences in an undirected attribute equation reciprocally 
depend on each other. We apply dependency sets instead of dependency graphs which 
are the basis for the investigation of the attribute evaluation ordering. As already men­
tioned several kinds of dependency sets are definable for a given specification which are 
investigated in detail in the following.
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A local dependency set describes the attribute dependencies relative to an attribute equa­
tion and contains all attribute occurrences of it. This notion can be extended to sets of 
attribute equations.

Definition 4.1.1 (local dependency set)

The local dependency set for an attribute equation t = r is defined as

D S e t^ ^ l  = r) = { fA n r (t') 11 = c\fA ltr(t')] or r = cKt(n.(i')] for some context c,

fA m  t  £  T ^ Cs{SV) and 5 Enodesorts(fA m .) }

and for a set Ax of attribute equations as

DSetlocal(Ax) = { DSetlocal(ax) | ax ^A x  } ♦

Example 4.1.2

The local dependency set for CMOBILE is defined as (note, that the identifiers are 
renamed apart for later considerations):

{{ we/g/zi(5vl[occ(cwhe(/l))]) },
{ weight(sv2[occQnobile(rnl, m2))]), weight(sv2[mobile(occ(ml), m2)]), 

weight(sv2[mobile(ml, occ(m2))]) },
{ Iength(sv3[occ(mobile(m3, m4))]), Ieftlength(sv3[occ(mobile(m3, m4))]), 

rightlength(sv3[occ(mobile(m3, m4))]) },
{ weight(svA\mobile(pcc(m5), m6)]), Ieftlength(sv4\pcc(mobile(m5, m6))]), 

weight(sv4[mobile(m5, occ(m6))]), rightlength(svA\acc(mobile(m5, m6))]) },
{ depth(occ(ml)) },
{ depth(sv5[mobile(pcc(m8), m9)]), depth(sv5\pcc(mobile(m8, m9))]) },
{ depth(svb\mobile(mlQ, occ(mll))]), depth(sv6\occ(mobile(m\Q, m il))]) },
{ cmaxdepth(sv7[QM^cu^ depth(sv7[ncc(cube(l2))]) },
{ cmaxdepth(sv8[occ(mobilefa m l 3))]),

cmaxdepth(sv8 [mobile(occ(m 12), m 13)]),
cmaxdepth(sv8[mobile(m\2, occ(ml3))]) },

{ Iength(sv9[®cc(cube(l3))]) },
{ leftlength(sv\Q[Qce^ },
{ righ tleng th(svll\pcc(^  },
{ length(svl2[occ(mobile(^ ml 5))]), cmaxdepth(pcc(svl2[mobile(^ ml5)])), 

depth(sv\2[occ(mobile(m^^ m!5))]) } }

and for CMOBILE2 as:

{{ weight{sv\[QCc(cube(Jl))]) },
{ weight(sv2\pcc(mobile(m\, m2))}), weight(sv2[mobile(occ(ml), m2)]), 

weight(sv2[mobile(ml, occ(m2))]) },
{ length(pcc(mobile(m3, m4))) },
{ Iength(sv3[mobile(pcc(mobile(m5, m6)), m7)]), 

length{sv3[Qw(pnobile(mobile{m m6), m7))]) },
{ Iength(w4\mobile(m8, occ(mobile(m9, mlO)))]), 

Iength(sv4[occ(mobile(m8, mobile(m9, mlO)))]) },
{ Iength(sv5[wc(cube(l2)^^ }
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{ leftlength(sv6[occ(mobile(mll, m l 2))]), length(sv6[occ(mobile(mll, m l2))]), 
weight(sv6[mobile(mll, occ(ml2))]), weight(sv6[occ(mobile(mll, ml2))]) },

{ rightlength(sv7[occ(mobile(nM ml4))]), Iength(sv7[occ(mobile(ml3, ml4))]), 
weight(sv7[mobile(occ(m!3), m l4)]), weight(sv7[occ(mobile(ml3, ml4))]) },

{ Ieftlength(sv8[occ(cube(l3))]') },
{ rightlength(sv9[occ(cube(l4))]) },
{ depth(occ(ml5)) },
{ depth(svlO[mobile(occ(ml6), ml7)]), depth(svl0[occ(mobile(ml6, ml7))]) },
{ depth(svll[mobile(ml8, occ(ml9))]), depth(svll[occ(mobile(ml8, m l9))]) },
{ cmaxdepth(sv!2[occ(cube(l5))]), depth(svl2[occ(cube(l5))]) },
{ cmaxdepth(svl3[occ(mobile(m2Q, m21))]), 

cmaxdepth(sv\3 [mobz7e(occ(m20), m21)]), 
cmaxdepth(svl3[mobile(m20, occ(m21))]) } }

t / \ j  dependency

d = depth
I = length 
rl = rightlength 
II = leftlength 
cmd = cmaxdepth 
w = weight

which can be visualized for CMOBILE2 by the following dependency set:

figure 14: dependency set

and the local dependency graph for attribute grammar CMOBILE2 is:

d I cube w rl II cmd
< __ |

K
figure 15: dependency graph

The analogies between the two dependency representations strike into the eye. ♦

The local dependency set can be instantiated for a given term, i.e. the dependencies rela­
tive to the attribute equations can be calculated for the attribute occurrences of the given 
term. The obtained dependency set is called instantiated local dependency set. This 
notion can be extended to a set of attribute equations.
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Definition 4.1.3 (instantiated local dependency set)

Given a ground constructor term t and an attribute equation ax. The instantiated local 
dependency set is defined as

DSetiocai(t, ax) = { { o(DSetlocal(ax)) } | o  ESubst and V f  ETerm(ax). a (f) B t }

and for a set of attribute equations Ax by

DSetiocafa A x ) = { DSetlocafa  ax) | ax EAx }

and

Inst(ax, t) = { a(ax) | o  ESubst and V t' ETerms(ax). a(t’) B  t }

such that Terms(ax) is the extension of the function Term to extract from an equation of 
attribute terms the underlying term of the syntax tree. ♦

Thus the instantiated local dependency set for all attribute equations of a specification 
defines the set of attribute dependencies for a given term.

The instantiated local dependency set for the term

t = mobile(mobile(cube(\), cube(3))> cube(2))

and the specification CMOBILE is obtained by instantiating the above local dependency 
set for CMOBILE by the term t (see Appendix B.l).

The local dependency set is the basis for determining which values of the attribute occur­
rences can be calculated in parallel defining the so-called global dependency set. There­
fore some operations on set of sets have to be defined. Trans defines the transitive 
closure of a set of sets. UnifTrans defines the unified transitive closure of a set of sets in 
such way that the elements of the set need not be identical but unifiable. The operation 
DelRenamable deletes those elements of a set of sets which are identical up to renaming 
of the identifiers.

Definition 4.1.4 (operations on sets)

Let 5 = { Sy S2,—, Sn } be a set of sets.

Trans(S) = Trans({{ Ui& nS i} 11 j  n, Ij■ = { k ISj?O Sk * 0 ,1  k n, k * j  }})

UnijTrans(S) = UnifTrans({{ Ui& 1 Sb ..., U i& n St } 11 s  j  n,

I}; = { k  13 o  ESubst. o(Sj) A o(Sk) # 0 ,1  ^ k ^ n ,  k ^ j  }})

DelRenamable(S) = { S i v  S i2,..., S im} such that { S i v  S i2,..., S im} C S and
V 5 e {  S i v  S i2,..., S im}. s 'E S \ {  S i v  S i2,..., S im}. 3 o  ERenaming. o(s) = o(s') and
V s GS. 3 5’ G{ S i v  S i2,..., S im}. 3 a  ERenaming. a(s) B  0(5’)

w.l.o.g.: identifiers renamed apart! ♦

The global dependency set describes independently from the actual considered term 
which attribute occurrences depend on each other. The global dependency set is obtained
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from the local dependency set uniting those local dependency sets whose attribute occur­
rences are unifiable. We consider only those sets which are equal up to renaming.

Definition 4.1.5 (global dependency set)

The global dependency set for a set of attribute equations Ax is defined by

DSeig to w (Ax) = DelRenamable(UnifTrans(DSetiocal(Ax))) ♦

Note, that in usual attribute dependency considerations global dependencies are only 
defined for concrete trees putting together the local dependency graphs.

The global dependency sets for the attributed algebraic specification CMOBILE and 
CMOBILE2 are obtained from the local dependency sets given above.

The global dependency set for CMOBILE is:

{{ weight(sv2[occ(mobile(mly m2))]), weight(sv2[mobile(pcc(rnl\ m2)]), 
weight(sv2[mobile(ml, occ(m2))J), weight(sv\[QCc(cube(^^ 
Ieftlength(sv4[occ(mobile(m5, m6))]), rightlength(sv4[occ(mobile(m5, m6))]), 
Iength(sv3[occ(mobile(m3, m4))]), depth(occ(m7)), 
depth(sv5[mobile(occ(m8), m9)]), depth(sv5[occ(mobile(m8, m9))]), 
depth(sv6[mobile(ml0, occ(ml 1))]), cmaxdepth(sv7[occ(cube(l2))]), 
depth(sv7[occ(cube(l2))]), cmaxdepth(sv8[occ(mobile(m 12, m 13))]), 
cmaxdepth(pcc(svl2[mobile(ml4, m 15)])), 
cmaxdepth(sv8[mobile(occ(ml2), ml3)]), 
cmaxdepth(sv8[mobile(ml2, occ(ml3))]) },

{ Iength(sv9[occ(cube(l3))]) },
{ leftlength(wlO[occ(cube },
{ rightlength(svll[occ(cube(l5))]) } }

and for CMOBILE2 is:

{{ wezgÄi(5vl[occ(cwi>e(/l))]), weight(sv2\pcc(mobile(mC m2))]), 
weight(sv2[mobile(pcc(ml), m2)]), weight(sv2[mobile(m\, occ(m2))]), 
length(pcc(mobile(m3, m4))), Iength(sv3[mobile(pcc(mobile{m5, m6)), m7)]), 
Iength(sv3[occ(mobile(mobile(m5, mC), m7))]), 
Iength(sv4\mobile(m8, occ(mobile(m9, mlO)))]), 
leftlength(sv5 [occ(mobile(m 11, m 12))]), 
length(sv5[occ(mobile(ml 1, ml2))]), 
rightlength(sv6[occ(mobile(ml3, m 14))]), 
Iength(sv6[occ(mobile(ml3, ml4))]) }

{ Ieftlength(sv7[occ(cube(l2)))]) },
{ Iength(sv7[occ(cube(l2))\) },
{ rightlength(sv8[occ(cube(l3))]) },
{ depth(occ(ml5)), depth(svlÖ[mobile(occ(ml6), ml7)]), 

depth(svlO[occ(mobile(m 16, m 17))]), 
depth(svl 1 [mobile(m 18, occ(m 19))]), cmaxdepth(sv!2[QCc(cube(l3))]), 
depth(svl2[occ(cube(l3))]), cmaxdepth(svl3[occ(mobile(m2G, m21))]), 
cmaxdepth(svl3[mobile(occ(m2Q), m21)]), 
cmaxdepth(svl3[mobile(m20, occ(m21))]) } }

It can be determined for the specification CMOBILE that for the attribute occurrences of
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kind cube the attributes { length }, { leftlength } and { rightlength } and the other attri­
bute occurrences are independently to calculate and therefore can be computed in paral­
lel.

For the specification CMOBILE2 it can be extracted from the global dependency set that 
{ weight, length, leftlength, rightlength } and { depth, cmaxdepth } can be calculated in 
parallel for attribute occurrences of kind mobile and { length }, { leftlength } and { right­
length } for attribute occurrences of kind cube. ♦

Given a term its instantiated global dependency set can be defined:

Definition 4.1.6 (instantiated global dependency set)

The instantiated global dependency set for a given term t and a set of attribute equations 
Ax is defined by

DSetglobaft , Ax) = Trans{DSetlocai(t, Ax)) ♦
The instantiated global dependency set for the term mobile(mobile(cube(l), cube(3)), 
cube(2)) and the specifications CMOBILE and CMOBILE2 is visualized in figure 16 and 
figure 17, respectively.

3
figure 16: instantiated global dependency set for CMOBILE

d = depth 
I = length 
rl = rightlength 
II = leftlength 
cmd = cmaxdepth 
w = weight

be calculated

figure 17: instantiated global dependency set for CMOBILE2
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Comparing figure 17 with the directed dependency graph in figure 11 the directed edges 
are changed to dependency sets.

The notion of global dependency sets is used to define the characteristic set for occur­
rence terms of a distinguished sort, describing which attribute occurrences at nodes of a 
distinguished sort reciprocally depend on each other. It is obtained restricting the global 
dependency set to attribute occurrences of the distinguished sort and abstracting to the 
attribute function symbols.

Definition 4.1.7 (characteristic set)

The characteristic set for occurrence terms o f sorts and a set of attribute equations A r is 
defined by

DSets(Ax)=Attributes(DSetg M a l(Ax)Ct { fA m (t) t  e  T ^ C ,  0 ) ( 5 V ) a n d

5 &iodesorts(fAttf) })

such that Attributes^ fA m & 2),. .. , fA m n( t^  }) = { fAltr2, ♦

For the specification CMOBILE the characteristic set for occurrence terms of sort Mobile 
is

{ {weight, leftlength, rightlength, length, depth, cmaxdepth } }

and for the specification CMOBILE2 the characteristic set for occurrence terms of sort 
Mobile is

{{ weight, length, leftlength, rightlength}, { depth, cmaxdepth }}

The instantiated characteristic set for an occurrence term t = c[occs(i’)] is obtained from 
the global dependency set of c[f] restricting it to the attribute occurrences of t.

Definition 4.1.8 (instantiated characteristic dependency set)

The instantiated characteristic dependency set for an occurrence term t = c[occv(i')J and 
a set of attribute equations Ax is defined as

ChDSet(t, Ax) = Attributes(pSetgiobal(c[t'], Ax) iT
{ fA a tf) | fAllr ^ Attr and s Enodesorts(fA a )  }) ♦

Let t = mobile{occ{mobile{cube().), cube(3))), cube(2)). The characteristic dependency 
set for this occurrence term in the specification CMOBILE is

ChDSet(f) = { { weight(t), leftlength(t), rightlengthft), lengthft) }, 
{ depth(t), cmaxdepthft)} }

which is in this case the characteristic set of the sort Mobile.

But for the occurrence term t = mobile(mobile(pcc{cube(l)), cube(3)), cube(2)) the 
instantiated characteristic set is

ChDSet(t) = { { weightff) }, { leftlength(t) }, { rightlength(t)}, { length(t) }, 
{ depth(t), cmaxdepth(f)} }

i.e. the characteristic set is a worst case approximation. More detailed estimations are
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obtained using the instantiation of the equations for the characteristic terms6 instead of 
the attribute equations.

6‘ The set of characteristic terms for a set of attribute equations is obtained by iterative calcula­
ting the unifying terms for these equations (see Definition 4.2.4.1).

In considerations about the attribute dependencies for attribute grammars the notion of 
subordinate and superior characteristic graph is defined at this passage.

The subordinate and superior characteristic graph for a sort describes independent of a 
given occurrence term the attribute dependencies in all subtrees of this sort and the attri­
bute dependencies in all contexts with an insertion place of this sort, respectively. But in 
the framework of undirected attribute equations the attribute evaluation ordering has to 
be known to determine the corresponding subordinate and superior characteristic set.

Let us consider the term cube(\) and the undirected attribute equation

cmaxdepth(occ(cube(l))) = depth(occ(cube(Vff)

In this example it is possible that either cmaxdepth depends on depth, i.e. there is a 
dependency in the subordinate tree, or depth depends on cmaxdepth, i.e. there is a depen­
dency in the superior tree, depending whether depth or cmaxdepth is determined first. 
With the attribute equation

dept/i(occ(cube(l))) = 1

the attribute value of depth can be calculated and therefore cmaxdepth depends on depth, 
i.e. there is a subordinate attribute dependency.

The example shows, that the subordinate and superior characteristic set, can be defined 
after the evaluation ordering on the attribute occurrences is determined. Because of this 
fact the definition of the subordinate and superior characteristic set is delayed until the 
attribute evaluation ordering was treated.

4.2 Attribute Evaluation

In this subsection an introduction into the attribute evaluation for usual attribute gram­
mar systems is given. As a next step a dynamic attribute evaluation algorithm for undi­
rected attribute equations is investigated. An attribute evaluation ordering is developed 
to generate attribute evaluators for the new approach. This ordering is the starting point 
for the definition of visit sequences on the attribute occurrences and the subordinate and 
superior characteristic sets.

4.2.1 Introduction to Attribute Evaluation

The following considerations are a summary of [Wilhelm, Maurer 92] for attribute gram­
mars.

Usually two phases of the attribute evaluation are distinguished, namely the strategy and 
the evaluation phase’.

In the strategy phase the attribute evaluation ordering, i.e. the ordering in which the 
values of the attribute occurrences have to be calculated, is derived. Several proceedings 
in this phase can be differentiated:
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- Dynamic determination'.
The individual dependency graph DGraph(t) is sorted topologically. If a total ordering 
can be obtained then the attribution is cycle free. This ordering is the evaluation orde­
ring. But the technique is space and time consuming.

- Induced evaluation ordering'.
If for all non terminals X  there exists a total ordering Tx  on its attribute occurrences, 
such that for arbitrary trees t holds:
If the attribute occurrences an is in relation with bn at any node n in the instantiated de­
pendency graph of t, and the node n is marked with the non terminal X, then a has to be 
in relation with b wrt. Tx .
In this case Tx  is called the induced evaluation ordering.
Based on the total ordering a visit sequence on the attribute occurrences can be defined.

- Selection between visit sequences:
If there is no induced evaluation ordering there are productions rules with different visit 
sequences in different contexts. In this case all possible visit sequences have to be gene­
rated for each production. The correct visit sequence is chosen during the evaluation 
time.

In the evaluation phase the values of the attribute occurrences of a given tree are calcula­
ted using the attribute evaluation ordering of the strategy phase. Two kinds are dis­
tinguishable:
- demand driven:

The evaluator is called with a set of attribute occurrences, whose values have to be com­
puted.

- data driven:
The evaluator starts with the calculation of those values of attribute occurrences which 
depend on no other attribute occurrences. Afterwards it computes those values of attri­
bute occurrences for which the values of the attribute occurrences, which are necessary 
for the calculation, are already determined.

4.2.2 Dynamic Attribute Evaluation for Undirected Attribute Equations

In the dynamic attribute evaluation the evaluation ordering is derived for a given term 
and not for a class of terms. Therefore the individual dependency graph DGraph(t) is 
sorted topologically. If a total ordering can be obtained the attribution is cycle free and 
can be used as an evaluation ordering. This is the proceeding for usual attribute gram­
mars with directed attribute equations and non remote access.

4.2.2.1 Abstract Algorithm

Since in the new approach undirected attribute equations with remote access of attribute 
values are supported a different point of view has to be taken.

In usual dynamic attribute evaluation systems the instantiated dependency graph is topo­
logically sorted. In the new approach it is not dealt with dependency graphs but with 
dependency sets, i.e. no ordering on the attribute occurrences is defined. Therefore a sor­
ting on sets has to be developed. Moreover in attribute grammar systems, under the 
assumption that an attribute evaluation ordering can be defined, in each step exactly one 
value of an attribute occurrence is calculated. But in the new specification technique 
loose specifications are possible. E.g. an invariant between several attributes can result in
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a set o f values for one attribute occurrence. Moreover, the attribution can be defined in 
such a way, that two or more values of attribute occurrences must be simultaneously cal­
culated. In this case existentially quantified formulae have to be solved.

The starting point for the dynamic attribute evaluation is the instantiated local depen­
dency set of a term relative to a set of attribute equations. The smallest attribute occur­
rences are the elements of the local dependency sets with cardinality one. Having already 
determined an ordering on some attribute occurrences O each element of O is smaller 
than an element of a set of attribute occurrences O' iff there is a ds and no ds' in the local 
dependency set such that | ds' A O | < | ds A O | and O' = ds \ O. I.e. O' is the smallest set 
of attribute occurrences which have to be calculated simultaneously. A data-driven algo­
rithm for the attribute evaluation ordering looks like:

procedure dynamic_attribute_evaluation_ordering

Input: 
- term i 
- set of attribute equations Ax 
Output: 
" <evai attribute evaluation ordering

begin
(1) ordered = { a | { a } G DSet|Oca)(t, A x )}
(2) minimal elements wrt. <eva) are all elements in ordered
(3) repeat
(4) nextdset = { ds I ds G DSet|Oca|(t, Ax) 3 ds' G DSet[o ca |(t, Ax).

| ds' n  ordered | < | ds n  ordered | }
(5) for all d Gordered do
(6) for all a Gnextdset do
(7) d <eva i a \  ordered
(8) od od
(9) ordered = ordered U U ds  enextdsetd s

(10) until ordered = U d s  e D Set|0Cai(t. Ax) ds
(11) return(<ev a |)

end

The input is the term t for which the attribute evaluation ordering has to be determined 
and a set of attribute equations Ax. The output is the evaluation ordering <eval of the attri­
bute occurrences.
In (1) the sets of the instantiated dependency sets with cardinality one are defined as the 
smallest elements in <eval. Therefore the ordering of these attribute occurrences is already 
known (2). (3)-(10) performs a loop until all attribute occurrences are ordered. (4) calcu­
lates the dependency sets of the instantiated local dependency set with minimal unor­
dered attribute occurrences which have to be considered next. All the already ordered 
attribute occurrences are smaller than the unordered attribute occurrences of the consi­
dered dependency set (5)-(8). These attribute occurrences are ordered in the following 
iterations (9). (11) returns the calculated attribute evaluation ordering for the input term.
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Example 4.2.2.1.1

Let us determine as an example the attribute evaluation ordering for CMOBILE  and the 
term:

mobile(mobile(cube(\), cube(3)), cube(2))

The algorithm is executed as follows:
(1) ordered = { weight(mobile(mobile(occ(cube(1)), cube(3)), cube(2))), 

weight(mobile(mobile(cube(1), occ(cube(3))), cube(2))), 
weight(mobile(mobile(cube(1), cube(3)), occ(cube(2))), 
depth(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 
length(mobile(mobile(occ(cube(1)), cube(3)), cube(2))), 
length(mobile(mobile(cube(1), occ(cube(3))), cube(2))), 
length(mobile(mobile(cube(1), cube(3)), occ(cube(2))), 
leftlength(mobile(mobile(occ(cube(1)), cube(3)), cube(2))), 
leftlength(mobile(mobile(cube(1), occ(cube(3))), cube(2))), 
leftlength(mobile(mobile(cube(1), cube(3)), occ(cube(2)))), 
rightlength(mobile(mobile(occ(cube(1)), cube(3)), cube(2))), 
rightlength(mobile(mobile(cube(1), occ(cube(3))), cube(2))), 
rightlength(mobile(mobile(cube(1), cube(3)), occ(cube(2))))}

(2) the elements of ordered in (1) are the minimal elements of <eva(
(4) nextdset = {{ weight(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 

weight(mobile(mobile(occ(cube(1)), cube(3)), cube(2))), 
weight(mobile(mobile(cube(1), occ(cube(3))), cube(2)))}, 

{ depth(mobile(mobile(cube(1), cube(3)), occ(cube(2)))), 
depth(occ(mobile(mobile(cube(1), cube(3)), cube(2))))}, 

{ depth(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
depth(occ(mobile(mobile(cube(1), cube(3)), cube(2))))} }

(5) for all d eordered do
(7) d <evai weight(mobile(occ(mobile(cube(1), cube(3))), cube(2)))

d <eva| depth(mobile(mobile(cube(1), cube(3)), occ(cube(2)))) 
d <eva| depth(mobile(occ(mobile(cube(1), cube(3))), cube(2)))

(9) ordered = ordered U { weight(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
depth(mobile(mobile(cube(1), cube(3)), occ(cube(2)))), 
depth(mobile(occ(mobile(cube(1), cube(3)))> cube(2)))}

(4) nextdset = {{ weight(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 
weight(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
weight(mobile(mobile(cube(1), cube(3)), occ(cube(2))))}, 

{ depth(mobile(mobile(occ(cube(1)), cube(3)), cube(2))), 
depth(mobile(occ(mobile(cube(1), cube(3))), cube(2)))}, 

{ depth(mobile(mobile(cube(1), occ(cube(3))), cube(2))), 
depth(mobile(occ(mobile(cube(1), cube(3))), cube(2)))}, 

{ cmaxdepth(mobile(mobile(cube(1), cube(3)), occ(cube(2)))), 
depth(mobile(mobile(cube(1), cube(3)), occ(cube(2)))} }

(5) for all d eordered do
(7) d <evai weight(occ(mobile(mobile(cube(1), cube(3)), cube(2))))

d <eva| depth(mobile(mobile(occ(cube(1)), cube(3)), cube(2))) 
d <eva|depth(mobile(mobile(cube(1), occ(cube(3))), cube(2))) 
d <eva| cmaxdepth(mobile(mobile(cube(1), cube(3)), occ(cube(2))))

(9) ordered = ordered U {weight(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 
depth(mobile(mobile(occ(cube(1)), cube(3)), cube(2))), 
depth(mobile(mobile(cube(1), occ(cube(3))), cube(2))), 
cmaxdepth(mobile(mobile(cube(1), cube(3)), occ(cube(2))))}

(4) nextdset = {{ cmaxdepth(mobile(mobile(occ(cube(1)), cube(3)), cube(2))),
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depth(mobile(mobile(occ(cube(1)), cube(3)), cube(2)))}, 
{ cmaxdepth(mobile(mobile(cube(1), occ(cube(3)), cube(2))), 

depth(mobile(mobile(cube(1), occ(cube(3)), cube(2)))} }  
(5) for all d Gordered do
(7) d <evat cmaxdepth(mobile(mobile(occ(cube(1))> cube(3)), cube(2))) 

d <eva| cmaxdepth(mobile(mobile(cube(1), occ(cube(3)), cube(2)))
(9) ordered = ordered U {cmaxdepth(mobile(mobile(occ(cube(1)), cube(3)), cube(2))), 

cmaxdepthimobileimobileicubeil), occ(cube(3)), cube(2)))}
(4) nextdset = { cmaxdepth(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 

cmaxdepth(mobile(mobile(occ(cube(1)), cube(3)), cube(2))), 
cmaxdepth(mobile(mobile(cube(1), occ(cube(3))), cube(2)))} }

(5) for all d Gordered do
(7) d  <evai cmaxdepth(mobile(occ(mobile(cube(1), cube(3))), cube(2)))
(9) ordered = ordered U {cmaxdepth(mobile(occ(mobile(cube(1), cube(3))), cube(2)))}
(4) nextdset = {{ cmaxdepth(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 

cmaxdepth(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
cmaxdepth(mobile(mobile(cube(1), cube(3)), occ(cube(2))))} }

(5) for all d Gordered do
(7) d  <evai cmaxdepth(occ(mobile(mobile(cube(1), cube(3)), cube(2))))
(9) ordered = ordered U { cmaxdepth(occ(mobile(mobile(cube(1), cube(3)), cube(2))))}
(4) nextdset = {{ length(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 

cmaxdepth(occ(mobile(mobile(cube(1), cube(3)), cube(2))))), 
depth(occ(mobile(mobile(cube(1), cube(3)), cube(2))))}, 

{ length(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
cmaxdepth(occ(mobile(mobile(cube(1), cube(3)), cube(2))), 
depth(mobile(occ(mobile(cube(1), cube(3))), cube(2)))} }

(5) for all d Gordered do
(7) d <eval length(occ(mobile(mobile(cube(1), cube(3)), cube(2)))) 

d <eva| length(mobile(occ(mobile(cube(1), cube(3))), cube(2)))
(9) ordered = ordered U {length(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 

length(mobile(occ(mobile(cube(1), cube(3))), cube(2)))}
(4) nextdset = {{ length(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 

leftlength(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 
rightlength(occ(mobile(mobile(cube(1), cube(3)), cube(2))))}, 

{ length(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
leftlength(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
rightlength(mobile(occ(mobile(cube(1), cube(3))), cube(2)))}, 

{ weight(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
leftlength(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 
weight(mobile(mobile(cube(1), cube(3)), occ(cube(2)))) 
rightlength(occ(mobile(mobile(cube(1), cube(3)), cube(2))))}, 

{ weight(mobile(mobile(occ(cube(1))> cube(3)), cube(2))), 
leftlength(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
weight(mobile(mobile(cube(1), occ(cube(3))), cube(2))), 
rightlength(mobile(occ(mobile(cube(1), cube(3))), cube(2)))} }

(5) for all d Gordered do
(7) d <evai { leftlength(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 

rightlength(occ(mobile(mobile(cube(1), cube(3)), cube(2))))} 
d <evai{leftlength(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 

rightlength(moblle(occ(mobile(cube(1), cube(3))), cube(2)))}
(9) ordered = ordered U {leftlength{occ(moblle(moblle(cube(1), cube(3)), cube(2)))), 

rightlength(occ(mobile(mobile(cube(1), cube(3)), cube(2)))), 
leftlength(mobile(occ(mobile(cube(1), cube(3))), cube(2))), 
rightlength(mobile(occ(mobile(cube(1), cube(3))), cube(2)))} ♦
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4.2.3 Attribute Evaluation Ordering

In the previous section a method was developed for dynamically determining the attri­
bute evaluation ordering in the framework of attributed algebraic specifications. Having 
an algebraic specification such that the existentially quantified formulae can be solved in 
a good time and space complexity, e.g. having a constructor complete definition of the 
functions, the dynamic attribute evaluation ordering slows down the attribute evaluation. 
Therefore it would be desirable, especially if an attributed algebraic specification is a 
functional attribute grammar, to generate attribute evaluators with nearly the same time 
and space complexity as in the old approaches.

The subordinate characteristic set for occurrence terms of a distinguished sort defines the 
global dependencies of the synthesized attributes in terms of the inherited attributes, like 
the superior characteristic set which describes the global dependencies in the context. 
Thus the attribute evaluator has perfect strategical information. E.g. if the attribute eva­
luator visits the visualized occurrence in the following cutting of an attributed tree:

d = depth 
I = length 
rl = rightlength 
II = leftlength 
cmd = cmaxdepth 
w = weight

and the subordinate and superior characteristic set - without the local dependencies - for 
mobile in the specification CMOBILE are 

d = depth 
I = length 
rl = rightlength 
II = leftlength 
cmd = cmaxdepth 
w = weight

mobile rl II d mobile rl II | cmd w

subordinate characteristic set superior characteristic set

and the value of the attribute occurrence of attribute d is already calculated, then the eva­
luator knows, that
- after visiting the subtree under the marked node the value of cmd is known, 
- but the value of I is surely not known, since it depends contextually on cmd.

I.e. visiting this node a next time (after having the values of d and cmd calculated) the 
value of I can be computed. But as already mentioned the subordinate and superior cha­
racteristic set can only be determined knowing the attribute evaluation ordering.

Thus the proceeding performed in attribute grammar systems is not usable in the case of 
undirected attribute equations. A new strategy has to be investigated.

Before defining a formal strategy, it is explained exemplarily.

The basis for determining the attribute evaluation ordering is the set of characteristic 
terms of the attribute equations being for the specification CMOBILE

{ sv\mobile(svl[cube(lL)}, sv2[cube(l2)])] }.
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It can be visualized as: 
sv(o) 
I @ 

mobile
S V I® "

I I „  
cube (J w  cube v 21)

I I
11 I2

figure 18: characteristic term w rt the attribute equations

To shorten notation the attribute occurrences are denoted by the attribute function sym­
bols and the circled numbers in the tree of figure 18, e.g. weightm  denotes the attribute 
occurrence weight(sv[mobile(svl [Qcc(cube(l\ff\, sv2[cube(l2)])J).
For the characteristic term the instantiated local attribute dependency set (wrt. the speci­
fication CMOBILE) is calculated:

{ { weightm }, { weightm }, { weighty weightm weighty }, 
{ lengthy leftlength}, rightlength] }, { weighty, leftlength!, weighty, rightlength!}, 
{ depths }, { depths deptha }, { depths depth12 }, { cmaxdepthm, depthm }, 
{ cmaxdepthm, depthm }, { cmaxdepth!, cmaxdepthn, cmaxdepth12 }, 
{ leftlengthm }, { leftlengthm}, { rightlengthm }, { rightlengthm}, { lengthm }, 
{ lengthm }, { lengthy cmaxdepths, depthx } }.

We start with the sets containing only one element, since the values of the attribute 
occurrences can be determined independently of the others and are therefore the smallest 
elements in the attribute evaluation ordering:

{ { weightm }, { weightm }, { depths }, { leftlengthm }> { leftlengthm }, 
{ rightlengthm }, { rightlengthm }, { lengthm }> { lengthm } }•

Now an ordering can be defined on the other elements analogous to the dynamic attribute 
evaluation ordering idea: 
depths depthr deptha depthm cmaxdepthm 25 cmaxdepthn n 
depths 25 dep t^  depths depthm cmaxdepthm cmaxdepthn  J cmaxdepth! 

cmaxdepth!22 cmaxdepths 
cmaxdepthcf\ i i

depth, ^ n g th ^  length

weight,„s. weight,, 1 . < W ei»ht
w e ig h t ,s  weighty r s  ^ tg lt t i  s  weight0 

lengthy { leftlength!, rightlength! }
{  leftlength,, rightlength,}

The ordering depths depths deptha depthm,... is valid because depth is an inherited 
attribute and using the trivial substitution for the subterm identifier results in the applica-
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bility of a dependency set (inductive definition of the ordering). The same fact holds for 
the synthesized attributes, e.g. cmaxdepth^ cmaxdepthyy-

Based on this ordering a total ordering can be constructed analogous to usual attribute 
grammar systems. Defining an ordering taking tree traverses into consideration, e.g. the 
following total ordering can be constructed:

depths < depths < depthn  < depthn i  < w eigh ty  < cmaxdepthn i  < lengthy < leftlengthyyy 
< rightlengthn i  < cmaxdepth^ < weighty < depthi2  d ep th s  < weight121
< cmaxdepthy21 < leng thy  < leftlengthy2y < rightlengthy2y < cmaxdepth12 < weighty
< weighty < cmaxdepthy < weighty < cmaxdepthy < lengthy < lengthy
< { leftlengthy, rightlengthy} < { leftlengthy, rightlengthy }

I.e. especially for the nodes marked with mobile we get the ordering

depths < weighty < cmaxdepthy < lengthy < { leftlengthy, rightlengthy}

and for the node marked with cube we get

d e p th s  < lengthi n  < w eigh ty  < cmaxdepthn i  < leftlengthy < rightlengthy

and

depth12y < length121 < w eigh ty  < cmaxdepthy2y < leftlengthy < rightlengthn i

Since depth and length are inherited attributes and weight, cmaxdepth, leftlength and 
rightlength are synthesized attributes the following visit-sequence is obtained:

In the first pass the inherited attribute depth is computed at nodes marked with mobile. 
After visiting the subtree the synthesized attributes weight and cmaxdepth are known. In 
the next tree traversing the inherited attribute length can be determined and after visiting 
the subtree leftlength and rightlength are known.
Nodes marked with cube have to be visited once, because the inherited attributes are all 
calculated before the synthesized ones.

We adapt the notion of ordered partition and visit sequence of [Wilhelm, Maurer 92] to 
our approach.

Definition 4.2.3.1 (ordered partition)

Let < be a total attribute evaluation ordering on attribute occurrences of sort s. An 
ordered partition for < is a sequence of the form

i1 51 i2 s2 ...ik sk with (1 £ j  £ k)
= fAttrj} y> f A t t r j y ' i  fA ttrj,n j

such that ^ l ^ n j ) ,  fAttrjy\ < f A t t r j y ” ? e

for 1 < j' k.
~ fA ttr j } yyfAttrjj 2? '" ifA ttr j>mj

such that fA ttr j j  E .F A t t r ^ n t h ( l  ^ l ^ m j ) ,  f A ttrjA  < fA ttrj,2’ ” ' ’ mj-1 <

and s 7' £ e for 1 j  < k.

V is the j-th down pass visit, s I is the j-th up pass visit and i j  s J the j-th visit. ♦
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Definition 4.23.2 (visit sequence)

Let < be a total attribute evaluation ordering on the attribute occurrences of occurrence 
terms of sort s and

. : i ^ ^  ( I s j ^ n )

be the ordered partition for (f: sv  sn -^  s) EC and constructor terms t2,..., tn of 
sort 52V , s n‘

A visit sequence vseq iorfand t ,̂ t2, . . . , tn is an evaluation ordering of the following form:

v s e q i s v ^ ,  i„)]) = i}, -  4 ^ 4

and

di is a sequence of visits ijSj (1 ri) at sv[/(.. occ^),...)]. ♦

The attribute evaluation ordering can be defined updating the dynamic attribute evalua­
tion algorithm in the way shown by the example.

procedure attribute_evaluation_ordering

Input:
- one characteristic term t
- set of attribute equations Ax
Output:
- <eval attribute evaluation ordering for the characteristic term t 

begin
(1) ordered = {a | {a } e  DSet|Oca)(t, Ax)}
(2) minimal elements wrt. <eva) are all elements in ordered
(3) repeat
(4) nextdset = {ds | ds eDSet)oca|(t, Ax) 3 ds' eDSet|Oca)(t, Ax). 

| a(ds') A ordered | < | o(ds) A ordered |
for some trivial subterm substitution o }

(5) for all d bordered do
(6) for all a enextdset do
(7) d <evai a  \ o(ordered)
(8) od od
(9) ordered = ordered U Uds e n ex tdset ds
(10) until ordered = Uds e D Set|Ocai(t. Ax) ds
(11) return(<eVai)

end

A loose specification can result in an incomplete ordering, e.g. if no defining equation for 
an attribute occurrence is given.

The obtained partial ordering can be normalized such that a visit sequence can be calcu­
lated.

The subordinate and superior characteristic set can be determined with the knowledge of 
the attribute evaluation ordering.
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Termchar(T) =

4.2.4 Subordinate and Superior Characteristic Set

The subordinate and superior characteristic set for a sort 5 describe independent of a 
given occurrence term the attribute dependencies in all subtrees of sort 5 and the attribute 
dependencies in all contexts with insertion places of sort s, respectively. The basis for 
both characteristic sets is the local dependency set and the attribute evaluation ordering.

Definition 4.2.4.1 (subordinate/superior characteristic set for sort s)
The subordinate and superior characteristic set for a sort s is calculated in 4 steps:
- The set of characteristic terms is calculated wrt. the attribute equations with T = 

Terms(AttrAx(Ax)) (under the assumption that the identifiers used in the axioms are re­
named apart):

T, if m guSet(T) = 0

Term c h a r ( { o ( t) \o  E  m guSet(t), tE T } ) ,  otherwise

- The characteristic local dependency set is computed wrt. the characteristic set of 
scheme terms.
DSetiocai (Ar) = { DSetiocaft , Ax) 11 ETermchar(Terms(AttrAx(Ax))) }

- The set of characteristic occurrence terms is calculated wrt. the distinguished sort.
OccTermcsar (Ax) = { 11t EOccTerms(ct) A { c[occ^fit19 t2,..., Q)] for some construc­
tor context c, constructor symbol/and t19 t2, . . . , tn terms of appropriate sort}, 
ct ETermchar(Ax) }

- The subordinate characteristic set for a sort s is defined by
DSetsuh =A ttr(^ t ̂ OccTerm ĉ r (Ax) (Unifl'rans(Dsub O

{ t' I f  <chari, f  & )ccTerm ^ar (Ax) }) D { fAttr(t) with^». eF A llr}))
with tt  <chari2, iff h  has the form c[occ(c'[i])] for some contexts c, c' and some term t and 
t2 has the form c[c'[occ(i)]] (with DSei = D S e t^ i  (Ar)):

d, if d contains only inherited, synthesized 
attributes, respectively 

Such that D sub = U  J { d ... d } if the visit sequence of d is
d ^ D S e t  1 1 2  n i ’

.1 1 .2  2 .k k  ,, , r . j  ,i s i s ...i s then d- = {i s } with 1 j  k

The superior characteristic set for a sorts is defined by
DSefsup =Attr(UtGOccTerm ĉ '  (Ax)(Uni/Trans(Dsu pr]

{ t' | it does not hold: t' <chari, t' EOccTermCsar (Ax) } IT
{  fA ttr ( f)  ^ ^ f A t t r  ^ A t i r  } ) )

with tr <char t2, as in the subordinate characteristic set case.
Such that

d, if d contains only inherited, synthesized 
attributes, respectively

^ SUp =  d E D S  t { ^ 2 ’ the s e Qu e n c e  ° f is

.1 1 .2  2 .k k  , , R J J  + 1-J . . j .i s i s ... i s then d j = {s i } with 1 j  < k ♦
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Example 4.2.4.2

The subordinate and superior characteristic set for the specification CMOBILE is compu­
ted in four steps:
- The characteristic set of scheme terms is calculated wrt. the attribute equations. 

Termchar(Terms(AttrAx(g\x))^ = { sv[mobile(sv\[cube(ll)], sv2[cube(l2)])] }
- The characteristic local dependency set is computed wrt. the characteristic set of sche­

me terms (using the numeration of figure 18.):
DSeti^ai (Ax) = { { w /gAim  }, { w e ig h ty }, { weighty weighty, weighty }, 
{ lengthy leftlength^, rightlengthr }, { weighty, leftlength], weighty rightlength]}, 
{ depths }, { depths depths }, { depths depthn  }, { cmaxdepthn r , d e p th s  }, 
{ cmaxdepth^, d ep th s  }, { cmaxdepth], cmaxdepth]], cmaxdepth} 2 }, 
{ leftlength^ }, { leftlengthn \ }, { rightlength]]]}, { rightlengthn i }, { lengthy }, 
{ lengthy }, { lengthy cmaxdepthQ, depths} }.

- The set of characteristic occurrence terms is calculated wrt. the distinguished sort. 
OccTermĉ ar (Ax) = OccTerms(sv[mobile(svl[cube(ll)], sv2[cube(l2)])]),

- D S e ^ lle = { { weight, length, leftlength, rightlength }, { depth, cmaxdepth } }
- D S e ^p lle = { { cmaxdepth, weight, length } } ♦

Remark

In our considerations we have dealt with the worst case approximation whereby all equa­
tions of the form

fAttr(t) = rhs

(with attribute occurrence fAttr(t) and arbitrary attribute term rhs) are undirected attribute 
equations. But the proceeding can be simplified, if these equations are handled like 
directed attribute equations. In this case the usual ordering can be used on the attribute 
occurrences of these equations.
Generating Efficient Attribute Evaluators

The generation of efficient attribute evaluators can be performed like in usual attribute 
grammars using the visit sequences or the superior and subordinate characteristic sets.
Attribute Dependencies and Structured Attributed Algebraic Specifications

Using the structuring mechanisms presented in section 3.5 not only the specifications but 
also the attribute dependencies for these specifications should be stored in libraries. 
Some considerations have to be made to get correct attribute dependency relations for 
the combined specifications:
- Flat specifications do not influence the determined attribute dependencies.
- In the case of an enrichment of an attributed algebraic specification the following cases 

have to be differentiated:
+ The attribute dependencies can be merged, if in the axioms of the enrich-part attribu­

tes are used which are not defined or used in the basic specification, otherwise
+ a new attribute dependency analysis has to be performed for the normalized specifi­

cation.
- The rename operation causes no problems, since only the signature morphism has to be
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applied to the dependency sets and visit sequences.
- The export of a subsignature does not influence the attribute dependencies.
- The sum operation causes the same problems as the enrich operation:

+ if the specifications do not share common attributes then the attribute dependencies 
can be merged and

+ otherwise a new attribute dependency analysis has to be started for the normalized 
specification.
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5 Calculi for Attributed Algebraic Specifications

This chapter deals with three kinds of calculi: one for determining the complete set of 
minimal unifiers for a set of attribute terms, one for dealing with universally quantified 
formulae including induction principles and a narrowing calculus for dealing with exi­
stentially quantified formulae.

