
Aspect-Oriented Modeling of Access Control in Web
Applications

Gefei Zhang Hubert Baumeister Nora Koch Alexander Knapp
Institut für Informatik, LMU München

Oettingenstr. 67, 80538 München, Germany
{zhangg, baumeist, kochn, knapp}@pst.ifi.lmu.de

Nora Koch

ABSTRACT
Access control is only inadequately supported by the common de-
sign methods for Web applications. We propose an aspect-oriented
technique for solving this problem. Our approach is an extension
of UML-based Web Engineering. UML state machines are used
to specify the access control rules of navigation nodes. Aspect-
oriented modeling helps modularize the design.

Keywords
Aspect-oriented modeling, Web engineering, access control, UML

1. INTRODUCTION
Both classic Web applications — information systems with Web
interface — and Web applications of the new generation, which
include implementation of complex business processes, face the
problem of access control, i.e., which user may access which page.
While nowadays there are mature techniques of implementing ac-
cess control in Web applications, modeling access control, how-
ever, is only inadequately supported by the commonWeb engineer-
ing methods [4, 6, 8]. Access control is commonly modeled as part
of the navigation structure of an application and thus the same nav-
igation structure, e.g. the authentication process, is repeated for ev-
ery element that needs access control. This introduces redundancy
to the models.

Access control is — in the same way as most of the other user mod-
eling features are — a cross cutting feature in Web applications.
They are not only orthogonal to the functionality of a Web appli-
cation, but also often apply to several classes of Web pages [3]. A
modular modeling would therefore be an important improvement
to the reusability of the design and the flexibility of the system.

We propose an aspect-oriented technique for modeling access con-
trol inWeb applications. Our approach uses UML state machines to
specify access control rules for navigation nodes and benefits from
the modularity of aspect-oriented modeling. It is UML 1.x [14]
compliant since the model elements are defined by an extension of
the UML metamodel. The approach is explained in the context of

the UML-based Web Engineering method (UWE) [10, 11], but can
be easily embedded in other Web engineering methods.

The remainder of this paper is organized as follows: after a brief
introduction to UML-based Web Engineering in the following Sec-
tion 2, Section 3 describes our approach of modeling access control
in Web applications by means of an example. Section 4 discusses
some related work, before Section 5 outlines some future possibil-
ities of aspect-oriented modeling of Web applications.

2. UML-BASEDWEB ENGINEERING
Similar to other Web engineering methods, UML-based Web En-
gineering (UWE) separates the concerns of a Web application in
different points of view: the content, the navigation structure, the
business processes, and the presentation. The distinguishing fea-
ture of UWE is its UML compliance since UWE is defined in the
form of a UML profile and an extension of the UML metamodel
(for more details see [11]).

In UWE, the content of Web applications is modeled in a con-
ceptual model where the classes of the objects that will be
used in the Web application are represented by instances of
�conceptual class� which is a subclass of the UML Class. Rela-
tionships between contents are modeled by UML associations be-
tween conceptual classes.

The navigation model is based on the conceptual model and repre-
sents the navigation paths of the Web application being modeled.
A �navigation class� represents a navigable node in the Web ap-
plication and is associated to a conceptual class containing the in-
formation of the node. Navigation paths are represented by associ-
ations: An association between two navigation nodes represents a
direct link between them. Additional navigation nodes are access
primitives used to reach multiple navigation nodes (�index� and
�guided tour�) or a selection of items (�query�). Alternative
navigation paths are modeled by �menu�s.

A navigation model can be enriched by the results of the process
modeling which deals with the business process logic of a Web
application and takes place in the process model. The presentation
model is used to sketch the layout of the Web pages associated to
the navigation nodes. The interested reader is referred to [10] for
more details on the UWE notation and method.

As the navigation structure laid down in the UWE navigation model
specifies the access paths to the content of the Web application, the
navigation model is the appropriate starting point to investigate how
to integrate access control in UWE.



Figure 1: Navigation diagram of the online library.

As an example, Fig. 1 shows the navigation model of an online
library which contains three kinds of publications: journals, books,
and conference proceedings. For each kind of publication there is
an index from which the publications of this kind can be reached.
A main menu from which the three indexes can be reached is also
provided; this is the home page of the Web application.

3. THE APPROACH
Based on the navigation model of UWE and sticking to its princi-
ples of UML compliance, our approach uses UML state machines
to model access control in Web applications. In the following, we
illustrate our approach by the online library example.

Suppose the business policy of the online library is that the ac-
cess to the publications themselves should be reserved to registered
users only, while their indexes and the main menu should be ac-
cessible by everyone. Therefore, access to the publication must be
protected by a designated LogOn process.

Note that an access control strategy built on such a business policy
requires the existence of a user model. Depending on the business
policy and the access control strategy, different types of user mod-
els can be built, e.g. role models, cognitive model, task models,
etc. Overlay models offer a simple and powerful structure to model
user characteristics [3], associating them directly to the domain in-
formation. For more details see the reference model for adaptive
hypermedia systems [12].

3.1 Using State Machines for Access Control
Simply adding the LogOn process to all navigation paths leading to
the publication nodes may not be sufficient. A characteristic ofWeb
applications is the possibility of navigation nodes being directly ac-
cessed via external links, thus undermining link-based access con-
trol. Therefore access control should be part of the behavior of the
protected nodes.

We extend UWE by associating to each navigation node a state

Figure 2: Default state machine of every navigation node.

Figure 3: Excerpt of the UML metamodel: ModelElement and
StateMachine.

machine which specifies the detailed behavior the navigation node.
The idea is that when a navigation node is to be shown, its corre-
sponding state machine is executed. Only when the state machine
reaches state Showing, the navigation node is shown to the user.
Each navigation node in the navigation model has a default state
machine which is shown in Fig. 2.

In the UML 1.5 metamodel [14] each model element can be associ-
ated with some state machine. The model element is called context
of its state machines and the state machines are the behaviors of
their context (see Fig. 3). We introduce a constraint that in the
navigation model each navigation node must have exactly one state
machine:

context NavigationModel
inv:
self.ownedElement ->
select(e | e.oclIsKindOf(NavigationNode))->
forAll(a | a.behavior->size() = 1)

For navigation nodes that are to be protected, we can now refine the
default state machine by a state machine modeling the access pro-
tection. The classes Journal, Book, and Paper, for example,
are subject to the same access control rules specified by the state
machine in Fig. 4 which describes the following behavior:

1. in the state VerifyLogOn, the application checks if the
user has already logged on;

2. if so, the state changes to Showing, the required page is
shown;

3. if not, the state changes to LogOn, which means, as indi-
cated by the stereotype �node�, that the user is led to an-
other navigation node where he can input his user name and
password;

4. after LogOn, the state changes to VerifiyPassword and
the system checks if the user name and the password are
valid;

5. if they are valid, the state changes to Showing and the pro-
tected navigation node is shown;

6. otherwise the user is led to another node Error which in-
forms him that the password is wrong and where he has the
choice between trying to log on again or canceling the action.

This way, we obtain a UML compliant specification of the access
control rules. Note that this specification is on a highly abstract



Figure 4: Refined state machine, specifying the access control
mechanism of a single navigation node.

level. On this level, we do not really want to design implementa-
tion details, e.g. how to determine if a user is already logged in.
The characteristic of this (naı̈ve) approach is that those navigation
nodes that are not subject to access control have a default state ma-
chine that contains only one non-trivial state while the protected
navigation nodes have more complex state machines which are very
similar to each other.

3.2 Making State Machines Aspect-Oriented
The naı̈ve method works well as long as only one single navigation
node is subject to access control. However, in a real application
usually much more than one single page needs to be protected.
In the example of the online library, access to all three classes
Journal, Book, and Paper is reserved for registered users only.
Moreover, all of them have the same access rule given by the state
machine shown in Fig. 4.

However, since a state machine can have at most one context (cf.
Fig. 3), we have to replicate the state machine in Fig. 4 for each
class Journal, Book, and Paper.

To avoid this redundancy, we need to organize model elements in
a new dimension where reusability is not only achieved my means
of “vertical” generalization but also some “horizontal” relations.
Aspect-Oriented Modeling (AOM) provides such a horizontal rela-
tion: aspects. All elements of an aspect have common features.

Extension of the UWE Metamodel
We introduce the concept of aspects into UWE by extending the
UWE metamodel (see Fig. 5). Since an aspect is supposed to con-
tain navigation nodes, we define an Aspect to be a subclass of
Package. The notation for an aspect is a package with the stereo-
type �aspect�. Between Aspect and NavigationNode a new asso-
ciation contains is introduced. Note that contains is an m:n rela-
tionship: An aspect contains one or more navigation nodes, and a
navigation node can be contained in several aspects. The aspects
of a navigation node are ordered. In addition, also aspects may be

Figure 5: Extension of the UWE metamodel by Aspect

contained in aspects. The notation used for navigation nodes and
aspects contained in aspects is the same as the notation for UML
classes and packages imported by a package, i.e. navigation nodes
and aspects can be drawn inside an aspect (e.g. Fig. 7).

When several navigation nodes are subject to the same access
rules, an instance of Aspect that contains all of them is created.
Fig. 6(a) shows how aspect AccessControl contains the classes
Journal, Book, and Paper. In order to specify the common ac-
cess rules, we employ the association shown in Fig. 3 again: Since
Aspect is a subclass of Package, an aspect is also a model element
and can therefore have a state machine as its behavior, which we
use to define the common access control rules of all of the naviga-
tion rules contained in the aspect. Note how the access rules are
specified by the aspect resp. its state machine, the state machines
of the contained navigation nodes are trivial again.

In our running example, aspect AccessControl has a very sim-
ilar state machine, which is shown in Fig. 6(b), to the one that each
of the access controlled navigation nodes had in the naı̈ve approach
(see Fig. 4). The only difference is that instead of Showing, which
meant that the context of the state machine should be shown to the
user, the state machine of an aspect has the state OK.