5.1 Unification Calculus

Note the fundamental difference to the work on the topic of unification done in the 
framework of higher-order algebraic specifications, see e.g. [Heering et al. 94].

Unification solves the problem of making two terms syntactic equal, i.e. a substitution is 
computed, which applied to both terms, results in two syntactic equal terms, if the two 
terms are unifiable. Unification was first discussed in [Herbrand 30] and an algorithmic 
form of the computation was given in [Robinson 65]. In [Martelli, Montanari 82] unifi­
cation was described by a set of rules manipulating a set of equations to obtain a most 
general unifier.

Since in attributed algebraic specifications the notion of terms was extended to attribute 
terms admitting subterm identifiers, the unification algorithm has to be adapted to handle 
such identifiers, too.

The following considerations are based on [Hofbauer, Kutsche 89] extended to manage 
subterm identifiers.

Definition 5.1.1 (unifier)
A unifier for two attribute terms tr and t2 is a scheme substitution o  such that 
O(ii) -  a(Z2).

A unifier a  is more general than a unifier o' (written: o  o'), iff there exists a substi­
tution o" ESubst such that aa" = a ’.

A unifier for a set of attribute terms {t^ t2,..., tn } is a scheme substitution a  such that 
a(ii) = a(z2) = ... = = a(Z„). ♦

Let us consider the attribute terms

t = weight(svl[mobile(sv2[mobile(occ(ml), m2)], m3)]) and

r = weight(sv3[mobile(sv^[mobile(mobile{mobile(occ(m^), m5), mb), ml)], m8)])

E.g. (using the usual abbreviations, i.e. neglecting the functionality of the subterm identi­
fiers)

a  = [ S V l M o bile Mobile /  M o b ile M o b ile ,

^ M o b i l e  -  Mobile I w4[mobile(mobile(zMobiie, mb), ml)], 
m l I m^, m2 / m5, m3 / m8 ] and

(J — [ SV 1 Mobile -* Mobile I Sv3[mobile(sV^Mobile Mobile,

^ M o b i l e  Mobile I  mobile(zMobile, mb), m l / m4, m 2 1 m5, m3 / m l ]

are unifiers of t and r, since it holds:
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0(f) = weight(svl[mobile(sv2[mobile(occ(ml), m2)], m3)])
[ Mobile -* Mobile /  Mobile -» Mobiles

s v ^ M o b ik ^  Mobile I sv^moblle{mobile(zMohlle, m6), ml)], 
m l / m4, m 2 1 m5, m3 / m8 ] =

weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), m5), mb), m7)], m8)])

and 

o(r) = weight(sv3[mobile(sv4\mobile(mobile(mobile(occ(m4), m5), mb), m7)], m8)])
[ $ ^ 1  Mobile -* Mobile I  Mobile -> Mobile)

sv2M obile^ Mobile I sv4[mobile(mobile(zMobile, mb), m7)],
m l I m4, m2 / m5, m3 / m8 ] =

weight(sv3[mobile(sv4\mobile(mobile(mobile(occ(m4), m5), mb), m7)], m8)])

and

0'(t) = weight(svl[mobile(sv2[mobile(occ(ml), m2)], m3])
[ Mobile —-Mobile I  ^ 3 [ m o b i l e ( s v 4 M o bile --M obile)

^ M o b i l e  ^M o b ile  I  mobile(zMobae, mb), m l I  m4, m 2 1 m5, m 3 / m 7 ]  = 

weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), m5), mb), m7)], m8)])

and

o'(r) = weight(sv3[mobile(sv4[mobile(mobile(mobile(wc(m4), m3), mb), m7)], m8)])
[ s v ^-Mobile —* Mobile /  Sv3\mobile(sv4^[obiie Mobile) ^8)],

^ M o b i l e  -^M obile I  m °bUe(zMoblle, m7), m l I m4, m 2 1 m5, m 3 /m 7 ] = 
weight(sv3[mobile(sv4[mobile(mobile(mobile(occ(m4), m5), mb), m7)], m8)])

But neither 0  a ', nor o' a  holds. Therefore there is no most general unifier for a set of 
attribute terms. Nevertheless we will see that a complete set of minimal unifiers exists!

Definition 5.1.2 (set of unifiers)

A set unifSet C Subst is a set o f unifiers for two attribute terms t and r iff for all 
a  EunifSet holds: o(i) s  0(f).

A unifier set unifSet is more general than a unifier set unifSet' (written: unifSet unifSet'), 
iff for all o' EunifSet' exists a o  EunifSet such that o  s  o'.

By unifSet(t, r) the set of all unifiers for t and r is denoted. ♦

Definition 5.13 (equivalence, variants of sets of unifiers)

Two unifier sets unifSet and unifSet' are equivalent (denoted by: unifSet & unifSet'), iff 
unifSet unifSet' and unifSet' unifSet holds.

Two unifier sets unifSet and unifSet' are variants (denoted by: unifSet -  unifSet'), iff for 
all a  EunifSet there exists a o' EunifSet' and a bijective substitution T ESubst with o  = o 'r  
and vice versa.

Definition 5.1.4 (complete set of minimal unifiers)

The complete set of minimal unifiers for two attribute terms t, r EAT^fSV) (written: mgu- 
Set(t, r)) is the minimal set in the sense of on sets of unifiers, i.e.
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(1) mguSet(t, r) C unifSet(t, r) (correctness)
(2) for all a  EunifSet(t, r) exists a o' f=mguSet(t, r) such that a ' a  (completeness) 
(3) for all a, a ' EmguSet(t, r) with a  o' holds o  = o' (minimal)

Lemma 5.1.5

It holds:

unifSet unifSet' iff unifSet ~ unifSet'

Proof

Holds, since lemma 2.5 of [Hofbauer, Kutsche 89] at page 35 and lemma 1.13(v) at page 
6 can be extended to sets of unifiers. ♦

Theorem 5.1.6 (uniqueness of the complete set of minimal unifiers)

Let t, r EATY(SV). If t and r are unifiable and mguSet and mguSet' are two complete sets 
of minimal unifiers then there exists a renaming substitution o  ^Renaming such that 
o(mguSet) = mguSet', i.e. the complete set of minimal unifiers is unique up to renaming 
of the identifiers. ♦

Proof

Let unifSet and unifSet' be two complete sets of minimal unifiers for t and r. It holds:

unifSet unifSet' and unifSet' unifSet

since both sets are complete minimal sets. Implying unifSet & unifSet' and with Lemma 
5.1.5 holds unifSet ~ unifSet'.

Thus there exists a renaming substitution at with nfunifSef) = nfunifSet') ♦

For the existence of the complete set of minimal unifiers a constructive approach is per­
formed.

The idea of the unification algorithm is to start with a configuration { { t ■ r } } with uni­
fiers Qi,..., o n and apply as long as possible rules until a set { E 17..., E n } is obtained such 
that Oi is most general unifier of E t (1 i ri).

The unification algorithm for attribute terms is a generalization of [Martelli, Montanari 
82] to handle subterm identifiers and to get a complete set of minimal unifiers.

Definition 5.1.7 (unification calculus for attributed terms)

The unification calculus |-unif for attribute terms consists of the following rules with (f: s17 
s2,..., sn ~* s) ^ C Occ U F, tEAT^fSV), tb  rt EATy (SV)Si (1 i ri), sv subterm identifier,x  
usual identifier, c context over the notion of attribute terms:

if n 0
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if x  not in t andx  in . . . ,e k and o  = [x  / 1 ]

-I,-J
if t is not an identifier

{ ■ ■ ■ ,{ . . . ,S v [ r p . . . , t J .S y [ r p . . . , r J . . .^
( U 5 )  =

\U b )  > #■ < -)
{ - ,  {«1«, s v ^ = c, e j  + 1 0 , . . . ,  ek v } , . . . }

if sv not in c and sv in eh ..., e ^ , ejk l> ..., ek and a  = [ svSL ... s„ _ s I c ]

{•••> {«!> e j-v  f ^ , ...,rm ) = gyp,,..., t j ,  ej k l , e j , .,.}
{■■■’ {e i» e j -  V e j + V ■■■’ e k i U .... {ep •... s-_ k, e~ + p ..., ek } U E^, ...} 

if sv not in fir 19,..9 rn)

( r g , { { e i ’ e j - p  w [ < i ’ - ’ r ^ ’ e i ^ ’

'{•••, {*P - ,e /_ i ,e M i, - .e ^ O E j^  .... {ev  ..., e ^ ,  ej k  p ...,ek } U E ...} 
if sv not in fir b ..., rn)

such that
{  E j u  }  =

{ { ^01 55 ^ l v »  "̂ OWQ S  r wQ7 ^ l l / b ” *, A4] “  r wQ + 1,

•^11 s  + !?•••> S  GPQ + + b  + l v ,  S  ^ WQ + + 2 v

+ 1’’” ’ ^p] s  ^ 0  + ••• + w n -i + P’ ^»1 ~ + ... + Wp _ j +p + l v ?  XpWp s

ĉvV =S ^ S 2 , - - ; S n - ^ S  ~

f ^ s v l , S l , . . ^ v ~ s ; ^ V s v 2sV i t V ...,s ^ s ^ - - ' ^ V ^ P , Sv^

Xi and sv,are new identifiers and subterm identifiers, respectively (0 z n, 
I s j s  n), sv^ti,..., tvJ  and rWQ + b  sv2[ivi + j,..., tV2] and rwo + + 2,..„ 
^ [ ^ . j  +1.-. tp\ and r„0 + ... + Wn l  are unifiable, 0 s  vt  < v2 < ... < vp s  n, 
0 Wj n } U
{ { =fir i>”'> r m\ sv = z  } I n  = 1> and/^ri,..., r„  ̂are unifiable }

{..., {ep ..., _p + p ..., ê } U E ..., {ep ..., e^_ ê  + k, ..., ek ] U E ...} 

if sv is not in sv \r ly ..., rm] and sv' is not in sv^,..., tn].
such that 
{ ^ p - . ^ }  =

{ { Xoi •  ' • b - ,  ^ 0  “  r * v  i v j  = %  +1,

7- Note, sv,li !2> 3n s is an abbreviation for svs h  J2 .... Sa _  s [zs l ,..., zS(1].
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•^11 =  "̂WQ + S  ̂ WQ  + wj + b  ^v2 l  S  r *0  + W1 + 2’

+ l v >  ¿p] s  r wQ + ... + wn _i + p i %nl s  r wQ + ... + Wp.\ +p + l v »  XpWp s  r m’

SV s b  s2,-.-,sn - ^ s  =

xz and 5V; are new identifiers and subterm identifiers, respectively (0 n, 
I s j s  ri), svjii,..., i j  and r^0 + 1 ; s v ^  + j,..., t„2] and + W1+ 2,..., 
^ > 1  + 1>-> y  a n d  %  +... + »-„.i + p a r e  u n i f i a b le > 0 s  vj < v2 < ... < vp s  n, 
0 Wi n }  U

{ { tx ■ «sv’̂ , . . . ,  rm], sv’s ^ s ■ zs } | n = 1, t} = sv '^ ,..., rm] are unifiable } U

{ { %oi -  XOM?O -  tWQ, rvJ  -  tWQ + i,

• ' l l  = Ŵ Q  + l v >  -^1^1 = Ŵ Q + + 1? ^2[^*V | + b - >  ^ 2 ]  ~ AVQ + wj + 2? •••

+ l v >  r p] “ ¿WQ + ... + wn . i  + P’ • 'p l  s  ^ 0  +  •• +  wp A  + P +  1’” *’ %Pwp  s

S V  S), S2,...,sn ^ s  =

SV|> .. S SX  . ... S  ... } I
Xi and Wyare new identifiers and subterm identifiers, respectively (0 z n, 
I s j s  ri), svi[ri,..., r j  and tWQ + 1 ; sv2 [rV1 + i , . . . ,  r„2] and t„0 + + 2,..., 
■^bvp.i + rp] an<i v̂0 + + +p
are unifiable, 0 vt < v2< — < vp w, 0 Wj m }  U

{ { ^  s sv[tr,..., in], sv = z  } | m = 1, i\  > sv \tx,..., tn} are unifiable }

Remarks:

Note, that (£71)-(t74) is the usual unification, (Z75) is the extension of (UI) to subterm 
identifiers and (U6) the extension of (U2) to subterm identifiers. (U7)-(U9) are rules for 
subterm identifiers. (U8) is the reverse of (U7) therefore a rule

..... ek }, ...}

is enough, but then the proof of termination is more complicated.

The idea of (U7)-(U9) is the same. All possible splittings of the subterm identifier depen- 
dending on the right hand side of the equation have to be constructed. All these cases 
have to be considered in the rule. But the number of splitting is restricted, because only 
sort-correct terms are assumed.

Definition 5.1.8 (unifiablity of a set of sets of equations)

A set of sets of equations SE = { { tn  = t1B1.  rl n i },..., { = r ^ }  } is
unifiable with a set of unifiers unifset = {a t , a 2, . a n } iff

(i) V se GSE. 3 o  Eunifset. a  is unifier of se and

(ii) V o  Eunifset. 3 se ESE. a  is unifier of se. ♦
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Lemma 5.1.9 (unification invariance)

Let SEt be a set of set of equations and SE i+1 the set of set of equations obtained by 
applying a rule (U1)-(U9) to SE t. It holds:

(1) SEi is unifiable with a set of unifiers unifset, if SE i+1 is unifiable with unifset.
(2) If unifset is a complete set of minimal unifiers of SEb then unifset is a complete set 

of minimal unifiers of SEi+1. ♦

Proof of (1)

It holds:

V se ESEi. 3 a  Eunifset. o  is unifier of se

implies

V se ESE t A SE i+1. 3 a  Eunifset. a  is unifier of se

Thus it is sufficient to show:

V se ESEi. 3 o  Eunifset. o  is unifier of se

implies

V se ESE i+1 \ SEj. 3 a  Eunifset. o  is unifier of se
(U i) (i)

It holds:
SEM  = (5£, \ {«i,-, t2 ,..., t„) r2,..., r„), ek })

U {e ly ..., ej.l t  «!■ ¡ , . r „  ek  }
Since V se ESE^ 3 a  Eunifset. o  is unifier of se, especially for

{e i,- , t2,..., Q  r2,..., r„), ek }
exists a substitution in unifset. Let a  Eunifset be such a substitution.
a  is also a unifier of the set

{ ^ l v >  ^ /- l,  ¿1 =  tn s  }

because the application of the substitution is defined inductively.
(«)
Let o  Eunifset be an arbitrary substitution. There exists an se ESE t such that o  is 
unifier of se. If se * {e^..., e ^ , f(tr, t2, . . ., tn e^ ,..., ek } then there
exists also an equation in SE i+l such that a  is unifier of the equation.
Otherwise let us assume that

0  is unifier of t2,..., t„) =f(rly r2,..., r„), ek  }
Again since the application of the substitution is inductively defined, Q  is also a 
unifier of tt and rL (0 i ri) and therefore there exists also a se ESE i+1 such that o  
is unifier of se, namely
se = {cj,..., ej.i, ti = r^ ..., tn = rn, e^ ,..., ek }.

(^2) (i)
It holds:
SE i+1 = (SEi \ { er,..., ej A , x = t, ej+1,..., ek }) U { era,..., e ^a , x  = t, ej+1o,..., ek a  } 
Since V se ESE t. 3 a  Eunifset. a  is unifier of se, especially for

{ e^,..., ej-i, x  = t, ej+i,..., ek }
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there exists a substitution in unifset. Let o  Eunifset be such a substitution. 
Furthermore, T = [ x / i ] i s a  unifier for x  = t. Thus o  can be written as a  = T n  for 
some substitution jt. Because x  is not in t, it holds: n  = T
Therefore a  = TH  = TTH = TO is valid leading to the fact that o  is unifier of

{ Cj,..., Cy.j, x  = t, ek } 
iff

{ CiO,..., ej A o, x s t ,  ei+ lo,..., Q  a  }
is unifiable with o. Therefore o  is also unifier of

{ ^ CF,..., x s t ,  C7-+1Q,..., ek o }
(ii)
Let a  Eunifset be an arbitrary substitution, then there exists an se GSEt such that a  
is a unifier of se. If se { eb ..., e^ , x s t ,  e ^ ,..., ek } then there exists an equation 
in SEM  such that a  is unifier of this equation.
Otherwise let us assume that

o  is unifier of { et ,..., e ^ , x s t ,  eJ+1,..., ek }
Since { ex,..., e ^ , x s t ,  e ^ ,..., ek  }o = { e ^ ,..., ej A o, xo  s  to, eJ+1Q,..., eko  } is valid 
o  is also unifier of se = { e ^ ,..., e ^o , x s t ,  ej+1o,..., ek o  } and therefore there 
exists a se GSEl+1 such that a  is unifier of se.

(U3) and (U4) satisfy trivially the unification invariance.
(U5) can be proved analogous to (171).
(¿76) can be proved analogous to (¿72).
(^7) (0

It holds:
SEM  = (SEt \ { eA1, rm) = r„], ek  })

U (U1S(-SM ({ ek  } El Ej^
Since V se 3 a  ^unifset. o  is unifier of se, especially for

{ ei,-> e,-i, rm) = sv[fb ..., f„], ek }
there exists a substitution in unifset. Let o  ^unifset be such a substitution.
Since attributed terms are defined inductively, o  is a unifier of f ^ , . . . ,  rm) and 
sv ^ ,..., t„\ if either (notations as in Definition 5.1.7) 
(a ) / ( r iv> r w) and h a r e  unifiable with o, i.e. sv is trivial, 
or
(b) syf^,..., tn] has the form

/ ( x 0 , SVjOp rv J ,  I p  sv2 [iVi +  ............................... ^ ¡ ,  +  1, -  i p l Xp)

(a)
Let T = [ sv / z  ]. o  can be written as o  = T H for some substitution n. It holds: 

a  = T n = TTH = T a  (since T = T T)
Therefore o  is also unifier of { e^..., e ^ , tr * fir^..., rm), sv = z, ei+1,..., ek }
(b)
If sv[tr ,..., tn] has the form

/(^o> - >  <v,l + !>•••> %]> SVp [ t ^  +  p  tp ],

then^rj,..., rm)
and sv2[rVi + p . . . , a r e
unifiable if



78 Unification Calculus

a(xOi) -  CF̂ )  -  o(rWQ), o(sv1[t1,..., i j )  .  0 ( ^  + 1),
^(•^11) = ^(^W Q  + l ) v >  S  ^ ( / WQ + w i + 1)? + l v >  A j )  ~  M  + 2 ) v

+ l v ?  (p ])  “  + ••• + ™n-l + p ) ’ ^ (-^ n l )  s  + ... + H>p _1 + p  + l)> —>

a^i.vp) = o(rm) }
Let 
T = [sv /

then o  can be written as a  = T JI for some substitution jt. Therefore o  is also unifier 
of
{ *^01 S  %OWQ S  fwQ’ A/j] s  ^ 0  + 1?

•^11 = r wQ + l v ,  % lw i s  r wQ + w i + 1? ^ 2 ( ^ 1  + b ' " j  ^ 2 ]  s  r wQ + WJ + 2 v

*^^p[^Vp4 + !>•••> ^p] -  GVQ + ... + w „4 + p i  -^«1 = r wQ + ... + Wp.i +p + l v ?  ^lW p ~  r mi

sv[z^..., zn} s

/ ( ^  ^ i , S | , , , i v i - s / > ^ > s v 2S l. s ,,2 - s ; - * 2 - ■ ■ '> -V ^ , i V . Svp l t l , }

Thus V se ESE i+1. 3 o  ^unifset. o  is unifier of se.
(ii) analogous to (i).

(178) analogous to (UI).

(U9) analogous to (UI).

Proof of (2)

It was shown in (1) that every set of unifiers of SE t is a set of unifiers of SEi+1. It remains 
to show that the set is complete and minimal. Considering the rules they do not change 
both properties. ♦

Definition 5.1.10 (unification algorithm)
The unification algorithm for the unification of attribute terms is defined by the following 
three steps:

(1) The start configuration i s { { i  = r} } .
(2) Apply rule (U1)-(U9) until no more reductions are possible.
(3) Let E  be the solution of step (2). ♦

Lemma 5.1.11 (termination)

The unification algorithm terminates. ♦

Proof

Take the following termination function mapping a set of sets of equations SE to a triple

(k, I, m)

such that

k = var(SE) \ ({ x  | x  in SE only once in an equation of the form x  ■ t } U
{ sv | sv in SE only once in an equation of the form sv51 S2,...,sn -^s = }) I
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I = Sum of the sizes of all equations

m = | { x  | x  in SE only once in an equation of the form x  s  t } U

{ sv | sv in SE only once in an equation of the form sv51 52j ? Sn = t } I

with the lexicographical ordering.

The size of an equation is defined as the size of the attribute terms on the left- and right­
hand side of an equation being defined by

size^ t^ ..., Q ) = (size(fd + ... + size(tn) + 1) * height(fit^.., Q )
size(sv[t1,..., = (s ize^) + ... + size(tn) + 1) * tn)) * combinations8 + 1

By combinations the number of possible splittings of a subterm identifier is meant.

height(f) = 1
height(f(t^..., i„)) = max { height(t^),..., h e ig h t^  } + 1

It holds:

(£71) k constant, I smaller
(£72), (¿73), (174) k  smaller
(U5) k  constant, I smaller
(U6) k  smaller
(177), (£78) k  constant, I smaller
(£79) k  constant, I smaller ♦

Theorem 5.1.12 (existence, calculation of the complete set of minimal unifiers)

Let t and r be two attribute terms. Let SEQ be the start configuration { { t s  r } } and SEn 
be the result of the unification algorithm. It holds:

(1) If each se ESEn has the form
{  X± = t ^ , . . . ,  X n  = tn , SVi, $2,..., s n 5 1' =  ^1 ’*’*’ ^ k ,  sj, $2,..., s n s k' =  ^ k }

and the x-s and sv/s are all pairwise distinct and all x t and sv  ̂do not appear in tt and 
cm (then se is called completely solved) then t and r are unifiable with the complete 
set of minimal unifiers (associated substitution)’.

[ X1 / ti,..., Xn / tn, S V i S2,...,sn -» s i' /  SVk, s^  S2,..., sn -+sfc' / Q]
(2) Otherwise t and r are not unifiable. ♦

Proof

Since the unification algorithm terminates (Lemma 5.1.11) there exists an end configura­
tion SEn for every start configuration SEQ.
proof of (1)

Let SEn be completely solved. SEn is unifiable with the associated substitution of SEn, 
since for all se GSEn holds:

se has the form
{  X l  = t-j^..., X n  = t ^  Sn  -» s f  =  S V ^ S2,.-., sn  -♦ s^' =  c k }

8.
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and
—  { *̂ 1 /  I  ^ 1  ,s±, sn  - » s j ' /  ^ k ,  51, S2,..., sn  -» I  ^ k }

is unifier of se, because xzx a  tt x and svt x a ct x.

Let it be an arbitrary unifier of se. We show x x by showing x it = it. Therefore x is 
minimal unifier for se in SEn and of SEQ because of the invariance lemma and thus of t 
and r. Moreover, SEn is a complete set since se and jt are arbitrary.

To show
- x  x x = x  it holds for all identifiers x  and
- sv xx a sv x holds for all subterm identifiers sv.
proof

x  ^dom(x): x  x X  = x  it, since x  x = x

x  Gdom(x): i.e. x  = xz for some xz. It holds: x x x a xz- x x a x 
Moreover, since x is unifier of x t and tt it holds: x a xz x a x x  
and therefore: x x x a xz- x x a x a xz- x a x x

sv ^dom(x): sv xx a sv x, since sv x a sv

sv Gdom(x): i.e. sv a svz for some svt.
It holds: sv XX a svt XX a Ci X
Moreover, since x is unifier of svzand ct it holds:
Ci It a sVi X a SV X
and therefore: sv x x a sv it

proof of (2)

Let SEn be not completely solved and no rule be applicable to SEn, then there exists an 
equation t a r in SEn of the form

e i t h e r t „ )  = rm) a n d / i  g
or x a t and x  in t
or sv[i1?..., tn] a r and sv in r
o r / a  sv ^ ,..., rm] with m > 1
or the cases of (t77)-(L/9).

In all these cases the terms are not unifiable. ♦

The result of these lemmas can be summarized in the following theorem:

Theorem 5.1.13 (soundness and completeness)

The unification algorithm is sound and complete. ♦

Example 5.1.14

Let us consider the terms

t = mobile(pcc(cube(n)y mobile(cube(2f cube(3))) and

r = svl[mobile(pcc(ml), m2)}
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The derivation looks like

zr 7 7 s { { z w o b /Z e (o c c (c w h e (n )) ,  m o b i l e ( c u b e ( 2 ) ,  c u b e ( 3 ) ) )  ■ s v l [ m o b i l e { o c c ( m l ) ,  m 2 ) ] }  }
1 '  { {  s v l  = z ,

( J T A .m o b i le { o c c { c u b e { n ) ) ,  m o b i l e ( c u b e ( 2 ) ,  c u b e ( 3 ) ) )  ■ m o b i l e ( o c c ( m l ), m 2 ) }  }
1 }  { { s v l = z ,

o c c ( c u b e ( n ) )  ■ o c c ( m l ) ,  m o b i l e ( c u b e ( 2 ) ,  c u b e { 3 ) )  = m 2 }  }
(  '  { {  s v l  = z ,

z T T1 s o c c ( c u b e ( n ) )  ■ o c c { m l ) ,  m 2  = m o b i l  e { c u b e { 2 ) ,  c u b e ( 3 ) ) } }  
1 '  { { s v l ^ z ,

fT / ' i s c u b e ( n )  s m l ,  m 2  »  m o b i l e ( c u b e ( 2 ) ,  c u b e ( 3 ) ) }  } 
{  )  { { s v l ^ z ,

m i s  c u b e ( n ) ,  m 2  ■ m o b i l e ( c u b e ( 2 ) ,  c u b e ( 3 ) ) }  }

and the obtained substitution is

[ svl / z, m l / cube(n), m 2 1 mobile(cube(2), cube(3)) ]

For the terms

t = sv[cube(n), cube(2), cube(3)]

and

r = mobile(ml, m2)

the derivation is

(TTCjx_________________________{{sv[cube(n), cube(2), cube(3)} = m obile{m l, m2)}}__________________________
{{svl[cube(n), cube(2), c u b e (3 )] sm l, m3 = m2,

s v Mobile, M obile, M obile -* M obile = m o b i l e ŝ v * M obile, M obile,M obile -* M obile’ m 3 ^ ’ 

{m e  m l, sv l[cube(n), cube(2), cube(3)] = m2,
s v M obile, M obile, M obile — M obile s  m o b i l e (m 3 ’ s v l Mobile, M obile, M obile -* Mobile* 

{svl[cube(n), cube(2)] e  m l, sv2[cube(3)] = m2,
s v M obile, M obile, M obile M obile s  m o b l l e ŝ v l M obile, M obile -* M obile’ s v 2 M obile Mobile* 

{svl[cw&e(n)] = m l, sv2[cube{2), cube(3)} s  m2,

( u * s v M obile, M obile, M obile -» M obile ~ m o b i l e ( ŝ v l M obile M obile’ s v 2 M obile, M obile Mobile^ 11 
{ {m l s  svl[cube(n), cube(2), cube(3)}, m3 =m2,

s v M obile, Mobile, M obile M obile = m o b i l e ŝ v l Mobile, Mobile, M obile -* M obile’ m 3 ^ ’ 

{m3 = m l, m2 = sv l\cube(n ), cube(2), cube(3)],
s v M obile, Mobile, M obile M obile = m o b i l e ^ 3  ̂s v l M obile, M obile, M obile Mobile* 

{m l = svl[cube(n), cube(2)], m2 s sv2[cube(3)],
s v M obile, M obile, M obile -» M obile s  m o b i l e ŝ v l M obile, M obile M obile’ s v 2 M obile -* Mobile* 

{m l  = svlfcwöein)], m2 s  sv2[cube(2), cube(3)],
s v M obile, M obile, M obile M obile s  m o b l l e ŝ v l M obile M obile’ s v 2 M obile, M obile Mobile* }

and the obtained substitutions are

[ m l I svl[cube(n), cube(2), cube(3)]> m3 / m2, sv I mobile(svl, m3) ], 
[ m3 I m l, m2 / svl[cube(n), cube(2), cube(3)], sv I mobile(m3, svl) ], 
[ m l / svl[cube(n), cube(2)], m2 / sv2[cube(3)], sv / mobile(svl, sv2) ], 
[ Twl / svl[cube(n)], m 21 sv2[cube(2), cwbe(3)], sv / mobile(svl, sv2) ]. ♦
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5.2 Universally Quantified Formulae

In this subsection we present an extension of the equational calculus for proving univer­
sally quantified formulae and define an induction principle for occurrence terms after­
wards. An induction ordering on occurrence terms is defined as a generalization. Finally, 
we formulate a semi-algorithm for constructing complete sets of occurrence terms and 
discuss heuristics for the proof principle.

5.2.1 Attributed Equational Calculus

The attributed equational calculus is an extension of the equational calculus with infinite 
induction (cf. e.g. [Wirsing 90]) to handle subterm identifiers.

Definition 5.2.1.1 (attributed equational calculus)

The attributed equational calculus |-aeq consists of the following derivation rules:

Let t, r, u EATz (SV)s be attribute terms, (f: s2,..., sn -* 5) GC U F  and tt EAT^{SV)Si

(1 i: £ ri), sv be a subterm identifier, c be a context and Ax be a set of axioms.

(ax)^ _ if t = r EAx

(trans)-— “

(fun )
t 1 = r 1 , t 2  = r2 , . . . , t n  = rn  

f ( t r , t 2 , . . . , t n ) = f ( r v  r2 , . . . , r n )

(subst) -=---------------------- —4— ----------------------- —=
S S -» S / C 1 =  ''[■SV5 S 5 $2’ Sn s  s p s 2’ ”'’s n ^ s

(t = r ) [sv /c ]  for all c G ST  (S  c  0 ^(SV )s

Vsv • (t = r)sr,s2, s

with SV  — (»SVŷ  s2,-., sn -* 5)51,52,..., sn, 5 es* s 1 {5p 
t [sv / c], r [sv / c] EAT^(SV)

In the following we show the soundness and completeness of the attributed equational 
calculus.
Firstly, the soundness of the attributed equational calculus is shown:

Theorem 5.2.1.2 (soundness of the attributed equational calculus)

Let ASpec = <2, FAttn Ax> be an attributed algebraic specification associated with the 
axioms Ax. The attributed equational calculus [aeq is sound wrt. Mod(ASpec), i.e.

♦Ax |-aeq t = r  implies Mod(ASpec) |= attr t = r
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Proof
Using fact 5.2.1 of [Ehrig, Mahr 85] it is sufficient to show that the rules of the attributed 
equational calculus are correct.

Let A be an arbitrary model for the axioms Ax and v an arbitrary valuation for A.
(ax) is valid since [i] = 1^ [r] and therefore Mod(ASpec) |= attr i = r , 

because A is a model of ASpec satisfying all axioms.
(refl) is valid since I* [/] = 1^ [i] and therefore Mod(ASpec) |=attr t = t
(sym) is valid since 1^ [/] = 1^ [r] implies 1^ [r] = 1^ [/] and therefore

Mod(ASpec) |= attr r = t
(trans) A, v |=attr t = r and A, v |=attr r = u, i.e. 1^ [i] = I* [r] and 1^ [r] = I* [M] is valid and 

therefore 1^ [i] = [w] implying Mod(ASpec) |= attr t = u.
(subst) A, v |= attr t = r, i.e. [i] = [r] is valid for all valuations v.

Especially for a valuation v’ with v’(sv') = v(sv') with sv' ^ S V \  { sv } and
v'(sv) = ly [c] holds A, v’ |= attr t = r, i.e. 1$ [i] = 1$ [r]. Since the substitution and the 
interpretation are analogously defined, it follows 1^ [i [sv / c]] = [i] = 1$ [r] =
I„ [r [sv / c]] (complete proof by induction on the attribute term notion) and there­
fore A, v |= attr t [sv / c] = r [sv / c] holds for all valuations v.

(fitri) A, V |=a tlrfi = r 1 ;A  V |=a ttri2 = r2,...,A, v |=a ttri„ = rn ,
i .e. Zj [ t j  = I A  [ r j ,  IA

V [i2] = I A [r2],..„ IA [i„] = IA [ r j  and therefore
IA  ¡ fa , t2,..., <„)] = f ( I A [ t j , IA  [i2],...,IA  [r„]) = f \ I A  [ r j , IA  [r2],..„IA  [rB]) =

[Ar i, r2,..., r„)] and thus A, v |=attI f i ty  t„) =f(ru  r2,..., r„), i.e.
Mod(ASpec) |=a m Aib h ,—, Q  =A r t> r„)

(II) Let A, v |= attr t [sv / c] = r [sv / c] for all c £ S I\s  c> 0^(SV)st i.e.
I* [t [sv / c]] = I* [r [sv I c]] for all c GST(S> c> ̂ (S V ) s, i.e.
for all valuations v’ with v'(sv') = v(sv’) with sv’ GSV \ { sv } and v'(sv’) = 1^ [c] 
holds: 7 ^ [ i ] = ^ [ r ]
Thus A, v’ |=attr V SV51> $2> , Sn s . t = r is valid because the considered algebras are 
reachable and bacause of the definition of v'.
Mod(ASpec) |= aw  V svSh _  s . t = r ♦

Moreover, the attributed equational calculus is complete.

Theorem 5.2.1.3 (completeness of the attributed equational calculus)

Let ASpec = <S, FA ttn Ax> be an attributed algebraic specification associated with the 
axioms Ax. The attributed equational calculus |-aeq is complete wrt. Mod(ASpec), i.e.

Mod(ASpec) |= attr t = r implies Ax |-aeq t = r ♦

Proof
The proof of the completeness of the attributed equational calculus is similar to the proof 
of the completeness of the equational calculus given e.g. in [Ehrich et al. 89] and of the 
equational calculus with infinite induction given in [Wirsing 90].

In order to show the completeness of the attributed equational calculus the following
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congruence ~s is defined on AT^(SV)s for all s GS with SV = (SVsl> S2^  Sn _  s)5b S2^  Sn> s

S 1 {s}:

t ~5 r iff Ax |-aeq t = r for some t, r EATflflV)s

The fact, that ~s defines a congruence relation, immediately results from the rules (refl), 
(sym), (trans) and (fun).

For all terms t, r EAT^(SV)s holds: Mod(ASpec) |= attr t = r implies Ax |-aeq t = r

Since:

Obviously AT^(SV)s I ~s satisfies the axioms, i.e. AT^(SV)s I ~s EMod(ASpec).

Therefore Mod(ASpec) |= attr t = r implies AT%(SV)s / 1= attr t =  r  implies Ax |-aeq t = r 

Let t, r EAT^(SV)s such that Mod(ASpec) |= attr t = r

For each instance of t = r there exists a derivation with (refl), (sym), (trans), (fun) and 
(subst). Applying the rule (II) yields a proof for t = r by |-aeq. ♦

Thus we have shown:

Corollary 5.2.1.4 (soundness, completeness of the attributed equational calculus)

The attributed equational calculus is sound and complete. ♦

5.2.2 Attributed Term Induction

Attributed term induction, developed as a proof principle for attributed algebraic specifi­
cations [Bauer 94a, 94b, 95], can be used to prove properties between attributes of occur­
rence terms of a distinguished sort. Attributed term induction is a special case for 
computing the complete set of occurrence terms of a distinguished sort.

The idea of the proof principle is to split an occurrence term into a subordinate and a 
superior term as visualized in figure 19. Two kinds of induction are combined for buil­
ding the superior term (a special kind of context induction with another ordering) and for 
building the subordinate term (a special kind of term induction).

Outer context of context c: 
The context c can be divided into:

occurrence property 
at an arbitrary node n:

figure 19: splitting the abstract syntax tree and the notion of an outer context

Since an occurrence term can be written as c[occ(i)], it is sufficient to show that 

V c [z j  e ^ s ,  c , 0 ) ({ Zst V t &(T(S< Ci 0 ) )S(. P(c[occs(01)
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is valid and P  is a property for occurrence terms of sort s t and root sort sroot (called occur­
rence property).

The notion of an outer context is needed for the definition of the attributed term induc­
tion which is the induction ordering on contexts:

Definition 5.2.2.1 (outer context)

c ^ ]  is an outer context of c[zs] if there exists a (non-trivial) context c2[zs] such that 
c[zs] = c1[c2[zj]. More graphically speaking on the path from the root of ct [zj to the con­
text identifier zs the number of nodes of sort s is smaller than the number of nodes of sort 
5 on the path from the root of c[zs] to the context identifier zs . The notion of an outer con­
text defines a Noetherian relation on contexts.

The attributed term induction can be explained in an abstract way considering the case 
analyses which have to be performed. At the outermost level a kind of context induction 
[Hennicker 91] with the same notion of context, but with another ordering, and at the 
innermost level term induction (cf. e.g. [Ehrich et al. 89]) is performed:
(1) Base of the context induction:

In this case a context with minimal insertion place of sort st has to be considered, i.e. 
the set of minimal outer contexts.

be such minimal contexts for terms of sort s t. A term induction has to

be performed for this sort.
(1.1) Base of the term induction:

Let denote all constants of appropriate sort st. The proof obligation

is the occurrence property at the node marked with P? in the abstract term9 :

Note, that the abstract term is an abbreviation for a set of terms.

P? denotes that at this node the occurrence property has to be valid.
(1.2) Induction step of the term induction:

The induction assertion is (P! denotes that at this node the occur­

rence property is valid) such that t} is any subterm of sort s t of the term t of the

proof obligation

9.
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(2) Context induction step:
In (1) the property has been shown for contexts with minimal insertion place depth. 
The induction step starts with an insertion place of depth n for which the property is 
valid (induction assertion) and considers an insertion place of depth n + 1 for which 
the occurrence property has to be proved.

be a given outer context for terms of sort s t with insertion place of

depth n. It is abstracted from the concrete representation of the context, i.e. an arbi-

trary context c2[ z j  of depth n is considered. The induction assertion is

for arbitrary terms t of sort st. Since in (1) we have shown that the property is valid 
for all minimal contexts and for all terms.

n + 1.

denote contexts for terms of sort st with insertion place of depth

Now a term induction for this sort is performed.
(2.1) Base of the term induction:

Let y^ons\  denote all constants of appropriate sort. In the proof obligation

the following term have to be considered:

(2.2) Induction step of the term induction:

The induction assertion is such that is a subterm with sort st of
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the term t of the proof obligation

This finishes the proof.

OCCS  OCCS

As already stated an occurrence term t E T c  can be written as c[occ5(i)] for 
some context c[zs] and some term t leading to the following proof principle:

Definition 5.2.2.2 (Attributed Term Induction):

Let ASpec = <2, FA ttn Ax> with 2  = (5, C, F) be an attributed algebraic specification and 
P  the occurrence property for occurrence terms of sort st.

To show that P  holds for all occurrence terms of sort s t, it is sufficient to show1 0 :

10- It is assumed that there exists only one root sort sroot, i.e. all attribute functions have the 
functionality fct(fA ttr) = sroo t —* s for a l l^ i ir EFA ttr  with arbitrary s GS.

(1)

(2)

It holds for all minimal outer contexts c ^ z j  of sort sroot:
(1.1) P(c![occ0]) is valid for all constants fE C  of sort s t;
(1.2) It holds for all terms t29—9 tn) with constructor symbol (f: s1? s2,..., sn -* s t) 

EC  and terms ti E(T(5 c  0 )̂Si (1 n):
Under the assumption that P(c1[occ(Z’)]) is valid for all subterms t’ of/(i^ t2,...9 
tn) of sort st, P ^ l o c c ^ t ^  t29...9 i„))]) must be valid;
In particular, the validity of P(c1[occ(i')]) can be assumed, if sort(t') = st; 

and
(2.1) Under the assumption that P(c2[occ(i)]) is valid for all outer contexts c2[zsJ of 

a context c3 and all terms t E(T(S , c , 0 y)St,P(c3[occ(f)]) must be valid for all con­
stants fE C  of sort st;
In particular, the validity of P(c2[occ(i)]) can be assumed if t c , 0 ^ 9

(2.2) It holds for all terms f(tr , t2,..., tn) with constructor symbol (ft s19 s2,..., sn —* s t)
EC  and terms tt E(P (5 c  0 y)s . (1 i n):
Under the assumption that P(c2[occ(i)]) is valid for all outer contexts c2[zsJ of 
a context c3 and all terms t E(T(S, c> 0 )̂St and P(c4[occ(f)]) is valid for all sub­
terms f  of f(t1 9 12,..., tn) of appropriate sort and all contexts c4, 
P ^ f o c c ^ ^ ,  t2,..., in))]) must be valid;
In particular, the validity of P(c2[occ(i)]) can be assumed if t E(T(S, c> 0 )̂St and
the validity of P(c4[occ(i')]) can be assumed, if sort(f) = s t;

Theorem S.2.2.3 (Soundness of Attributed Term Induction):

The proof principle of attributed term induction is sound.
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Sketch of the Proof:

It is obvious that the outer context relation defines a Noetherian relation using the 
ordering on natural numbers and the depth of the insertion place.

The proof obligation, which has to be shown by the proof principle, is:

V  c [ z j  G (T^ c , a l { z s^ S rM . V  t ^ s f  P (c[occ(i)])

which can be rewritten as

c, 0)(z s^)sroof  P c[Zst]

with
= V  ‘ c. 0))v ■p (c [°c c (i)])

The notion of an outer context defines a Noetherian relation on all contexts c[zS{] c, 

0 / { z St}))Sroot • Therefore Noetherian induction can be used, leading to the proof obliga­
tions:

(1) P cyZs j has to be valid for all minimal outer contexts.

(2) under the assumption that is valid for all outer context c ^ z j  of c [z j, PC[zSt] has 

to be valid.

c, 0))Sf  ¿ W < * (0 ]) c a n  he shown by term induction.

Viewing the above proof obligation in this way the soundness of the proof principle fol­
lows immediately. ♦

The proof principle of attributed term induction was implemented in [Duschl 94; Weiß 
95] generating proof obligations which are shown by the TIP system [Fraus 94a, 94b].

Example 5.2.2.4

The example is based on an implementation of the specification CMOBILE. The specifi­
cation CMOBILE! is defined as:

aspec CMOBILE 1 =
enrich NAT by 

sorts Mobile 
cons mobile: Mobile, Mobile -> Mobile, 

cube: Nat -* Mobile, 
fixed: -» Nat

attrs synth weight, leftlength, rightlength, cmaxdepth: Mobile -* Nat 
inh length, depth, maxdepth: Mobile -» Nat

axioms for all sv: Mobile -* Mobile; m, m l, m2: Mobile; I: Nat.
(1) weight(sv[occ(cube(l))]) = I, 
(2) weight(sv[occ(mobile(m1, m2))]) =

weight(sv[mobile(occ(m1), m2)]) + weight(sv[mobile(m1, occ(m2))]),

(3) length(sv[occ(cube(l)]) = 0,

(4) Ieftlength(sv[occ(mobile(m1, m2))]) = Iength(sv[occ(mobile(m1, m2))]) * 
weight(sv[mobile(m1, occ(m2))]) / weight(sv[occ(mobile(m1, m2))]),
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(5) rightlength(sv[occ(mobile(m1, m2))]) = Iength(sv[occ(mobile(m1, m2))]) * 
weight(sv[mobile(occ(m1), m2)]) /  weight(sv[occ(mobile(m1, m2))]),

(6) leftlength(sv[occ(cube(l))]) = 0,
(7) rightlength (sv[occ(cube(l))]) = 0,

(8) depth(occ(m)) = 1,
(9) depth(sv[mobile(occ(m1), m2)]) = depth(sv[occ(mobile(m1, m2))]) + 1,
(10) depth(sv[mobile(m1, occ(m2))j) = depth(sv[occ(mobile(m1, m2))]) + 1,
(11) cmaxdepth(sv[occ(cube(l))]) = depth(sv[occ(cube(l))]),
(12) cmaxdepth(sv[occ(mobile(m1, m2))]) =

max(cmaxdepth(sv[mobile(occ(m1), m2)]), cmaxdepth(sv[mobile(m1, occ(m2))])),

(13) length(occ(m)) = fixed * maxdepth(occ(m)),
(14) Iength(sv[mobile(occ(m1), m2)]) = Iength(sv[occ(mobile(m1, m2))]) - fixed,
(15) length(sv[mobile(m1, occ(m2))j) = Iength(sv[occ(mobile(m1, m2))]) - fixed,

(16) maxdepth(occ(m)) = cmaxdepth(occ(m)),
(17) maxdepth(sv[mobile(occ(m1), m2)]) = maxdepth(sv[occ(mobile(m1, m2))]),
(18) maxdepth(sv[mobile(m1, occ(m2))j) = maxdepth(sv[occ(mobile(m1, m2))]) 

endspec

The specification is a two-pass attribution without remote access of the attribute values. 
The following property is necessary for the proof of the implementation relation:

It holds all nodes, i.e. for all occurrence terms of sort Mobile'.

The sum of the attribute occurrences of left length and right length of a submobile is 
equal to the attribute occurrence of the maximal depth of the mobile minus the actual 
depth plus one multiplied with the constant fixed, or the sum of the left length and right 
length of a submobile is zero.

Formally:

V SV Mobile Mobile- V m Mobile‘

ll(sv[occ(m)] + rZ(sv[occ(m)]) = fixed * (md(sv[occ(m)]) - d(sv[occ(/H)]) + 1)

v

ZZ(sv[occ(m)]) + rZ(5v[occ(/«)]) = 0

Denoted by P(SV[OCC(TW)]).

(Using the abbreviations sv, m, I, ll, rl, d, md and cmd for svMobiie Mobae, mMobiie, length, 
leftlength, rightlength, depth, maxdepth and cmaxdepth, respectively.)

Informally we can say:

The length (= ll + rZ) of a mobile is
- at the top level fixed * md,
- at the next level fixed * (md - 1) 
and so on.

This property can be shown by attributed term induction:
(1) The minimal contexts to consider is: zMobtte
(1.1) No constants of sort Mobile exist. Therefore nothing is to show.
(1.2) The constructor symbols to consider are cube and mobile. Thus the occurrence
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terms are
occ(cube(l)) for an arbitrary term I of sort Nat 
and
occ(mobile(ml, m2)) for arbitrary terms m l and m2 of sort Mobile. 

P(occ(cube(l))) is valid since ll(occ(cube(l))) and rl(occ(cube(I))) are both zero. 
Using the abbreviations:
ll0 = ll(occ(mobile(ml, m2))), rl0 = rl(occ(mobile(ml, m2))), 
l0 = l(occ(mobile(ml, m2)))
md0 = md(occ(mobile(ml, m2))), d0 = d(occ(mobile(ml, m2))), 
Wj = w(mobile(occ(ml), m2)), w2 = w(mobile(ml, occ(m2))) 
and the informations from the specification:
d0 = l ,w 0 = w1 + W2, ll0 = l0 * (w2 / rl0 = lQ * (wj / wQ), l0 = fixed * md0 
it holds:
ll0 + rl0 = l0 * (W2 / w0) + lQ * (wi / wo) = IQ = fixed * md0 = fixed * (mdQ -1  + 1) = 
fixed * (mdQ - + 1)

(2) The contexts to consider are: c\mobile(zMobile, m)} and c[mobile(m, zMoba^ \.
The proof is only given for the context c[mobile(zMobile, m)}, the proof for the con­
text c[mobile(m, zMobiiĉ \ is analogous.
The induction assertion is for the considered case:
P(c\occ(mobile(ml, #i2))]) for arbitrary terms m l and m2 of sort Mobile. 

(2.1) No constants of sort Mobile exist. Therefore nothing is to show.
(2.2) The constructor symbols to consider are cube and mobile. Thus the occurrence 

terms are
c[mobile(occ(cube(l)), m)} for an arbitrary term / of sort Nat. 

and
c\mobile(GCc(mobile(ml, m2)), m)} for arbitrary terms m l and m2 of sort Mobile. 

P(c[mobile(occ(cube(I)), m)]) is valid, 
since ll(c[mobile(occ(cube(l)), m)]) and rl(c[mobile(occ(cube(l)), m)]) are both 
zero.
Using the abbreviations: 
ll0 = ll(c[occ(mobile(mobile(ml, m2), m)]), 
rl0 = rl(c[occ(mobile(mobile(ml, m2), w)]), 
Zo = l(c[occ(mobile(mobile(ml, m2), w)]), 
w0 = w(c[occ(mobile(mobile(ml, m2), m)]) 
lli = ll(c[mobile(occ(mobile(ml, m2)), m)]), 
r h = rl(c[mobile(occ(mobile(ml, m2)), m)]), 
l± = l(c[mobile(occ(mobile(ml, m2)), TH)]), 
mdr = md(c[mobile(occ(mobile(ml, m2)), m)]), 
d r = d(c[mobile(occ(mobile(ml, m2)), w)])> 
d2 = d(c[mobile(mobile(ml, m2), occ(m))]) 
Wi = w(c[mobile(occ(mobile(m^ m2)), w)]), 
w2 = w(c[mobile(mobile(ml, m2), occ(m))]), 
Wn = w(c[mobile(mobile(occ(ml), m2), m)]), 
w12 = w(c[mobile(mobile(ml, occ(m2)), m)]) 
the induction assertion
ll0 + rl0 = fixed * (mdQ - d0 + 1)
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and the informations from the specification:
WQ =  Wj + W2? Wj =  Wy + = d^ + 1
ll\ = (w1 2 1 IV]), r f  = li*  (wn  / wx), /, = l0 -fixed,
HQ = l0 * (w2 1 w0), rl0 = l0 * (wj / w0) 
it holds:
It follows from the induction assertion:
llQ + rl0 = fixed * (md0 - d0 + 1) iff Zo * (w2 1 w0) + Zo * (wr I w0) = 

fixed * (mdQ - d(} + 1) iff
Zo * ((^2 + ^1) / ^o) = fixed * (md0 - d0 + 1) iff Zo = fixed * (mdQ - dQ + 1)
Ihs:
ZZi + r f  = Z x * (w12 / Wi) + Zi * (wn  I wx) = Zi = Zo - fixed = 

fixed * (mdQ - d{} + 1) - fixed = fixed * (mdQ - d0) 
rhs:
fixed * findi - d } + 1) = fixed * (mdQ - d0 -1 + 1) = fixed * (md0 - d0) ♦

This example shows that as well the context induction as the term induction is necessary 
to verify the proof obligation.
5.2.3 Induction Orderings

Attributed term induction combines two Noetherian induction principles. In this section 
we define an induction ordering, i.e. a Noetherian and stable partial ordering, on occur­
rence terms, which is compatible with the ordering used in attributed term induction.

This ordering in connection with a complete set of occurrence terms is a generalization 
of attributed term induction, which defines a special complete set of occurrence terms 
and applies explicit induction assertions.

The correctness of the generalized proof principle implies the correctness of attributed 
term induction.

The notions of orderings and inductions are defined as usual:

A partial order is defined as follows (cf. [Reade 89]):

Definition 5.2.3.1 (partial order, well founded, Noetherian):

A binary relation < C 5 x 5 for an arbitrary set S is called partial order, if < satisfies the 
following two properties:

(1) transitivity: for all x ,y ,z E S  holds: x < y  and y < z  implies x < z.
(2) anti-symmetry: for all x ,y E S  holds: x  < y  implies that not y < x.

A partial order (5, <) is said to be well founded or Noetherian, if there are no infinite 
decreasing chains, i.e. there are no infinite sequences of elements from S, i.e. {x0, x ^ ...} 
such that xi+1 < x t for all z 0. ♦

Definition 5.2.3.2 (complete induction)

The principle of complete induction say that if (S, <) is a well founded partial order, and 
P(s) is a property about elements 5 ES, then in order to show that P(s) is true for all 5 ES 
it is sufficient to show (for any 5 GS):
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P(s) follows from the assumption that P(t) is true for all t <s.

The assumption P(t) for all t <s is called the induction assertion. There may be s GS 
with no t <s. For such elements the principle says that we must show P(s) with no 
assumptions. ♦

Having a complete set of occurrence terms with subterm identifiers the notion of a stable 
ordering is necessary to get an induction ordering:

Definition S.2.3.3 (stable ordering)

A partial ordering < C S x 5 is called stable iff it is closed under substitution. ♦

Definition 5.2.3.4 (induction ordering)

Every Noetherian and stable partial ordering is an induction ordering. ♦

The aim is the definition of an induction ordering on occurrence terms:

Definition 5.2.3.5 (induction ordering on occurrence terms)

The relation t <OCCs r on occurrence terms t, r E  T°$cfc is defined as:
i <OCCs r iff

(1) t = c[occs(i')] and r = c[occ5(c'[f])] for some contexts c[zs], c'[zs] zs and term i’ 

or11

(2) t = c[occ5(r’)] and r s  c[c'[occ5(r’)]] for some contexts c[zs], c'[zs] £ zs and term t' and 
r'. ♦

1 1  Because of the condition ^ ’[z j zs  in (2) the „or“ can be read as „either-or“.

To prove that <OCCs is an induction ordering it has to be a partial ordering.

Lemma S.2.3.6

<OCCs is a partial ordering on occurrence terms 0 ^S V ).

Proof

Transitivity:

Let t p  i2 , t3  G 0)(S V ) b e  arbitrary such that ij t2 and t2 t3.

«1 <occs h  holds i f

tt  55 Q[occs(ii’)] and h  s  Cifocc^Ci'^’])] f° r  s o m e contexts c ^ ] ,  c ffz j £ zs and term t j  

or

h -  c2[occ5(i2')] and t2 = ^ [^'[occ^')]] for some contexts c2[zs], c2 [zs] £ zs and term 
t2 and t^

and
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h  <occ s  *3 holds if

i2 » c3 [occ5(i4')] and t3 = c3[occv(c3'[i4'])] for some contexts c3[zj, c3 '[zj £ zs and term t4
or

i2 = c4[occv(i5')] and i3 ■ c4[c4 '[occs.(i6’)]] for some contexts c4 [zj, c4 '[zs] zs and terms
*5*> Ai'

is equivalent to (with the same restrictions)12

12‘ (a v b) A (c v d) = ((a v b) A C ) V ((a v b) A d) = (a A C) V (b A C) V (a A d) v (b A d)

h s  c^occXii’)] and t2 s  ^[occXCi’̂ ’])] and i2 = c3[occ5(i4’)] and t3 = c3[occs(c3'[i4'])]

or

h  = e2[0CC5(i2')] and t2 s  c2[c2 '[occ5(i3 ')]] and t2 = c3[occ5(i4 ')] and i3 s  c3[occ5(c3’[i4’])]

or

h = c^occXii’)] and t2 = c^occXCi’̂ ’])] and t2 s  c^occ^s')] and t3 = c4[c4'[occ5(i6')]]

or

h  = c2[occXi2')] and t2 = c2[c2’[occ5(i3')]] and t2 = c4[occXi5 ')] and t3 = c4[c4 '[occ5(i6’)]]

implies

h  = C iloccA ')]a n d  h  s  cJoccXc/tij'])] and r2 ■ c3[occs(f4')] and t3 = c1[occs(c3'[c1'[r1']])] 

or

*i s  c2[occs(t2 ')] and t2 ■ c2 [c2'[occ4 i3 ')]] and t2 = c3[occs(t4')] and t3 = ^ [^ '[occ^cj'^ '])]] 

or

ij s  c^occXii')] and t2 ■ qloccXci'pi])] and i2 ■ c4[occs(i5')] and i3 ■ Ci[c4'[occJ(i6')]]

or

tt  = c2[occs(r2')] and r2 ■ c2[c2'[occs(i3 ')]] and r2 = c4 [occs(i5')] and t3 ■ c2[c2'[c4'[occs(i6')]]] 

implies

^1 ^ occ s  ^3 Ol* ^1 ^occ s  ^3 1̂ ^occ s  ^3 Of <occ s  3̂

implies

1̂ ^occg  3̂

Anti-Symmetric:

To show: t <occ r does not imply r <nce t

Let t <OCCs r, i.e.

t = c[occ5(r')] and r = c[occ5(c’[i'])] for some contexts c[zs], zs and term t', 
which implies that (1) and (2) of the definition of r <OCCs t is not valid, since otherwise
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c'[zs] ■ zs has to be valid, being a constradiction to the assumption

or

t ■ c[occ5(Z')] and r = c[c'[occ5(r')]] for some contexts c[zs], c'[zs] £ zs and term t' and r', 
which implies that (1) and (2) of the definition of r <OCCs t is not valid, since otherwise 
c’[zj ■ zs has to be valid, being a constradiction to the assumption. ♦

As a next step we show that the ordering <OCCs is closed under substitution.

Lemma S.2.3.7

<OCCs is closed under substitution, i.e. under the assumption t <OCCs r it must be shown for 
all o  eSubst:

O(t) <XCs a(r). ♦

Proof

Follows immediately from the inductive definition of the substitution:

Let t <OCCs r, i.e.

t = c[occs(i’)] and r = c[occ5(c'[i’])] for some contexts c[zj, c'[zs] zs and term t

or

t = c[occs(i')] and r = c[c'[occ5(r’)]] for some contexts c[zs], c '[zj zs and term t' and r' 

implies

o(t) s  o(c[occs(t’)]) and a(r) a  a(c[occ5(c'[/'])]) for some contexts a(c[zj), a(c'[z5]) £ zs 
and term a(f)

or

o(f) = a(c[occ5(i')]) and o(r) = a(c[c'[occ5(r')]]) for some contexts a(c[zs]), a(c '[zj) £ zs 
and term o(f) and a (r’)

and therefore o(t) <OCCs o(r) is valid. ♦

Lemma 5.2.3.8

<OCCs is a well founded ordering, i.e. a Noetherian ordering. ♦

Proof

In order to show that there are no decreasing infinite chains wrt. , we define the set of 
minimal elements wrt. <OCCs and show that no ordering exists on this set of minimal ele­
ments:

The minimal set MS of occurrence terms t G T°$c^  is defined as

MS = { cfocc^f)] | c[zs] Ci[c2[zJ] with arbitrary contexts c^z .̂] zs and 
c2[zj zs and t c3[i'] with context c3[zj and term t' of sort s }
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All ms EMS are minimal:

Let ms EMS be arbitrary. We assume that there exists an occurrence term 
t E  0 ) (S ^ ) s ') such that t <OCCs ms. Since ms is an occurrence term it can be writ­
ten as

c[occv(r)] for some context c[zs] and term r.

If t <OCCs ms is valid, t must have the form

t s  c[occ5(i')] with r a  for some context c'[zs]
which is a contradiction to ms EMS: since c[occ5(r)] implies that r cannot be written as 
c’[i’] for some context c'[zj.

or t must have the form

t = c^occ^i')] where c[zs] can be written as c^c^Zg]] with arbitrary contexts c^Zg] and 
c2[zs] z v which is again a contradiction to ms EMS: since c[occv(r)] implies that c[zs]
cannot be written as with arbitrary contexts c^Zg] and c2[zs] £ zs .

Therefore all ms EMS are minimal.

No ordering is defined on the elements of MS*.

Let ms^ ms2 EMS be arbitrary elements such that msr a  c1[occs(i1)] and ms2 = c2 [occs(i2)] 
with the restriction defined in MS. We have to show that neither msA <OCCs ms2 nor ms2 
< 0 ^ ^  holds:

Assume msr <OCCs ms2 then

ms} a  c[occs(7')] and ms2 = c[occ5(c'[f])] for some contexts c'[zs] £ zs, c'[zs] zs and term 
f . But this is a contradiction to the fact that t2 cannot be written as c'[t'] with c’[zj 96 zs, 

or

ms} = c[occs(i')] and ms2 a c[c'[occ5(r')]] for some contexts c[zs], c'[zs] zs and term f 
and r'. But this is a contradiction to the fact that cannot be written as c[c'[zj].

< occs ^$2 c a n  be shown analogously ♦

Corollary 5.2.3.9

<OCCs is an induction ordering ♦

Corollary 5.2.3.10

To show V t ET™ Cs(SV). P(t) it is sufficient to prove

V t E T ° CCs(SV). (P(f) and f  <OCCs t) implies P(t)

for some property P  on occurrence terms t. ♦
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Proof

The correctness follows from the fact that <OCCs is an induction ordering. ♦

Sometimes a property describes dependencies between occurrence terms of maybe diffe­
rent sorts. An induction ordering can be defined for these properties.

Corollary 5.2.3.11 (induction ordering on different occurrence terms)

Let tn] a n d [r^ r2,..., rn] be lists of different occurrence terms. The following
lexicographical extension <Occ of <OCCs, defined as

Pi, *2,—, tn] <Occ Pi, *2,..., r„] if tj = holds for all 1 j  < i n and tt <OCCsrt

is an induction ordering on different occurrence terms. ♦

Proof

The correctness immediately follows from the fact that <OCCs is an induction ordering and 
therefore its lexicographic extension <Occ is a partial ordering, closed under substitution 
and Noetherian. ♦

Definition 5.23.12 (complete set for a subterm identifier)

CS^ C 7̂ 5 c  0)(5V) is called complete set for a subterm identifier svsl> S2,...,S n->s iff

-Z ,̂..., ¿sn] ^^(S, C, 0)({ z sp Zs2’”"’ Zsn })• 3 CS ECS^. 3 O ESubst.
a(cs) = c[zs l , z S2,...,zSn]

Especially the property is written for n = 0 as:

V t C} 0 y 3 cs ECSsv. 3 a  ESubst. o(cs) = t

which is the definition of a complete set for usual identifiers. ♦

Example 5.23.13

Let us consider the same example as for the attributed term induction with the dif­
ferences that a remote access to attribute occurrences is used and the proof is performed 
with complete sets:

V SV Mobile Mobile' ^Mobile'

Z/(sv[occ(m)] + r/(sv[occ(m)]) = fixed * (cmd(vcc(sv[m\)) - £/(sv[occ(m)]) + 1)

v ll(sv[occ(m)]) + r/(sv[occ(m)]) = 0

Denoted by P(sv[occ(m)], OCC(SV[ZH])).

The complete sets we consider are

CSsv = { zMobae, sv[mobile(zM M le , m)], sv[mobile(m, zM M le)] } 

and

CSm = { cubeff), mobile(ml, m2) }
The proof obligations are
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(1) P(occ(cube(f)), occ(cube(l))),
(2) P(occ(mobile(ml, m2)), occ(mobile(ml, m2)))
(3) P(sv[mobile(occ(cube(l)), m)], occ(sv[mobile(cube(l), m)]))
(4) P(sv\mobile(m, QC^cubeQ)))], ncc(sv\mobile(m, cubeQ.))]})
(5) P(sv[mobile(tocc(mobile(ml, m2)), m)], occ(sv[mobile(mobile(ml, m2), m)]))
(6) P(sv[mobile(m, occ(mobile(ml, m2)))], occ(sv[mobile(m, mobile(ml, m2))]))

proof of (1)

P(occ(cube(I)), occ(cube(T))) is valid since ll(occ(cube(l))) and rl(occ(cube(l))) are both 
zero.

proof of (2)
Using the abbreviations

Z/o = U(^c(mobile(ml, m2))), rl0 = rl(occ(mobile(ml, m2))), l0 = l(occ(mobile(ml, m2))) 
mdQ = md(occ(mobile(ml, m2))), d0 = d(occ(mobile(ml, m2))), 
w1 = w(mobile(occ(ml), m2)), w2 = w(mobile(ml, occ(m2)))

and the axioms of the specification:
dQ = l ,w Q = w1 + w2, ll0 = lQ * (W2 / w0), rlQ = lQ * / w0), l0 = fixed * mdQ

it holds:
llQ + rl0 = l0 * (W2 / w0) + l0 * (wt  / w0) = l0 = fixed * mdQ = fixed * (mdQ -1  + 1) =
fixed * (mdQ - dQ + 1)

proof of (3)

ll{sv[mobile(occ(cube(f)), m)f) and rl(sv[mobile(occ(cube(T)), m)]) are both zero.

proof of (4)

analogous to (3).

proof of (5)

The induction assertion is for the considered case:
P(sv[occ(mobile(ml, m2))], occ(sv[mobile(ml, m2)))]) for identifiers m l and m2 of sort 
Mobile.

Using the abbreviations:
md = md{occ(^[mobile(mobile(ml, m2), AH)])),
llQ = ll(sv[occ(mobile(mobile(ml, m2), w)])> rl0 = rl(sv[occ(mobile(mobile(ml, m2), w)]), 
lQ = l(sv[occ(mobile(mobile(ml, m2), m)]), wQ = w(sv[occ(mobile(mobile(ml, m2), mf\) 
ll} = ll(sv[mobile(QCc(mobile(ml, m2)), w)]), 
r/i = rl(sv\mobile(occ(mobile(ml, m2)), w)]), 
f  = l(sv[mobile(QCc(mobile(ml, m2)), m)]), 
md= md(sv[mobile(occ(mobile(ml, m2)), w)D’
di = d(sv[mobile(occ(mobile(ml, m2)), m)]), d2 = d(sv[mobile(mobile(ml, m2), occ(m))]) 
Wj = w(sv\mobile(occ(mobile(ml, m2)), w)])>
w2 = w(sv[mobile(mobile(ml, m2), occ(m))]),

= w(sv[mobile(mobile(occ(ml), m2), m)]),
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w12 = w(sv[mobile(mobile(mX, occ(m2)), /w)])

the induction assertion
ll0 + rl0 = fixed * (md - d0 + 1)

and axioms of the specification
WQ — + W2, —- Wn + d-̂  = d^ + 1
llr = Zx * (w1 2 1 w3), rli = Zi * (wn  / w j,  = IQ -fixed,
ll0 = l0 * (W2 / w0), rlQ = l0 * (wr I wQ)

it holds:

The induction assertion implies:
llQ + rl0 = fixed * (md - dQ + 1) iff Zo * (w2 / w0) + Zo * (wt / w0) = fixed * (md - dQ + 1)
iff Zo * ((w2 + Wi) / w0) = fixed * (m d-d 0 + 1) iff Zo = fixed * (md - d0 + 1)

Ihs:
ZZi + rlr = Zj * (w1 2 1 Wi) + Zj * (wn  I Wi) = Zj = Zo -fixed =
fixed * (md - dQ + 1) - fixed = fixed * (md - d0)

rhs:
fixed * (mdr - d r + 1) = fixed * (md - d0 -1 + 1) = fixed * (md - d0)

proof of (6)

analogous to (5). ♦

5.2.4 Semi-Algorithm

In this section we develop a semi-algorithm for the attributed term induction inspired by 
[Hennicker 92] and the IS AR system [Bauer, Hennicker 93]. This semi-algorithm can be 
used to calculate complete sets of occurrence terms. It was the basis for the implementa­
tion of a system performing attributed term induction [Duschl 94, Weiß 95].

Let ASpec = <(S, C, F), FA ttn Ax> be an attributed algebraic specification. In order to 
show, that ASpec satisfies an occurrence property P:

v  c fc j c, e»({^ l}))srooe V t E(T (S' c , 0 ))s,. P(c[occ(i)])

must be valid. The first quantifier is treated using a special kind of context induction and 
the second one using term induction. The combination of the induction principles is 
compatible with the induction ordering defined in section 5.2.3. Thus this induction 
ordering is used.

As a first step we present the semi-algorithm for the term induction and afterwards the 
procedures for the context induction are discussed.

P(c[occ(i)]) has to be valid for all ground contexts. But in the presented procedures con­
texts are constructed containing identifiers. Therefore all ground substitutions have to be 
applied to the generated contexts to get ground contexts.

The validity of the property P c Ẑs j for a given context c[zSf] c, 0)({ z st } U i s  
defined by
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P cyZs ] = t r u e ’ if * ̂ (T(s, c, 0))^a n d all ground substitutions o  over (S, C, 0 )  

P(o(c[occ(i)])) is valid.

Starting with a given context c[zsJ the quantification over all ground terms and all ground 
substitutions has to be discussed. The proof is done by induction using the syntactical 
subterm ordering as an ordering. Therefore all smallest terms have to be considered in 
the base of the induction. I.e. it must be shown that P(a(c[occ(/)])) is valid for all con­
stants f  of sort s t and all ground substitutions a  with given context c[z5J. In the term 
induction step terms must have the form /(ib  t2 ,..., tn) w ith/: s2v ? sn s o f C and 
arbitrary terms t2,—, tn of appropriate sort. Thus all constructor symbols with result 
sort s have to be considered and a nested term induction must be performed for the argu­
ment sorts. If the base of the term induction was performed for a sort Sj then the nested 
term induction can be neglected and a new constant of sort Sj can be introduced which 
simulates all ground terms of that sort. Otherwise the procedure nestedJerm_induction 
is invoked which successively performs for all identifiers of the term a term induction.

If a ground occurrence term is reached the property must be valid for the actual occur­
rence term.

Several induction assertions are valid depending on the case analysis of the context 
induction. We generalize the induction assertions of the attributed term induction using 
the presented induction ordering. The notation IH(f) = { Po  | o(5v[occ(x)]) <occ t and 
o  ^S u b s t} is used for the induction assertions of a term t.

procedure term_induction

Input:
‘ c ilz sJ actual context 

begin
(1) for all (f: -» st) eC  do
(2) if c jf ]  is ground

then P(c-| [occ(f)]) has to be valid under the assumption that the induction assertions 
IH(c-|[occ(f)]) are valid

else nested_term_jnduction(c-| [occ(f)], { st }, 0) fi od
(3) for all (f: sb  s2,..., sn -> st) GC do

r a m , if s = st(4) t i  ■ f(xh  x2 ..xn) such that xm = J
| x m , otherwise

with (new) identifiers xb  x2 ,..., xn and (new) constants a b  a 2,..., an .
(5) NC = { a  | a is new constant in t i }
(6) if CiltiJ is ground

then PiCiloccOi)]) has to be valid under the assumption that the induction assertions 
IHic-iloccdi)]) are valid

else nested jerm jnductionfc iloccd i)], { st }, NC) fl od 
end

In the procedure nested Jerm-induction on the one side all ground substitutions and on 
the other side all ground terms of the occurrence terms are constructed. This is done 
fixing an identifier and performing for the sort of the identifier a term induction. It is 
achieved usingrecursion that step by step all identifiers are substituted by ground terms.
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The obtained procedure is nearly the same one as in the term induction case with the 
exception that the insertion place is not fixed in the term induction procedure:

procedure nestedJerm_induction

Input:
- tr actual occurrence term
- 5 sorts for which the base of the term induction was already performed
- NC  set of new constants

begin
(1) letx Gvar(tJ
(2) for all (f:-> sort(x)) GC do
(3) if tjf I x] is ground

then Pitjf I x]) has to be valid under the assumption that the induction assertions
IHM / x]) are valid

else nestedjermjnductionddf / x], S, NC) fi od
(4) S = S U {sort(x)}
(5) for all (f: sb  s2,..., sn -* sort(x)) GC
. .  , ,  . . , i x m> s m $
(6)t2 = f(xb x2,...,xn) with xm = J

[am, if s m G S
and (new) identifier xb  x2,..., xn and (new) constants a b  a2....an.

(7) NC = NC U {a | a  is new constant in t2 }
(8) if h[t2 1 x] is ground

then P(tj[t2 1 x]) has to be valid under the assumption that the induction assertions
IH^fe I x]) are valid

else nestedjermjnductiondj^/x], S, NC) fl od
end

Thus these procedures show the validity of for a given context c[zj.

To show the validity of the occurrence property P  for all occurrence terms, must be 
valid for all contexts c[zs].

In the base of the context induction PC1^ j must be valid for all minimal outer contexts 
of the root sort. If s t is the root sort then the set of minimal contexts is { zS t} and 

the validity of PZgt has to be proved in the base of the context induction.

Otherwise the set of minimal contexts is defined by

{/(..., x iA , c [z j ,x /+1,...) | (f: sb  sn -> sro(H) EiC and c[zS(] is an element of the minimal 
contexts of sort and new identifiers ..., and x i+1,... }

But constructor symbols can exist with an argument sort ŝ  such that there is no context 
c[zsJ of sort ŝ . This fact can be shown using signature flow analysis. A recursive call can 
be neglected for these argument sorts.

All minimal outer contexts of sort Sj have to be constructed for the other argument sorts 
Sj. These contexts are built using a nested context induction on sort s}-.

The typical dilemma in doing induction proofs consists in finding induction assertions
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which are general enough to finish the proof successfully. In the proof principle of con­
text induction (cf. [Hennicker 92; Bauer, Hennicker 94]) the problem of finding an 
appropriate induction assertion comes up choosing a suitable context before doing a 
nested context induction. Let c ^ J  be the actual context. If the nested context induction 
can be performed with the context c2[z5J and the implication n *s  v a lid
for all contexts c [z j, then the proof obligation for the context namely Pc i[c[zs ]]>
is valid. These considerations are implemented in the procedure contextjnduction'.

procedure contextjnduction
begin
(1) if st = sroot

then term_induction(occ(zSt)) 
context_induction_step 

(2) else for all (f: sb  s2....sn -*• sroot) eC do 
(3) for all i G{ 1,2,..., n } do 
(4) if 3 context c[zSt] eT2 ({ zSt })Sj

(5) then c-|[zSi] s  f(xlt x2,..., xn)[zSj / xj with (new) identifiers xb  x2,..., xn

(6) select a S-context c2[zSj] such that PC2[c[zSt]] is  v a , id  p ci [c[zst]j 's  v a l id

for all contexts c[zSt].
(7) nested_context_induction(c2[zSj]) fi od od fi
end

The proof obligation of the nested context induction is for a given context c ^ J :  for all 
minimal contexts c [z j  of sort si9 P c i[c[zsf]] has to be valid. The correctness proof is imple­
mented using a nested context induction on sort st The obtained procedure is nearly the 
same as for the context induction case with the exceptions that the minimal outer con­
texts are embedded in the actual context and the sort of the minimal outer contexts is the 
argument sort of f, for which the nested context induction is performed, instead of the 
root sort:

procedure nested jo n te x t jnduction

Input:
- c ^ ]  actual context

begin
(1) If st = s

then termjnduction(c-|[occ(zs)]) 
context_induction_step

(2) else for all (f: sb  s2,..., sn -* s) eC do
(3) for all i e{ 1,2,..., n }d o
(4) if 3 context c[zS(] eTz ({ })Si

(5) then c2 [zSj] e  f(xb  x2,..., xn)[zs . I Xj] with (new) identifiers xb  x2.................... xn

(6) select a S-context c3 [zSj] such that PC2[c[zst]] 's  v a ''d  p c3(c[zst]] *s  valid
for all contexts c[zSt],

(7) nested_context_induction(c1 [c3[zs .]l) fi od od fi
end
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Up to now the context induction step was neglected. PC[zs^ must be valid under the 
assumption that Pc}\zsf] is valid for outer context of c [z j.

Starting with a given context c ^ z j  a context c ^ c ^ J ]  must be constructed. The set of 
contexts for c2[zS(] is

(* ){ /(- , c lz stl  ^ + iv )  | (f- s2,..., sn sroo^  EC  and c[zs^ is an element of the

minimal contexts of sort st and fresh identifiers ..., x iA  and x ^ . . .  }

Again constructor symbols with an argument sort st can exist such that there is no context 
c[zSf] of sort Si. Therefore the nested induction can be neglected for these argument sorts.

All minimal contexts of sort Sj have to be considered for the other argument sorts Sj. This 
is done using a nested context induction on sort Sj. An appropriate context can be selec­
ted before the recursive call.

procedure context_induction_step
begin
(1) for all (f: sb  s2.... sn -> st) EC do
(2)for all iG{ 1,2,..., n}do
(3) if 3 context c[zSt] GT2 ({ zSt })s .
(4) then c2 [zSj] s  c-| [f (xb  x2,..., xn)[zSj I x,]] for an arbitrary context c-| of the root sort and 

(new) identifiers xb  x2..... xn.
(5) select a S-context c3[zSj] such that Pc2 [c[zst]] is  v a l id  if p c3 [c[zstJ]is  v a l id  f o r  al1

contexts c[zSt].
(6) nested_context_induction_step(c3 [zSj]) fi od od
end

In the nested context induction we start with an actual context c[zs .] of the form 
Ci[e2 [zJ] with the context c^z^] of depth n and some context c2[zsJ. If sÉ is the sort st, 
PCi[c2[zSt]} must be valid, since c2[ z j  is a minimal context. Otherwise, i.e. st is not the sort 
st, the proof obligation is f°r  some context c3[zsJ with minimal context
c2[c3 [z j] . The contexts c3[ z j  are the set (*) from above.

Again a constructor symbol with an argument sort Si can exist such that there is no con­
text c [z j of sort Si. Therefore the nested induction can be neglected for these argument 
sorts.

All minimal contexts of sort Sj have to be considered for the other argument sorts Sj. This 
is done using a nested context induction on sort Sj. An appropriate context can be selec­
ted before a nested induction is done.

procedure nested_context_induction_step

Input:
- actual context
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begin
(1) if st -  s

then termjnduction(ci[occ(zs)])
(2) else for all (f: sb  s2,..., sn -> s) eC do
(3) for all i e{ 1,2..............n } do
(4) if 3 context clz^ eTj« })s|

(5) then c2[zSj] a  f(xb  x2....................xn)[zs . I x,] with (new) identifiers xb  x2,..., xn
(6) select a S-context c3 [zSj] such that PC2[c[zSt]]is  v a l id  if p c3[c[zst]] >s  valid fo r  al1

contexts c[zSt].
(7) nested_context_induction_step(c-| [c3[zs .]]) fi od od fi
end

Thus the whole semi-algorithm for the attributed term induction is developed. In order to 
show that an occurrence property P  is valid for an attributed algebraic specification 
ASpec, the procedure context-induction has to be called. Note, that the semi-algorithm 
calculates a complete set of occurrence terms.

5.2.5 Heuristics

Efficient heuristics for the semi-algorithm and the attributed term induction can be obtai­
ned using attributed signature flow analysis.

Attributed signature flow analysis can be used
- to optimize and
- to generalize

the proofs.

The application of signature flow analysis can be optimizable and necessary.

The use of signature flow analysis is necessary either if
- an infinite proof would be obtained, e.g. an insertion place is tried to be constructed but 

in this subterm no such insertion place exists, or
- the obtained induction assertion are too restrictive.

In the first case the system can realize that no insertion place exists in the subterm or that 
the the construction of the subterm is infinite. In the case of infiniteness the information 
from the analysis technique can be used to generalize the context to get a finite proof.

The obtained informations and the generalizations can also be necessary, if the induction 
assertions are too weak, since generalized contexts deliver stronger induction assertions 
to finish the proof successfully.

The technique can be helpful and optimizable in cases where the search space can be cut 
knowing the signature flow analysis information, e.g. no insertion place exists in this 
subterm or the context can be generalized such that a context is obtained, for which the 
proof was already performed.

Other heuristics of the proof principle can take into consideration the knowledge of the 
attribute dependencies. E.g. the knowledge, that the attributes of the property to prove 
are only passed through and not changed in a subtree, implies that the subterms can be 
neglected for the proof.
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5.3 Existentially Quantified Formulae

Three pure kinds of existentially quantified formulae can be found in the framework of 
attributed algebraic specifications, e.g.
- 3 xNat. succ(x) = succ(succ(zero)\ corresponding to usual narrowing,
- 3 x s . fAttr(t) = x  with attribute function symbol fAttr and occurrence term t of appropriate 

sort, corresponding to attribute value calculation,
- 3 3 xs . = t with attribute function symbol fAttr and term t, corres­

ponding to the construction of a syntax tree.

For all these cases the most general solutions has to be calculated. The notion of solution 
is defined as:

Definition 5.3.1 (solution)

Let ASpec = <S, FA ttn Ax> be an attributed algebraic specification. A substitution a  is 
called solution for a set o f equations E  wrt. A x if

ModfASpec) |= attr (t = r)a  for all (t = r) EE

A solution a  is more general than a solution T  iff o  T  ♦

Given an attributed algebraic specification and a fixed term to be attributed, the instantia­
ted attribute equations of this term have to be considered. In these equations the attribute 
occurrences are like identifiers for which a solution has to be computed, similar to 
[Chirica, Martin 79].

Therefore the 3-closure of an equation, which has to be solved, is considered introducing 
new identifiers for the attribute occurrences and new equations specifying the equality 
between a new identifier and the corresponding attribute occurrence.

Definition 5.3.2 (3-closure)

Let ASpec = <5, FA ttn Ax> be an attributed algebraic specification and t = r an equation 
with t, r EAT^(SV)s for some sort 5 Esorts(Y). The 3-closure of t = r is defined as

(*) 3-closure(t = r) = (f -  r' K x t  = ar K x2 -  a2 K ... N xn = an)

if the attribute occurrences in t and r are a 1? a2,..., an; x 19 x2,..., xn are new identifiers and t' 
and r' are obtained from t and r replacing the attribute occurrences by the corresponding 
new identifiers.

Having a set of equations E  of the form { x r = a19 x2 = a2,..., xn = an } for identifiers x1? 
x2,..., xn and attribute occurrences a l9 a2,...9 an the 3-closure is defined as

(** ) 3-closure(E, t = r) = (t' = r 'h  x^ = a^ A ... A x ik = aik Ky i =b i K ... A y t = bf)

if the attribute occurrences in t and r are ai v  a i2?..., aik, b19 b2,...9 bz with ai v  a i2,..., aik 
G{ a2,..., an }; y 19 y2,—, yi are new identifiers and t' and r' are obtained from t and r 
replacing the attribute occurrences by the corresponding identifiers.

The following projection functions are defined:

AttrEq(3-closure(t = r)) = (f = r'),
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IdEq(3-closure(t = 0 )  =  { x i =  x 2 = xn = a n }

if the 3-closure has the form (*) and

AttrEq(3-closure(E, t = r)) = = r'),

IdEq(3-closure(E, t = r)) = { = a^,..., x ik = aik, = b^..., y t = bt }

if the 3-closure has the form (* *). ♦

The solutions obtained for the 3-closure of an equation (restricted to the identifiers of the 
original equation) are the same solutions as for the equation itself:

Lemma 5.3.3

Let ASpec be an attributed algebraic specification, E  be a set of equations over ASpec and 
o  be a solution for E, then it holds

Mod(ASpec) |= attr (t = r)o for all (t = r) EE  iff
Mod(ASpec) |= attr 3-closure(t = r)a' for all (t = r) EE with o  is the restriction of a ’ to 
the identifiers of t and r. ♦

Proof

obvious ♦

5.3.1 Solving Equations with Subterm Identifiers

In this section a motivation and application areas for solving equations with subterm 
identifiers are given. Afterwards we present a small example showing the idea how such 
equations can be solved. These considerations lead to the attributed narrowing calculus.

5.3.1.1 Motivation and Application Areas

Pure attribute grammars are called static since the attribution has no influence on the 
analysis of the syntax and building the abstract syntax tree. Therefore in [Ganzinger 78] 
dynamic attribute grammars are introduced. The main difference to pure attribute gram­
mars consists in assigning conditions over the attribute values of a non terminal to the 
various productions of that non terminal. Abstract syntax trees satisfying the conditions 
may be constructed, i.e. partial attribute grammars are obtained.

We extend the notion of dynamic attribute grammars in the following way: Firstly, we 
abstract from the analysis of the syntax, i.e. parsing. The conditions are used for deduc­
tion to derive programs. Secondly, in [Ganzinger 78] the applicability of a production 
rule is determined by so-called comparison attributes which are inherited attributes (!). 
Depending on their values a production rule is selected. In the new approach a term is 
completed such that a given attribution is satisfied.

The main advantage using attributed algebraic specifications instead of algebraic specifi­
cations in this area is the clear distinction between the syntax (to be constructed) and the 
attribution, describing the semantics of it.

Parsers use error recovery strategies to obtain a syntactical correct program. The new 
approach completes a syntax tree to obtain a program with correct (statical) semantics.

Application areas of the new technique are e.g.:
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- intelligent user guidance: generation of the dialogues to be performed,
- error-recovery: compilers adapting the syntax tree and programs with user interfaces 

reacting to wrong inputs,
- automatic programming: automatic declaration of identifiers, automatic construction 

of parts of a program,
- testing on a high level of abstraction.

5.3.1.2 Small Example

In this section a small example is presented demonstrating the proceeding for solving 
existentially quantified formulae.

The example shows that an infinite set of solutions can be obtained. But the most general 
solution can be determined such that all other solutions are instances of the determined 
solution.

The existentially quantified formula to be solved is (with the usual abbreviations):

3 SV^Mobile -» Mobile’ ^ ^ M o b ile ,  Mobile -» Mobile' 3 ^ N a f

weight(svl[occMobiie(sv2[mofo^ cube(3))> cwbe(2)])]) = 6 (i)

and

weight(svl[sv2[occMobile(mobile(cube(n), cube(3))), cube(2)]]) = 4 (ii)

and

depth{svl[occMobiie{sv2[mobile{cube(ri), cube(3)), cwbe(2)])]) + 1 =
depth(svl[sv2[QCCMobile(mobile(cube(n), cube(3))), cube(2)]]) (iii)

The obtained solution should be:

[ ^^-M obile  -* Mobile /  $ v 3  Mobile -» Mobile? ^^ M o b ile ,  Mobile -» Mobile I  mobil(?(ZM obile? ¿Mobile)? W / 1 ]

^ M o b i l e M o b i l e  /  s v 3  M o b ile M o b ile  states that an infinite number of solutions is obtained 
and only the most general solution is calculated. How can such a formulae be solved? A 
simple strategy enumerates all possible syntax trees without further information and 
computes the attribute values. Then it recognizes that the attribution is different to the 
given one and will adapt the syntax tree. This will be done until an attributed syntax tree 
is constructed satisfying the property. Using this method all possible syntax trees are 
enumerated leading to an explosion of the number of considered syntax trees. Further­
more, it is possible, e.g. if variables of a programming language are defined by regular 
expressions (algebraic specifications are extended by regular expressions e.g. in [Hee- 
ring, Klint 89]) that an infinite number of variables satisfying the regular expression must 
be tested or in the mobile example all natural numbers must be enumerated to get the 
solution.

Therefore a goal-directed change of the syntax tree has to be performed to keep the num­
bers of syntax trees small and to handle „infinite“ domains.

Considering condition (iii) of the formula and axiom (6) of the specification the first 
solution is obtained:

^ M o b i l e ,  M obile-^Mobile /  Mobile? ¿Mobile)
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resulting in the new formula with solved condition (iii):

3 SV̂ Mobile -* Mobile' ^Naf
weight(svl[toccMobiie(mobile(mo cube(3)), cube(2))))]) = 6 (i)

and

weight{svl[mobile(vccMobiie(mobile(c^^ cube(3))), cube(2))]) = 4 (ii)

Applying axiom (2) and twice axiom (1) to (ii) produces

n + 3 = 4

It can be derived with the axioms of the natural numbers that n has to be equal one, i.e. 
the next obtained solution is:

[ n / l ]

Condition (i) is satisfied trivially with the calculated solutions. Thus any other subterm 
identifier of the same functionality can be used for the subterm identifier svl, delivering 
the above substitution as a solution.

Note, that in the example only directed attribute equations are used for the calculation of 
the attribute values. Usually undirected attribute equations have to be applied to deter­
mine the solutions. Therefore a more complex deduction engine for the attribute evalua­
tion is necessary.

5.3.2 Attributed Narrowing

For a given term the instantiated attribute equations define an equational system which 
has to be solved, i.e. the attribute occurrences can be viewed as identifiers. We assume in 
our considerations, that the attribution is acyclic and moreover the axioms of the alge­
braic core can be used as rewrite rules. The considered rewriting is not a rewriting 
modulo a set of universally quantified equations, like rewriting modulo commutativity, 
but modulo a set of existentially quantified formuale, i.e. additional equations have to be 
solved. For the theory of narrowing see e.g. [Hofbauer, Kutsche 89]. The presented cal­
culus is an extension of the narrowing calculus presented there.
5.3.2.1 Attributed Narrowing Calculus

The starting point for the narrowing calculus is a set of rewrite rules R  being the alge­
braic core of the axioms, i.e. R = RRules(AlgAx(Ax))13 , and a set of equations AEq being 
the attribute equations, i.e. AEq =AttrAx(Ax).

Definition 5.3.2.1.1 (attributed narrowing calculus)

Let R  be a set of rewrite rules and AEq be a set of attribute equations. The attributed nar­
rowing calculus, denoted by |-narrow consists of the following rules:

( £ U { ( t t  = r2 )[w ]},T ,A »r) M

(EG' U { ((^  = t2)[r})o'},%(J, A ttr)

RRules({ q  = t2  = r2 ,..., tn  = rn  }) = { q  r v , t2  r2 ,..., tn ^ r n }
1 4 ' (t^ = q)[u] denotes that (t^ = t ^  is either of the form (c[u] = q )  or (q  = c[u]) for some context
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if (Z r) ER and o' EmguSet(l, u) and
o  is the restriction of o' to the identifiers of = t2)

(E U {t< = t,} , T, A ttr)

if o  EmguSetit^ t2)

(E  U { (^  = i2 )[x ]} ,T ,A «r U {x = / A t t r (0 } )
(E a ' U {((¿i = Z2)[x ])a '} U E', TO , A ttro ' U {x = A ttr')

if 3 (ri = r2)[w] EAEq, o' = mguSet(u, fAur^)),
E' = AttrEq(3-closure(Attr, ((ŷ  = r2)[^])o'),
Attr' = IdEq(3-closure(Attr, ((rt  = r2)[M])a ') and
a  is the restriction of a ' to the identifiers of x = fAttr(t) ♦

Note, the differences to usual narrowing:

(N l) and (N2) are usual narrowing rules with the difference that instead of the most gene­
ral unifier a minimal unifier out of the complete set of minimal unifiers is used.

(N3) is the new one, since equations have to be solved „modulo“ a set of other solvable 
equations.

Definition 5.3.2.1.2 (attributed narrowing)

Let R  be a set of rewrite rules, AEq be a set of attribute equations and E be a set which 
has to be solved. Attributed narrowing is defined as follows:

(1) Start with a triple (AttrEq(3-closure(E)), [], IdEq(3-closure(E))), i.e. with the set of 
equations to be solved, in which the attribute occurrences are changed to identifiers, 
the identical substitution and the mapping identifier to attribute occurrence.

(2) If a triple (0, T, Attr) is reached, the restriction of T to the identifiers of E  is called 
answer substitution. ♦

Note, the difference to usual narrowing where it is started with the set E  instead of the 3- 
closure of E. The attributed narrowing calculus is sound and complete as the following 
theorems state:

Theorem 5.3.2.1.3 (soundness of attributed narrowing)

Let R  be a set of rewrite rules, AEq be a set of attribute equations and E be a set which 
has to be solved. Each answer substitution calculated with attributed narrowing is a solu­
tion of E  wrt. R  and AEq. ♦

Proof

The given proof is similar to the one given in [Hofbauer, Kutsche 89] for narrowing.

Let Ax = Equs(R) U AEq1 5 .

15’ Equs{{ tr -> rY, t2 r2 ,..., tn -+ rn }) = { q = rl t  t2 = r2 ,..., tn = rn }
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It is shown by induction on the length I of the derivation that

(E, T, Attr) ( 0 ,  rp , Attr')

implies that p is a solution of E  wrt. R  and AEq.
/ = 0:

/ = 0 implies (E, x, Attr) =  ( 0 ,  xp, Attr1), i.e. E  =  0 ,  x = rp, Attr = Attr1

But every substitution solves the empty set of equations, especially p = [].

Z —* 7 4-1:

(ATI): (E U  {  f t  =  t2)[u\ }, x, Attr) [ ^ ( E G1 U  { ( f t  =  t ^ G 1 }, XG,Attr)
1“ narrow XGp, Attr )

The induction assertion states:

A r U { ((ix = t2)M )0 ' }P
Since G is the restriction of G1 to the identifiers of f t  = t2) and G EmguSet(l, u) it is va­
lid:

E G1 = E G

Therefore for all t j  = t2 EE  holds: Ax ^ a t t r ^ i ^ P  =  ¿2*a P  and therefore op is solution of 
E  wrt. R  and AEq.
It remains to show A r |=attr Zia P = ^ a P under the assumption that Ax |=attr ( f t = ftll/D^'P 
is valid.

Wlog. it is assumed that f t  = t2)[u] = c[w] = t2, i.e. the rewrite rule is applied in tr, i.e.
A r |=attr (c[r] = f2)cr'p

Especially:
A r |=atlr (ca[ro'] = t2o)p

is valid, since G is the restriction of G 1 to var(t± = t2).

With the equational calculus |-aeqcan be derived:

^ [ (a x ) i  = r [-(subst)1°' = rG1 co[Zo'] = co[ro’] (co[Zo'] = co[ro'])p

The completeness of the equational calculus implies:

^X |~ aeq = ^ P

With (trans) follows:
> ^ | - a e q ( M Z a ’] =  ^ P

The correctness of the equational calculus and the fact that G1 is in the complete set of 
minimal unifiers for u and I implies:

A r ^adjijap = f2ap

Thus op is solution of E  wrt. R ^n^AEq.

(N2): (E U  {  i t  =  tz }, r , Attr) |-(JV2) (Ea, TO, Attr) | - n a iIO W  ( 0 ,  ta p , Attr')

The induction assertion states:
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AX |= attrEop

Thus op is solution of E. Since a  Em guSet^, t2)

Ax |= attr h o  = implying A r |=attr ̂ op  = i2op

is valid and therefore

Ax |=a ttr(E U { ^  = i2 })ap

Consequently op is solution forE  U { = t2 }.

(N3y. (E U { f t  = i2)[x] }, T, Attr U { x  =fAttr(t) }) |-(JV3)

(Eo' U { ( f t  = i2)M )a ' } U E', xo,A ttro' U { x  = fAttr(t)}o' ^A ttr ')
1“ narrow (0> Attr )

The induction assertion states:

Ax  |=a ttr(Eo' U { ( f t  = i2)[x])o’ } U E ’)p

Since a  is the restriction of a ' to the identifiers of fAttr(t) (x is a new identifier) and fAttr(t) 
is not inE, E o 's  E o  and f t  = ¿2)M)a  = (zi = ^ M ) 0 ' is valid, especially:

A x  |=a ttr(Ea U { ((<1 = i2)[x])a }p

Consequently op is a solution forE  U { f t  = i2)[x] }. ♦

Theorem 5.3.2.1.4 (completeness of the attributed narrowing calculus)

Let R  be a confluent rewriting system, AEq be an acyclic attribution and E be a set of 
equations, then for each normalized substitution o  for E  wrt. R an&AEq a substitution T 
can be derived from (AiirE^(3-closure(E)), [], /¿ZE^(3-closure(E))) with x<,o.

(A substitution a  is called normalized, if svo  is in normal form wrt. R  for all identifiers 
sv GSV, i.e. cannot be reduced.)

Proof

Let Ax = Equs(R) U AEq. By assumption Ax |=attr tAo  = t2o,
iff Ax |=attr h °  = h °  K AttrAx(Ax)
especially A r |=attr h °  = A AttrAx(Ax)o
iff Ar |=attr 3-closure(t = f) for all t = r G{ tro  = t2o  } U AttrAx(Ax)o

Since R  is a set of confluent rewrite rules it holds: 
to ro

and because rewriting is a special case of (Al), it holds:

({ to = ro  }, 0 ,Attr) ({ t  = t  }, Q,Attr') [ - ^ ( 0 ,  [], Attr”)

This derivation is valid for all equations in the 3-closure(t = r) for all t = r G{ tro  = t2o  } U 
AttrAx(Ax)o, since 3-closure contains only usual terms which are rewritten.

With (A3) each (t = f) EAttrAx(Ax) can be derived, i.e.
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(E, [], Attr) U { t = r }, [],Attr'o) |-nalrow (0, [], Attr')

It remains to show that

(Eo, [], Attr) |-narrow (0, [], Attr') implies (E, [], Attr) |-narrow (0, T, Attr') w ith r s  o.

This can be shown by induction on the length of the derivation as in the narrowing calcu­
lus. ♦

Examples using the attributed narrowing calculus are given in the user interface (section 
8.1.4) and the compiler (section 8.2.4) case study.
Remark

If a total ordering exists on the attribute occurrences of an attribute equation of the form 
fA ttr if )  “  fA ttrn (^n )\

such that fAtir2^  are the only attribute occurrences on the right hand
side of the equation a n d / ^ ^ )  < fAttr(t), fAttr2(t2) < fAttr(t),..., fA ttrn(tn) <fAttr(t) is the total 
ordering, then this attribute equation can be written as a rewrite rule:

fA ttr if )  ~ f A t t r ^ ? ) » ' ” ’ fA ttr t t(^n)1

Such a rewrite rule can be added to the rewrite rules of the algebraic core.

S.3.2.2 Attribute Value Calculation

The attribute value calculation is a special case of solving existentially quantified formu­
lae using attributed narrowing. The attribute evaluation ordering is discussed elsewhere.

Definition 5.3.2.2.1 (attribute value calculation)

The attribute value calculation for a constructor term t is defined by:

(1) The start configuration for the attributed narrowing calculus is (E, [], 0) with the set

{ ôcc QCC ôcc 'J
3x . f ( t  ) = x  I and the empty substitution [].

J
(2) Apply the rules (NR1) to (NR3) until a pair (0, o, Attr) is reached being the empty 

set of equations, the answer substitution a, i.e. the attribute values, and an auxiliary 
set Attr.

Theorem S.3.2.2.2 (soundness of the attribute value calculation)

The attribute value calculation is sound, i.e. it holds Mod(ASpec) |=attr Eo. ♦

Proof

Follows from the soundness of the attributed narrowing calculus. ♦
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6 Refinements

Using attributed algebraic specifications in the software engineering process the notion 
of implementation relation has to be formalized and a proof theoretical characterization 
has to be investigated. The starting point in the software engineering process is an 
abstract attributed algebraic specification ASpec^. ASpec^ can be implemented by a 
specification ASpec^ which in turn is refined until a functional attribute grammar ASpecn 
is reached after several implementation steps from which an efficient program can be 
generated (see figure 20):

ASpecj
^  correct implementation step

ASpec2

\|/ correct implementation step

\|/ correct implementation step

ASpecn

correct generation

correct 
program

figure 20: software engineering process with attributed algebraic specifications

The result of this software engineering process is a correct program if the implementa­
tion relation is transitive, the correctness of each implementation step is shown and the 
generation process is correct.

This software engineering process is comparable to a process in which it is started with a 
loose algebraic specification and it is reached an algebraic specification in a functional 
way after several implementation steps from which a program can be generated. But an 
attribute grammar is more abstract than a functional program.

Several design decisions are made proceeding from a specification to an attribute gram­
mar. These include decisions how to perform the attribution (attributes and attribute 
dependencies, but not phases), concerning the concrete representation of the abstract 
data types of the included algebraic specification, or choice of algorithms which are left 
open using high-level specifications.

6.1 Aims

The aims of the implementation relations for attributed algebraic specifications are:
- The attribution of a specification may be changed, especially new attributes may be in­

troduced, a several pass attribution may be replaced by a one pass attribution and vice 
versa and the attribute dependencies may be modified.

- The implementation relation has to be transitive to use the implementation relation in 
the described software engineering process.

- The intuitive notion of behaviour has to be supported by a behavioural implementation
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relation.
- Structuring mechanisms have been defined for attributed algebraic specifications to 

handle complex specifications. The implementation relations have to be monotone wrt. 
the specification building operations to benefit from these mechanisms in the software 
engineering process, i.e. let /b e  a specification building operation and ASpec} be an im­
plementation of ASpec2 then/(ASpec^) has to be an implementation of f(ASpec2).

- A proof theoretical characterization, which can be handled by a system, has to be given 
to perform implementation proofs (semi-)automatically.

- The starting point may be a loose specification.

In the following two kinds of implementation relations are defined, a standard implemen­
tation relation, which does not concern the behavioural aspects, and a behavioural imple­
mentation relation, taking the observability issues into consideration.

6.2 Standard Implementations

The standard implementation relation for the new approach is defined analogous to the 
refinement or model class inclusion known from algebraic specifications (cf. e.g. [Wir- 
sing 90]), i.e. a specification ASpecA is implemented by a specification ASpec2 if the 
model class of ASpec2 restricted to the signature of ASpec^ reachable by the constructors 
of ASpec^ is a subset of the model class of ASpec} and the signature of ASpec2 may be an 
extension of ASpec^

Definition 6.2.1 (standard implementation)

An attributed algebraic specification ASpec2 is a standard implementation of an attribu­
ted algebraic specification ASpecx (written ASpecr ASpec^p iff

sigtASpecy) C sig^ASpec?) and for all models B EMod^ASpec^ holds
<̂ |«g(ASpeci)>  &Mod(ASpec^. ♦

ASpec2 is a standard implementation of an attributed algebraic specification ASpec^ if the 
axioms of ASpecx are valid in ASpec2.

Theorem 6.2.2 (proof theoretical characterization)

Let ASpec1 = <S1? FA t t r v Ax1> and ASpec2 = <S2, FAttr2, Ax2> be attributed algebraic spe­
cifications. To prove that ASpecx is implemented by ASpec2 it is sufficient to show

Ax2 ̂ attr ^(AXi) for all ground substitutions Q over sig(ASpec^

under the assumption that sigtASpec^) C sigtASpec^. ♦

Proof

Let AX2 |=attr c /A q) for all ground substitutions a  over sigiASpec^),

i.e. ModlASpec^ |=attr a(Axt ) for all ground substitutions a  over sig(ASpec^,

i.e. V A EMod(ASpec2) and for all valuation v holds:

/ /  [a (01 = ¡v [Q (r )l f° r  all t = r GAXT and for all ground substitutions a  over sig(ASpec^p 
Let A EModlASpec^ be an arbitrary model and v an arbitrary valuation.
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Since t and r are terms over the signature of ASpecr holds:

Z ^ i [a(0] = [a (r )] f° r  all t = r EAx1 and for all ground substitutions o  over
sig(ASpec1), i.e.

A 21 |=attr o(t) = o(r) for all t = r EAxY and for all ground substitutions o  over sigiASpec^.

In order to prove that A|21 is in the model class of A Spe^  the algebra A|S1 has to be 

reachable with c o n s ^ ) .  But A |21 (=attr o(0  = o(r) for all t = r EAx± and for all ground sub­

stitutions o  over sig(ASpec1) implies <A |21 > |=attr a(r) = o(r) for all t = r EAxr and for all 
ground substitutions o  over sig(ASpec1). ♦

Using the attributed equational calculus a proof theoretical characterization of the stan­
dard implementation relation is obtained:

Corollary 6.2.3

Let ASpec1 = <Sb  FA ttri,A x 1> and ASpec2 = <S2, FAttr2,A x2> be attributed algebraic spe­
cifications. To prove that ASpec^ is implemented by ASpec2 it is sufficient to show

AX2 |-aeq ofA x^  for all ground substitutions o  over sig(ASpec1)

under the assumption that sigfASpec^ C sig(ASpec2). ♦

Proof

Follows immediately from the soundness and completeness of the equational calculus 
and Theorem 6.2.2. ♦

Example 6.2.4

An example for a trivial implementation step is the refinement of LMOBILE by CMO- 
BJLE since only the axioms (10)-(13) are added to LMOBILE.
Fact 6.2.5

It holds:

LMOBILE CMOBILE ♦

Proof

trivial, since only the axioms (10)-(l 3) are added to LMOBILE. ♦

More interesting implementation steps are obtained considering the relation of CMO­
BILE and CMOBILE1 and of LMOBILE and CMOBILE!, respectively.
Fact 6.2.6

It holds:

CMOBILE CMOBILE! ♦

Proof

The axioms of CMOBILE must be derived with the axioms of CMOBILE!. The only



116 Behavioural Implementations

axioms of CMOBILE not belonging to the axioms of CMOBILE1 are

(1) length(sv[occ(mobile(ml, w2))]) =
leftlength(sv[occ(mobile(ml, m2))]) + rightlenght(sv[occ(mobile(ml, w2))])

(2) weight(sv[mobde(occ(ml, m2))]) * leftlength(sv[occ{mobile(m\, m2))]) = 
weight(sv[mobde(ml, occ(m2))]) * rightlength{sv[occ(mobile(ml, w2))])

(3) length(sv[occ(mobile(ml, m2))]) =
fixed * (cmaxdepth(pcc(sv[mobile(pi\, m2)])) - depth(sv[occ(mobile(ml, m2))]))

(1) and (2) are left to the reader. (3) was shown in section 5.2.
Fact 6.2.7

It holds:

LMOBILE CMOBILE! ♦

Proof

The axioms of LMOBILE must be derived with the axioms of CMOBILE1. The only 
axioms of LMOBILE not belonging to the axioms of CMOBILE1 are

(1) length{sv\pcc(mobile(ml, ^2))]) =
leftlength(sv[occ(mobile(ml, m2))]) + righttenght(sv[occ(mobde(ml, m2))])

(2) weight(sv[mobile(occ(ml, m2))]) * Ieftlength(sv[occ(mobile(ml, ^2))]) = 
weight(sv[mobile(ml, occ(m2))]) * rightlength(sv[occ(mobde(ml, w2))])

The proofs of (1) and (2) are the same as in the implementation proof of CMOBILE 
CMOBILE!, since in specification CMOBILE only the axioms (10)-(13) are added to 

LMOBILE which are not used in the proof. ♦

But BEHLMOBILE cannot be implemented by CMOBILE2
Fact 6.2.8

It does not hold:

BEHLMOBILE CMOBILE2 ♦

Proof

It holds:

LMOBILE |=attr weight(occ(cube(2))]) = 2 

and

CMOBILE2 |=attr weight(occ(cube(2))]) = 2 * 2  = 4 ♦

But CMOBILE2 is an implementation of LMOBILE from our intuitive notion of beha­
viour since the weights of the cubes and submobiles are not observable.

6.3 Behavioural Implementations

The small running example of the mobile shows that the specification CMOBILE2 is not 
an implementation of LMOBILE but it is an implementation from the specifiers point of
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view.

Inspecting the software engineering process for a compiler being a more realistic 
example, e.g. two attribute grammars can be defined:
- one attribute grammar defining the mapping from the source to the target language 

without optimizations and
- one attribute grammar defining the mapping from the source language to an optimized 

program of the target language.

The first mapping cannot be characterized either using a behavioural implementation 
relation, because a signature change is usually performed and therefore no implementa­
tion step is obtained.

But the second mapping characterizes a behavioural implementation relation wrt. the 
first compilation. Since the „behavioural semantics“ of the unoptimized target program 
has to be equal to the „behavioural semantics“ of the whole optimized target program. 
We will see such an example in section 8.2.

To explain the decisive facts the considerations are again based on the small mobile 
example.

The specification BEHLMOBILE can be behaviourally implemented changing the 
weights of the cubes and splitting the undirected balance equation into directed equations 
being specification CMOBILE2 of section 4.1. This proceeding results in a mobile with 
the same behaviour as the original one.

This behavioural notion of implementation is formalized as the behavioural model class 
inclusion, i.e. a behavioural specification ASpecr is behaviourally implemented by a 
behavioural specification ASpec2 if the behavioural model class of ASpec2 restricted to 
the signature of ASpec} is a subset of the behavioural model class of ASpec^ and the usual 
signature and observability inclusions hold. But the definition of behavioural class is 
completely different to behavioural algebraic specifications.

Definition 6.3.1 (behavioural implementation)

A behavioural attributed algebraic specification ASpec2 is a behavioural implementation 
of a behavioural attributed algebraic specification ASpec1 (written ASpec} ~»beh ASpec^), 
iff

sig(ASpec$ C sigtASpec^), obs-sorts(ASpec^ C obs-sorts(ASpec^ 
obs-attrs(ASpec1) C obs-attrs(ASpec2) and
for all behavioural models B EBeh(ASpec2) holds <BL/g0 5peci)> EBe^ASpec^. ♦

The intuitive notion of behaviour states already the proof theoretical characterization of 
the implementation relation: The solutions of the abstract specification has to be a subset 
of the solutions of the concrete one (if we do not consider the behavioural equivalence on 
the attribute values):

Theorem 6.3.2 (proof theoretical characterization)

I^tASpec^ = <^>i,E t̂ tr i,SohS1,F^ttrobs^,Axi> andASpec2 = <22, F ^ ^ , Sohs2? F ^ ^ ^ ,  
be beh. attributed algebraic specifications. To prove that ASpec1 is implemented by
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ASpec2 it is sufficient to show

Solutions(ASpec1) QSolutions(ASpec2) and AlgAx(Ax2) l=beh AlgAxtAxy)

under the assumption that s ig ^S p ec^  = sig(ASpec2). The inclusion of the solution is 
defined as

SolutionsiASpec^) QSolutions(ASpec2) iff
V soli GSolutions(ASpec1). 3 sol2 ESolutions(ASpec2). 3 o  ESubst. sol^o = sol2. ♦  

Proof (sketch)

Solutions(ASpeci) QSolutions(ASpec2) and AlgAx(Ax2) |=beh AlgAx(Axi) imply

{ A EAlg(Z20cc) | A |=attr G M  h ^ A lg A x tA x ^ A  |=battr sol2,

sol2 ESolutions(ASpec2) } C
{ A  EAlg(Z1Occ) | A |=attr C ^A  \=bGh A lgAx(Ax^, A f=battr sol^ so^ ESolutions(ASpec^ } 

and therefore BehiASpec^ QBeh(ASpec^. ♦

If we consider moreover the behavioural equivalence on the attribute values, the follo­
wing characterization is obtained:

Theorem 63.3 (proof theoretical characterization)

Let ASpeci = <S1? FA ttrv  A x r> andASpec2 = <S2> FAttr2, AX2> be attributed algebraic spe­
cifications. To prove that ASpeC] is implemented by ASpec2 it is sufficient to show

AlgAx(Ax2) |=beh A lgA x^iA x^) and
Solutions(ASpec2) U AlgAx(Ax2) =̂b.MTSolutions(ASpeci)

for all ground substitutions a  over sig(ASpecx)
under the assumption that sig(ASpec1) C sigfASpec^). ♦

Proof

Analogous to the proof of theorem 6.2.1. The second condition is necessary to obtain the 
behavioural class inclusion, since in the beh. class as well the axioms of the algebraic 
specification as the solutions have to be valid. ♦

These theorems give characterizations for showing the correctness of implementation 
relations. An example for a behavioural implementation proof is discussed in the compi­
ler case study (application of 6.3.3) and in the following section (application of 6.3.2).
6.4 Example of a Behavioural Implementation Proof

In this section we show the correctness of the behavioural implementation of BEHLMO- 
BILEby CMOBILE2.

Theorem 6.4.1

It holds:

BEHLMOBILE ~>beh CMOBILE2 ♦
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Proof

According to the proof theoretical characterization we have to show:

Solutions(ASpec^ Ç SolutionsÇASpec^)

We rewrite this condition to 

for all TG part((T^CCs(SV ))s e S o b s ). S o lu t i o n ^ ^ T )  Q S o lu t io n ^ ^ T )

such that

fact(T) = { T2,..., Tn } iff
T  = Ui s  j n Tt and V 1 i‘ <; n. 3 t V tt ETZ. Term(t^ = t

We show this new property with a complete set of occurrence terms. The proof is given 
in Appendix B.2. ♦

6.5 Properties of the Implementation Relations

In this section properties of the presented implementation relations for attributed alge­
braic specifications are considered, namely the transitivity of the implementation relation 
and the monotonicity of the implementation relations wrt. the specification building ope­
rations.

The implementation relations are transitive:

Theorem 6.5.1

The implementation relation and ~»beh a r e  transitive. ♦

Proof

Let ASpec19 ASpec2 and ASpec3 be attributed algebraic specifications with ASpecx 
ASpec2 anAASpec2 ~> ASpec3.

Obvious: sigfASpec^ Ç sig(ASpec3)

Let A EMod(ASpec3). <A|sig0 5pec2)> ^Mod(ASpec2) is valid, since ASpec2 ASpec3.
Furthermore, <(<A\sig^ Spec2}>̂ ^̂  since ASpecr ASpec2.

Since sigÇASpeCi) Ç sig(ASpec2) follows: <A|5/g^ 5peci)> EMod(ASpec1).

Thus it holds for all A EMod(ASpec3) <A|5/g(ASpeci)> ^M odiASpec^ and therefore 
ASpeCi —> ASpec3.

The transitivity of ~>beh can be shown analogously. ♦

Lemma 6.5.2

The implementation relations and ~>beh a r e  monotone wrt. sum, i.e.

A S p e c ^ > ASpec2 A Spec^—> ASpec^
ASpec^ + ASpec^~~> ASpec2 + ASpec^
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A S p e c ^ b e h  A Spec2  A Spec3 ^ > b e h  ASpec^
ASpec^ + A Spec3 ~~>b e h  A Spec2  + ASpec^

especially holds

A Spec^—> A Spec2

A Spec^+  ASpec3 ~~> A Spec2  + A Spec3

_________A S P e c l~ ^beh  ^ ^ P e c 2_________
A Spec 1 + A Spec3 ~> b e h  A Spec2  + A Spec3 ‘

Proof

Let ASpect - »  ASpec2, i.e. it holds V A EMod(ASpec2). EMod(ASpec^

and let ASpec3 AS pec4, i.e. it holds MA EMod(ASpec4). < A E M o d ( A S p e c 3).

The signature inclusion is trivially valid.

Remains to show:

V A  EMod(ASpec2 +ASpec^ holds <A | « g ^ p e c i  +AsPec3)> ^Mod(ASpec1 +ASpec3)

Let A EMod(ASpec2 + ASpec4), i.e.

A EAlg(sig(ASpec2) U sig(ASpec4)) and A|j /g 0 ^ ec2) EMod(ASpec2)

and A  Js/g^^pec^ ^AiodiASpec^

since V B EMod(ASpec2) holds <B|5Zg(A5peci)> EMod(ASpec{) and

V B EMod(ASpec4) holds < B | s /g(A5pec3 )>  EMod(ASpec3). It follows

A EAlg(sig(ASpec2 + ASpec4)) and <(A|s/g(A5pe^  EMod(ASpeC l) 
<(A|^g(yts^ec4))|5ig(AS^^ EMod^ASpec^

using the knowledge that sigiASpec^  C  sig(ASpec2) and sig(ASpec3) C  sigiASpec^ 
results in

A EAlg(sig(ASpec2 + ASpec4)) a n d  < A |5 /g( A s ^ c l ) >  EMod(ASpec1)
and <A|5/g05peC3)> EMod(ASpec3)

stating

<^|sig(ASpeci+ASpec3)> EMod(ASpcc^ + ASpec?^

The proof is analogous for the behavioural implementation relation ~>bch-
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Since ASpec3 —> ASpec3 and ASpec3 ~»beh ASpec3 are trivially valid the conclusions 
A S p e c ^ > ASpec2

ASpec^ + ASpec^—> ASpec2 + ASpec^
_________A S P e c l~>beh A S p ec 2 _________
ASpec^ + ASpec2 ~>b e h  ASpec2  + ASpec^

Lemma 6.5.3

The implementation relations and ~»beh are monotone wrt. enrich, i.e.

A S p e c ^ » ASpec2

enrich ASpec^ by A —> enrich ASpec2 by A
____________ ^ P ^ j - ^ b e h  A S p ec 2 _____________
enrich ASpec^ by A —>b e b  enrich ASpec2  by A ’

Proof

Follows from the lemma that the implementation relations and ~>beh are monotone 
wrt. sum and that enrich is a special case of sum. ♦

Lemma 6.5.4

The implementation relations and ~»beh are monotone wrt. rename, if o  is a bijec­
tive renaming morphism compatible with Occ, i.e.

ASpec^~> ASpec2

r--e-n--a--m--e-- -A--S-p--e-c--̂- -bz-y- -o-- -~-~-->- --r-e-n--a--m--e-- -A--S--p-e--c--- z---- ; and
2 by a*

A S p e c ^ b e h  ASpec2

rename ASpec^by a  rename ASpec2  by o' ’

and o  is the restriction of a ’ to sigiASpeCi). ♦

Proof

Let ASpec± ASpec2, i.e. V A EModiASpec^ holds <A|s/g(A5peci)> ^Mod(ASpec^.

The signature inclusion is trivially valid.
Remains to show

V A EMod(rename ASpec2 by o ’) holds <À L> EMod(rename ASpecr by o)
with o: sig(ASpec2) -* S

Let A EMod(rename ASpec2 by o'), i.e.

A G{ B EAlg(sig(rename ASpec2 by o')) | B|a  EModiASpec^ }

since V B EModtASpec^) EMod(ASpec^) is valid. Thus it follows

A EAlg(S) and <A|rf |s;g0sPec1)> EModfASpecj).
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using the definition of the model class for the renaming construct it follows

<AL> EMod^rename ASpecY by a ) .

The proof is analogous for the implementation relation ~>beh- ♦

Lemma 6.5.5

The implementation relations and ~»beh are monotone wrt. export, i.e.

ASpec^~> A Spec2

export h  from  ASpec^ —> exports from  A Spec2

A S p e c ^ b e h  A Spec2

export 2  from  ASpec^ ^ > b e h  export 2  from  A Spec2

with 2 C sig(ASpec^) Cl sig(ASpeci) ♦

Proof 

Let ASpec^ ASpec2, i.e. V A  EMod(ASpec2) holds EMod^ASpec^).

We have to show:

V A EMod(export 2 from  ASpec^ holds <A|S > EMod(export 2 from ASpec^.

Let A EMod(exportY from A Spec^, i.e.

3 B EModtASpec^- A |s  = B|2 implying
3 <£|«g0sPec1)> EMod(ASpecr). <A|2 > - B |2 implying

<A|S> EMod(export 2  from ASpec^.

The proof is analogous for the behavioural implementation relation ~>beh. ♦

Corollary 6.5.6

The implementation relations and ~>beh a r e  monotone wrt. the specification building 
operations for attributed algebraic specifications. ♦

Proof

Follows immediately from the lemmas. ♦

Example 6.5.7

An example for applying the transitivity property is stated in the following fact: 
Fact 6.5.8

It holds:

LMOBILE CMOBILE1 ♦

Proof 

Follows immediately from the facts LMOBILE CMOBILE and



Refinements 123

CMOBILE CMOBILEA and the transitivity of ♦

This implementation step was directly shown in section 6.2.

This corollary simplifies the software engineering process, since the implementation 
proof can be split in the following way. Let Sp19 Sp2,..., Spn be usual algebraic specifica­
tions and A ttr an attribution based on the signature of these specifications.

In order to show

enrich Sp } by A ttr  enrich Sp2 by  A ttr  ... enrich Spn by A ttr

it is sufficient to prove

$Pi $P2 ••• SPn

inducing

enrich Sp Y by A ttr  enrich Spn by Attr.

Example 6.5.9

Let us consider the specification of a compiler. In this framework we have to deal with 
the problem of symbol tables. As a first approximation a symbol table can be viewed as a 
set of tuples (specification TSET) containing the necessary informations. As a next step 
these sets can be implemented by ordered lists (specification OLIST) which in turn are 
implemented by a hashtable (specification HTABLE). In order to show

enrich TSET  by A ttr  enrich OLIST  by A ttr enrich HTABLE  by A ttr (*)

(whereby A ttr defines the attribution of the complete compiler or the attribution to fill the 
symbol table) it is sufficient to prove

TSET OLIST HTABLE

and to induce (*) with the corollary.
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7 Related Work

Since two specification formalisms are combined in the new approach its relation to both 
specification techniques is studied, namely to extensions and restrictions of algebraic 
specifications and extensions of attribute grammars. Some of the related work has been 
already discussed for motivation and introductory reasons and is neglected here.

7.1 Attribute Grammars

Standard extensions of attribute grammars are subsumed in the new approach, but 
„specification sugar“ introduced for writing specifications in a short and elegant way are 
more or less neglected in the new approach to concentrate on the main issues. However 
„specification sugar“ can be easily added to the new technique.

7.1.1 Higher-Order Attribute Grammars and Attribute Coupled Grammars

In [Vogt et al. 89; Swierstra, Vogt 91] higher-order attribute grammars and in [Ganzin- 
ger, Giegerich 84] attribute coupled grammars are discussed.

In higher-order attribute grammars abstract syntax trees are „first class citizens“, i.e. they 
can be the result of a (semantic) function, can be passed as attributes and can be grafted 
into the current tree, and can be attributed afterwards. Higher-order attribute grammars 
are an extension of pure attribute grammars such that for each production pi’. X o -*■ X } X 2 
... X n a set of non terminal attributes is defined by { Xj | Xj =f(—) }, i.e. an abstract syn­
tax tree with rootXj is calculated using a semantic function/. Thus parts of a syntax tree 
can be computed using semantic functions. Beyond it parts of the abstract syntax tree can 
be stored as attribute values.

In attribute coupled grammars attributes are part of the abstract syntax tree. Terminal 
symbols and attributes are treated in the same way. I.e. attributes, which are associated 
with a non terminal X, are children of a node labelled with X  and a terminal symbol T  is 
an attribute of sort T, whose value is provided by the scanner. In [Ganzinger, Giegerich 
84] a formal definition is given:

Let G(S) = (N, T, P, S) and G'(S) = (N\ T\ P \ S )  be grammars over a signature S = (5, F), 
such that T  and T' are a set of semantic sorts, T Q S .N  and N' are a set of syntactic sorts, 
v n s = 0, S GV U T is the root sort and P  is a set of syntactic functions with signature 
N  -> (N  U 7)*. Let (G(S), a )  be an attribute grammar, where G(S) is the underlying con­
text free grammar and a  is the usual association of attributes and attribute rules. Attri­
butes may take their sorts either from 5 or V . We call a  an attribute coupling between G 
and G', and speak of G and G' as attribute coupled grammars, when the following 
restrictions are obeyed:

(1) In a , semantic attributes are calculated by functions from F, syntactic attributes by 
functions from P .

(2) With the root sort of G, a  associates exactly one attribute, whose sort is the root sort 
of G'. The value of this attribute is the result of the translation specified by a .

(3) Each syntactic attribute instance in a G-tree is used as an argument at most once.
(4) Each syntactic attribute instance in a G-tree other than that of the root node is used 

as an argument at least once.
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[Swierstra, Vogt 91] stated that attribute coupled grammars can be considered as limited 
applications of higher-order attribute grammars. Therefore we can restrict our reflections 
on the comparison of higher-order attribute grammars with the new approach.

In attributed algebraic specifications the syntax of the context free grammar as well as 
the semantics of the semantic functions are specified by terms, thus attribute values can 
be abstract syntax trees, i.e. terms, and vice versa. Therefore higher-order attribute gram­
mars are subsumed by attributed algebraic specifications.

The possibility to describe this connection can be visualized by the following examples:

(1) Attribute values are grafted into the abstract syntax tree as e.g.
=sv[M sv[occ(x)])]

(2) Attribute values can store part of the syntax tree as e.g.
A>/r(iV[OCC(^2[t])]) = t

7.1.2 Tree Transformations

Tree transformation systems can be used, e.g. to describe parts of compiler optimiza­
tions. Pure attribute grammars are extended with attributed tree transformation rules, 
where predicates on the values of attribute occurrences specify whether a tree transfor­
mation rule may be applied. In [Alblas 89] a conditional tree transformation rule con­
sists of an input template, describing the structure of the subtree to which the 
transformation is applicable, an output template, describing the structure of the trans­
formed subtree, application conditions being predicates on the values of attribute occur­
rences of the input template, and rules defining the values of the attribute occurrences 
available before the evaluation process starts. A tree transformation is applicable to a 
subtree tr of an abstract syntax tree, if the input template matches the top of tx, and the 
output template fits in the surrounding tree, i.e. if A and B label the roots of the input and 
output template, respectively, and a  A P)GP is the production applied immediately
above tr then X  —> a  B  p must be in P.

The example
transform <whilestat, while, ccond, boolconst>, do, stats, od> 
cond boolval of boolconst = true

into <loop-forever, forever, do, stats, od>
cond boolval of boolconst = false

into <no-operation>
end

given in [Alblas 89] can be translated into our notion (allowing mixfix notation instead of 
the usual prefix-notation):

while boolexpr do stats od = while value(boolexpr) do stats od,
while true do stats od = loop-forever stats od, 
while false do stats od = nop

The main differences between tree transformations and the specification of tree transfor­
mations using axioms are the use of unification instead of matching and the axioms 
define an equivalence relation on constructor terms on the semantical side.
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7.1.3 Proof Principles for Attribute Grammars

[Katayama, Hoshino 81] present a verification technique for attribute grammars which 
can be used for the class of absolutely noncircular ones. The verification is done on the 
ordering of the dependency relation of the attributes. Firstly, they assign assertions to 
each non terminal, satisfying special conditions on used attributes. Secondly a set of 
verification conditions for each production is generated depending on its dependency 
graph. As a last step these proof obligations are verified.

[Courcelle, Deransart 88] extend the assertion method of [Katayama, Hoshino 81] to 
cyclic dependencies for proving the partial correctness of an attribute grammar relative 
to a specification, i.e. relative to the assertions. The proof is performed by fixpoint induc­
tion. They associate again a logical formula with each non terminal.

Attributed term induction - presented in this thesis - can be easily refined such that a 
mechanical support is possible [Duschl 94, Weiß 95], against [Courcelle, Deransart 88] 
state: „the practical usability of the proof method of Theorem (3.2.5) suffers from its 
theoretical simplicity“ whereby this proof method is refined afterwards, but it remains 
difficult to find strong enough assertions for each non terminal. The implemented system 
generates proof obligations which are verified by the TIP system [Fraus 94a, 94b]. The 
related work proves the correctness relative to a given specification, namely the asser­
tions, whereby attributed term induction proves theorems over an attribute grammar. Per­
forming proofs using attributed term induction often lemmas are necessary which are 
similar to the assertions of [Katayama, Hoshino 81; Courcelle, Deransart 88]. In the 
assertion method the proof is performed production local and therefore assertions have to 
describe informations of the context in which a non terminal appears. This context is 
concretely given in the new approach.

Drawbacks of [Katayama, Hoshino 81; Courcelle, Deransart 88] are: The proof principle 
is only usable for directed attribute equations, since the dependency graph is used as a 
basis for the proof principles. There are restrictions on the attributes allowed in the pro­
perties to be verified, namely only inherited/synthesized attributes and proper predeces­
sor in the dependency graph can be used in the properties. No properties with remote 
access of attribute occurrences can be shown. Furthermore, it is not usable for implemen­
tation relations and stepwise refinement, since abstraction is not supported. Moreover, 
they suffer from efficient heuristics (for cutting the search space) and machine support.

They cannot be applied to attributed algebraic specification since the proof principles are 
based on the directed dependency graph and therefore are not usable for specifications 
with undirected attribute equations.

We have presented a proof principle usable for undirected attribute equations; with no 
restrictions on the properties. No invariants must be given, system support can be 
obtained and efficient heuristics using the attribute dependencies and signature flow ana­
lysis can be developed.
7.1.4 Object-Oriented Extensions

The main contributions in viewing attribute grammars in an object-oriented way are 
[Hedin 89, 92, 94].

Following [Hedin 89] nodes of an abstract syntax tree are regarded as instances of
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objects. The productions are viewed as classes and are hierarchical arranged in a class - 
subclass hierarchy. Attributes and attribute equations are defined in the objects and inhe­
rited (in the object-oriented sense) along the classification hierarchy, especially default 
behaviour, i.e. default attribute equations, can be specified and overwritten in specialized 
classes. A kind of order-sortedness is described, since the classification hierarchy defines 
a type system where subproductions are subtypes of their superproductions. Inheritance 
(in the object-oriented sense) can be expressed in our approach allowing order-sorted 
signatures instead of usual signatures, but resulting in unhandy explanations, especially 
in defining the calculi. Therefore the order-sorted approach was omitted. Another solu­
tion is the introduction of converting constructors, i.e. constructors performing a change 
of the sort of a term, and defining for the result sort of these converting constructors the 
attribute equations with the result, that the attribute equations are „inherited“ by the sub­
sorts. On the other side the example given in section 2.4 of [Hedin 89] can be expressed 
by remote access of attribute values.

Furthermore, [Hedin 89] allows „specification sugar“ as e.g. predefined lists with the 
usual constructors and selectors, demand attributes and multiple equations of the form

for all sons(X) in P
sons(X).a1 =f(...)

with its obvious semantics.

Following [Hedin 94] door attribute grammars being based in the approach of [Hedin 
89] allow objects and reference attributes to be specified as parts of an attribution. The 
aim is to specify complex problems in a simple way with efficient incremental attribute 
evaluation. Door attribute grammars consist of three kinds of objects:
- syntax node obj ects representing instances of productions,
- semantic objects representing static semantics structures like e.g. symbol tables,
- door objects representing interface objects between the syntax node and the semantic 

objects.

I .e. an extended notion of syntax trees is obtained.

Reference objects can be expressed in our formalism by remote access. Large attribute 
values, i.e. complex data structures, are handled in door attribute grammars as follows: 
- use of references in contrast to the break up of large values representing it as several 

small objects,
- collection valued attributes, allowing objects to be declared as members of a collection 

depending on some conditions,
- constant objects, being global objects.

But allowing references and objects identifiers destroy the declarative nature of attribute 
grammars. Furthermore, for node classes the usual attribute evaluation strategies can be 
used, whereas for door and semantics classes a manual implementation is necessary.

Collection valued attributes and constant objects can be seen as „specification sugar“, 
which can be added to the new specification technique. References can be expressed 
using remote access of attributes with the advantage of being declarative.

7.1.5 MAX System and its Theory

The ideas for starting research on the MAX system and the new approach are different.
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The first one allows the definition of static and dynamics specifications without con­
cerning correctness aspects and implementation relations. Whereas the aim of the second 
one reflects on the formal development of software in this area.

Nevertheless the MAX system (cf. e.g. [Poetzsch-Heffter 96]) and its formalism can be 
seen as a first step embedding attribute grammars in a functional and algebraic frame­
work. This formalism defines concrete algebras for specifying the occurrences in a tree 
and the trees themselves, therefore new occurrence sort symbols are introduced beyond 
the usual sort symbols. It is referred to the occurrences of a term using selector functions 
on the arguments of a function. Attributes are viewed as functions and are specified in a 
functional way with an extended pattern-matching mechanism to define context depen­
dent informations, in comparison to functional programming languages.

But proving the correctness of attribute grammars and their implementations or abstrac­
tion mechanisms are not supported. The output of the new approach can be a MAX 
specification from which an efficient program can be generated.

In the proofs the context is explicitly necessary to get induction assertions, which are 
strong enougth. The context is not explicitly given in the MAX system approach.

Furthermore, changing the grammar influences the attribution in a strong way, especially 
if is dealt with remote access of attributes, since the reference to remote attributes is via 
parent, sibling and child selectors depending extremly on the underlying grammar. In the 
new approach a more elegant view on remote access is taken. But the MAX specification 
formalism is more implementation oriented, especially since no unification is necessary.

7.1.6 Modularity and Reusability in Attribute Grammars

[Kastens, Waite 92] summarize extensions of attribute grammars [Dueck, Gormack 90; 
Farrow et al. 92] for increasing modularity in their framework and develop new specifi­
cation principles for reusing attribute grammars. The main issue is the simplification of 
the specifications, i.e. especially „specification sugar“ is added. Firstly, they present tech­
niques for remote access:
- a restricted remote access to attributes at the root of a subtree in a special context are 

possible, e.g. the reference to the enclosing block, i.e. attribute equations have the form
A«ri(sVl[sV2[»CC(x)]])=/1„r2(sV1[OCC(5V2[x])])

with some restrictions on sv1? sv2 and x.
- an attribute value is the union of the attribute values at occurrences which are descen­

dants of the subtree rooted in the local context. Such a notation can be seen as „specifi­
cation sugar“ and can be put in the specification mechanism of attributed algebraic 
specifications.

- attribute equations can be formulated for some iterative computation visiting nodes in 
(depth-first) left-to-right order, such dependencies can be expressed in attributed alge­
braic specifications using subterm identifiers and an attribute equation describing the 
leftmost occurrence.

Moreover, symbol computation and inheritance are introduced as a kind of subterm iden­
tifier and a kind of super non terminal for which attribute equations are defined and inhe­
rited to the sub non terminals. The sub non terminal can use the attribute equations of the 
super non terminal or can overwrite them. Inheritance can be expressed as discussed for 
[Hedin 89].
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The notion of cumulative attribution allowing to write an arbitrary number of rules with 
the same production causes no problems in the new approach, since the attribute equa­
tions can be defined independent of the production (constructors in the new formalism) 
and the sum or enrich operator are allowed in structured attributed algebraic specifica­
tions to extend existing specifications.

Le. in usual attribute grammar systems more or less „specification sugar“ is supported 
but no structuring mechanisms in the sense of e.g. algebraic specifications where really 
new specifications are obtained combining existing ones.
7.1.7 Cyclic Attribute Dependencies and Incremental Attribute Evaluation

In the new approach it is dealt with undirected attribute equations and it is assumed that 
the attribute dependencies are not cyclic. The reason for restricting to acyclic attribute 
dependencies is that an attribute evaluation strategy is developed for undirected attribute 
equations. Considering cyclic dependencies the same techniques can be used as sugge­
sted in [Farrow 86; Jones 90; Walz, Johnson 95]. Extending the formalism in such a way 
the proof principles have to be extended with a kind of fixpoint rule.

Incremental attribute evaluation is mainly interesting in efficient programming environ­
ments. Since the new approach can be seen on the specification side and prototypical 
implementation of systems, incremental attribute evaluation is not considered here. But 
the results of the attribute dependency discussion can be used to adapt the usual incre­
mental attribute evaluation strategies to the new approach.
7.2 Algebraic Specifications

7.2.1 Grammars as Signatures and Attribute Grammars as Algebras

It is a well known fact that there exists a 1-1 correspondence between a context free 
grammar and a signature. This correspondence is achieved viewing the abstract syntax 
tree as a term over a corresponding signature [Chirica, Martin 76; Thatcher et al. 77].
Correspendence context free grammar - signature:

Let G = (N, T, P, S) be a context free grammar. A class of many sorted algebras is asso­
ciated with the context free grammar G in the following way:

Let

nonterminals'. (N  U 7}* -> N*

be a function which yields a list of non terminals of a string w over (N  U I)* in the same 
order, appearing in w. Each non terminal X  EN  is identified with a sort Sx  and each pro­
duction p  EP  of the form Xo -* w is identified with a function

fp i: sorts(nonterminals(w)) -> SXQ

whereby the input of sorts is a word of non terminals and the result is the corresponding 
list of sorts.

In [Chirica, Martin 79] an order-algebraic definition of attribute grammars is given. In 
their considerations they use explicit algebras defining the domains of the attributes and 
the semantic functions of an attribute grammar. They define the semantics of an attribute 
grammar as the set of solutions for a given derivation tree. The solution is the least fix-
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point based on the Scott and Strachey approach [Scott, Strachey 71; Stoy 77].

We abstracted from the explicit definition of those algebras describing the semantic 
functions algebraically. Futhermore the semantics is defined as the set of algebras satis­
fying the attribute equations. The proof principle for attribute grammars presented there 
is the usual structural induction with the drawback that the attribute grammar has to be 
converted into synthesized form. A possibility is shown how to change attribute gram­
mars into synthesized form.

7.2.2 Context Induction

[Hennicker 91] uses the same notion of a context. But he uses context induction in the 
framework of proving the correctness of behavioural algebraic implementations as 
implemented in the ISAR system [Bauer, Hennicker 93]. In his framework the Noethe- 
rian ordering is the syntactical subterm ordering on the contexts. When his context 
induction is not defined with the syntactical subterm ordering but with an arbitrary 
Noetherian relation, both cases are special cases. We start like in the context induction 
principle with the „trivial“ context expressed by (1). The „trivial“ context is a context of 
minimal depth of the insertion place for the context identifier. (2) expresses: If the cor­
rectness of the attribute property of a depth smaller than n is known, the property has to 
be proved for the depth n + 1.

7.2.3 Primitive Recursive Schemes and ASF+SDF

[Courcelle, Franchi-Zannettacci 82] introduced primitive recursive schemes (p.r.s.s) to 
express attribute grammars in the framework of algebraic specifications, p.r.s.s can be 
seen as restricted algebraic specifications. A p.r.s. has beyond the usual equations of an 
algebraic specification attribute equations of the form

<synthesized attribute>(<subterm>, <list of values for the inherited attributes>) = ...

i.e. the value of a synthesized attribute is expressed by the actual subterm and the inheri­
ted attributes for this subterm. In this notion the context is only expressed by the inheri­
ted attributes and more than one attribute equation of a usual attribute grammar is 
encoded in such an equation.

For this class of algebraic specifications the techniques of attribute grammars are adapted 
e.g. [Klint 93; Meulen 94; Deursen 94]. Being a good method applying the techniques of 
attribute grammars to algebraic specifications they have several drawbacks:
- Global attribute dependencies cannot be expressed;
- Attribute grammars must be „translated“ into a primitive recursive scheme resulting in 

the loss of the intuitivity of attribute grammars, since several usual attribute equations 
are coded into one equation;

- The usual implementation relations for algebraic specifications are not usable for those 
specifications, since the definition of the attribute computation rules are viewed too lo­
cal in sense of an implementation, i.e. new inherited attributes are not allowed to be in­
troduced, e.g. to simplify the attribution, because this fact leads to a change of the 
functionality of the synthesized attribute functions;

- From a software engineering point of view the translation of an attribute grammar into 
an algebraic specification and afterwards the implementation of this specification can 
lead to a specification which cannot be translated back after the refinement into an attri-
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bute grammar from which an efficient program can be generated. Moreover, the imple­
mentation construction is more difficult to describe since the intuitive notion of 
attribute grammars is lost.

One aim of the new approach was to overcome these disadvantages. Most of these pro­
blems can be solved using explicit the context. However, in the new approach the usual 
proof principles and implementation relations have also be extended.
7.2.4 Higher-Order Algebraic Specifications

Higher-order algebraic specifications are an extension of algebraic specifications allo­
wing structured types and having predefined functions for the evaluation of functions. 
The basic notions of higher-order algebraic specifications are taken from [Kosiuczenko, 
Meinke 96] and are adapted to our notations without motivation and going into details. 
Only the definitions are presented.

Let B  be any non empty set, the members which will be termed basic types, the set B 
being termed a type basis. The type hierarchy H(B) generated by B  is the set

H (v B)7  = Ûw G=|1NMU1  {, oro }  7

of formal expressions defined inductively by

and

H ^ iB )  = H„(B) U { (a -  r), (a  x T) | a, T e  H„(B) }

Each element (a -> T) EH(B) is termed a junction type, (a x T) EH(B) is termed a product 
type.

A type structure S over a type basis B  is a subset 5 Q H(B) which is closed under subty­
pes in the sense that for any o, T  EH(jB), if (o -> T ) ES or (o x T ) ES then both o ES and 
T ES. 5 is a basic type structure of S C B.

Given a type structure S, a higher-order signature S is an S-sorted signature with dis­
tinguished operation symbols for projection and evaluation.

Let S be a type structure over a type basis B. An S-typed signature S = (S, F) is an S-sor- 
ted signature such that for each product type (a x T)  ES two projection function symbols

(Pr °j(o x T), (a  x T) a) EF and (proj(o  x x)> x : (o x T ) T ) EF (for short: proj1, proj2) 

exists. For each function type (a  -» T) ES we have an evaluation function symbol

(eval(o  T ): (O  -> T ), a  -> T) EF (for short: eval)

Let 5 be a type structure over a type basis B  and let 5  = (S, F) be an S-typed signature and 
let A be an S-sorted S-algebra.

A  is an S-typed S-algebra iff for each production type (a x T) ES the function

proj^0  x r), a* A  (o x T) —■* Aa  and proj X T), (a x T)

are the first and second projection function defined on each a = (a1? a?) E A ^* ^  by
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proJio X ^ a ) = a  I a n d  Pr °Ao x X), x(a ) = «2

For each function type (a -* T ) ES we have an evaluation function

evaf^o  A(o  A o  —* Â .

on the function space A^o  T) defined by

evalA
f„ ^ T) (a, n) = a(n)

for each a EA^a  T) and n EA^.

Let 5 be a type structure over a type basis B  and let 5 be an S-typed signature and let X  be 
an S-indexed family of infinite sets of identifiers. The set Ext = Ext^ of extensionality 
sentences over S is the set of all S-sentences of the form

V x  EX(O ̂ x).V y  EX(O T). (V z EXO . eval(a _  x)(x, z) = eval^ _  x}(y, z)= *x= y)

and

V X x Ty V y EX{O x (profit x O(X) =: P^oj^y x o(y) A
proj(oxT) , = proj( o xT)>T(y)) =>x=y

By a higher-order equational specification a pair (2, E) is meant consisting of an S-typed 
signature 2 and a set E  of 2-equations.

Let 5 be a type structure over a type basis B, 2  be an S-typed signature, X be an S-indexed 
family of infinite sets of identifiers and E  be any set of higher-order equations over 2  and 
X. Define the class Algext(^, E) of all extensional models of E  by

Algext^ ,  E ) -  {A  EAlg(Z) | A |= E UExt }

The infinitary higher-order equational calculus has the following rules of inference:

(refl), (sym), (trans), (subst) as in the usual equational calculus with the extended term 
notion and

1 1 2  2
(pro j)p r ° j  ^ = P r ° j ^ P r

r ° i  ^  = p r o j  ( r ) , f o r  e a c h  r  o f  t h e  s a m e  

product type

( CD -  exO——

It strikes into the eye that the use of subterm identifiers describes a kind of restricted 
higher-order algebraic specification, but the use of subterm identifiers is on a very syn­
tactical level, especially the eva/-function state that two functions are equal if they are 
syntactical equal in the new approach. Therefore the extensionality equations have not to 
be considered in the new approach. Considering the definition of the valuation of sub­
term identifiers coincides with the interpretation of identifiers in the higher-order specifi­
cation framework.
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8 Case Studies

Three case studies are presented considered among others for this thesis. The first one 
was part of a larger case study considered in a project called „generating intelligent user 
interfaces“ which was supported by Siemens Corporate Research and Development 
(ZFE ST SN 51). It is taken from the area of user interface specifications and is more or 
less presented in [Bauer 95, 96]. The second case study shows the formal development of 
a small compiler. The third case study is a revised version and extension to implementa­
tion steps of [Bauer 94a, 94b] out of the framework of document architecture.

One application area of the new approach is the specification of the dynamics of user 
interfaces. The dynamics of the user interface for an ISDN telephone is described and 
some verification properties of the specification are shown. The validity of one property 
is shown using the proof principle of attributed term induction and other properties are 
shown using the analysis techniques for attributed algebraic specifications, namely using 
attributed signature flow analysis. Attributed algebraic specifications have been proven to 
be a good technique for specifying the dynamics of user interfaces and for proving their 
correctness. Moreover it is demonstrated how the dynamics of a user interface can be 
generated from the formal specification of the application.

The next case study is taken from the framework of compiler construction. The compila­
tion of expressions to stack machine code and (un)optimized register code is considered. 
It is shown that the compilation preserves the semantics of the program. Afterwards the 
implementation step between the compilation to unoptimized register code and the com­
pilation to optimized register code is shown. Note, that the first translations, namely from 
expressions to stack machine code and register code is not an implementation step 
because a signature change is performed. However the compilations to unoptimized and 
optimized register code describe a behavioural implementation relation.

Another typical application area is the use of the new technique in the area of document 
architecture. The problem of calculating the length of inner boxes, e.g. text boxes, boxes 
containing graphics, is considered such that a given length of the whole box, e.g. the 
length of a line, is reached. Implementations and attribute evaluation aspects for these 
specifications are taken into consideration.

These case studies explain by typical examples all aspects of the specification framework 
presented in this thesis.

The considered aspects of the thesis and their application in the case studies are summa­
rized in table 2:

The remote access of attribute values is used for the specification of the compiler. It is 
remotely referred to an environment attribute storing the values of the identifiers. In the 
document architecture example a remote access to the global jolting factor of the boxes 
is applied. In the user interface example we make extensive use of the new occurrence 
technique and remote access and can shorten the specification from 19 (more or less a 
usual attribute grammar) to 7 axioms.

Undirected attribute equations and their implications to attribute evaluation (several 
correct attributions and attribute evaluation ordering) are discussed in the document 
architecture case study where an invariant for the length of the whole box is given.
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Observability issues can be considered in all three case studies, but only in the compiler 
example it is explained in detail: In the user interface example the input/output of the 
user interface can be described using observable sorts, i.e. the abstract menu-items and 
the telephone numbers. In the compiler case study the generation of optimized and unop­
timized code are behaviourally equivalent. An observability aspect for the box example 
can be the concrete layout.

Universally quantified formulae are used showing the correctness of the user interface 
specification, the correctness of the compilation process and the invariant of the docu­
ment architecture example.

Existentially quantified formulae are used deriving intelligent help (user interface 
example) and for performing an inverse compilation process (compiler specification). 
Thus an inverse compilation process can be used to guarantee that a compiler performs 
the correct translation wrt. the compiler specification.

Standard implementation relations are considered in the document architecture example. 
Behavioural implementation steps are discussed in the compiler example. Here the 
implementation of a compiler generating unoptimized code by a compiler generating 
optimized code is proved.

The only considered structuring mechanisms are enrich and sum. Only these operations 
are used, because it is not presented a complete software project. But the use of structu­
ring mechanisms for reuse are obvious.

Examples from different areas illustrate the applicability of the new technique to diffe­
rent problem domains.

Attributed signature flow analysis is applied for showing the reachability of the abstract 
menu-items in the user interface example and is implicitly used in the proofs.

considered 
aspects

user interface 
specification

compiler 
specification

document 
architecture

remote access of 
attribute values

shortening of the 
specification

environment for the 
used identifiers

global jolting
factor of boxes

undirected equations invariant:
given length

several correct 
attributions

depending on the 
given length

observability 
issues

input/output
shown to user

unoptimized/ 
optimized code

concrete layout 
of the boxes

universally 
quantified formulae

correctness: 
user interface

correctness: 
compilation

validity of 
invariant

existentially 
quantified formulae

deriving 
intelligent help

inverse
compilation process

standard 
implementation

refinement
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considered 
aspects

user interface 
specification

compiler 
specification

document 
architecture

behavioural 
implementation

unoptimized by 
optimized code

structuring 
mechanisms

enrich enrich and 
sum

enrich

attributed signature 
flow analysis

user interface 
properties

table 2: case studies show considered aspects

8.1 Specifying User Interfaces

This case study was part of a larger case study considered in a project called „generating 
intelligent user interfaces“, which has been supported by Siemens Corporate Research 
and Development (ZFE ST SN 51).

In the first subsection the use of attributed algebraic specifications for the specification of 
user interfaces is described following [Bauer 95]. Moreover we will see how the dyna­
mics of a user interface can be generated from an algebraic specification, based on 
[Bauer 96].

Nowadays nearly every software project has to deal with the implementation of user 
interfaces, because the end-users of such systems are often computer novices using the 
program with little or less knowledge about the computer technology. But the 
development of a graphical user interface is not a trivial task. The implementation is a 
time-consuming, error-prone work to do and complex software engineering process. 
Morover it is a very critical point in the software engineering process, because the com­
plete interaction between the user and the application is via the user interface. According 
to [Myers 88] 50-88% of the code of an interactive application is the code for the user 
interface. Furthermore, the result would be damnable having a correct proven application 
and an incorrect user interface. Therefore formal methods must be applied in the frame­
work of user interface development to consider correctness aspects. Using formal 
methods allows the generation of user interfaces out of a declarative description (model) 
of the properties of an interactive application. This fact allows to enter into competition 
with other software developers, since the price for individual software should be low and 
generating software is cheaper than programming code. These generation aspects can be 
found in the model based user interface tools (e.g. [Bodart et al. 94; Balzert 93, 94, 95; 
Janssen et al. 93, 91, 93; Schreiber 94a, 94b]). We will see how the dialogue description 
can be generated from a formal specification of the application. The new specification 
formalism can be used (under some restrictions)16 as an input for the system presented in 
[Schreiber 94a, 94b, 96] for the generation of a presentation and dialogue control compo­
nent of an interactive system.

1 6- undirected attribute equations, algebraic specification in a functional way.
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IF }  interaction .-------------------- .
— *-------------- ►[ presentation |

data flow J

|^dialogue^ontrolj|

data flow
[^pp lica tion^J

figure 21: visualization of the three layers of a program with a user interface

Considering a whole application with a user interface three layers have to be distinguis­
hed (see figure 21):
- The specification of the presentation (layout) the user is interacting with.
- The specification of the dialogues or tasks (dynamics) describing all possible dia­

logues, independent of the layout (as in [Eickel 90] for document architecture systems).
- The specification of the application (functional core) offering an appointed functionali­

ty which must be supported by the user interface.

Firstly this section focuses on the formal specification of dialogues and its effects on the 
application. Therefore it is possible to prove properties not only about the dialogues but 
also about its effects on the application. Formal grammars were already used in [Reisner 
81] for the description of dialogues. [Hoppe 88; Payne 85; Tauber 90] developed (exten­
ded) task action grammars, which are special cases of attribute grammars, encoding 
more semantical informations in grammars.

The aspects presented in the first part of this section are: Using attributed algebraic speci­
fications to link the dialogue description to application, application of the proof principle 
of section 5.2.2 and the analysing technique of section 3.6 to user interface verification.

Interesting correctness aspects for user interface specifications are:
- does the dialogue description offer all (exported) application functions,
- is it possible to perform an action at all,
- is an action reachable from another action,
- does the application have a given state before/after a special action is performed,
- does a special property hold before an action is performed,
- does the dialogue description ensure the applicability of an application function,
- does the validity of local context conditions result in the validity of global context con­

ditions.

The first three items can be shown using signature flow analysis and the other items using 
attributed term induction.

In the last subsection we will show how the dialogue description can be generated from 
the algebraic specification of the application.
8.1.1 Intuitive Access to the Specification of User Interfaces

Performing a call with a user interface of an ISDN telephone is shown in figure 22. The 
session starts with the initial telephone (22.1). Clicking on the handset starts a telephone 
call. Now a telephone number, e.g. 2021, is entered (22.2, 22.3). Afterwards it can be tal­
ked with the called person (22.4). To end the call it must be clicked on the handset place
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(22.5).

22.4 talking 22.5 ending a call

22.3 entering a number

figure 22: making a telephone call

Viewing the telephone call in an abstract way the sentence

CALL 2021 END

was built such that CALL is the token yielded from the presentation clicking on the hand­
set, 2021 entering the phone number and END clicking on the handset place. Therefore 
we have an abstract description of our telephone call independent of the actual presenta­
tion. The distinction between the abstract specification of the dialogue and the concrete 
presentation (layout) allows to have one dialogue specification and several concrete user 
interfaces, e.g.:

figure 23 : two alternative concrete presentations

Now we can define an abstract grammar or signature for the specification of the above 
dialogue. A possible abstract syntax tree for the above sentence is shown in figure 24, 
corresponding to the term mkCallTask(mkCall(CALL, mkEnterTNumber(2021)), END)'. 

mkCallTask ®

\  ©  
mkCalr^ END

/ ®  \  ®  
CALL^ mkEnterTNumber 2 0 2 ^  

figure 24: dialogue
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As a next step we associate special informations with each node of the syntax tree, i.e. 
(1), © ,..., namely the attributes statebefore and stateafter describing the state of the 
application before and after performing a subdialogue. Attribution rules are defined to 
describe the effects of the dialogues on the application. Algebraic specifications are used 
for the specification of the functional core leading to a unifying starting point for the 
application and user interface development. The dialogue state of a user interface is the 
actual built dialogue tree and the state of the application is stored in the attribution. Pro­
ving properties of a user interface is a proof over all attributed trees. With the proof prin­
ciple presented in section 5.2 it can be shown that the application has a special state at 
distinguished nodes. E.g. the attribute stateafter at node©  describes a realized telephone 
call.

Thus an attributed algebraic specification for describing a user interface consists of: the 
algebraic specification of the application (semantics part), the dialogue description (syn­
tax part) and its effects on the application (attribution part). In the attribution part the cal­
culation of the actual layout can be specified, too.

In the following all performable dialogues are called dialogue state. An element of the 
dialogue state is described by an attributed tree storing informations about the already 
performed dialogue (in the syntax tree) and the semantics of it (in the attribution of the 
syntax tree), i.e. the changes of the application state. The actual state is the actual attribu­
ted tree. We take the following view (for more details see the example below):
- The end-user's interactions, e.g. the selection of a menu-item, produce a stream of to­

kens changed into a tree by a parser.
- The actual state of the application is handled as an attribute describing how the user in­

teractions change the application.

8.1.2 User Interface Specification of an ISDN Telephone

We start with the algebraic specification ISDN-Application of the application. The speci­
fication of the ISDN telephone is an enrichment of the natural numbers (NAT). The sorts 
describe the connection with a participant (Connection), the internal state of the tele­
phone (State) and the state of a connection (CState). The internal state is viewed in an 
abstract way, i.e. two connections can be achieved with the telephone (mkState). mtCon 
states the empty connection. A (non-empty) connection consists of a telephone number 
and the status of the line (mkCon). A line can either be waiting or telephoning. The 
function call describes the telephone call with a single participant, secondCall starts a 
telephone call with a second participant and the conference function enables a confe­
rence session between the user of the telephone and the two participants on the other 
lines. All telephone calls are ended with endCalls. A telephone number is a natural num­
ber which is the observable sort.

spec ISDN-Application =
enrich NAT by

sorts Connection, CState, State
obs-sorts Nat
cons

mkState: Connection, Connection -* State,
mtCon: -* Connection,
mkCon: Nat, CState -> Connection, 
waiting, telephoning: -* CState 

opns
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call: Nat, State -* State,
secondCall: Nat, State State,
conference: State -* State, 
endCalls: State -* State

axioms for all nr, nr2: Nat; s: State.
call(nr, s) = mkState(mkCon(nr, telephoning), mtCon),
secondCall(nr, call(nr2, s)) = mkState(mkCon(nr2, waiting), mkCon(nr, telephoning)), 
conference(secondCall(nr, call(nr2, s))) =

mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)), 
endCalls(s) = mkState(mtCon, mtCon)

endspec

The following simplifications are made:
- each telephone call is realized,
- telephone numbers are denoted by natural numbers and
- no switching between two participants is possible.

As a next step we specify the possible dialogues of the telephone.
aspec ISDN-Dialogue =

enrich NAT by
sorts Dialogue, Task, Call, SecondCall, Conference, EnterTNumber, CallMenu, 

SecondCallMenu, ConferenceMenu, EndMenu
obs-sorts CallMenu, SecondCallMenu, ConferenceMenu, EndMenu
cons

mtDialogue: -* Dialogue,
mkDialogue: Task, Dialogue -* Dialogue,
mkCallTask: Call, EndMenu -> Task,
mkConferenceTask: Conference, EndMenu -> Task,
mkCall: CallMenu, EnterTNumber -> Call,
mkSecondCall: SecondCallMenu, EnterTNumber -* SecondCall, 
mkConference: Call, SecondCall, ConferenceMenu -* Conference, 
mkEnterTNumber: Nat EnterTNumber, 
CALL: -  CallMenu,
SECONDCALL: -* SecondCallMenu,
CONFERENCE: -* ConferenceMenu, 
END: -* EndMenu

endspec

A dialogue can be seen as a sequence of tasks. Therefore a dialogue is either an mtDia- 
logue or a Task followed by a Dialogue. The task of a telephone call consists of the tele­
phone call and the ending of the call (mkCallTask). The task of the conference session 
consists of performing the conference call and ending the calls (mkConference). To per­
form either a call or a call with a second participant an abstract menu-item17 must be sel­
ected and afterwards the telephone number must be entered (mkCall, mkSecondCall, 
mkEnterTNumber). In the case of a conference the abstract CONFERENCE-m&nu must 
be selected after performing the first and second call. All calls are ended with the abstract 
menu-item END. The abstract menu-items are CALL, SECONDCALL, CONFERENCE 
and END and are characterized by the observable sorts.

17‘ By an „abstract menu-item“ we mean a token which is yielded from the concrete representa­
tion, i.e. an abstract menu-item can be e.g. a „concrete“ menu-item, a pushbutton or a clicking 
on the handset in our direct manipulation user interface.

The link between the application and the dialogue is defined using attribution:
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aspec ISDN-Attribution =
enrich ISDN-Application + ISDN-Dialogue by

attrs inh statebefore: Dialogue -> State
synth stateafter: Dialogue -> State

axioms for ail d: Dialogue; t: Task; c: Call; sc: SecondCall; em: EndMenu; 
cm: ConferenceMenu; n: Nat.

(1) statebefore(occ(d)) = mkState(mtCon, mtCon),

(2) stateafter (sv[occ(mtDialogue)]) = statebefore(sv[occ(mtDialogue)]),

(3) stateafter(sv[occ(CONFERENCE)]) =
conference(statebefore(sv[occ(CONFERENCE)])),

(4) stateafter (sv[occ(END)]) = endCalls(statebefore(sv[occ(END)])),

(5) statebefore(sv[mkDialogue(occ(t), d)]) = statebefore(sv[occ(mkDialogue(t, d))]),
(6) statebefore(sv[mkDialogue(t, occ(d))j) = stateafter(sv[mkDialogue(occ(t), d)]),
(7) stateafter(sv[occ(mkDialogue(t, d))]) = stateafter(sv[mkDialogue(t, occ(d))]),

(8) statebefore(sv[mkCallTask(occ(c), em)]) = 
statebefore(sv[occ(mkCallTask(c, em))]),

(9) statebefore(sv[mkCallTask(c, occ(em))]) = 
stateafter(sv[mkCallTask(occ(c), em)]),

(10) stateafter(sv[occ(mkCallTask(c, em))]) = stateafter(sv[mkCallTask(c, occ(em))]),

(11) stateafter(sv[occ(mkCall(CALL, mkEnterTNumber(n)))]) =
call(n, statebefore(sv[occ(mkCall(CALL, mkEnterTNumber(n)))])),

(12) statebefore(sv[mkConferenceTask(occ(c), em)]) = 
statebefore(sv[occ(mkConferenceTask(c, em))]),

(13) statebefore(sv[mkConferenceTask(c, occ(em))]) = 
stateafter(sv[mkConferenceTask(occ(c), em)]),

(14) stateafter(sv[occ(mkConferenceTask(c, em))]) = 
stateafter(sv[mkConferenceTask(c, occ(em))]),

(15) stateafter(sv[occ(mkSecondCall (SECONDCALL, mkEnterTNumber(n)))]) = 
secondCall(n, statebefore(sv[occ(mkSecondCall (SECONDCALL, 

mkEnterTNumber(n)))])),

(16) statebefore(sv[mkConference(occ(c), sc, cm)]) = 
statebefore(sv[occ(mkConference(c, sc, cm))]), 

(17) statebefore(sv[mkConference(c, occ(sc), cm)]) = 
stateafter(sv[mkConference(occ(c), sc, cm)]),

(18) statebefore(sv[mkConference(c, sc, occ(cm))]) = 
stateafter(sv[mkConference(c, occ(sc), cm)]),

(19) stateafter(sv[occ(mkConference(c, sc, cm))]) = 
stateafter(sv[mkConference(c, sc, occ(cm))]) 

endspec

We assume w ith  every occurrence o f sort Dialogue, Task, Call, SecondCall and Confe­
rence the attributes statebefore and stateafter. (1) states that the value o f the attribute 
statebefore is the in itia l state mkState(mtCon, mtCon) at the root o f each term o f sort 
Dialogue. (2) specifies that mtDialogue does not change the state. Selecting the abstract 
menu-items CONFERENCE and END  change the state o f the application (axiom (3) and 
(4)), such that the application functions conference and endCalls are called, respectively.
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(5)-(7) describe the attribute dependencies at nodes marked with mkDialogue and (8)- 
(10) for mkCallTask. Axiom (11) calls the application function call as described above. 
(12)-(14) defines the attribution rules for mkConferenceTask and (16)-(19) for mkConfe- 
rence. the attribute value of the attribute stateafter at nodes with an arbitrary superior 
tree and subordinate tree of the form mkSecondCall(SECONDCALL, mkEnterTNum- 
ber(n)) is the result of the application function secondCall called with the second tele­
phone number n and the value of the attribute statebefore at the same node as arguments 
(15).
The actual layout can be defined in the same way. Since we are mainly interested in 
coupling the dialogue specification with the application, the attribution for the layout, 
namely two attributes describing the layout before and after a subdialogue, is omitted. 
Therefore changing the attribution for the layout, changes the layout independently of 
the application and the dialogue specification.

The specification ISDN-Attribution is more or less a usual attribute grammar. We present 
for this example a specification, which uses the new notion of terms and remote access to 
get a smaller specification. The new specification describes only the necessary informa­
tion, i.e. in this example the function calls of an application function to the state.

We have only to decide at which nodes in the dialogue tree the application functions are 
envoked.

aspec MinimallSDN-Attribution =
enrich ISDN-Application + ISDN-Dialogue by

attrs inh statebefore: Dialogue -* State
synth stateafter: Dialogue -* State

axioms for all d: Dialogue; t: Task; c: Call; sc: SecondCall; cm:ConferenceMenu;n,n2:Nat.
(1) statebefore(occ(d)) = mkState(mtCon, mtCon),
(2) statebefore(sv[mkDialogue(t, occ(d))]) = stateafter(sv[mkDialogue(occ(t), d)]),

(3) stateafter(sv[mkConferenceTask(mkConference(c, sc, CONF), occ(END)]) = 
endCalls(stateafter(sv[mkConferenceTask(mkConference(c, sc, occ(CONF)), 

END)])),

(4) stateafter(sv[mkCallTask(c, occ(END))]) = 
endCalls(stateafter(sv[mkCallTask(occ(c), END)]))

(5) stateafter(sv[mkDialogue(sv1[occ(mkCall(cm, n))]), d)]) = 
call(n, statebefore(sv[occ(mkDialogue(sv1[mkCall(cm, n)], d))])),

(6) stateafter(sv[mkDialogue(sv1 [mkCall(cm, n)], occ(mkSecondCall(sc, n2)))]) = 
secondCall(n2, stateafter(sv[mkDialogue(sv1[occ(mkCall(cm, n))], 

mkSecondCall(sc, n2))]))

(7) stateafter(sv[mkConference(c, sc, occ(CONF))]) = 
conference(stateafter(sv[mkConference(s, occ(sc), CONF)])) 

endspec

The specification shows that the use of subterm identifiers and remote access of attribute 
occurrences shortens the writing of specifications.
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8.1.3 Proving Properties of User Interface Specifications

In this subsection we apply the analysing mechanism of section 3.6 and the proof prin­
ciple to prove the correctness of the user interface specification.
Analysis of Specifications

The analysis technique attributed signature flow analysis can be used to show several 
aspects of the ISDN telephone example, e.g:
- is it possible to perform an action at all (bottom-up) and
- does the dialogue description offer all (exported) application functions (bottom-up).

Moreover, it can be shown with this technique, e.g.:
- is a dialogue step already performed at a special point of the dialogue (top-down), 
- is an action performable in combination with another action (context-dependent) and 
- is an action reachable from another action (context-dependent)?
Reachability Problem for Menu-Items
As stated in the introduction of this case study an important property for a user interface 
is: do dialogues exists such that all abstract menu-items can be selected. The bottom-up 
signature flow analysis of this reachability problem for abstract menu-items is defined 
for the ISDN telephone as follows (under the assumption that the ISDN telephone has 
four abstract menu-items associated with the constants CALL, SECOND CALL, CONFE­
RENCE and EM)):

The signature is 2 = (S, C, F) of the attributed algebraic specification ISDN.

(1) the set of domains is for all sorts s ES:
D = { CALL, SECONDCALL, CONFERENCE, END }.

(2) the set of propagation functions is
p f  = / i f  fE {  CALL, SECONDCALL, CONFERENCE, END } and

SEA[s2], • = U 1 S / S B .S'E4[S/], otherwise.
(3) the set of combination functions is the usual set union for all sorts s ES.
(4) a set of relations is the usual set inclusion.

Especially for the sort Dialogue the solution is the desired set of all abstract menu-items.

This example can be proved by the system of [Duschl 94; Weiß 95].
Application Problem for the Exported Application Functions

Another interesting property to check is whether dialogues exist such that all interface 
application functions, i.e. all functions which have to be supported by the user interface, 
can be applied. In the ISDN telephone example the interface functions are the set { call, 
secondCall, conference, endCalls }. The problem is defined as follows:

The signature is 2 = (S, C, F) of the attributed algebraic specification ISDN.

(1) the set of domains is for all sorts 5 ES:
D = { call, secondCall, conference, endCalls }
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(2) the set of propagation functions is
pf(SFA[s1], «SEAM) = used(f) U U l s Z :S n SFA[sJ
such that used(f) computes the interesting application functions used in the attribu­
tion of the function/with (f: s19 s2,">, sn -+ s) EC.

(3) for all sorts s ES the set of combination functions is the usual set union.
(4) a set of relations the usual set inclusion.

The solution can be obtained using the presented algorithm of section 3.6 resulting in the 
set D for the rootsort Dialogue, i.e. dialogues exist such that all exported functions can 
be applied.
Proving Occurence Properties

The properties which can be shown using the proof principle of attributed term induction 
are, e.g.:
- does the application have a given state before/after a special action is performed, 
- does the dialogue description ensure the applicability of an application function, 
- does the validity of local context conditions result in the validity of global context con­

ditions,
- is a special property valid before an action is performed?

For the telephone specification the first two items are shown by an example.

An occurrence property P  (see section 5.2.2) for occurrence terms of sort s, i.e. of the 
form c[occs (i)] for some context c[zs ] and some term t of sort s, is a formulae over the 
attribute occurrences of sort 5 and the semantic functions of the attributed algebraic 
specification, describing dependencies between attribute occurrences at these nodes. In 
the framework of user interface verification „dependencies between attribute occurrences 
at these nodes“ can be interpreted as „the application has a special state after/before a 
distinguished subdialogue“, or „the inputs satisfy special restrictions“.

In the telephone example we prove that after selecting the abstract conference menu­
item, the state of the application is the telephoning of all three participants. Beyond it the 
parameter restriction for the application function conference is satisfied. This property 
can again be shown using the system of [Duschl 94; Weiß 95].

Mathematically:
Fact 8.1.3.1

For all occurrence terms t of sort ConferenceMenu holds:

stateafterft) = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning))

and

statebefore(t) = mkState(mkCon(nr, waiting), mkCon(nr2, telephoning))

for some telephone numbers nr and nr2. This formula is the occurrence property P(t).

Proof

We use attributed term induction for the proof of the theorem. It can be alternatively 
shown using a complete set of occurrence terms.
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In the base o f the context induction all minimal outer contexts with context identifier 
z ConferenceMenu a n d root sort Dialogue has to be constructed. Therefore all functions with 
result sort Dialogue have to be considered being

mkDialogue'. Task, Dialogue Dialogue

Now for all argument sorts, i.e. Task and Dialogue, a nested context induction has to be 
performed.

First argument o f mkDialogue: Task

The actual context is mkDialogue(zT ask, xD ia io g u e) with new identifier xD ia io g u e . In order 
to finish the proof successfully, a more general context is used18 , namely c[zConfe re n c e] 
for an abstract context c (no proof is given)1 9 .

18 As usual when doing induction proofs generalizations are necessary in order to obtain finite 
proofs or induction assertions which are general enough to finish the proof successfully. Here 
the problem of finding an appropriate induction assertion appears in choosing a suitable con­
text before doing a nested context induction.

19 It is a kind of signature flow analysis problem presented in section 3.6. It must be shown that 
on every path from the root to a node of sort ConferenceMenu there is a node of sort Confe­
rence.

20 ' Again a kind of signature flow analysis (cf. section 3.6).

The sort of the property ConferenceMenu is not identical with Conference, thus a nested 
context induction for the construction of the minimal outer context is done. All functions 
with result sort Conference have to be considered in the actual context being 

mkConference: Call, SecondCall, ConferenceMenu -* Conference

For the first two argument sorts no contexts c \zConj-ere n c eM e n u] of sort Call and Second- 
Call, respectively, exist (proof omitted)2 0 .

But with c[mkConference(xCaU , xS eco n d C a ll, zC o n feren ceM en u) ] t h e  minimal context is rea­
ched. Now a term induction on sort ConferenceMenu has to be done. The function to 
consider is CONFERENCE being a constant.

Thus we have to show

P(cs(c[mkConference(xC a li, xS eco n d C a tl, ^(CONFERENCE)}))

holds for all ground substitutions a, since we are only interested in ground occurrence 
terms resulting in the proof obligation:

^(c\mkConference(mkCall(CALL, mkE nterTNumber (<jANatf), 
mkSecondCall(SECONDCALL, mkEnterTNumber(a2N a t)), occ(CONFERENCE))])

for some constants o l N a t and ct2N a t (used as generalizations).

Visualizing the occurrence term the proof obligation P  has to be valid at the marked node 
of the tree in figure 25. Looking at the attribution implies the validity of the property P.
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mkConference
mkCall 1) ^ ^ i o n d C ^ l  7 C ONFERENCE^>

CALL mkEnterTNumber SECONDCALL mkEnterTNumber
I I

a lNat a ^Nat

1) stateafter = mkState(mkCon(alN a t , telephoning), mtCon)
2) statebefore = mkState(mkCon(alN a t , telephoning), mtCon)

stateafter = mkState(mkCon(alN a t , waiting), mkCon(a2N a t , telephoning))
3) statebefore = mkState(mkCon(alNat> waiting), mkCon(a2N a t , telephoning)) 

stateafter = mkState(mkCon(alN a t , telephoning), mkCon((x2N a t, telephoning))

figure 25: proof obligation

Second argument o f mkDialogue: Dialogue

In this case again the context c[zConfere n c e] is used for the nested context induction being 
a generalization of the context mkDialogue(xTas^  2 ^ ^ ^ .  Therefore the same proof as 
for the first argument is obtained.

In the context induction step we start with an arbitrary context c2[zcOnferenceMenul' Since 
this context cannot be extended to a context c3[zC onfere n c eM e n u] which can be written as 
CilcdzconferenceMenun for some non-trivial context c4 [zC o n fe re n c e M e n u ], in the context 
induction step nothing has to be proven. ♦

In the ISDN telephone example we have shown that after selecting the conference menu­
item, the state of the application is the telephoning of all three participants and the para­
meter restriction of the application function conference is satisfied.

8.1.4 Deriving Intelligent Help

Attributed narrowing presented in subsection 5.3.2 can be used to derive intelligent help 
in the framework of user interface specification. Having a given state of the application 
and an already performed dialogue the necessary steps to reach another state of the appli­
cation can be determined. Moreover, the system automatically performs the steps to 
reach the goal.

Let us consider as an example that a user of our ISDN telephone has started a usual tele­
phone call with one participant and the aim is to reach a conference session.
A formalization of this fact looks like:

3 SV  Call, Task -♦ Task' ^^ConferenceMenu'

stateafter(mkDialogue(sv[occ(mkCall(CALL, mkEnterTNumber(nr))), cm])) = 
mkState(mkCon(nr, telephoning), mtCon)

A stateafter(mkDialogue(sv[mkCall(CALL, mkEnterTNumber(nr)), occ(cm)])) = 
mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning))

A possible derivation resulting in a minimal solution, i.e. in such a solution that a mini­
mal number of dialogue steps have to be performed, can be obtained as follows.
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The start configuration is

( { x l = mkState(mkCon(nr, telephoning), mtCon),
x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)) },

[],
{ x l = stateafter(mkDialog(sv[Qce(mkCall(CALL, mkEnterTNumber(nr))), cm\)), 

x2 = stateafter(mkDialog(sv[mkCall(CALL, mkEnterTNumber(nr)), occ(cm)])} )

and after several derivation steps the following configuration is obtained (see Appendix 
B.3):

( { x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
x2 = conference(x3),
x3 = x5,
x5 = second,Call(x6, x l) },

[ cm / CONFERENCE,
sv I svl[mkConference(zCaii, mkSecondCall(SECONDCALL, 

mkEnterTNumber(x8)), zCo„ferenceMenu)],
x4 / mkSecondCall(SECONDCALL, mkEnterTNumber(x8)),
x7 / mkState(mkCon(nr, telephoning), mtCon), 
x l / mkState(mkCon(nr, telephoning), mtCon) ], 

{ •••})
As next steps the attribute equations have to be solved without complicated transforma­
tions resulting in the solution:

[ cm I CONFERENCE,
sv / svl[mkConference(zCaU, mkSecondCall(SECONDCALL, 

mkEnterTNumber(nr2)), Z c ^ , , ^ ^ ) ]  ]

8.1.5 More about User Interfaces: Generating User Interfaces from
Formal Specifications of the Application

This section is mainly based on [Bauer 96].

Considering once again a whole application with a user interface three layers have to be 
distinguished:
(5) The specification of the presentation (layout) the user is interacting with.
(6) The specification of the dialogues or tasks (dynamics) describing all possible dia­

logues, in a layout-independent way.
(7) The specification of the application (functional core) offering an appointed func­

tionality which must be supported by the user interface.

Taking this scheme into consideration and looking at the user interface development pro­
cess it is obvious that the user interface cannot be constructed without the knowledge of 
the application, since the application interface, the dynamics of the user interface and the 
user tasks are not independent of the application, since the state of the application con­
trols inherent the performable dialogues. Therefore it is necessary to use the application 
as a starting point for the user interface development.

But which description of the application should be used? An informal specification, a



Case Studies 149

formal specification or the implementation of the application? Using an informal specifi­
cation does not allow the use of machine supported analysis of the specification. On the 
other side the implementation of the application is too low-level to be considered. Fur­
thermore the implementation of the user interface has to be done in parallel with the 
implementation of the functional core to finish the implementation of both at nearly the 
same time.

Working with a formal specification technique allows: 
- computer supported analysis of the specifications, 
- elucidating the problem and
- consideration of correctness aspects of the obtained software.

Thus the starting point for the user interface and the application development is the same, 
namely a formal specification of the application and the software construction of both 
can be done hand in hand. In our framework as a starting point for the generation of user 
interfaces, algebraic specifications of the applications are used because this technique 
allows the abstract specification of the application and describes the input/output beha­
viour. The output of the generation process are HIT specifications [Schreiber 96] used 
for the generation of an executable user interface with BOSS [Schreiber94a, 94b] 
(“BedienOberflachenSpezifikationsSystem“ the german translation of “user interface 
specification system). This formalism can be translated into an attributed algebraic speci­
fication. The here presented work is part of the FUSE system (Formal User Interface 
Specification Environment). The FUSE system consists of the three components BOSS 
[Schreiber 96], FLUID (Forma/ User interface Development) and PLUG-IN [Lonczew- 
ski 95] (PEan-based User Guidance for intelligent Navigation). Within the FUSE archi­
tecture, the FLUID system plays the role of a theorem prover (cf. [Bauer 95] and in this 
case study) and an automatic dialogue designer. This section concentrates on the genera­
tion of the formal specification of the logical user interface - called in the following often 
dynamics of the user interface - from the formal specification of the application (i.e. pro­
blem domain model and user model).
8.1.5.1 The Problem

The specification of the application is the input of the generation process and the output 
is a HIT specification or an attributed algebraic specification describing the possible dia­
logues with the user interface on a logical view. This HIT specification in connection 
with a given runtime system allows the prototypical development and evaluation of a 
user interface with BOSS.
The Starting Point

Following [Larson 92] the user interface design decision framework consists of the follo­
wing five classes:
- the structural and functional decision class determine the end users’ conceptual model, 
- the dialogue decision class determines the dialogue style and
- the presentation and pragmatic decision class determine the refinement of the end 

users’ conceptual model and dialogue style.

In the structural and the functional decision class the structure of the end users’ concep­
tual model is specified including
- the description of conceptual objects (consumed, produced and/or accessed by the end
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user),
- the application functions and
- the description of constraints and relationships that hold among conceptual objects.

Le. more or less an abstract datatype with a special observable interface is defined in the 
structural and functional decision class. Such an abstract datatype can be easily specified 
using an algebraic specification. We assume that parameter restrictions, denoted as equa­
tions, are associated with each function symbol, i.e. we have a functionality of the form

= x f, si : 5 1> x f, S2 ’ 5 2> x f, sn  ' s n • ̂ ^ x f, Sp x f, Xf, sw )  ~ *  5

such th a t/is  only defined if Eqj(xf S1, x f, w - ,  x f, Sf) is  valid, whereby
Eqj(xf s v  xy 52,..., x f,Sn) is an equation with the only identifiers in { xy 51, xy S2,..., XySn }.

The sort and constructor symbols define the conceptual objects, the function symbols 
define the application functions, the observable sorts characterize those objects which 
are observable by the end-user and the parameter restrictions with the axioms describe 
the constraints and relationships between the conceptual objects.

The notion of algebraic specifications has to be extended by a set of distinguished 
function symbols applicable to the conceptual objects (called in the following interface 
functions) which have to be supported by the user interface and the sort of the applica­
tion state, i.e. the sort of the terms representing the state of the functional core. The use 
of interface functions cannot be neglected identifying those function symbols with obser­
vable result sort as the interface function, since it would be desirable to use application 
functions only changing the internal state of the application. Furthermore the initial state 
of an application may be defined.

Note, that the meaning of the functions (by defining the semantics of the functions by 
axioms and parameter restrictions) is specified, but not their format or sequencing of 
invocation is defined.

The three important kinds of decisions made in the dialogue decision class are
- what are the units of information exchanged between the user and the application (de­

fined by the observable sorts and the interface functions),
- how this units of information are structured into messages between the user and the ap­

plication (not considered here) and
- what the appropriate sequences of message exchange are (main issue of this contribu­

tion).

The aim of the new approach is to generate the sequence of information exchanged bet­
ween the user and the application, namely to automate part of the dialogue decision 
class.
Specification of the Application: An Example

We start with the algebraic specification ISDN-Application of the application of section 
8.1.2. and add the parameter restrictions and interface functions, which are necessary for 
the generation process. In constrast to the former specifications call, secondCall and 
conference have parameter restrictions denoted by a first order formulae after pre. 
emptyConnections, singleConnections and doubleConnections are predicates stating 
none, one and two connections. The interface functions, i.e. the set of functions which
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have to be supported by the user interface are call, secondCall, conference and endCalls. 
spec ISDN-Application2 = 
enrich NAT by
sorts Connection, estate, State
obs-sorts Nat
cons

mkState: Connection, Connection -> State,
mtCon: - *  Connection,
mkCon: Nat, estate -> Connection, 
waiting, telephoning: - *  estate 

opns
call: Nat, x^n, State : State, pre emptyConnectionsiXeau, State) = true -> State, 
secondCall: Nat, xseCondCaii, state : State.

pre singleConnections(xsecondCaii, state) = true -> State, 
conference: xconference state : State.

pre doubleConnections(xconferenCe, state) = true State, 
endCalls: State -> State, 
emptyConnections: State -> Bool, 
singleConnections: State - *  Bool, 
doubleConnections: State - *  Bool

interface functions call, secondCall, conference, endCalls
axioms forall nr, nr2: Nat, s: State.

emptyConnections(mkState(mtCon, mtCon)) = true, 
emptyConnections(mkState(mkCon(nr, cs), c)) = false, 
singleConnections(mkState(mkCon(nr, cs), mtCon)) =true, 
singleConnections(mkState(mtCon, c)) = false, 
singleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = false, 
doubleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = true, 
doubleConnections(mkState(c, mtCon)) = false, 
call(nr, s) = mkState(mkCon(nr, telephoning), mtCon), 
secondCall(nr, call(nr2, s)) = mkState(mkCon(nr2, waiting), mkCon(nr, telephoning)), 
conference(secondCall(nr, call(nr2, s))) =

mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)), 
endCalls(s) = mkState(mtCon, mtCon) 

endspec

8.1.5.2 Generation Idea of the Dialogue Specification

In this section the idea for the generation o f the dialogue specifications and their restric­
tions to different user groups are inform ally described.

Generation of the Dialogue Specifications

The generation process consists o f several steps:

As a first step a graph is constructed w ith  nodes marked w ith  function symbols, identi­
fiers for the arguments and the resulting term for each interface function. The only non­
observable sort is the sort o f the state o f the functional core, namely State, marked w ith  

Q gM  and observable arguments are marked w ith  c...  ) .
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(  x caii, Nat )  ( x call, State} (jfsecondC ^

| call | | secomiCall

C ^ ( C a l l ,  Nat* x call, State)}

(Conference, State) 

| conference

(  CndCalls, State) 

endCalls

figure 26: dependency graph

Now all the parameter restrictions of the functions can be solved using a system solving 
existentially quantified equations by narrowing.
Therefore the solutions of the identifiers in the parameter restrictions must be calculated, 
i.e. the solutions of the existentially quantified formulae:

3  x call, State : S t a ^  empty Connections(xca ll state) = true,
3  x secondCall, State • State. singleConnections(xsecon(iQa n̂  state) = true and
3  x conference, State • doubleConnections(xconfere n c e> state) =  true.

The solutions - denoted as substitutions - can be calculated as

a l  = { mkState^mtCon, mtCon) / xcau state } ,

a2 = { mkState(mkCon(nr, telephoning), mtCon) / xsec o n d C au> state } a n d
a3 = { mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)) I ̂ conference, state }

These substitutions can now be applied to the graph, i.e. in the graph the identifiers x c a u 

State’ x secondea ll, State and ^conference, State are substituted by mkState(mtCon, mtCon), 
mkState(mkCon(nr, telephoning), mtCon) and mkState(mkCon(nr, waiting), mkCon(nr2, 
telephoning)), respectively, resulting in:

mkState(mkCon(nr, waiting)» nikCon(nr2, telephoning)) CndC alls, State )

conference
__L
| endCalls

(conference(mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)))) (^endCalls(xen dC a»5, sta te ))

C ̂ kStatefrntCon, mtCon}) ÇxsecondC aii, N a t )  (^nikState(mkCon(nr, telephoning), m tCon)

[ secondCall

(call(xca ll; N at, mkStatefmtCon, mtCon))~) (jsecondCaIl(xsecc,ndCan> N a t, mkState(mkCon(nr, telephoning), mtCon)) )

figure 27: instantiated dependency graph
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Since the parameter restrictions of call and secondCall influence only the second argu­
ment of sort State and not the first argument of sort Nat there is no restriction on the tele­
phone numbers. Thus a natural number can be used as an input for the first argument of 
call and the first argument of secondCall. The same holds for the function endCalls 
which can be applied in every state.

The result term of the function call is call(xcan ^ a t, mkState(mtCon, mtCon)), of the 
function secondCall is secondCall(xsecon^Qan N a t, mkState(mkCon(nr, telephoning}, 
mtCon)) and of the function conference is conference{mkState(mkCon(nr, waiting), 
mkCon(nr2, telephoning))). Moreover it holds 

call(nr, mkState(mtCon, mtCon)) = mkState(mkCon(nr, telephoning), mtCon)), 
secondCall(nr, mkState(mkCon(nr2, telephoning), mtCon)) =

mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)),
conference(mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)) = 

mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)))
and endCalls(s) = mkState(mtCon, mtCon) for all States 5.

Now the graphs can be merged together
(  S a i l ,  Nat X  mkStateftntCon, mtCon))

call

(  SecondC all, Nat )  (  mkState(mkCon(xca ll N at, telephoning), mtCon) )

[ secondCall

(  mkStateÇmkCon^i, N at, waiting), mjdbon(x^e c o n d C <  N at, telephoning)) )

I conference

Cconlerence(mkState(mkCon(xcaIL N at, waiting), m k C o n ^ ^ ^  N at, telephoning)))

[ endCalls

C State)

figure 28: putting the instantiated dependency graph together

and the non-observable state of the application can be omitted resulting in the graph:



154 Specifying User Interfaces

(^x call, Nat (mkState(mtCon, mtCon^l

^secondCall, Nat) | caH

| secondCall

j conference j

| endCalls

figure 29: composed instantiated dependency graph

The obtained graph can now be translated into a BOSS specification. In this generation 
process special dialogue style guides (specifiable in a formal way defining transforma­
tion rules for the obtained graphs) can be used, e.g. for a user or system driven dialogue 
style. We assume here a hard-coded transformation into the dialogue specifications.

A transaction-rule in BOSS (for more details on BOSS see [Schreiber 96]) is fired by the 
user, e.g. by selecting a menu-item, or by a pushbotton, i.e. each interface function is 
viewed as a non-repeatable transaction rule and the observable arguments as input slots, 
i.e. the user has to enter some information for it.

The corresponding BOSS-specification looks like

figure 30: HIT specification

non-repeatable 
transaction-rule

Using non-repeatable transaction rules states, that the whole HIT has to be worked 
through starting with the initial state until the termination state is reached. Now a new 
instance of the HIT can be made since the termination state is equal to the initial state, 
this HIT specification can be translated into the presented algebraic specification ISDN- 
Attribution.



Case Studies 155

Restricting the Dialogue Specification to Different User Groups

Usual different user groups with a different functionality use a software product.

In the ISDN-example a special user group may only use the interface functions call and 
endCalls but not secondCall and conference.

One solution of this problem is to generate for each user group a different dialogue des­
cription, but some work has to be done twice. Therefore a more elegant way is to restrict 
the generated dialogue description to the interface functions of the user groups. I.e. all 
the nodes marked with interface functions, which are not usable by a special user group, 
and their argument nodes are “deleted“:

( xCall, Nat) (tnkStatefmtCon, mtCon^

Cx secondCall, N ap 1 F
I caii n

figure 31: restricting the dialogue specification to different user groups 

resulting in:
(Xall, Nat) (mkState(mtCon, mtCon)) 

call

| endCalls |---------

figure 32: restricted dialogue specification 

with the corresponding HIT specification.

figure 33: restricted HIT specification
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8.1.5.3 Generating a Specification of the Performable Dialogues

In the previous subsection we have seen by an example what the idea of generating the 
dialogue specification from an algebraic specification is. The starting point is a given 
behavioural algebraic specification Sp = <(S, C, F), Obs, Ax>. The sorts are split into 
observable and non-observable sorts and the state sort, i.e. the observable sorts describe 
those objects visualizable to the end-user and the non-observable objects not visible to 
the end-user and the objects of the state sort describe the internal state of the application 
also not visible to the user.

The generation process consists of 5 phases:
- Construction of the pure dependency graph,
- Solving the parameter restrictions,
- Instantiation of the pure dependency graph with the solutions of the parameter restric­

tions,
- Merging of the instantiated dependency graph,
- Converting the obtained graph into BOSS notation.
Construction of the pure dependency graph

The pure dependency graph G = (N, E) has two kinds of nodes and edges.

For each interface function/with functionality

/cí(/) = xf s i : Si, xf¡ S2 : s2, x^ S n :s„. E q ^  s p  xf i  S2,..., xf¡ Sn) s

we construct the following graph graphf :

figure 34: graph of an interface function/

Therefore the nodes N  = N term  U Nj-u n c  are split into N term  the set of terms and N f ^  the 
set of function symbols. The edges E = E term to fu n c U U are split into
edges from GNterm  to nodes n f m c  in the set E te rm to flm c, edges from 
^^func nodes ntertn in the set ®ttd edges from to n̂ tinc
^ f u n c in  ‘he set Eju n c io fu n c . E ^ a ^  are used later.

The pure dependency graph is the set of graphs of each interface function/.
Solving the Parameter Restrictions

In this phase it is tried to solve the parameter restrictions of the interface functions, i.e. 
the solution of the parameter restriction for an interface function /  with functionality

= Xf,s i : xj,S2 : •••, Xf Sn : sn . Eq^XffS1, xy 52,..., xj Sn) —* s

are the solutions of the existential formulae:
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3 Xf V1: 51? Xf S2 : s2>•••, Xf S n : sn . Eqj(Xf 51, Xf gy.., Xf Sn)

If the parameter restrictions cannot be solved at generation time (because information is 
missing, e.g. it is dealt with loose specifications) the run-time system of BOSS controls 
the parameter restrictions (therefore the parameter restrictions have to be implemented 
by Boolean functions).

Thus for every interface function /w ith  parameter restriction the following set of solu­
tions is obtained:

Of =def { o  | Mod(Spec) |= EqfO  such that o  ESubst is the most general solution } 

with /« (/) = xf t  S 1 : s t , xf t  S2 : s2, xf i  5„ : sa  • E q p ^  s p  xf _ xf t  Sn) s and Subst is the
set of all substitutions.
Instantiation of the pure dependency graph with the obtained solutions

Now for every graph graphf obtained from an interface function/the set of instantiated 
graphs instgraphf is defined by:

g ra p h f i iO f  = 0  
instgraph f  -  . o ( g r a p h f  otherwise 

such that o(graphf) is defined for graphfby.

51), o(xf>

figure 35: applying a substitution to a graph
Merging of the instantiated dependency graphs

After calculating the instantiated set of graphs

InstG raphs = U  instgraph f  f  G interface(Sp)

whereby interface(Sp) calculates the interface functions of the application. The set of 
instantiated graphs InstGraphs is examined whether nodes of sort N term  can be connec­
ted. An edge between two nodes t1 9 t2 E  N terin is drawn if it holds:

Mod(Sp) |= tr = t2 can be shown and

there exists an edge e, e  E te r m to fm c  and an edge e2 6  Efa„cto term  with

a (i1? / )  and e2 = (/z? ti) f° r  some function symbols and / 2.

If there is already an edge from t2 to another term t of N term  then instgraphfis duplicated.
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The new obtained graph is now merged together in the following way:

If there is an edge ex a  (A, GE and e2 = (A, A) then
- if there is no edge e3 = (ib  / 3) GE (with/3 / 2) then er and e2 are deleted in E and (ft, / 2) is 

added toE.
- if there is an edge e3 a f3) GE (with/3 / 2) then (ft, / 2) is added to E.

Obtaining a BOSS specification

The obtained graph of the merging phase is converted into a HIT-specification as fol­
lows:

Each node | f | of an interface function /  is converted into a transaction rule

wise.
is interface functions and an equational rule

The restriction of the dialogue description for special user groups is done deleting the 
non-usable interface functions from the obtained HIT specification.

8.1.6 Remarks

We have pointed out how to specify interactive systems using attributed algebraic speci­
fications and their verification using attributed term induction and attributed signature 
flow analysis. The specification formalism allows the distinction between the application 
and the dialogue description. The whole specification of an interactive application with a 
user interface can be described using the new approach, but the clear distinction between 
the three layers (application, user interface dynamics and concrete layout) is preserved.

Correctness aspects can only be considered in the framework of model based user inter­
face tools [Balzert 93, 94, 95; Bodart et al. 94; Foley et al. 91, 93; Janssen et al. 93], since 
the layout oriented tools are too low-level. But there are model based tools which employ 
a specification technique with a missing logical framework, e.g. [Balzert 93, 94, 95; 
Bodart et al. 94; Janssen et al. 93]. Furthermore, the dialogues are sometimes specified 
independent of the effects on the application. Working with pre- and postconditions as in 
[Foley et al. 91, 93] makes the verification more difficult, since the property of the 
reachability test presented in this chapter is a semantical problem and not a syntactical 
one. Specifying dialogues in the temporal logical framework makes proving properties 
more complicated than reasoning in the classical logic.

Using the structuring mechanisms well-known from algebraic specifications allows to 
use these technique also for larger projects. The experience shows that the generation of 
the dialogue description for subspecifications can often be put together without conside­
ring the context in which the subspecifications are used. Otherwise normalization techni­
ques exists for the structured algebraic specifications and the normalized specification 
can be used as the starting point for the generation process.

Related work on the topic of user interface generation is discussed in [Bauer 96].
8.2 Specifying Compilers

In this case study we present compiler specifications describing the translation of expres­
sions into usual stack machine code and for the translation of the same expression lan-
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guage into register code. For both compilers we show the correctness of the translation. 
Moreover, the correctness of the behavioural implementation of a compiler for the trans­
lation of expressions into register machine code by a compiler for the translation of 
expressions into optimized register code is shown.

Attribute grammars are a well accepted tool for the specification of compilers. But pure 
attribute grammar systems suffer from the possibility to verify the compilation, i.e. to 
prove that the attribution yields a correct target program. In the framework of attributed 
algebraic specifications we can use the outlined theorem proving techniques to verify a 
compiler specification.

A specification of a compiler (by an attribute grammar) can be divided into three com­
ponents:
- a context free grammar describing the source language,
- a context free grammar describing the target language,
- an attribute grammar with distinguished code attribute containing the compiled pro­

gram.

In order to prove the correctness of the compiler, the semantics of the source and the tar­
get language have to be specified. We define the dynamic semantics of the languages in 
an algebraic way like shown in [Berghammer et al. 87] using already the advantages of 
the new technique.

8.2.1 Syntax and Semantics of the Source Language

Expressions are translated into stack machine code as described in [McCarthy, Painter 
67; Berghammer et al. 87]. The syntax of the source language is the description of 
expressions consisting of natural numbers, identifiers having a value relative to a given 
environment and addition, subtraction and multiplication of expressions (SOURCE).

aspec SOURCE =
enrich NAT + ID by

sorts Expr, Op
cons

natexpr: Nat -> Expr,
idexpr: Id -*  Expr,
add, sub, mult: -*  Op, 
comp: Expr, Op, Expr Expr 

endspec

Its semantics is defined in SOURCE_SEM.

aspec SOURCE_SEM =
enrich NAT + ID + SOURCE + ENVIRONMENT by

attrs inh env: Expr -» Env, 
synth value: Expr -*  Nat

axioms for all n: Nat; id: Id; e, e1, e2: Expr.
(1) value(sv[occ(natexpr(n))J) = n,
(2) value(sv[occ(idexpr(id))j) = lookup(id, env(occ(sv[idexpr(id)]))),
(3) value(sv[occ(comp(e1, add, e2))]) = 

value(sv[comp(occ(e1), add, e2)]) + value(sv[comp(e1, add, occ(e2))]),
(4) value(sv[occ(comp(e1, sub, e2))]) =

value(sv[comp(occ(e1), sub, e2)]) - value(sv[comp(e1, sub, occ(e2))]),
(5) value(sv[occ(comp(e1, mult, e2))]) =



160 Specifying Compilers

value(sv[comp(occ(e1), mult, e2)]) * value(sv[comp(e1, mult, occ(e2))]),
(6) env(occ(e)) = givenEnv 

endspec

The value of a natural number is the natural number (1). The value of an identifier is its 
value in the given environment (2). The value of a composed binary operation is the ope­
ration applied to the value of its arguments (3)-(5). The environment at the root of an 
expression is a given environment (6).

8.2.2 Compiling Expressions into Stack Machine Code

Expressions are compiled such that the value of the expressions are calculated on a stack. 
Stacks are a syntactical enrichment of the natural numbers by the sort Stack and the ope­
ration mtStack representing an empty stack, push adding an element of sort Nat to a 
given stack yielding a new stack, pop popping the stack and top yielding the top element 
of a given stack.

aspec STACK =
enrich NAT by

sorts Stack
cons

mtStack: -» Stack,
push: Nat, Stack -*  Stack

opns
pop: Stack -♦ Stack, 
top: Stack -♦ Nat 

axioms for all n: Nat; s: Stack. 
(1) pop(push(n, s)) = s, 
(2) top(push(n, s)) = n 

endspec

The target language of the stack machine consists of the following instructions: The 
empty instruction mtlnstr does not influence the stack. NST(n) pushes the natural number 
n on top of the stack and IST(id) pushes the value of the identifier id on top of the stack. 
ADD, SUB, MULT adds, substracts and multiplies the two top elements of the stack, 
pops them and pushes the result on the stack. Instructions are concatenated with ;.

aspec TARGET =
enrich STACK + NAT + ID by

sorts Instr
cons mtlnstr: - » Instr,

NST: Nat Instr,
1ST: Id -  Instr,
ADD, SUB, MULT: -  Instr, 

: Instr, Instr Instr
endspec

The attributes are
- value, which is the computed value on the stack and defines the semantics of the target 

language,
- stacka describes the stack after the instructions,
- stackb describes the stack before the instructions and
- the attribute env is used as above.
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The attribute equations for the root o f terms o f sort Instr denote that at the beginning the 
stack is empty and it  is started w ith  a given environment givenEnv.

aspec TARGET_SEM =
enrich NAT + ID + STACK + TARGET by 

attrs synth value: Instr -* Nat, 
stacka: Instr — Stack, 

inh stackb: Instr -> Stack, 
env: Instr -> Env

axioms for all i, ¡1, ¡2: Instr; n: Nat; id: Id.
(1) stackb (occ (i)) = mtStack,
(2) stackb (sv[occ(i 1); ¡2]) = stackb (sv[occ(i 1; ¡2)]),
(3) stackb(sv[i1; occ(i2)j) = stacka (sv[occ(H); ¡2]),

(4) env(occ(i)) = givenEnv,

(5) stacka(sv[occ(ADD)]) = push(top(pop(stackb(sv[occ(ADD)]))) + 
top(stackb(sv[occ(ADD)])), pop(pop(stackb(sv[occ(ADD)])))),

(6) stacka(sv[occ(SUB)j) = push(top(pop(stackb(sv[occ(SUB)]))) - 
top(stackb(sv[occ(SUB)])), pop (pop (stackb (sv[occ(SUB)])))),

(7) stacka(sv[occ(MULT)]) = push(top(pop(stackb(sv[occ(MULT)]))) * 
top(stackb(sv[occ(MULT)])), pop(pop(stackb(sv[occ(MULT)])))),

(8) stacka(sv[occ(IST(id))]) =
push(lookup(id, env(occ(sv[IST(id)]))), stackb(sv[occ(IST(id))])),

(9) stacka(sv[occ(NST(n))]) = push(n, stackb(sv[occ(NST(n))])),
(10) stacka(sv[occ(mtlnstr)]) = stackb(sv[occ(mtlnstr)]), 
(11) stacka(sv[occ(i1 ;I2)]) = stacka(sv[i1; occ(i2)]),

(12) value(sv[occ(i)]) = top(stacka(sv[occ(i)])) 
endspec

A  compiler can be form ally described by a function

compile: Ty - *
¿source ¿“target

which translates programs denoted by terms over ^ source into terms over la r g e r  The con­
dition which has to be satisfied is

V  i  G . I Source(f) =  Itarge^Ompileity) 
source

w ith the semantic functions

I s ource' ^ud I ta rgCf  Ty * M
source target

whereby M  is the semantic domain o f the programming languages.

The interpretation mappings I source and I target are specified by two attributed algebraic spe­
cifications, namely SOURCE_SEM and TARGET_SEM, w ith distinguished attribute 
value o f sort Nat, which is the semantic domain o f the small languages.
The function compile is defined by the attribute code o f the fo llow ing attributed algebraic 
specification COMPILER  which is a syntactical enrichment o f the attributed algebraic 
specification SOURCE and TARGET, i.e. the new attribute code and the new attribution 
is added to SOURCE and TARGET.
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aspec COMPILER =
enrich SOURCE + TARGET by

attrs synth code: Expr Instr
axioms for ail n: Nat; id: Id; e, e1, e2: Expr.
(1) code(sv[occ(natexpr(n))]) = NST(n),
(2) code(sv[occ(idexpr(id))]) = 1ST(id),
(3) code(sv[occ(comp(e1, add, e2))]) =

code(sv[comp(occ(e1), add, e2)]) ; code(sv[comp(e1, add, occ(e2))]) ; ADD,
(4) code(sv[occ(comp(e1, SUB, e2))] =

code(sv[comp(occ(e1), sub, e2)]) ; code(sv[comp(e1, sub, occ(e2))]) ; SUB,
(5) code(sv[occ(comp(e1, mult, e2))] =

code(sv[comp(occ(e1), mult, e2)]) ; code(sv[comp(e1, mult, occ(e2))]) ; MULT 
endspec

Example 8.2.2.1

In  order to show the correctness o f the compiler we have to show that

V eE xpr. value(occ(e)) = value(occ(code(occ(e))))

Therefore the fo llow ing facts are necessary:

Fact 8.2.2.2

It holds:

s v Instr— Instr' Expr — Expr' V e Expr'
stacka(sv[occ(code(sv' [occ(e)]))]) =

push(value(sv[occ(code(sv'[occ(e)]))]), stac£b(sv[occ(œde(sv’[occ(e)]))])^
Proof

See Appendix B.4. ♦

Fact 8.2.2.3

It holds:

V svExpr^Expr' V eE xpr. value(sv[occ(e)]) = v«Zwe(occ(coJe(5v[occ(e)])))

Proof

This property is shown using the fo llow ing complete set o f occurrence terms:

{  sv[occ(natexpr(n))], sv[occ(idexpr(id))], sv[occ(comp(el, add, e2))], 
sv[occ(comp(el, sub, e2))], sv[occ(comp(el, mult, e2))] }

Proof can be found in Appendix B.4. ♦

Fact 8.2.2.4

The compiler works correct. ♦

Proof

Because o f the fact. ♦

8.2.3 Compiling Expressions into Registercode

The compilation o f expressions into stack machine code and its verification was already
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described in the mentioned literature. In this subsection we present an alternative compi­
lation of expressions into unoptimized register code and afterwards into optimized regi­
ster code, which is difficult to be formulated in algebraic specifications, since a several 
pass attribution is necessary in the optimized case. The idea - well known from lectures 
in compiler construction, see e.g. [Aho et al. 86] - is explained by the following example.

Let us consider the expression term

comp(natexpr(l), add, comp(natexpr(2), add, comp(natexpr(5), sub, natexpr^))))

over the specification SOURCE from above which is visualized in figure 36.

figure 36: unoptimized register code

An unoptimized code is generated if the tree is traversed in a depth first way, resulting 
e.g. in the following code (/?[/] denotes register i):

R[1] = 1;
R[2] = 2;
R[3] = 3;
R[4] = 4;
R[3] = R[3] - R[4];
R[2] = R[2] + R[3];
R[1] = R[1 ] + R[2];

If an expression, which needs more registers for its evaluation than another expression, is 
calculated before the other expression, the following computation is obtained:

R[1] = 3;
R [2 ]=4 ;
R[1] = R[1] - R[2];
R[2] = 2;
R[1] = R[2] + R[1];
R[2] = 1;
R[1] = R[2] + R[1];

In the optimized case two registers instead of four registers in the unoptimized case are 
needed.

Register code is defined as follows: mtCode is the empty register code, regls(r, v) assigns 
to the register r the value v, seq concatenates two register code expressions, ADD r r l r2 
adds the values of register rl and r2 and stores the result in register r. SUB and MULT are 
defined analogously.

aspec REG =
enrich NAT by

sorts Code
cons mtCode: -*  Code,

regls: Nat, Nat Code, 
seq: Code, Code Code, 
mkRes: Nat -*  Result

endspec
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The semantics o f  the register code machine is specified as fo llow s : regva l calculates the 
value o f  a register after pe rfo rm ing  a sequence o f  instructions, va l y ie lds the value o f  a 
register depending on the used register before and value  the value stored in  register 1.
is the ove rw riting  operation, isdefined  tests whether a register is defined after a sequence 
o f  instructions is executed.

aspec REG_SEM =
enrich NAT + ID + OPT + ENV + REG by 

obs-sorts Nat 
opns Nat, Nat Nat, 

isdefined: Nat, Code -> Bool, 
error: -*  Nat 

obs-attrs value 
attrs synth regval: Nat, Instr Nat, 

val: Nat -*  Nat, 
value: Instr -* Nat

axioms for all n, m, r, r1, r2: Nat; i1, ¡2: Code; e: Expr.
(1) regval (r, mtlnstr) = error,
(2) regval(r, regls(r, n)) = n,
(3) regval(r, ADD(r, r1, r2)) = val(r1) + val(r2),
(4) regval(r, SUB(r, r1, r2)) = val(r1) + val(r2),
(5) regval(r, MULT(r, r1, r2)) = val(r 1) + val(r2),
(6) regval(r, seq(i1, ¡2)) = regval(r, ¡1) & regval(r, ¡2)

(7) n & m = m,
(8) n & error = n, 
(9) error & error = error,

(10) val(usedregb(sv[occ(e)])) = regval (used reg b(sv[occ(e)]), code(sv[occ(e)D),

(11) value(occ(code(occ(e)))) = regval(1, occ(code(occ(e))),

(12) isdef(usedregb(sv[occ(e)])) = isdefined(usedregb(sv[occ(e)]), code(sv[occ(e)])),

(13) isdefined(r, mtlnstr) = false,
(14) isdefined(r, regls(r, n)) = true,
(15) isdefined(r, ADD(r1, r2, r3)) = if eq(r, r1) then isdef(r2) and isdef(r3) else false fi, 
(16) isdefined(r, SUB(r1, r2, r3)) = if eq(r, r1) then isdef(r2) and isdef(r3) else false fi, 
(17) isdefined(r, MULT(r1, r2, r3)) = if eq(r, r1) then isdef(r2) and isdef(r3) else false fi, 
(18) isdefined(r, seq(i1, i2)) = isdefined(r, ¡1) or isdefined(r, i2) 

endspec

The com pila tion  fo r the unoptim ized case can be specified in  the fo llo w in g  way:

aspec NOPT =
enrich SOURCE + REG by 

attrs synth code: Expr Code, 
usedrega: Expr -*  Nat 

inh usedregb: Expr -*  Nat
axioms for all n: Nat; id: Id; e, e1, e2: Expr.
(1) code(sv[occ(natexpr(n))]) = regls(usedregb(sv[occ(natexpr(n))]), n),
(2) code(sv[occ(idexpr(id))j) = regls(usedregb(sv[occ(idexpr(id))]), lookup(id, givenEnv)), 
(3) code(sv[occ(comp(e1, add, e2))]) = seq(code(sv[comp(occ(e1), add, e2)]), 

seq(code(sv[comp(e1, add, occ(e2))]), 
ADD(usedregb(sv[occ(comp(e1, add, e2))]), 

usedregb(sv[occ(comp(e1, add, e2))]),
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usedregb(sv[comp(e1, add, occ(e2))])))),
(4) code(sv[occ(comp(e1, sub, e2))]) = seq(code(sv[comp(occ(e1), sub, e2)]), 

seq(code(sv[comp(e1, sub, occ(e2))]),
SUB(usedregb(sv[occ(comp(e1, sub, e2))]),

usedregb(sv[occ(comp(e1, sub, e2))]), 
usedregb(sv[comp(e1, sub, occ(e2))j)))),

(5) code(sv[occ(comp(e1, mult, e2))]) = seq(code(sv[comp(occ(e1), mult, e2)]), 
seq(code(sv[comp(e1, mult, occ(e2))]),
MULT(usedregb(sv[occ(comp(e1, mult, e2))]), 

usedregb(sv[occ(comp(e1, mult, e2))]), 
usedregb(sv[comp(e1, mult, occ(e2))])))),

(6) usedregb(occ(e)) = 1,
(7) usedregb(sv[comp(occ(e1), op, e2)]) = usedregb(sv[occ(comp(e1, op, e2))]),
(8) usedregb(sv[comp(e1, op, occ(e2))j) = usedrega(sv[comp(occ(e1), op, e2)j),

(9) usedrega(sv[occ(natexpr(n))]) = usedregb(sv[occ(natexpr(n))]) + 1,
(10) usedrega(sv[occ(idexpr(id))j) = usedregb(sv[occ(idexpr(id))]) + 1,
(11) usedrega(sv[occ(comp(e1, op, e2))]) = usedregb(comp(occ(e1), op, e2) 

endspec

For the op tim ized case the needed registers have to be calculated and depending on the 
needed registers the code is generated:

aspec OPT =
enrich SOURCE + REG by

attrs synth code: Expr -> Code,
usedrega: Expr -*  Nat, 
needed: Expr -* Nat, 

Inh usedregb: Expr -*  Nat 
axioms for all n: Nat; id: Id; e, e1, e2: Expr. 
(1) code(sv[occ(natexpr(n))]) = regls(usedregb(sv[occ(natexpr(n))]), n), 
(2) code(sv[occ(idexpr(id))j) = regls(usedregb(sv[occ(idexpr(id))]), lookup(id, givenEnv)), 
(3) code(sv[occ(comp(e1, add, e2))]) =

if Iess(needed(sv[comp(e1, add, occ(e2))]), needed(sv[comp(occ(e1), add, e2)]))) 
then seq(code(sv[comp(occ(e1), add, e2)]), 

seq(code(sv[comp(e1, add, occ(e2))]), 
ADD(usedregb(sv[occ(comp(e1, add, e2))]), 

usedregb(sv[comp(occ(e1), sub, e2)j), 
usedregb(sv[comp(e1, add, occ(e2))]))))

else seq(code(sv[comp(e1, add, occ(e2))]), 
seq(code(sv[comp(occ(e1), add, e2)]), 
ADD(usedregb(sv[occ(comp(e1, add, e2))]), 

usedregb(sv[comp(occ(e1), sub, e2)j), 
usedregb(sv[comp(e1, add, occ(e2))])))) fi, 

(4) code(sv[occ(comp(e1, sub, e2))]) =
if Iess(needed(sv[comp(e1, sub, occ(e2))]), needed(sv[comp(occ(e1), sub, e2)]))) 

then seq(code(sv[comp(occ(e1), sub, e2)J), 
seq(code(sv[comp(e1, sub, occ(e2))]), 
SUB(usedregb(sv[occ(comp(e1, sub, e2))]),

usedregb(sv[comp(occ(e1), sub, e2)J), 
usedregb(sv[comp(e1, sub, occ(e2))])))) 

else seq(code(sv[comp(e1, sub, occ(e2))]), 
seq(code(sv[comp(occ(e1), sub, e2)]), 
SUB(usedregb(sv[occ(comp(e1, sub, e2))]), 

usedregb(sv[comp(occ(e1), sub, e2)]), 
usedregb(sv[comp(e1, sub, occ(e2))])))) fi,
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(5) code(sv[occ(comp(e1, mult, e2))]) =
if Iess(needed(sv[comp(e1, mult, occ(e2))]), needed (sv[comp(occ(e1), mult, e2)]))) 

then seq(code(sv[comp(occ(e1), mult, e2)]), 
seq(code(sv[comp(e1, mult, occ(e2))]), 
MULT(usedregb(sv[occ(comp(e1, mult, e2))]), 

usedregb(sv[comp(occ(e1), sub, e2)]), 
usedregb(sv[comp(e1, mult, occ(e2))]))))

else seq(code(sv[comp(e1, mult, occ(e2))]), 
seq(code(sv[comp(occ(e1), mult, e2)]), 
MULT(usedregb(sv[occ(comp(e1, mult, e2))J), 

usedregb(sv[comp(occ(e1), sub, e2)]), 
usedregb(sv[comp(e1, mult, occ(e2))])))) fi,

(6) needed (sv[occ(natexpr(n))]) = 1,
(7) needed (sv[occ(idexpr(id))]) = 1,
(8) needed (sv[occ(comp(e1, op, e2))]) =

if Iess(needed(sv[comp(e1, op, occ(e2))]), needed(sv[comp(occ(e1), op, e2)])) 
then needed(sv[comp(occ(e1), op, e2)j)
else if Iess(needed(sv[comp(occ(e1), op, e2)]), needed(sv[comp(e1, op, occ(e2))])) 

then needed(sv[comp(e1, op, occ(e2))]) 
else needed(sv[comp(e1, op, occ(e2))]) + 1 fi fi

(9) usedregb(occ(e)) = 1,
(10) usedregb(sv[comp(occ(e1), op, e2)]) =

if Iess(needed(sv[comp(occ(e1), op, e2)]), needed(sv[comp(e1, op, occ(e2))])) 
then usedrega(sv[comp(e1, op, occ(e2))]) 
else usedregb(sv[occ(comp(e1, op, e2))]) fi,

(11) usedregb(sv[comp(e1, op, occ(e2))]) =
if Iess(needed(sv[comp(occ(e1), op, e2)]), needed(sv[comp(e1, op, occ(e2))])) 

then usedregb(sv[occ(comp(e1, op, e2))]) 
else usedrega(sv[comp(occ(e1), op, e2)]) fi,

(12) usedrega(sv[occ(natexpr(n))]) = usedregb(sv[occ(natexpr(n))]) + 1,
(13) usedrega(sv[occ(idexpr(id))j) = usedregb(sv[occ(idexpr(id))]) + 1,
(14) usedrega(sv[occ(comp(e1, op, e2))]) = usedregb(sv[occ(comp(e1, op, e2))])

endspec
Fact 8.2.3.1

The following equation is valid in both specifications NOPT and OPT

S^Expr -*  Expr* ^Expr'

isdej(usedregb(sv[occ(e)])) = true ♦

Proof

Appendix B.4 ♦
Fact 8.23.2

The following equation stating a connection between the specifications SOURCE and 
NOPT is valid:

V ^ E x p r ^ E x p r ' V e Expr'

value(sv[occ(ey\) = val(usedregb^OPT{sv\occ{ey\)) ♦
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Proof

Appendix B.4 ♦
Fact 8.2.3.3

The following equation stating a connection between the specifications OPT and NOPT 
is valid:

V ^ E x p r ^ E x p r -  V e Expr' 

val(usedregbOPT{sv[occ(e)})) = val(usedregb^°^{sv[QCc{e)})') ♦

Proof

Appendix B.4 ♦
Fact 8.2.3.4

After performing the computation in register 1 the result of the expression is stored as 
well in OPT as in NOPT. ♦

Proof

Follows immediately from the fact:

S V
E x p r ^ E x p r ' e Expr'

val(usedregbOPT(sv \Q c c ^  = val(usedregNiOPT(sv[occ(e)])) 
A usedregbOPT(occ(sv[e]) = 1 = usedregb^OPT(occ(sv[e]) ♦

Fact 8.2.3.S

The following equation stating a connection between the specifications NOPT and 
SOURCE is valid:

V svE xpr^ Expr. V eExpr. 
val{usedregb^OPT{sv[occ(e)})) = value(sv[occ(e)\) ♦

Proof 

analogous to the fact 
s v Expr -* Expr' V  e Expr‘ 

regval(usedregbOPT(w [Q c c ^  = 
regval(usedregbNOPT(sv[occ(e)]), codeNOPT(sv[occ(e)])) ♦

Fact 8.2.3.6

The following equation stating a connection between the specifications SOURCE and 
NOPT is valid:

SVExpr -> Expr' e Expr'

regval(l, c o d ^ ^ o c ^ s v le ] ) )  = vaZ«e(occ(sv[e])) ♦

Proof

Follows immediately from the fact:

SVE x pr -♦ Expr' &Expr'



168 Specifying Document Architecture Systems

val^usedregb^^^svloc^e)])) = value(sv[occ(e)])
A usedregb^OPT(occ(sv[e]) = 1 ♦

Fact 8.23.7

It holds:

OPT ~>b&h NOPT ♦

Proof

Follows immediately from the above facts. ♦

8.2.4 Inverse Attribution

In this section we show, how the inverse attribution can be calculated, which can be used 
to derive e.g. the source code from a given target program. The derivation of such an 
inverse attribution is applicable e.g.
- if the source code was deleted and the target code exists,
- testing on high level of abstraction, e.g. of the compilation process yields the correct op­

timized code corresponding to a non optimized one,
- catch word „reengineering“: constructing the source code to a given target code depen­

ding on the compiler specification.

Let us assume a compiler specification and an implementation of this compiler specifi­
cation, i.e. an executable program. The correctness of the compilation with the compiler 
relative to the compiler specification can be shown, if the source program is deduced 
from the target program using the compiler specification.

Another example is having a prototypical compiler specification from source language A  
to target language B, using inverse compilation a compiler from B  to A  is obtained 
without extra costs.

We consider the following property over the specification NOPT as an example:

3 eExpr. code(occ(e)) = seq(regls(l, 2), seq(regls(2, 3), ADDQ., 1, 2)))

Start-configuration:

({ y = seq(regls(l, 2), seq(regls(2, 3),ADD(1, 1, 2))) }, [], { y = code(occ(e)) }) |-
({ y = seq(regls(l, 2), seq{regls(2, 3), ADD(1, 1, 2))),

y = seq(xl, seq(x2, ADD(x3, x3, x4))) },
[ e I comp(e\, add, e2) ],
{ ...}

Leading to the starting point of the code generation, namely the term

comp(natexpr(2), add, natexpr(3))

obtained restricting the answer substitution to e.

8.3 Specifying Document Architecture Systems

The ideas of this subsection are based on [Bauer 94a, 94b]. The example is taken from a 
practical course in which the techniques of compiler construction (attribute grammars) 
were used in the framework of document architecture [SchreiberW 93]. One subtask of
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formatting a text is to jolt a list of boxes such that the sum of the sizes of the boxes is 
conform with a given size. An illustrative example is the computation of the justification 
of a line:

This |is |an ¡example j task: the sentence should fill the whole box.

This |is |an ¡example. desired result.

figure 37: justification example

This problem can be specified using the following loose attributed algebraic specifi­
cation. Hbox  defines a horizontal box with the constructor mkhbox taking the length to be 
obtained and a list of horizontal boxes Hlist. A  Hlist is either an empty list (mthlist) or 
built by the constructor mkhlist with first argument being the local jolting factor, second 
argument the natural length and the rest of sort Hlist. The attribute jlength  contains the 
computed size of the inner boxes which depends on the global jolting factor jfactor (in 
the next specification), hboxlength is the length which should be obtained by jlength  of 
the boxes, nlength is the natural length of the boxes.

aspec LBOXES =
enrich NAT by

sorts Hbox, Hlist
cons mkhbox: Nat, Hlist -» Hbox,

mthlist: -* Hlist,
mkhlist: Nat, Nat, Hlist -> Hlist

attrs synth hboxlength, jlength, nlength: Hbox -> Nat
axioms for all i: Nat; l:Hlist.
(1) hboxlength(occ(mkhbox(i, I))) =

ifnat eq_Nat(nlength(mkhbox(i, occ(l))), zero) 
then zero 
else jlength(mkhbox(i, occ(l))) fi 

endspec

Another loose specification is:

aspec LBOXES2 =
enrich NAT by

sorts Hbox, Hlist
cons mkhbox: Nat, Hlist Hbox,

mthlist: -*  Hlist,
mkhlist: Nat, Nat, Hlist Hlist

attrs synth hboxlength, jlength, nlength, Ijfactor: Hbox -*  Nat
inh jfactor: Hbox -> Nat

axioms for all i, ¡1, ¡2: Nat; I: Hlist.
(1) jfactor(mkhbox(i, occ(hl))) * nlength(mkhbox(i, occ(hl))) = 

hboxlength(occ(mkhbox(i, hl))) - ljfactor(mkhbox(i, occ(hl))),
(2) nlength(sv[occ(mthlist)]) = zero,
(3) jlength(sv[occ(mthlist)j) = zero,
(4) ljfactor(sv[occ(mthlist)]) = zero,
(5) nlength(sv[occ(mkhlist(i1, ¡2, hl))]) = ¡2 + nlength(sv[mkhlist(i1, ¡2, occ(hl))]),
(6) jlength(mkhbox(i, sv[occ(mkhlist(i1, ¡2, hl))])) =

i1 + ¡2 * jfactor(mkhbox(i, occ(sv[mkhlist(i1, ¡2, hl)]))) + 
jlength(mkhbox(i, sv[mkhlist(i1, ¡2, occ(hl))])),

(7) Ijfactor(sv[occ(mkhlist(i1, ¡2, hl))]) = ¡1 + Ijfactor(sv[mkhlist(i1, ¡2, occ(hl))]) 
endspec
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The attribute Ijfactor computes the sum of the first components of the Hlist elements 
being the local jolting factors, nlength is the sum of the second components, namely the 
sum of the natural lengthes of the inner boxes. The first component of mkhbox is the real 
size of the box, i.e. of the whole box from above.

For this specification several correct attributed trees are obtained since LBOXES2 is a 
loose specification, too. Possible attributions for the term 

mkhbox(?fà, mkhlist(4, 2, mthlist) 

are shown in the figure 38 and figure 39:
jfactor = 3

hboxlength = 10 . . . nlength = 2a  mkhbox

nlength = 0
jlength = 0
Ijfactor = 0

4 2 mthlist

figure 38: several correct attributions - part 1

hboxlength = 20
mkhbox

30 mkhlist

jfactor = 8 
nlength = 2 
jlength = 20
Ijfactor = 4

nlength = 0
jlength = 0
Ijfactor = 0

mthlist

figure 39: several correct attributions - part 2

In order to obtain a single attribution the loose specification of the attribute hboxlength is 
fixed in the specification BOXES with axiom (1):

aspec BOXES =
enrich NAT by

sorts Hbox, Hlist
cons mkhbox: Nat, Hlist -> Hbox,

mthlist: Hlist,
mkhlist: Nat, Nat, Hlist -*  Hlist

attrs synth hboxlength, jlength, nlength, Ijfactor: Hbox -*  Nat
inh jfactor: Hbox Nat

axioms for all i, ¡1, i2: Nat; hl: Hbox; I: Hlist.=
(1) hboxlength(occ(mkhbox(i, hl))) = i,
(2) jfactor(mkhbox(i, occ(hl))) * nlength(mkhbox(i, occ(hl))) = 

hboxlength(occ(mkhbox(i, hl))) - ljfactor(mkhbox(i, occ(hl))),
(3) nlength (sv[occ(mthlist)]) = zero,
(4) jlength(sv[occ(mthlist)]) = zero,
(5) ljfactor(sv[occ(mthlist)]) = zero,
(6) nlength(sv[occ(mkhlist(i1, ¡2, hl))]) = ¡2 + nlength(sv[mkhlist(i1, ¡2, occ(hl))]),
(7) jlength(mkhbox(i, sv[occ(mkhlist(i1, ¡2, hl))])) =

¡1 + ¡2 * jfactor(mkhbox(i, occ(sv[mkhlist(i1, ¡2, hl)]))) +
jlength(mkhbox(i, sv[mkhlist(i1, ¡2, occ(hl))])),

(8) Ijfactor(sv[occ(mkhlist(i1, ¡2, hl))]) = ¡1 + Ijfactor(sv[mkhlist(i1, ¡2, occ(hl))])
endspec

We prove the implementation of LBOXES by BOXES.
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Therefore the following fact is necessary:
Fact 8.3.1

V svinLst^ Hiist. V xHUst.

jlength(mkhbox(i, sv[occ(x)])) - ljfactor(mkhbox(i, sv[occ(x)])) = 
jfactor(mkhbox(i, occ(5v[x]))) * nlength(mkhbox(i, sv[occ(x)])). ♦

Proof

The complete set being considered is:

CSX = { s v Hlist -* Hlist }

CSX = { mthlist, mkhlist(il, i2, Z) }21

2 1  Stating that the usual term induction is sufficient for the proof of the property.

mthlist'.
Ihs: jlength(mkhbox(i, sv\toec(mthlist)yj) - ljfactor(mkhbox(i, sv\occ(mthlisty$ = 

zero - zero = zero
rhs: jfactor(mkhbox(i, occ(sv[mthlist]))) * nlength(mkhbox{i, sv[occ(mthlisf)\)) = 

jfactor(mkhbox(i, Qcc(sv\mthlist\ff) * zero = zero

mkhlist(il, i2,1):
induction assertion:

jlength(mkhbox(i, sv[mkhlist(il, i2, occ(Z))])) -
ljfactor(mkhbox(i, sv[mkhlist(il, i2, occ(Z))])) = 
jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, /)]))) * 
nlength(mkhbox(i, sv[mkhlist(il, i2, occ(Z))]))

Thus we get:

jlength(mkhbox(i, sv[occ(mkhlist(il, i2, Z))])) ~
ijfactor(mkhbox(i, sv[occ(mkMist(il, i2, /))])) =

il  + i2 * jfactor (mkhbox(i, occ(sv[mkhlist(il, i2, /)]))) + 
jlength(mkhbox(i, sv[mkhlist(il, i2, occibj)])) - 
ljfactor(mkhbox(i, sv[occ(mkhlist(il, i2, /))])) =

il + i2 * jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, /)]))) + 
jfactor(mkhbox(i, occ(sv[mkhlist(il, ¡2, /)]))) * 
nlength(mkhbox(i, sv[mkhlist(il, i2, occ(Z))])) + 
ljfactor(mkhbox(i, sv[mkhlist(il, i2, occ(Z))])) - 
ljfactor(mkhbox(i, sv\occ(mkhlist(il, i2, /))])) =

il + i2 * jfactor(mkhbox(i, Qce(sv\mkhlist(il, i2, occ(/)]))) + 
jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, /)]))) * 
(nlength(mkhbox(i, sv[Qce(mkhlist(il, i2, /))])) - i2) + 
ljfactor(mkhbox(i, sv[mkhlist(il, i2, occ(/))])) - 
ljfactor(mkhbox(i, sv[occ(mkhlist(il, i2, Z))])) =

i l  + i2 * jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, Z)]))) + 
jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, Z)])))) * 
(nlength(mkhbox(i, sv\nw(mkhlist(il, i2, Z))])) - i2) +



172 Specifying Document Architecture Systems

(ljfactor(mkhbox(f sv[occ(mkhlist(il, i2, Z))])) - il)  -
ljfactor(mkhbox(i, sv\vcc(mkhlist(il, i2, /))])) =

jfactor(mkhbox(i, occ(sv[mkhlist(il, ¿2, Z)]))) *
nlength(mkhbox(i, sv\occ(mkhlist(il, i2, Z))])) =

jfactor(mkhbox(i, occ(sv[mkhlist(il, i2, Z)]))) *
nlength(mkhbox(i, sv[occ(mkhlist(il, i2, Z))])) ♦

With this fact it is now possible to proof the implementation relation:
Fact 8.3.2

It holds:

LBOXES is implemented by BOXES. ♦

Proof

We have to show the validity of the axioms Qi LBOXES with the axioms of BOXES.

Axiom(l) can be shown with the fact from above:

jlength(mkhbox(i, occ(Z))) =
jfactor(mkhbox(i, occ(Z))) * nlength(mkhbox(i, occ(Z))) +

ljfactor(mkhbox(i, occ(Z))) =
(hboxlength(QCc(mkhbox(i, I))) - ljfactor(mkhbox(i, occ(Z)))) / 

nlength(mkhbox(i, * nlength(mkhbox(i, occ(Z))) +
ljfactor(mkhbox(i, occ(/))) = hboxlength{QCc(mkhbox(i, Z))).

neglecting ifnat.then.else.if. ♦

For the specification BOXES we demonstrate how the attribute evaluation ordering, i.e. 
the visit sequence, can be determined. The starting point for determining the attribute 
evaluation ordering is the characteristic term being

mkhbox(il, svl[mkhlist(i2, i3, sv2[mthlist])])

with its instantiated local dependency set:

{ { hboxlength(QCc(mkhbox(il, svl[mkhlist(i2, i3, sv2[mthlist])]))) },

{jfactor(mkhboxQl, occ(wl[mkhlist(i2, ¡3, sv2[mthlist])])))9 
nlength(mkhbox(il, occ(svl[mkhlist(i2, i3, sv2\mthlist\f\)f), 
hboxlength(QC,c(mkhbox(il, svl[mkhlist(i2, i3, sv2[mthlist])])), 
ljfactor(mkhbox(il, occ(svl[mkhlist(i2, i3, sv2[mthlist])])))) },

{ nlength(mkhbox(iL svl[mkhlist(i2, ¿3, sv2[occ(mthlist)])])) },

{ jlength(mkhbox(il, svl[mkhlist(i2, i3, sv2[occ(mthlisf)])])) },

{ Ijfactor(mkhbox(il, svl[mkhlist(i2, i3, sv2[occ(mthlist)])])) },

{ nlength(mkhbox(jl, svl\QCcQnkhlist(i2y i3, sv2\mthlist]ff\f), 
nlength(mkhbox(ii, svl[mkhlist(i2, i3, occ(sv2[mthlist]))])) },

{ jlength(mkhbox(il, svl[occ(mkhlist(i2, i3, sv2[mthlist]))])), 
jfactor(mkhbox(il7 occ(svl[mkhlist(i2, i3, sv2[mthlist])]))), 
jlength(mkhbox(il, svl[mkhlist(i2, i3, occ(sv2[mthlist]))^ },
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{ ljfactor(mkhbox(i\, svl[occ(mkhlist(i2, i3, sv2[mthlist]))])), 
Ijfactor (mkhboxQl, svl[mkhlist(i2, i3, occ(sv2[mthlist]))])) }}

This set is the basis for determining the attribute evaluation ordering.

The set of minimal elements me is

{ hboxlength(pcc(mkhba svl[mkhlist(i2, i3, sv2[mthlist])]))), 
nlength(mkhbox(il, svl[mkhlist(i2, i3, sv2[occ(mthlist)])]y), 
jlength(mkhbox(il, svl[mkhlist(i2, ¿3, sv2[occ(mthlist)])]j), 
Ijfactor (mkhbox(il, svl[mkhlist(i2, i3, sv2[occ(mthlist)])])) }

resulting in:

me < ljfactor(mkhbox(il, svl[mkhlist(i2, ¿3, occ(sv2[mthlist]))])) <
Ijfactor(mkhbox(i\, svl[occ(mkhlist(i2, i3, sv2[mthlist]))])) <
Ijfactor (mkhbox(il, occ(svl[mkhlist(i2, 13, sv2[mthlisi\f\)jy) and

me < nlength(mkhbox(il, svl[mkhlist(i2, ¿3, occ(sv2[mthlist]))])) < 
nlength(mkhbox(il, svl[occ(mkhlist(i2, i3, sv2[mthlist]))])) < 
nlength(mkhbox(il, occ(svl[mkhlist(i2, i3, sv2\mthlist\f\)))

me < { nlength(mkhbox(il, occ(svl[mkhlist(i2, ¡3, sv2[mthlist])]))), 
hboxlength(occ(mkhbox(il, svl[mkhlist(i2, ¿3, sv2[mthlist])])j, 
ljfactor(mkhbox(il, occ(svl[mkhlist(i2, i3, sv2[mthlist]j]))y) } < 
jfactor(mkhbox(il, occ(svl[mkhlist(i2, 13, sv2[mthlist])]))) and

me < { jfactor (mkhbox(il, occ(svl[mkhlist(i2, i3, sv2[mthlist])]))) , 
jlength(mkhbox(il, svl[mkhlist(i2,13, occ(sv2\mthlist\j)\)) } < 

jlength(mkhbox(iA, svl[occ(mkhlist(i2, i3, sv2[mthlist\f)\f) < 
jlength(mkhbox(il, occ(svl[mkhlist(i2, i3, sv2[mthlistf)\))j,

This partial ordering is changed to a total ordering:

hboxlength(occ(mkhbox(iA, svl[mkhlist(i2, i3, sv2[mthlist])])y) < 
nlength(mkhbox(il, svl[mkhlist(i2, i3, sv2[^cc(mthlist)\)\)) < 
I]factor(mkhbox(i\, svl[mkhlist(i2, i3, sv2[occ(mthlistf\f\)) < 
jlength(mkhbox(i\, svl[mkhlist(i2, ¿3, sv2[occ(mthlist)])])) < 
nlength(mkhbox(i\, svl[mkhlist(i2, i3, occ(sv2[mthlist]))])) < 
Ijfactor(mkhbox(il, svl[mkhlist(i2, i3, occ(sv2[mthlist]))^ < 
nlength(mkhbox(il, svl[occ(mkhlist(i2, i3, sv2[mthlist]y)]y) < 
Ijfactor(mkhbox(i\, svl[occ(mkhlist(i2, i3, sv2\mthlist\f)\y) < 
nlength(mkhbox(i\, wc(sv\[mkhlist(i2, i3, sv2[mthlist])]))) < 
Ijfactor(mkhbox(il, occ(svl[mkhlist(i2, i3, sv2\mthlist}fff)y) < 
jfactor(mkhbox(il, occ(svl[mkhlist(i2, i3, sv2[mthlist])i)y) < 
jlength(mkhbox(il, svl[mkhlist(i2, i3, occ(sv2[mthlist]))]j) < 
jlength(mkhbox(il, svA\Gcc(mkhlist(i2, i3, sv2[wiA/zsi]))])) < 
jlength(mkhbox(il, occ(svl[mkhlist(i2, i3, sv2[mthlist])]))),

with corresponding visit sequence:

hboxlength for nodes marked with mkhbox

nlength, Ijfactor, (jfactor), jlength for nodes marked with mthlist and mkhlist. The global
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jolting factor (¡factor) is set in brackets because its value is calculated once.

BOXES can be implemented by CBOXES with directed attribute equations of the follo­
wing form:

aspec CBOXES =
enrich NAT by

sorts Hbox, Hlist
cons mkhbox: Nat, Hlist -*  Hbox,

mthlist: -*  Hlist,
mkhlist: Nat, Nat, Hlist -*  Hlist

attrs synth hboxlength, jlength, nlength, Ijfactor: Hbox -* Nat,
Inh jfactor: Hbox -*  Nat

axioms for all i, ¡1, ¡2: Nat; hl: Hbox; l:Hlist.
(1) nlength(occ(mkhbox(i, hl))) = nlength(mkhbox(i, occ(hl))),
(2) jlength(occ(mkhbox(i, hl))) = jlength(mkhbox(i, occ(hl))),
(3) hboxlength(occ(mkhbox(i, hl))) = i,
(4) jfactor(mkhbox(i, occ(hl))) =

ifnat eqnat(nlength(mkhbox(i, occ(hl))), zero)
then zero
else (i-ljfactor(mkhbox(i, occ(hl)))) /  nlength(mkhbox(i, occ(hl))) fi,

(5) nlength (sv[occ(mthlist)]) = zero,
(6) jlength(sv[occ(mthlist)]) = zero,
(7) ljfactor(sv[occ(mthlist)]) = zero,
(8) nlength(sv[occ(mkhlist(i1, ¡2, hl))]) = ¡2 + nlength(sv[mkhlist(i1, ¡2, occ(hl))]),
(9) jlength(sv[occ(mkhlist(i1, ¡2, hl))]) =

¡1 + ¡2* jfactor(sv[occ(mkhlist(i1, i2, hl))]) + jlength(sv[mkhlist(i1, ¡2, occ(hl))]),
(10) Ijfactor(sv[occ(mkhlist(i1, ¡2, hl))]) = ¡1 + Ijfactor(sv[mkhlist(i1, ¡2, occ(hl))]),
(11) jfactor(sv[mkhlist(i1, ¡2, occ(hl))]) = jfactor(sv[occ(mkhlist(i1, ¡2, hl))) 

endspec

Fact 8.33

It holds:

BOXES is implemented by CBOXES. ♦

Proof

We have to show the validity of the axioms of BOXES with the axioms of CBOXES.

The only interesting fact to show is that the remote access is handled using local attribute 
access (axiom (11)). ♦
Fact 8.3.4

It holds:

LBOXES is implemented by CBOXES. ♦

Proof

Follows immediately by the transitivity of the implementation relation. ♦
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9 Further Research Directions

In this chapter some ideas are discussed for further research in the presented framework 
and several points of extensions are studied.

9.1 Prototypical Implementations

Up to now only some restricted implementations of the presented specification technique 
exist. The most elaborated implementation is a theorem prover for the presented proof 
principle of attributed term induction [Duschl 94; Weiß 95] calculating proof obligations 
which are shown by the TIP system [Fraus 94a, 94b]. This theorem prover has delivered 
some restrictions which have been overcome using complete sets and induction orde­
rings. This system allows to show e.g. the properties of the ISDN telephone case study. 
Beyond the implementation of the attributed term induction the attributed signature flow 
analysis problem of reachability is implemented.

It is planned to perform a prototypical implementation of the other aspects, especially 
narrowing and attribute evaluation in the functional programming language Gofer. First 
steps are already taken. It exists a rudimental scanner, parser and unparser for the specifi­
cations and a first implementation of the unification calculus.

9.2 State-Based Rewriting

In usual attribute grammar systems scanners and parsers build from a text file the 
abstract syntax tree. The attribution is performed either while the syntax tree is construc­
ted or after the syntax tree is built.

But e.g. in the framework of user interface specifications rules should be defined how 
interactions change the dialogue tree. A rule is applied to a tree, if the action on the user 
interface is fired. These rules are similar to the state-based rewrite rules applied in Maude 
(cf. e.g. [Meseguer 90, 93a, 93b]).

Example 9.2.1 (state-based rewriting)

An example showing the use of state-based rewrite-rules is the extension of the tele­
phone case study of section 8.1 using rewrite-rules for the transformation of the dialogue 
tree.

Assuming the following (conditional) state-based rewrite-rules
(1) mtDialog-* mkCall(CALL, x)
(2) mkCall(CALL, x) -> mkCall(CALL, EnterTNumber(y))
(3) istelephoning(sv[occ(mkCall(x, y))]) = true => 

mkCall(x, y) -♦ mkTask(mkCall(x, y), END)

the following dialogue sequence is derivable (We assume that each rewrite rule is fired

figure 40: dialogue sequence - part 1
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user interaction (212) actual attributed tree

figure 41 : dialogue sequence - part 2

The technique of state-based rewrite-rules can be used for the specification of the dyna­
mic semantics of programming languages, especially for programming languages sup­
porting parallel features. In this context the application of the rewrite rules is performed 
automatically and describes the trace of the program.

9.3 Communication between Different Processes and Conditional Equations

As already stated the extended term notion allows to specify attribute dependencies bet­
ween different terms.

[Hirshfeld et al. 96] shows that processes can be described using context free grammars. 
The attribution between different terms (called inter-attribution) can be viewed as the 
communication between different processes.

An example for such an inter-attributed specification is the description of the communi­
cation of a producer and consumer process. The idea is to describe as well the trace of 
the producer process as the consumer process using grammars. Examples of traces are 
shown in the figure 42:

producer process: producer consumer process: consumer

producer consumer
I I

producer consumer
I I

producer consumer

stopProducer stopConsumer

figure 42: producer and consumer process

Now the communication between both processes can be described by attribution. The 
producer process sends informations to the consumer process and the consumer process 
works up the datas. For the communication of both processes counters are introduced, 
one for the producer and one for the consumer process. Having no counters a non-deter- 
ministic information exchange between the two processes is described.

In attributed algebraic specifications with inter-attribute dependencies the notion of 
inherited attributes is extended to those attributes accessed in a different term.

An example for such an attributed algebraic specification is
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aspec PRODUCER-CONSUMER =
enrich NAT by

sorts Producer, Consumer
cons producer: Producer -* Producer,

consumer: Consumer Consumer,
stopProducer: -> Producer, 
stopConsumer: -* Consumer 

opns produce: Nat -* Nat,
consume: Nat -> Nat

attrs Inh counterProducer, produceResult: Producer -> Nat, 
counterConsumer, consumeResult: Consumer -> Nat

axioms for ail svP: Producer -» Producer; svC: Consumer Consumer;
p: Producer; c: Consumer.

(1) counterProducer(occ(p)) = 0,
(2) counterConsumer(occ(c)) = 0,
(3) counterProducer(svP[producer(occ(p))J) = counterProducer(svP[occ(producer(p))]) + 1,
(4) counterConsumer(svC[consumer(occ(c))]) = 

counterConsumer(svC[occ(consumer(c))]) + 1,

(5) produceResult(svP[occ(p)]) = produce(counterProducer(svP[occ(p)])),
(6) counterProducer(svP[occ(p)]) = counterConsumer(svC[occ(c)])

=> consumeResult(svC[occ(c)]) = consume(produceResult(svP[occ(p)])) 
endspec

The attributed algebraic specification PRODUCER-CONSUM ER  describes the beha­
viour of two processes, one producer process (sort Producer) and one consumer process 
(sort Consumer). Furthermore, each produced value of the producer process is consumed 
by the consumer process. The synchronisation is performed with the counterProducer 
and counter Consumer attribute.

The initialization of the counters is performed in the axioms (1) and (2). Axioms (3) and 
(4) define the increment of the counters. Axiom (5) specifies the result of the produced 
value at a node of sort Producer depending on the actual counter of this node. If the 
counters of both processes are equal then the produced result of the producer process is 
consumed by the operation consume and stored in the attribute consumeResult o f the 
consumer process (axiom (6)). The functions produce and consume are not specified, 
since arbitrary functions can be used. Note, that axiom (6) is a conditional equation to 
shorten notation, but we can also give an equational specification for it. But handling 
communication of processes in a practical way it is necessary to deal with conditional 
equations.

Given two terms

h s  producer(producer(producer(producer(stopProducer))))

and

t2 = consumer(consumer(consumer(consumer{stopConsumer))))

the attribution looks like (with the producer function doubling the counter and the con­
sumer function incrementing the delivered value):
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cp = counterProducer 
cc = counterConsumer 
pr = produceResult 
cr = consumeResult

inter-attribute dependence: communication 
between two processes

producer
cp = 0 | pr = 0

producer
cp = 1 | pr = 2

producer
cp = 2 I pr = 4 

producer
cp = 3 I Pr = 6 

stopProducer

consumer
। cc = 0 

consumer
। cc = 1 

consumer
| cc = 2 

consumer
| cc = 3 

stopConsumer
figure 43: inter-attribute dependencies

For the producer process the values of the counter and the produced result is calculated 
from the root to the tips, by incrementing the counter with each function and computing 
the produced result by doubling the counter. Analogous the counter of the consumer can 
be determined. Axiom (6) states that under the assumption that the counter of both traces 
are equal the consumed result of the consumer is the incremented produced result of the 
producer process. ♦

The idea of inter-attribute dependency analysis is studied in the following

For each process to be considered a characteristic term has to be constructed being in the 
example of the producer - consumer: 

svC[consumer(svC2[stopConsumer])] and svP\producer(svP2[stopProducer])]

The attribute dependency between the both terms is visualized in figure 44:
cp = counterProducer 
cc = counterConsumer 
pr = produceResult 
cr = consumeResult

svP 
cp I pr 

\ c p  = cc s v ^  
producer |

I c r  consumer

svP2 |
I svC2

stopProducer |

stopConsumer

figure 44: inter-attribute example: producer - consumer

The result is a conditional attribute dependence relation between different processes, 
because of the conditional attribute equations:

counterConsumer(svC[occ(consumer(svC2[stopConsumer]))]) = 
counterProducer(svP[occ(producer(svP2[stopProducer]))]) 
==> consumeResult(svC[occ(consumer(svC2[stopConsumer]y)]) =

produceResult(svP[occ(producer(svP2[stopProducer]))])

Starting with the characteristic terms the ordering on the attribute dependencies can be 
calculated analogous to the proposed approach with the main difference that a condi­
tional attribute evaluation ordering is obtained.
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Conditional equations are also useful for the description of attribute dependencies within 
a tree. Among the extensions of the attribute dependency analysis and the attribute eva­
luation strategy, the calculi for the universally and existentially quantified formulae have 
to be adapted in the usual way to handle conditional equations.

9.4 User Interfaces

The FLUID system, whose theoretical foundations were presented here, is currently 
under development, whereby prototypes of BOSS and PLUG-IN already exist. The 
FUSE methodology and tools have been applied successfully to a number of examples 
(ISDN phone simulation, user interface for a literature research system, user interface for 
a home banking system, formula editor for L^TpX). In the future the level of compatibi­
lity of the FUSE development environment to other model based methodologies and 
tools can be increased. E.g. for setting up the problem domain model, like OOA, BON 
and ERA data models in addition to the currently supported algebraic specification tech­
nique.

In order to gain more practical experience with the FUSE-methodology and the related 
tools, we plan to organize a course in user interface specification and generation at the 
Munich University of Technology.

9.5 Further Case Studies

Assuming a system to handle attributed algebraic specifications some complex case stu­
dies can be considered like a complete compiler for a small imperative or functional pro­
gramming language. These case studies will detect shortcomings of the specification 
technique and will inspire ideas where the new formalism has to be adapted.

In the framework of user interface specification a complex example can be the specifi­
cation of a part of the user interface of an SAP/R3 application or another business orien­
ted application.

In the framework of document architecture or compiler construction the complete cour­
ses given at the Munich University of Technology can be used as a basis for a formal 
development of these software project.

Together with other discussed extensions the specification of the semantics of pro­
gramming languages is possible. Investigations in this direction are desirable in combi­
nations with specification and verification of compilers.
9.6 Attribute Evaluation and Calculi

A new attribute evaluation technique for undirected attribute equations was investigated. 
As in usual attribute grammar systems incremental attribute evaluation techniques (cf. 
e.g. [Reps et al. 83]) can be adapted to the new approach. Such an incremental attribute 
evaluation is desirable if a programming environment is generated from an attributed 
algebraic specification.

Moreover, for the specification of the semantics of programming languages or for opti­
mizing compilers (e.g. performing dead-code elimination or liveness tests) cyclic attri­
bute dependencies are necessary. Here the well known techniques from e.g. [Farrow 86; 
Jones 90] can be adapted to undirected attribute equations. The proof principles have to 
be extended to handle these cyclic dependencies introducing some rules for fixpoint
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induction.

Considering the global attribute dependencies and the underlying signature the global 
attribute dependencies can be automatically changed to local attribute dependencies 
based on the unification calculus.

9.7 „Specification Sugar“

As seen in the related work existing attribute grammar systems allow the use of „specifi­
cation sugar“ to obtain specifications which are more readable and can easily be chan­
ged. One possibility for extending the new approach is the use of order-sorted signatures. 
This extension subsumes the object-oriented inheritance and simplifies notation.

The other notations presented in the related work section (section 7.1) can be put on top 
of the new specification technique.
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10 Conclusions

We have investigated a new specification framework combining and extending the speci­
fication formalism of attribute grammars and algebraic specifications. Algebraic specifi­
cations are extended to describe context dependent information in an intuitive way and 
showing their correctness.

The new specifications technique can be applied in a formal software engineering pro­
cess starting with an abstract specification and arriving at a usual attribute grammar after 
several implementation steps. The correctness of the software can be guaranteed if the 
correctness of each refinement step is shown. For this purpose notions of implementation 
relations are introduced and proof theoretical characterizations are given. Especially the 
new notion of behaviour - based on an intuitive idea - has been proven to be a good 
abstraction mechanism for attributed algebraic specifications. To start with specifications 
where several design decisions are left open undirected attribute equations are an essen­
tial component of the new technique.

The presented structuring mechanisms increase the re-use of specifications and allow the 
handling of complex software projects. E.g. in the framework of compiler construction 
the specification for the problems of identification, typing or code optimizations can be 
proved correct and can be put in libraries. Since the implementation relations are mono­
tone wrt. the specification building operations such a proceeding is supported. Moreover, 
well known extensions of attribute grammars are subsumed in the proposed approach. 
Advantages of other techniques are contained in attributed algebraic specifications neg­
lecting sometimes their shortcomings.

The presented calculi can be used for the verification and the prototypical use of the spe­
cifications. Using the specifications in a prototypical way efficient attribute evaluation 
strategies were developed. The calculated visit sequence can be used as an input for 
usual systems generating attribute evaluators.

Each case study shows some interesting aspects of the considered new specification tech­
nique. Especially the non trivial compiler example of register placing and its optimiza­
tions shows the usability of the calculi, proof principles and implementation relations.

The presented approach combines the advantages of attribute grammars:
- intuitivity, since attributes are associated with nodes of a tree;
- efficiency, since an efficient attribute evaluation algorithm for undirected attribute 

equations is presented;
- context dependent information, since synthesized and inherited attributes are suppor­

ted and
- distinction of syntax and semantics specification, since the syntax is defined by con­

structor terms and their semantics using attribution;

with those of algebraic specifications:
- precise model class semantics, since a model class and behavioural class semantics is 

given for the new technique;
- theorem-proving techniques, since calculi are investigated for existentially and univer­

sally quantified formulae;
- deductive aspects, since the calculus for existentially formulae can be used to derive



182 „Specification Sugar“

parts of e.g. a program or a dialogue;
- implementation relations, since implementation relations are defined for the obser­

vable and non-observable case and
- abstraction, since an intuitive notion of behaviour was investigated.

All these aspects are well known in one of the two approaches, but they have not been 
considered in the other one. No formalism can be found in the literature supporting these 
aspects in common. The main contribution of this thesis is that a technique was investi­
gated subsuming all these aspects which are necessary in a formal software engineering 
process.

Overall a specification technique was developed combining two well accepted 
approaches with their advantages. It was shown how attributed algebraic specifications 
can be used in a formal software engineering process. The necessity using formal 
methods are illustrated by the error-prone software in the market. Combining formal 
methods with generation techniques decrease the amount of error, since on the one side 
the input of the generation process can be proven correct and on the other side generating 
programs is less error-prone than programming software by hand. Proving the correct­
ness of the generator an error free program is obtained from its high-level specification. 
In the new approach a formal development process as well as generation are supported.
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Table of Notations and Abbreviations
The following notations and abbreviations are used: 
a  denotes the syntactical equality 

denotes the syntactical inequality 
|5| denotes the cardinality of a set 5 
dom(f) denotes the domain of a function f  
codom(f) denotes the codomain of a function/ 
5* denotes the set of all words over S including the empty word E
S+ denotes the set of all words over 5 without the empty word E
it, denotes the projection to the z-th component of a tuple 
2 s  denotes the powerset of S 
beh. is the abbreviation for behaviour or behavioural 
c.f. is the abbreviation for confer 
ed. is the abbreviation for editor
eds. is the abbreviation for editors
e.g. is the abbreviation for for example 
i.e. is the abbreviation for id est
iff is the abbreviation for if  and only if
LNCS is the abbreviation for Lecture Notes in Computer Science 
pp. is the abbreviation for pages 
Proc. is the abbreviation for Proceedings 
p.r.s. is the abbreviation for primitive recursive scheme 
s.t. is the abbreviation for such that 
wlog. is the abbreviation for without loss o f generality
wrt. is the abbreviation for with respect to
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Appendix A Basic Specifications

aspec BOOL = 
sorts Bool 
cons true: -> Bool,

false: -> Bool, 
opns not: Bool -* Bool, 

.and.: Bool, Bool -» Bool, 

.or.: Bool, Bool Bool, 

.=>.: Bool, Bool Bool, 

.<=>.: Bool, Bool -> Bool, 
eq_Bool: Bool, Bool -* Bool

axioms for all x, y: Bool.
not(true) = false, 
not(false) = true, 
x and false = false, 
x and true = x, 
false and x = false, 
true and x = x, 
x or false = x, 
x or true = true, 
false or x = x, 
true or x = true, 
x => x = true, 
true => false = false, 
false => x = true, 
x => true = true, 
x <=> x = true, 
true <=> x = x, 
x <=> true = x, 
eq_Bool(true, false) = false, 
eq_Bool (false, true) = false, 
eq_Bool(true, true) = true, 
eq_Bool (false, false) = true

endspec 

aspec NAT = 
enrich BOOL by 

sorts Nat
cons zero : -* Nat,

opns
+1 : Nat Nat,
-1 : Nat -* Nat, 
+. : Nat, Nat -♦ Nat, 
-. : Nat, Nat Nat, 
*. : Nat, Nat -> Nat,
eq_Nat: Nat, Nat -» Bool, 
ifnat.then.else.fi: Bool, Nat, Nat -* Nat, 
.<=.: Nat, Nat -* Bool, 
.>=.: Nat, Nat -> Bool

axioms for all x, y: Nat.
x+1-1 = x, 
x + zero = x, 
x + (y+1) = (x + y)+1, 
zero + x = x, 
(x+1) + y = (x + y)+1, 
zero - x = zero, 
0 -1 = 0 , 
(x+1) - zero = x+1, 
(x+1) - (y+1) = x - y, 
x * zero = zero, 
x *  (y+1) = x * y  + x, 
zero * x = zero, 
(x+1) * y  = x * y  + x, 
x <= x = true, 
0 <= x = true,



196

x+1 <= 0 = false, 
x+1 <= y+1 = x <= y, 
x >= y = y <= x, 
eq_Nat(x, x) = true, 
eq_Nat(O, x+1) = false, 
eq_Nat(x+1,0) = false, 
eq_Nat(x+1, y+1) = eq Nat(x, y), 
ifnat true then x else y Ti = x, 
ifnat false then x else y fi = y

endspec

spec ID =
enrich BOOL by 

sorts Id
opns eq_ld : Id, Id -» Bool
axioms x, y: Id.

eq_ld(x, x) = true, 
eq_ld(x, y) = eq_ld(y, x)

endspec

spec ELEM =
enrich BOOL by 

sorts Elem 
opns constElem : Elem, 

eq Elem : Elem, Elem Bool, 
ifElem.then.else.fi: Bool, Elem, Elem Elem 

axioms for all e, e1, e2: Elem.
eq_Elem(e, e) = true,
eq Elem(e1, e2) = eq_Elem(e2, e1), 
ifElem true then e1 else e2 fi = e1, 
ifElem false then e1 else e2 fi = e2

endspec

aspec ENVIRONMENT =
enrich NAT + ID by 

sorts Env 
cons mtEnv: -*  Env, 

update: Id, Nat, Env -*  Env, 
givenEnv: -> Env 

opns lookup: Id, Env -*  Nat 
axioms for all Id, Id1, Id2: Id; n: Nat; e: Env. 
(1) lookup(ld, update(ld, n, e)) = n,
(2) Id 1 *  Id2 => Iookup(ld1, update(ld2, n, e)) = Iookup(ld1, e)1

Note, this conditional equations can also be decribed by an equation using if.then.else.fi.

endspec

1.
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Appendix B Examples

Appendix B .l Instantiated Local Dependency Set

The instantiated local dependency set for the term
t = mobile(mobile(cube(l), cube(3)), cube(2))

is obtained by instantiating the local dependency set for CMOBILE by the term t: 
{{ weight(mobile(mobile(occ(cu^ cube(3)), cube(2J)) },
{ weight(mobile(mobile(cube(X), occ(cube(3))), cube(2))) },
{ weight(mobile(mobile(cube(\ \  cube(3))> occ(cube(2)))) },

{ weight(occ(mobile(mobile(^ cube(3)), cube(2)))), 
weight(mobile{occ(mobile(cube(\), cube(3))), cube(2))), 
weight(mobile(mobile(cube(l), cube(3))> occ(cube(2)))) },

{ weight(mobile(occ(mobile^ cube(3))), cube(2))), 
weight(mobile(mobile(occ(cube(iy), cube(3)), cube(2)J), 
weight(mobile(mobile(cube(l), occ(cube(3)J), cube(2))) },

{ length(pcc(mobile(mobile(cube().), cube(3))9 cube(2y))}, 
leftlength(occ(mobile(mobU^^ cube(3)), cube(2)))), 
rightlength(occ(mobile(mobile(cube(l), cube(3)), cube(2)))) },

{ length{mobile(occ(mobile^ cube(3))), cube(2))), 
leftlength(mobile(occ(mobile(cube(l), cube(3)J), cube(2))), 
rightlength(mobile(pcc(m^^ cubeiS))}, cube(2))) },

{ weight(mobile(occ(mobite^^ cube(3))), cube(2))), 
leftlength(occ(mobile(mobile(cube(l), cube(3))> cube(2)))), 
weight(mobile(mobile(cube(l), cube(3)), occ(cube(2)))) 
rightlength(occ(mobile(mobile(cube(l), cube(3)), cube(2)y)) },

{ weight(mobile(mobite^^ cube(3)), cube(2))),
leftlength(mobile(occ(mobile(cube(l), cube(3))), cwbe(2)))> 
weight(mobile(mobile(cube(l), occ(cube(3))), cube(2))) 
rightlength(mobile(occ(mobile(cube(l), cube(3))), cube(2))) },

{ depth{occ(mobile(mobile(cube{\), cube(3)), cube(2)))) },

{ depth(mobile(occ(mobi^ cube(3})\ cube(2))),
depth(occ(mobile(mobile(cube(l), cube(3}\ cube(2y))) },

{ depth(mobile(mobile(occ^^ cube(3)\ cube(2))), 
depth(mobile(occ(mobile(cube(l), cube(3))), cube(2))) },

{ depth(mobile(piobile^ cube(3)), occ(cube(2))y)9 
depth(pcc(mobile(mobile(cube(iy cube(3)), cube(2)))) },

{ depth(mobile(mobile(cube(l), occ(cube(3)))> cube(2)y), 
depth(mobile(pcc(mobile(cube(l), cube(3)y), cube(2y)) },

{ cmaxdepth(mobile(mobile(pcc(cube(iy), cube(3)), cube(2))),



198 Behavioural Implementation Proof

depth(mobile(piobile(occ(cu^ cube(3)), cube(2))) }, 
{ cmaxdepth(mobile(mobi\e(cube(V), occ(cube(3))), cube(2))), 

depth(mobile(mobile(cube(l), occ(cube(3))), cube(2))) }, 
{ cmaxdepth(mobile(mobile(cube(l), cube(3)), occ(cube(2)))), 

depth(mobile(mobile(cu^ cube(3)), occ(cube(2)))) },

{ cmaxdepth(occ(mobile(mobile(cube(l), cube(3)), cube(2)))), 
cmaxdepth(mobile(pcc(mobile(cube{\), cube(3))), cube(2))), 
cmaxdepth(mobile(mobile(cube{l), cube(3)), occ(cube(2)))) }, 

{ cmaxdepth(mobile(occ(mobile(cube(l), cube(3))), cube(2))), 
cmaxdepth(mobile(mobile(occ(cube(l)), cube(3)), cube(2))), 
cmaxdepth(mobile(mobile(cube(l), occ(cube(3))), cube(2))) },

{ length(mobile(piobile(occ(cube(\)), cube(3)), cube(2))) }, 
{ length(mobile(mobile(cube(l), occ(cube(3))), cube(2))) }, 
{ length(mobile(mobile(p^^ cube(3)), occ(cube(2)))) },

{ leftlength(mobile(mobilefa cube(3)), cube(2))) },
{ leftlength(mobile(rnobi\e(cube(l), occ(cube(3))), cube(2))) },
{ leftlength(mobile(mobile^ cube(3)), occ(cube(2)))) },

{ rightlength(mobile(mobile(pcc^^ cube(3)), cube(2))) },
{ rightlength(mobile(mobile(cube(l), occ(cube(3))), cube(2))) },
{ rightlength(mobile(mobil^ cube(3)), occ(cube(2)))) },

{ length(occ(mobile(mobile(cub^ cube(3)), cube(2)))),
cmaxdepth(occ(mobile(mobile(cube(l), cube(3)), cube(2)))), 
depth(occ(mobile(mobile(cube(l), cube(3)\ cube(2)))) }, 

{ length(mobile(occ(mobile(cu^ cube(3))), cube(2))\ 
cmaxdepth(occ(mobile(rnobile(cube(l), cube(3)), cube(2))J), 
depth{mobile{occ(mobile(cube{V), cube(3))), cube(2yj) } }

Appendix B.2 Behavioural Implementation Proof

Fact:
It holds:
BEHLMOBILE is implemented by CMOBILE2

Proof
For the proof the following complete sets of occurrence terms is used:

CS = { occ(cube(f)\ occ(mobile(ml, m2)), sv[mobile(occ(cube(ll)), cube(l2))], 
sv[mobile(cube(ll), occ(cube(l2)))], sv[mobile(occ(mobile(ml, m2)), cube(l))], 
sv[mobile(mobile(ml, m2), occ(cube(ty))], 
sv[mobile(occ(cube(l)), mobile(ml, m2))], 
sv[mobile(cube(l), occ(mobile(ml, m2)))], 
sv[mobile(occ(mobile(ml, m2)), mobile(m3, AM4))], 
sv[mobile(mobile(m\, m2), occ(mobile(m3, /M4)))] }

The proof that CS is a complete set of occurrence terms is left to the reader. The partition
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for this set of occurrence terms is:
part(CS) = { { occfcubefl)) }, { occfmobilefml, m2)) },

{ sv[mobilefoccfcubefll)), cubefl2))], sv[mobilefcubefll), occfcubefl2)))] },
{ sv[mobilefoccfmobilefml, m2)), cubefl))], 

sv[mobilefmobilefml, m2), occfcubefl)))] },
{ sv[mobilefoccfcubefl)), mobilefml, m2))], 

sv[mobile(cubefl), occfmobilefml, m2)))] }, 
{ sv[mobilefoccfmobilefml, m2)), mobilefm3, m4))], 

sv[mobilefmobilefml, m2), occfmobilefm3, m4)))] } } 
The observable attributes, i.e. the attributes with observable result sort are 
Attr = { leftlength, rightlength, length, depth, cmaxdepth }

I.e. it must hold:
(1) SolutionsCMOBILE2f{occfcubefl))}) □  Solution^EHLMOBILEf{occfcubefl))})
(2) SolutionsCMOBILE2f{occfmobilefml, m2))}) D

Solution^EHLMOBILEf{occfmobilefml, m2))})
(3) SolutionsCMOBILE\{sv[mobilefoccfcub^ cubefl2))],

sv[mobilefcubefll), occfcubefl2)))]}) D 
Solution^EHLMOBILEf{sv\mobilefoccfcubefll)), cubefl2))], 

sv[mobilefcubefll), occfcubefl2)))]})
(4) SolutionsCMOBILE2f{sv[mobilefoccfcubefl)), mobilefml, m2))], 

sv\mobilefcubefl), occfmobilefml, m2)))]}) 3
SolutionsBEIIIMOBIIEf{sv[mobilefoccfcubefl)), mobilefml, m2))], 

sv[mobilefcubefl), occfmobilefml, m2)))]})
(5) SolutionsCMOBILE2f{sv[mobilefoccfmobilefml, m2)), cubefl))], 

sv[mobilefmobilefml, m2), occfcubefl)))]}) □
Solution^EHLMOBILEf{sv[mobilefoccfmobilefml, m2)), cubefl))], 

sv[mobilefmobilefml, m2), occfcubefl)))]})
(6) SolutionsCMOBILE2f{sv\mobilefoccfmobilefml, m2)), mobile fm3, m4))], 

sv[mobilefmobilefml, m2), occfmobile(m3, m4)))]}) D
SolutionsBEHLMOBILEf{sv[mobilefoccfmobilefml, m2)), mobilefm3, m4))], 

sv[mobilefmobilefml, m2), occfmobilefm3, m4)))]})
For the proof of the correctness of the implementation relation the following fact (*) is 
necessary:
Vsv[zMobae]i Mobile-^Mobile Vx: Mobile.

weightBEHLMOBILEfsv[occfxf\) = weighlPMOBILE2fsv[occ(xf\) * 2
which can be shown using a complete set of occurrence terms of sort Mobile. The proof 
is left to the reader.
Note, that the proofs are extremely detailed and a lot of work can be done by a system.

Proof
Proof obligation (1):
SolutionsCMOBILE2f{ occfcubefl)) }) 3  Solution^EHLMOBILEf{ occfcubefl)) })
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proof:
SolutionsCMOBILE\ {  occ(cube(fj) }) =
{ o  | Mod(CMOBILE2) \= leftlength(occ(cube(l))) = a(xj), 

rightlength(occ(cube(l))) = a(xf), length(pcc(cube(T))) = o(x3), 
depth(pcc(cube(l)f) = o(x4), cmaxdepth(occ(cube(l))) = o(x5) }

= { [ Xi / 0, x2 / 0, x3 / 0, x4 / 1, x5 / 1 ] }
3  { [ Xi / 0, x2 / 0, x3 / 0, x4 / 1, x5 / 1 ] }
= { o  | Mod(BEHLMOBILE) &uJeftlength{occ{cube(lf)) = c ^ ) ,  

rightlength{occ{cube(f))) = a(x2), length(occ(cube(f))) = a(x3), 
depth(pcc(cube(l))) = o(x4), cmaxdepth(occ{cube(f))) = o(x5) }

= Solution^EHLMOBILE{{ occ(cube(J)) })
Since in CMOBILE2 holds
leftlength{occ(cube(l))) = 0,
rightlength(occ(cube(l))) = 0,
length(pcc(cube(l))) = 0,
depth(occ(cube(J))) = 1, 
cmaxdepth(pcc(cube(l))) = depth(occ(cube(f))) = 1

and in BEHLMOBILE holds:
leftlength(occ(cube(l))) = 0, 
rightlength(occ(cube(lf)) = 0, 
length(occ(cube(f))) = 0, 
depth(occ(cube(f))) = 1, 
cmaxdepth(occ(cube(f))) = depth(pcc(cube(f))) = 1

Proof obligation (2):
SolutionsCMOBILE\ {  occ(mobile(ml, m2)) }) □  
Solution^EHLMOBILE({ occ(mobile(ml, m2)) })

induction assertion:
SolutionsCMOBILE\ {  mobile(pcc(ml), m2), mobile(ml, occ(m2)) }) C 
Solution^EHLMOBILE({ mobile(occ(ml), m2), mobile(m\, occ(m2)) })

proof:
SolutionsBEHLMOBILE({occ(mobile(ml, m2))}) =
{ a  | Mod(BEHLMOBILE) }=aXtT leftlength(occ(mobile(ml, m2))) = a(x1), 

rightlength(occ(mobile(m\, m2))) = a(x2), 
length(occ(mobile(m\, m2))) = a(x3), 
depth(occ(mobile(ml, m2))) = o(x4), 
cmaxdepth(pcc(mobile(ml, m2))) = o(x5) }

= { [ x j  length(occ(mobile(ml, m2))) * weighfiEHLMOBILE(mobile(ml, occ(m2))) / 
weight?EHLMOBILE(occ(mobile(^^ m2))),

x2 1 length(pcc(mobile(ml, m2))) * weighfiEHLMOBILE(mobile(pcc(ml), m2)) / 
weightBEpn MOB1LE(occ(mobile(m\ , m2))), x4 / 1,

x5 / max(cmaxdepth(mobile(occ(mX), m2)), cmaxdepth(mobile(ml, occ(m2)))) } 
Putting this solutions into the attribute equations for the considered term in CMOBILE2 
and showing that the attribute equations with these solutions are valid. The inclusion fol-
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lows immediately.
Proof obligation (3):
SolutionsCMOBILE2({sv\mobile(^ cube(l2))\,

sv[mobile(cube(ll), occ(cube(l2)))]}) □
Solution^EHLMOBILE{{sN\mobile(occ(cube(ll)), cube(l2)f\, 

sv[mobile(cube(ll), occ(cube(l2)))]})

induction assertion:
SolutionsCMOBILE2({sv\occ(mobile{cube(ll), cube(l2yff\})

C Solution^EHLMOBILE({sv[occ(rnobile(cube(lE), cube(l2))}})

proof:
SolutionsCMOBILE\{sv\mobile(pcc(cube(l\)), cube(l2f)\, 

sv[mobile(cube(ll), occ(cube(l2)))]}) =
{ o  | Mod(CMOBILE2) |=attr

leftlength(sv\mobile(pcc(cube(llf}, cube(l2))J) = ^(X]), 
rightlength(sv[mobile(occ(cube(lX)\ cube(12)yf) = G(X2), 
length(sv[mobile(occ(cube(ll)), cube(l2)f\) = Q(X3), 
depth{sv[mobile(occ(cube(l\)), cubeQ2)f\) = a(x4), 
cmaxdepth(sv[mobile(occ(cube(lX)), cubeQZf)]) = a(x5), 
leftlength(sv[mobile(cube(l\), occ(cubeQ.2f)f\) = o(x6), 
rightlength(sv\mobile(cube(l\f occ(cube(l2fff\) =G(x~jf 
length(sv[mobile(cube(ll), occ(cube(l2y))]) = a(x8), 
depth(sv[mobile(cube(ll), occ(cube(l2)))]) = o(x9), 
cmaxdepth(sv\mobile(cube(l\\ occ(cube(l2)yf\) = o(x10) }

= { [ xx / 0, x2 / 0, x3 / 0, x4 / depth(sv[occ(mobile(cube(lV), cubeQZffff) + 1 , 
x5 1 depth(sv[occ(mobile(cube(ll), cube(l2)))]) + 1 ,
x6 / 0, x7 / 0, x8 / 0, x9 / depth(sv[occ(mobile(cube(ll), cube(l2)))J) + 1 , 
x10 / depth(sv[occ(mobile(cube(ll\ cube(l2)y)]) + 1 }

3  { [ xx / 0, x2 / 0, x3 / 0, x4 / depth(sv[occ(mobile(cube(ll), cube(l2)) + 1 , 
x5 / depth(mobile(pcc(cube(llf), cube(l2))), x6 / 0, x7 / 0, x8 / 0, 
x9 / depth(sv[occ(mobile(cube(ll), cube(l2)))]) + 1 , 
x10 / depth(sv[occ(mobile(cube(ll), cube(l2f))]) + 1 }

= { G | Mod(BEHLMOBILE) |= attr
leftlength(sv[mobile(occ(cu^ cube(l2))]) = o(xx), 
rightlength(sv[mobile(pcc(cube(liy), cube(l2y)]) = o(x2), 
length(sv[mobile(occ(cube(liy), cube(l2))]) = a(x3), 
depth(sv[mobile(occ(cube(lty cube(l2))]) = a(x4), 
cmaxdepth(sv[mobile(occ(cute cube(J2))f) = a(x5), 
leftlength(sv[mobile(cube{l\f occ(cube(l2)f)\) = a(x6), 
rightlength(sv\mobile(cubeQXf occ{cube(l2)f)\) =G(xf), 
length(sv[mobile(cube(ll), occ(cube(l2yj)]) = c(x8), 
depth(sv[mobile(cube(ll), occ(cube(l2)))]) = a(x9), 
cmaxdepth(sv[mobile(cube(ll), occ(cube(l2y))]) = o(xio) }
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= Solution^EHLMOBILE{{sv[mobile(occ(cube(ll)), cube(12))}, 
sv\mobile(cube(l\), occ{cube(l2)))]})

Since in CMOBILE2 holds
leftlength(sv[mobile(occ(cube(ll)), cubeQZ))]) = 0, 
rightlength(sv[mobile(pcc(cube(ll)), cube(l2))]) = 0, 
length(sv[mobile(pcc(cube(ll)), cube(l2))]) = 0, 
depth(sv[mobile(occ(cube(ll)), cube(l2))]) =

depth(sv[occ(mobile(cube(JV), cube(l2)))]) + 1, 
cmaxdepth(sv[mobile(pcc{cube(V[)), aibe(l2))}) = 

depth(sv[mobile(occ(cube(ll)), cube(l2))]) = 
depth(sv[occ(mobile(cube(ll), cwbe(/2)))]) + 1, 
leftlength(sv[mobile(cube(lX), occ(cube(l2)))}) = 0, 
rightlength(sv\mobile(ciibeQ\), occ(cubeQ2)))]) = 0, 
length(sv[mobile(cube(ll), occ(cube(l2)))]) = 0, 
depth(sv[mobile(cube(ll), occ(cube(l2)))]) =

depth(sv[occ(mobile(cube(ll), cube(l2)))]) + 1, 
cmaxdepth(sv[mobile(cube(ll), occ(cube(l2)))]) = 

depth(sv[mobile(cube(ll), occ(cube(l2)))]) = 
depth(sv[occ(mobile(cube(ll), cube(l2)))]) + 1

and in BEHLMOBILE holds:
leftlength(sv[mobile(occ(^^ cube{l2))}) = 0, 
rightlength(sv[mobile(occ(cube{lA)), cube(l2))]) = 0, 
length(sv\mobile(occ(cube(ll)), cube(l2))]) = 0, 
depth(sv[mobile(occ(cube(ll)), cube(l2))]) =

depth(w[occ(mobile(cub^ cube(l2)))]) + 1, 
cmaxdepth{sv[mobile(pcc(cube(l\y), cubeQl))}) = 
depth(sv[mobde(occ(cube(/l)), cube(l2))]) =

depth(sv[occ(mobile(cube(ll), cube(l2)))]) + 1, 
leftlength(w[mobile(cub^ occ(cube(l2)))]) = 0, 
rightlength(sv\mobile(cube(l\\ occ(cubeQ2))y\) = 0, 
length(sv[mobile(cube(ll), occ(cube(l2'))')]) = 0, 
depth(sv[mobile(cube(ll), occ(cube(l2)))]) =

depth(sv[occ(mobile(cube(liy cube(l2)))]) + 1, 
cmaxdepth(sv[mobile(cube(ll), occ(cube(l2y))]) = 
depth(sv[mobile(cube(ll), occ(cwhe(/2)))]) = 
depth(sv[occ(mobile(cube(ll), cube(l2)))]) + 1

Proof obligation (4):
SolutionsCMOBILE\{sv \m o b ile (o cc^  mobile(ml, m2))], 

sv[mobile(cube(l), occ(mobile(ml, m2)))]}) 3
Solution^EHLMOBILE({sv\mobile(pcc{cube(l)\ mobile(m\, m2))], 

sv[mobile(cube(l), occ(mobile(ml, m2)))]})

induction assertion:
SolutionsCMOBILE\{sv{occ(mobile(cube(J), mobile(ml, w2)))], 

sv[mobile(cube(l), mobile(pcc(ml), ^2))], 
sv[mobile(cube(l), mobile(ml, occ(m2)))]}) □

Solution^EHLMOBILE{{sv\occ(mobile(cube(f), mobile(m\, m2)))],
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sv[mobile(cube(l), mobile(pcc(ml), m2))], 
sv[mobile(cube(l), mobile(ml, occ(m2)))]})

proof:

similar to (3)

Proof obligation (5):
SolutionsCMOBILE\{sv[mobile(pcc(mobile(mC m2)), cube(l))], 

sv[mobile(mobile(ml, m2), occ(cube(l)))]}) 2
Solution^EHLMOBILE(fsv[mobile(occ(mobile(m\, m2)), cubeff))], 

sv[mobile(mobile(ml, m2), occ(cube(f)))]})

proof
analogous to proof obligation (4)

Proof obligation (6):
analogous to proof obligation (4) and (5) ♦

Appendix B.3 Solving Existentially Quantified Formulae

Fact to be solved:
SV Call, Task -» Task’

stateafter(mkDialog(sv[occ(mkCall(CALL, mkEnterTNumber(nr))), cm])) = 
mkState(mkCon(nr, telephoning), mtCon)

and
stateafter(mkDialog(sv[mkCall(CALL, mkEnterTNumber(nr)), occ(cm)])) = 

mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning))
A possible derivation resulting in the least solution, i.e. in such a solution that the depth 
of sv is minimal can be obtained as follows.
The start configuration is

( { x l = mkState(mkCon(nr, telephoning), mtCon),
x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)) },

[],
{ x l = stateafter(mkDialog(sv[occ(mkCall(CALL, mkEnterTNumber(nr))), cm])), 

x2 = stateafter(mkDialog(sv[mkCall(CALL, mkEnterTNumber(nr)), occ(cm)])} )
|*(N3, ISDN-Attribution (3))

( { x l = mkState(mkCon(nr, telephoning), mtCon),
x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
x2 = conference(xN) },

[ cm I CONFERENCE ],
{ x l = stateafter(mkDialog(sv[occ(mkCall(CALL, mkEnterTNumber(nr))), 

CONFERENCE])),
x2 = stateafter(mkDialog(sv[mkCall(CALL, mkEnterTNumber(nr)), 

occ(CONFERENCE)])),
x3 = statebefore(mkDialog(sv\mkCall(CALL, mkEnterTNumber(nr)), 

occ(CONFERENCE)])) } )

2‘ By ISDN-Attribution (/) the i-th axiom of the specification ISDN-Attribution is denoted.
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|~(N3, ISDN-Attribution (18))

( { x l = mkState(mkCon(nr, telephoning), mtCon),
x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)), 
x2 = conference(x3),
x3 = x5 },

[ cm / CONFERENCE,
SV I SVl[mkConference(zCaU, x4, ZconfereneeMenu)] ],

{ x l = stateafter(mkDialog(svl[mkConference(occ(mkCall(CALL, 
mkEnterTNumber(nr))), x4, CONFERENCE])), 

x2 = stateafter(mkDialog(svl\mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), x4, occ(CONFERENCE))])), 

x3 = statebefore(mkDialog(svl[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), x4, occ(CONFERENCE))})), 

x5 = stateafter(mkDialog(sv\\mkConference(mkCall(CALL, 
mkEnterTNumberfnf)), occ(x4), CONFERENCE)])) } ) 

h(N3, ISDN-Attribution (15))

( { x l = mkState(mkCon(nr, telephoning), mtCon),
x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)), 
x2 = conference(x3), 
x3 = x5,
x5 = secondCall(x6, x l)  },

[ cm / CONFERENCE,
sv / svl[mkConference(zCaii, mkSecondCall(SECONDCALL, 

mkEnterTNumber(x?>y),zC m fe r e n c M a t>i\,
x4 / mkSecondCall(SECONDCALL, mkEnterTNumber(x8)) ], 

{ x l = stateafter(mkDialog(svl[mkConference(pcc(mkCall(CALL, 
mkEnterTNumber(nr))), mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8)), CONFERENCE)])),

x2 = stateafter(mkDialog(svl[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), 
mkSecondCall(SECONDCALL, mkEnterTNumber(x8)), 
occ(CONFERENCE))])),

x3 = statebefore(mkDialog(svl[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8)), occ(CONFERENCE))])),

x5 = stateafter(mkDialog(svl\mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), occ(mkSecondCall{SECONDCALL, 
mkEnterTNumber(x8))), CONFERENCE)})),

x l  = statebefore(mkDialog(svl[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), occ(mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8))), CONFERENCE)})) } )

|"(N3, ISDN-Attribution (17))

( { x l = mkState(mkCon(nr, telephoning), mtCon),
x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)), 
x2 = conference(x3), 
x3 = x5,
x5 = secondCall(x6, x l) },
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[ cm I CONFERENCE,
sv / svl[mkConference(zCaii, mkSecondCall(SECONDCALL, 

mkEnterTNumber(x8)),zCo„ferenceMaiu)\,
x4 / mkSecondCall(SECONDCALL, mkEnterTNumber(x8)), 
x 7 /x l  ],

{ x l  = stateafter{mkDialog{svl[mkConference(pcc(mkCall(CALL, 
mkEnterTNumber]nr))), mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8)), CONFERENCE)])), 

x2 = stateafter(mkDialog(svl[mkConference(mk^
mkEnterTNumber(nr)),
mkSecondCall(SECONDCALL, mkEnterTNumber(xT)), 
occ(CONFERENCE))])),

x3 = statebefore(mkDialog(svl[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8)), occ(CONFERENCE))])),

x5 = stateafter(mkDialog(svl[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), occ(mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8))), CONFERENCE)])),

x l  = statebefore(mkDialog(svl[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), occ(mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8))), CONFERENCE])) } )

F(N2)

( { x2 = mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)), 
x2 = conference(xA), 
x3 = x5,
x5 = secondCall(x6, x l) },

[ cm / CONFERENCE,
sv / svl[mkConference(zCali, mkSecondCall(SECONDCALL, 

mkEnterTNumber(x8)),zCo„ fr^
x4 / mkSecondCall(SECONDCALL, mkEnterTNumber(x8)),
x7 / mkState(mkCon(nr, telephoning), mtCon), 
x l / mkState(mkCon(nr, telephoning), mtCon) ], 

{ mkState(mkCon(nr, telephoning), mtCon) -
stateafter{mkDialog(svl\mkConference(occ(mkCall(CALL, 
mkEnterTNumber(nr))), mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8)), CONFERENCE)])),

x2 = stateafter(mkDialog(svl[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), 
mkSecondCall(SECONDCALL, mkEnterTNumber(x8)), 
occ(CONFERENCE))])),

x3 = statebefore(mkDialog(svl\mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8)), occ(CONFERENCE)])),

x5 = stateafter(mkDialog(svl[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), occ(mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8))), CONFERENCE)])), 

mkState(mkCon(nr, telephoning), mtCon) =
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statebefore(mkDialog(sv\[mkConference(mkCall(CALL, 
mkEnterTNumber(nr)), occ(mkSecondCall(SECONDCALL, 
mkEnterTNumber(x8))), CONFERENCE)])) } )

As next steps the attribute equations have only be solved without complicated transfor­
mations.

Appendix B.4 Proving the Correctness of the Compiler Specifications

Fact:

It holds:

SV Instr -* Instr- V Expr Expr- V e Expr-

stacka(sv[occ(code(sv' [occ(e) ])) ]) =
push(yalue(sv[occ(code(sv'[occ(e)]))]), stackb{sv[occ{code{sv'[occ{e)]))]))

Proof

This property is shown using the following complete sets of occurrence terms:

C S S v ~  {  SV Instr - » Instr }

CSsv- = { sv'pxpr _» pxpr }

CSe = { natexpr(n), idexpr(id), comp(el, add, e2), comp(el, sub, e2), comp(el, mult, e2) }

natexpr(n):

Ihs: stacka(^[occ(code(sv'[occ(natexpr(n))]))]) = stacka(sv[occ(NST(n))]) =
push(n, stackb(sv\occ(NST(^

rhs: push(value(sv[occ(code(sv' [occ(natexpr(n))]))fy
stackb(sv[occ(code(sv' [occ(natexpr(n))]))])) =

push(yalue(sv[occ(NST(n))]), stackb(sv[occ(NST(n))])) = 
push(top(stacka(sv[occ(NST(n))])), stackb(^[occ(NST(n))])) = 
push(n, stackb(sv[occ(NST(n))^

idexpr(idy.

Ihs: stacka(sv[occ(code(sv'[occ(jdexpr(id))]))]) = stacka(sv[occ(IST(id))]) = 
push(lookup(id, givenEnv), stackb{sv[occ(JST(id))]))

rhs: push(value(sv[occ(code(sv' [occ(idexpr(id))]))]), 
stackb(sv[occ(code(sv' \occ(idexpr(jd))\)^^ = 

push(yalue(sv\occ(IST{id))\), stackb{sv[occ(IST(id))\)) = 
push(top{stacka(sv\occ(IST^^ stackb(sv[occ(IST(id))\)) = 
push(lookup(id, givenEnv), stackb(sv\occ(IST(id))\))

comp(el9 add, e2):

Ihs: stacka(sv[occ(code(sv'[occ(comp(el, add, e2))]))]) = 
stacka(sv[occ(code(sv'[compfa add, e2)]);

code(sv'[comp(el, add, occ(e2))]))]) ; ADD)]) =
stacka(sv[code(sv'[comp(occ(el), add, e2)]);
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code(sv'\comp(el, add, occ(e2))]))]) ; occ(ADD)\) = 
push(top(pop(stackb(sv\code(sv'[comp(pcc(el), add, e2)]);

code(sv'[comp(el, add, t?cc(e2))]))]) ; occ(ADDy\))) + 
top{stackb^sv\code(sv'\comp(pcc(el), add, e2)]);
code(sv\comp(el, add, occ(e2))]))]) ; occ(ADD)\), 
pop(pop(stackb(sv[code(sv'[comp(occ(el), add, e2)]); 
code(sv'[comp(el, add, occ(e2))]))]) ; occ(ADD)]))) = 

push(...,
pop(pop(stacka(sv\code(sv'[comp(occ(el), add, e2)]);
occ(code(sv'[comp(ek, add, occ(e2))]))])) ; ADD]))) =

push(...,
pop(pop(stacka(sv[code(sv'[comp(occ(el), add, e2)]);
occ(code(sv'[comp(el, add, occ(e2))]))])) ; ADD]))) = (induction assertion) 

push(...,
pop(pop(push{..., stackb(sv\code(sv\comp(occ(eV), add, e2)]);
occ(code(sv'[comp(el, add, occ(e2))]))])) ; ADZ)])))) =

push(...,
pop(stackb(sv[code(sv'[comp(pcc(el), add, e2)]) ;
occ(code(sv'[comp(el, add, occ(e2))]))])) ; ADZ)])) =

push(...,
pop(stacka(sv\occ(code{sv'\comp(pcc(el), add, e2)]));
code(sv'[comp(el, add, occ(e2))]))]) ; ADD])) = (induction assertion) 

push(...,
pop(push{..., stackb(sv\occ(code(sv\comp(pcc(eV), add, e2)])) ;
code(sv'[comp(el, add, occ(e2))]))]) ; ADD]))) = 

push(top(pop(stackb(sv[code(sv'[comp(occ(el), add, e2)]);
code(sv'[comp(el, add, occ(e2))]))]) ; occfADD)]))) + 
top(stackb(sv[code(sv1[comp(occ(el), add, e2)]);
code(sv'[comp(el, add, occ(e2))]))]) ; occ(ADD)]), 
stackb(sv[occ(code(sv'[comp(occ(el), add, e2)]); 
code(sV[comp(el, add, occ(e2))]))]) ; ADD)]))

rhs: push(value(sv[occ(code(sv'[occ(comp^ add, e2))]))]), 
stackb(sv[occ(code(sv1[comp(occ(el), add, e2)]);
code(sv'[comp(el, add, occ(e2))]))]) ; ADD)])) =

push(top(stacka(sv[occ(code(sv'[occ(comp(^ add, e2))]))]))])), 
stackb(sv[occ(code(sv'[comp(pcc(el), add, e2)]);
code(sv'[comp(el, add, occ(e2))]))]) ; ADD)])) = ... as Ihs ... = 

push(top(pop(stackb(sv[code(sv'[comp(occ(el), add, e2)]);
code(sv'[comp(el, add, occ(e2))J))]) ; occ(ADD)]))) + 
top(stackb(sv[code(sv'[comp(occ(el), add, e2)]);
code(sv'[comp(el, add, occ(e2))]))]) ; occfADD)]), 
stackb(sv[occ(code(sv'[comp(occ(el), add, e2)]); 
code(sv\comp(el, add, occ(e2))]))]) ; ADD)]))

comp(ek, sub, el), comp(el, mult, e2):
analogous to comp(ei, add, e2). ♦
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Fact:

It holds:

V svExpr^Expr V  e ExPr- value(sv[occ(e)]) = value(pcc(code(sv[occ(e)])))

Proof

This property is shown using the following complete set of occurrence terms:

{ sv[occ(natexpr(n))], sv[occ(idexpr(id))], sv[occ(comp(el, add, eZ))], 
sv[occ(comp(el, sub, e2))], sv[occ(comp(el, mult, e2))] }

sv[occ(natexpr(n))]:
Ihs: value(sv[occ(natexpr(n))]) = n
rhs: value(occ(code(w[occ(natexpr^^^ = value{occ(NST(n))) = 

top(stacka(occ(NST(ri^)) = top(push(n, stackb{occ(NST(n))))) = n

sv[occ(idexpr(id))]:
Ihs: value(sv[occ(idexpr(id))]) = lookup(n, env(pcc(sv[idexpr(jd)]))) = 

lookup(id, givenEnv)
rhs: value(occ(code(sv[occ(idexpr(id))]))) = value(pcc(IST(id))) =

top(stacka(pcc(IST(jd)))) =
top(push(lookup(id, env(occ(jMjdexpr(jd)]))), stackb(occ(IST(id))))) = 
lookup(id, env(occ(sv[idexpr(u^^ = lookup(id, givenEnv)

sv[occ(comp(el, add, e2))]:
Ihs: value(sv\occ(comp(e\, add, e2))]) =

value{sv[comp(occ(el), add, e2)]) + value(sv[comp(e\, add, occ(e2))]) 
rhs: value(occ(code(sv[occ(comp(el, add, e2))]))) =

value(occ(code(sv[comp(occ(el), add, e2)]);
code(sv[comp(el, add, occ(e2))]) ;ADD)) = 

top(stacka(occ(code(sv[comp(occ(el), add, e2)]) ;
code(sv\comp(el, add, occ(e2))]) ;ADD))) = 

top(stacka(code(sv[comp(occ(el), add, e2)]);
code(sv[comp(el, add, occ(e2))J) ; occ(ADD))) = 

top(pop(stackb(code(sv[comp(occ(el), add, e2)]);
code(sv[comp(el, add, occ(e2))]) ; occ(ADD)))) + 
top(stackb(code(sv[comp(occ(eV), add, e2)]);
code(sv[comp(el, add, occ(e2))]) ; occ(ADD))) =

top(pop(stacka(code(sv[comp(pcc(el), add, e2)]) ;
occ(code(sv[comp(el, add, occ(e2))])) ; ADD))) + 
top(stacka(code(sv[comp(pcc(e\), add, e2)]);
occ(code(sv[comp(el, add, occ(e2))])) ;ADD)) =

top(pop(push(yalue(sv[comp(pcc(el), add, e2)])> 
stackb(code(sv[comp(occ(el), add, ^2)]) ;
occ(code(sv[comp(el, add, occ(e2))])) ; ADD))))) + 
top(push(yalue(sv[comp(occ(el), add, e2)]), 
stackb(code(sv\comp(pcc(el), add, e2)]) ;
occ(code(sv[comp(e\, add, occ(e2))])) ;ADD))) = 

top(stacka(occ(code(sv[comp(occ(el), add, e2)])) ;
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code(sv[comp(e\, add, occ(e2))]) ; ADD))) + 
value(sv[comp(occ(el), add, e2)]) = 

top(push(value(sv[comp(el, add, occ(e2)]), 
stackb(occ(code(sv[comp(occ(el), add, e2)]); 
code(sv[comp(el, add, occ(e2))]) ;ADD))) + 
value(sv[comp(occ(el), add, e2)]) =

value(sv[comp(pcc(el), add, e2)]) + value(sv[comp(el, add, occ(e2)\)

sv[occ(comp(el, sub, e2))], sv[occ(comp(el, mult, e2))]:

analogous to add.
Fact:

The following equation holds in the specifications NOPT and OPT

^ E x p r E x p r -  e Expr’

isdef(usedregb(sv[occ(e)])) = true ♦

Proof

The proof is done using the following complete set of occurrence terms:

{ sv[occ(natexpr(n))], sv[occ(idexpr(id))], sv[occ(comp(el, add, e2))], 
sv\occ(comp(e\, sub, e2))], sv\occ(comp(el, mult, e2))] }

sv\pcc(natexpr(n))\:
In the specification OPT.

isdef(usedregbOPT(sv[occ(natexpr(n))])) = 
isdefined(usedregbOPT{sv[occ(natexpr(n))\), 

reg!s(usedregbOPT(sv[occ(natexpr(n)^ n)) = true

In the specification NOPT: 
identical derivation

sv[occ(idexpr(id))]:
In the specification OPT:
isdef(usedregbOPT(sv[occ(idexpr(id))\)) = 

isdefined(usedregbOPT{sv\occ(idexpr(id))\), 
regIs(usedregbOPT(sv[occ(idexpr(id))]), lookup(id, givenEnv))) = true

In the specification NOPT: 
identical derivation

sv\occ(comp(el, add, e2))J:
In the specification OPT:

case analysis over
less{needed(sv[comp(pcc(el), add, e2)]), needed(sv[comp(el, add, occ{e2))})) = false*.
isdef(usedregbOPT(sv[occ(comp(el, add, ^2))])) =

isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 
codeOPT(sv[occ(comp(el, add, ^2))])) =

isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]),
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seq(codeOPT(sv(comp(occ(el), add, e2)])> 
seq(codeOPT(sv[comp(el, add, occ(e2))]), 

ADD (usedr egbOPT(sv[occ(comp(el, add, e2))]), 
usedregbOPT(sv[comp(occ(el), add, e2)]), 
usedr egbOPT(sv[cornp(el, add, occ(e2))]))))) = 

isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]),
codeOPT(sv[comp(occ(el), add, e2)]))
or isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 

codeOPT(sv\comp(e\, add, occ(e2))]))
or isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 

ADD(usedregbOPT(sv[occ(comp(el, add, e2))]), 
usedregbOPT(sv[comp(occ(ei), add, e2)]), 
usedr egbOPT(sv\comp(el, add, occ(e2))])) = 

isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]),
codeOPT(sv(comp(occ(eV), add, e2)]))
or isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 

codeOPT(sv[comp(el, add, occ(e2))]))
or (isdef(usedregbOPT(sv[comp(occ(el), add, e2)])) and 

isdef(usedregbOPT(sv[comp(el, add, occ(e2))]))) = 
isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]),

codePPT(sv\comp(occ(el), add, e2)]))
or isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 

codeOPT(sv[comp(el, add, occ(e2))]))
or (true and true) = true

less(needed(sv\comp(occ(el), add, e2)]), needed(sv[comp(el, add, occ(e2))])) = true: 
Ihs:
isdef(usedregbOPT(sv[occ(comp(el, add, ^2))])) = 

isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 
codeOPT(sv[occ(comp(el, add, e2))])) = 

isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 
seq(codeOPT(sv[comp(el, add, occ(e2))]), 

seq(codeOPT(sv[comp(occ(el), add, e2)]), 
ADD(usedregbOPT(sv[occ(comp(el, add, e2))]), 
usedregbOPT(sv[comp(occ(el), add, e2)]), 
usedregbOPT(sv[comp(el, add, occ(e2))]))))) = 

isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 
codeOPT(sv(comp(eX, add, occ(e2))]))
or isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 

codeOPT(sv[comp(occ(el), add, e2)]))
or isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 

ADD(usedregbOPT(sv[occ(comp(el, add, e2))]), 
usedregbOPT(sv[comp(occ(el), add, e2)]), 
usedregbOPT(sv[comp(el, add, occ(e2))]))) =
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isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]),
codeOPT(sv[comp(el, add, occ(e2))]))
or isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]), 

codeOPT(sv[comp(occ(el), add, e2)]))
or (isdef(usedregbOPT(sv[comp(occ(el), add, e2)])) and 

isdef(usedregbOPT(sv[comp(el, add, occ(e2))])))) =
isdefined(usedregbOPT(sv[occ(comp(el, add, e2))]),

codeOPT(sv[comp(el, add, occ(e2))]))
or isdefined(usedregbOPT(sv[occ(comp(el, add, e2))])> 

codeOPT(sv[comp(occ(el), add, e2)]))
or (true and true) = true

In the specification NOPT:
identical derivation as for the case
less(needed(sv[comp(occ(eT), add, e2)]), needed(sv[comp(e\, add, occ(e2))])) = false

sv\pcc(comp(el, sub, e2))\ and sv\pcc(comp(el, mult, e2))]:

analogous to add ♦
Fact:

The following equation holds between the specifications SOURCE and NOPT

V s v Expr-̂ Expr' e Expr- 
value(sv\occ(ef\) = val(usedregb^OPT(sv\occ(e)f}) ♦

Proof

The proof is done using the following complete set of occurrence terms:

{ sv[occ(natexpr(n))}, sv\occ(idexpr(id))}, sv[occ(comp(el, add, e2))], 
sv[occ(comp(el, sub, e2))], sv[occ(comp(el, mult, e2))] }

sv[occ(natexpr(n))\:
value(sv\occ(natexpr(n))]) = n =
regval(usedregbFOPT(sv[occ(natexpr(n))ty, 

regIs(usedregbNOPT(sv[occ(natexpr(n))]), n)) =
val(usedreglf*OPT(sv[occ(natexpr(n))^^^

sv[occ(idexpr(id))]:
value(sv[occ(idexpr(id))]) =

lookup(id, givenEnv) =
regval(usedregti*OPT(sv[occ(idexpr(id^^^

regIs(usedregbNOPT(sv[occ(idexpr(id))]), lookup(id, givenEnv))) = 
val(usedregb^OPT(sv[occ(idexpr(id))f))

sv[occ(comp(el, add, e2))]:

Ihs:
value(sv[occ(comp(el, add, e2))]) =
value(sv[comp(occ(el), add, £2)]) + value(sv[comp(el, add, occ(e2))])
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val(usedregb^OPT(sv[comp(occ(eT), add, e2)])) + 
val(usedregl^OPT(sv[comp add, occ(e2))]))

rhs:
val(usedregb^OPT(sv[occ(comp(el, add, ^2))])) = 

regval(psedregbN)PT{sv\occ(comp(e\, add, e2))]), 
code^OPT{sv\occ(comp(e\, add, e2))])) =

regyal(usedregtFOPT(sv\occ(com add, e2))]), 
seqÇcod^^ÇsvYcomp^occÇel), add, e2)]), 

seq(code^OPT(sv[comp(el, add, occ(e2))]), 
ADD(usedregb^OPT(sv[occ(comp(el, add, e2))]), 

usedregbNOPT(sv[occ(comp(el, add, ^2))]), 
usedregbK°PT(sv[comp(el, add, occ(e2))]))))) =

regval(usedregbNOPT(sv[occ(comp(el, add, e2))]), 
c o d ^ OPT(sv[comp(pcc(el), add, e2)]))
& regyal(usedregbFOPT(sv[occ(com p^ add, c2))]), 

code^OPT(sv\comp{e\, add, occ(e2))]))
& regval(usedregt^OPT(sv\occ(comp(e\, add, e2))]),

ADD(usedreg&OPT(sv[occ(com add, e2))]), 
usedregb^OPT{sv[occ{comp(el, add, e2))]), 
usedregbFOPT(sv[comp(el, add, occ(e2))])) 

val(usedregb^OPT(sv[occ(comp(el, add, ^2))])) + 
val(usedregbNOPT(sv[comp(el, add, occ(e2))])) = 

val(usedregbFOPT(w\comp(occ(e\), add, e2)])) + 
va/(usedregbNOPT(sv[comp(el, add, occ(e2))]))

sv[occ(comp(el, sub, e2))] and sv\pcc(comp(el, mult, e2))]:

analogous to add ♦
Fact:

The following equation holds between the specifications OPT and NOPT
s v Expr Expr- V  e Expr' 

val(usedregbOPT(sv[occ(e)^^ = va/(w5eJregZAo p r (5v[6>cc(e)])) ♦

Proof

The proof is done using the following complete set of occurrence terms:
{ sv[occ(natexpr(n))\, sv[occ(idexpr(id))], sv[occ(comp(el, add, e2))], 

sv[occ(comp(el, sub, e2))], sv[occ(comp(el, mult, e2))] }

sv[occ(natexpr(n))]:
val(usedregbOPT(sv[occ(natexpr(n))])) =

regval(usedregbOPT(sv[occ(natexpr(n))]'), 
regIs(usedregbOPT(sv[occ(natexpr(n))]), n)) = n =

regval(usedregt^OPT(sv[occ(natexpr(n))]), 
reg!s(usedregb^OPT(sv[occ(natexpr(ny)]), n)) =
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val(usedregb^OPT(sv[occ(natexpr(n))]))

sv[occ(idexpr(id))]:
val(usedregbOPT(sv[occ(ide^^ = 
regval(usedregbOPT(sv[occ(idexpr(id))]), 

regIs(usedregbOPT(sv[occ(idexpr(id))]), lookup(id, givenEnv))) = 
lookup(id, givenEnv) =
regval(usedregbFOPT(sv\occ(idexpr(jd)y\), 

regIs(usedregb^OPT(sv[occ(idexpr(ity lookup(id, givenEnv))) =
val(usedreg&OPT(sv[occ(idexpr{i^

sv\occ(comp(e\, add, e2))]:
case analysis over
less(needed{sv[comp(pcc(el), add, e2)]), needed(sv[comp(el, add, occ(e2))])) = false*.

Ihs:
val(usedregbOPT(sv[occ(comp(el, add, e2))])) = 

regval(usedregbOPT(sv[occ(comp(el, add, e2))]), 
codeOPT(sv[occ(comp(el, add, c2))])) = 

regval(usedregbOPT(sv[occ(comp(el, add, e2))]), 
seq(codeOPT(sv[comp(occ(el), add, e2)]), 

seq(codeOPT(sv[comp(el, add, occ(e2))]), 
ADD(usedregbOPT(sv[occ(comp(el, add, e2))]), 

usedregbOPT(sv\comp(occ(eX), add, e2)]), 
usedregbOPT(sv[comp(el, add, occ(e2))]))))) =

regval(usedregbOPT(sv\occ(comp(e\, add, e2))]), codeOPT(sv[comp(pcc(el), add, e2)])) 
& regval(usedregbOPT(sv[occ(comp(el, add, e2))]), 

codeOPT(sv[comp(el, add, occ(e2))]))
& regval(usedregbOPT(sv[occ(comp(el, add, e2))]), 

ADD(usedregbOPT(sv[occ(comp(el, add, e2))]), 
usedregbOPT(sv[comp(occ(el), add, e2)]), 
usedregbOPT(sv[comp(el, add, occ(e2))])) 

val(usedregbOPT(sv[comp(pcc(el), add, e2)])) +
val(usedregbOPT(sv[comp(el, add, occ(e2))])) = 

val(usedregbNOPT(sv[comp(pcc(el), add, c2)])) + 
va^usedregb^^^svlcomp^el, add, occ(e2))])) =

rhs:
val(usedregb^OPT(sv[occ(comp(el, add, e2))])) = 

regval(usedregti*OPT(sv[occ(comp(el, add, e2))]), 
codeNOPT(sv[occ(comp(el, add, e2))])) = 

regval(usedregbNOPT(sv[occ(comp(el, add, e2))]), 
seq(codeNOPT(sv[comp(occ(el), add, c2)]), 

seq^ode^^^svlcom pfel, add, occ(e2))]), 
ADD(usedregb^OPT(sv[occ(comp(el, add, e2))]), 

usedregbFOPT(sv[occ(comp(eX, add, e2))])>
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usedreglFo p \sv[comp(el, add, occ(e2))]))))) = 
regyal(usedregb^OPT(sv[occ(comp(el, add, e2))]), 

code?OPT(sv[comp(pcc(el), add, e2)]))
& regyal(usedregb^OPT(sv[occ(comp(el, add, e2))])> 

code^OPT(sv[comp(el, add, occ(e2))]))
& regyalÇusedreg^^isvloccÇcompÇel, add, e2))]), 

ADD(usedregbV°PT(sv[occ(comp(el, add, eZ))]), 
usedregbNOPT(sv[occ(comp(el, add, e2))]), 
usedregb^OPT(sv[comp(el, add, occ(e2))])) 

val(usedregbNOPT(sv[occ(comp(el, add, ^2))])) +
val(usedregbFOPT(w[comp(el, add, occ(e2))]J) = 

val(usedregbNOPT(sv[comp(occ(el), add, e2)])) +
val(usedregbNOPT(sv[comp(el, add, occ(e2))]))

less(needed(sv[comp(pcc(el), add, e2)]), needed(sv[comp(el, add, occ(e2))])) = true:

Ihs:
val(usedregbOPT(sv[occ(comp(el, add, e2))])) = 
regyal(usedregbOPT(sv[occ(comp(el, add, e2))]), 

codeOPT(sv[occ(comp(el, add, e2))])) =
regyal(usedregbOPT(sv[occ(comp(el, add, e2))]),

seq(codeOPT(sv[comp(el, add, occ(e2))]), 
seq(codeOPT(sv[comp(occ(el), add, e2)J),

ADD(usedregbOPT(sv[occ(comp(el, add, e2))]), 
usedregbOPT(sv[comp(pcc(el), add, e2)]), 
usedr egbOPT(sv[comp(el, add, occ(e2))]))))) = 

regyal(usedregbOPT(sv[occ(comp(el, add, ^2))]), 
codeOPT(sv[comp(el, add, occ(e2))]))
& regyal(usedregbOPT(sv[occ(comp(el, add, e2))]), 

codeOPT(sv[comp(occ(el), add, ^2)]))
& regyal(usedregbOPT(sv[occ(comp(ei, add, e2))]), 

ADD(usedregbOPT(sv[occ(comp(el, add, ^2))]), 
usedregbOPT(sv[comp(pcc(el), add, e2)]), 
usedregbOPT(sv[comp(e\, add, occ(e2))])) 

val(usedregbOPT(sv{comp(pcc(el), add, e2)])) +
val(usedregbOPT(sv[comp(el, add, occ(e2))])) = 

val(usedregb^OPT(w[comp(occ(el), add, e2)])) +
val(usedregb^OPT(w[comp(el, add, occ(e2))]))

rhs:
as in the other needed case.

sv\pcc{comp(el, sub, e2))], sv[occ(comp(el, mult, e2))]:

analogous to add ♦
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Fact:

After performing the computation in register 1 the result of the expression is in OPT as 
well as in NOPT. ♦

Proof

Follows immediately from the fact:
SVE xpr -> Expr' ^Expr'

val(usedregbOPT(sv[occ(e)]y) = v a liu se d re g b ^^ isv lo ^  
and usedregb0PT(pcc(sv[e]) = 1 = usedregb^OPT(occ(sv[e]) ♦

Fact:

The following equation holds between the specifications NOPT and SOURCE
V  SVExpr -* Expr' V  &Expr' 

val(usedregb^OPT{sv[occ(e)]y) = value(sv[occ(e)]) ♦

Proof

analogous to the fact
V svE xpr^ Expr. V eExpr.

regval(usedregbOPT(sv[occ(e)]y) = 
regval(usedregb^OPT(sv[oc^^ codeNOPT(sv[occ(e)])) ♦

Fact:

The following equation holds between the specifications SOURCE and NOPT
V  S V E x p r^E x p r ' V e Expr' 

regvalQ, codeNOP1(occ(sv[e])) = value(occ(sv[e\)') ♦

Proof

Follows immediately from the fact:
V svExpr _  Expr. V eExpr.
val(usedregbfiOPT(sv [o c c ^  = value(sv[occ(e)\) 

and usedregbFOPT(occ(sv[e\) = 1 ♦
Fact:

It holds:

O P T ~ > ^  NOPT ♦

Proof

Follows immediately from the above facts, since the only observable attribute is value. ♦
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