The (informal) semantics is as follows: if a navigation node is con-
tained in an aspect, then before the state Showing in its state ma-
chine can be reached and the node can be shown to the user the
state machine of the aspect is run. When the state OK is reached, the
(trivial) state machine of the navigation node itself is run. In other
words, the navigation node specific state machine can be seen as a
substate of OK and when the state Showing is reached, the naviga-
tion to this node is possible. This semantics is depicted in Fig. 6(c).

Compared to the naı̈ve method, the characteristic of the aspect-
oriented approach is therefore that the access control rule is no
longer defined in single nodes, but in the aspect containing them
and that all navigation nodes contained in the same aspect have the
same access control rules. This way the modeling of access con-
trol in Web applications is modularized. The rules thus need to be
specified only once and redundant specification can be avoided.

The state machine of a navigation node does not need to be triv-
ial. Since a node specific state machine is understood as a substate
machine of the state OK in the state machine of its aspect, complex
access control rules can as well be specified in it, as long as the rule
is also navigation node specific.

Suppose, e.g., that the policy of the online library is that while pa-



(a) Aspect AccessControl contains the
concerned nodes.

(b) State machine of the aspect.

(c) The semantics.

Figure 6: Aspect AccessControl, specifying the rules of ac-
cess control for all three navigation classes: Journal, Book
and Paper.

Figure 7: Aspect Limit, contained in AccessControl.

Figure 8: State machine of Aspect Limit, specifying limiting
of downloads of books and journals.

pers and journals can be downloaded as much as a registered user
likes, book downloads should be limited to, e.g., to a couple of
books per month. Then the state machine of the class Book may
be extended to specify counting of downloaded books and checking
if the quota has been already exhausted.

Aspects of Aspects
Aspects can themselves be contained in other aspects (cf. Fig. 5).
For example, suppose that the online library limits the download
of both books and journals. Since this aspect refers to two classes,
we introduce a new aspect Limit that contains them and is itself
contained in aspect AccessControl. We define a state machine
for Limit to specify the limiting behavior. Figure 7 shows this
aspect and Fig. 8 shows its state machine. It is assumed that books
and journals are equally expensive, otherwise the state machine of
the aspect Limit can be extended so that different values are sub-
tracted from the user’s account.

The (informal) semantics of aspects of aspects is similar to that
of aspects of navigation nodes: when a navigation node contained
in an aspect is requested by the user, the system first looks recur-
sively for its aspect and its aspect’s aspect. The state machine of
the most upper aspect is first run, until its OK state invokes the state
machine of its sub-level aspects to run, and so on, until in the last
step the state machine of the navigation node itself is run, where
in the state Showing the Web page is really shown to the user. In
our example, first the state machine of AccessControl is run,
making sure that the current user is logged in, and, in the OK state,
the state machine of Limit is run, checking that the user still has



sufficient credit to download the publications, and, only in the OK
state of Limit, the state machine of Book resp. Journal can be
run, where in the state Showing the publication is shown to the
user. Note that if a user cancels the logon process the state machine
stops without having visited the state OK. This means that the state
machine of the contained aspect, in this case aspect Limit, will
not be run.

Multiple Aspects
According to the metamodel in Fig. 5, the behavior of a navigation
node or an aspect can be modified by multiple aspects. The order
in which the aspects are applied is given by the order of the aspects
in the contains association.

4. RELATEDWORK
The OO-H [7] approach proposes the use of personalization rules
to model access control aspects. These rules are associated to the
filters included in the navigation model. Filters are applied to nav-
igation links. Thus each link requiring access control needs the
definition of the corresponding filter. This means that if a protected
navigation node is reachable by several links, each link needs to
define a filter for access control. This introduces additional redun-
dancy, which opens the door for bugs, like forgetting a required
filter on a link accessing the protected node. Conversely, our ap-
proach avoids this redundancy because the access control is associ-
ated with the navigation node and not with navigation links.

Other approaches with similar redundancy problems are
OOHDM [15] and WebML [6]. OOHDM separates access
control from navigation by adding a wrapper class for each naviga-
tion node which requires access control, but does not treat access
control as a cross-cutting feature. WebML provides a predefined
login operation, which implements the verification of the identity
of a user accessing the site. More complex rules for access control,
however, require definition of externally defined operations.

In WSDM [5] an adaptation specification language is defined that
allows designers to specify at the level of the navigation model
which adaptations of the navigation structure can be performed at
runtime. Although a visual representation of the rules is missing,
rules are defined orthogonally to the navigation functionality as de-
signers are allowed to define rules on one single element (node,
link) and on group of elements, but these rules only pertain to the
navigation structure and not to the general behavior of the naviga-
tion node. In particular, the rules do not seem to be able to express
the triggering of some action when a node is accessed.

SecureUML [13, 2] is a UML profile extending UMLwith a declar-
ative description of the role-based access policies of protected ob-
jects. In SecureUML the access control policy of protected objects
is described by authorization constraints. An authorization con-
straint contains a precondition that must hold before a protected ob-
ject can be accessed. In contrast to SecureUML, our approach uses
UML state machines to visualize the steps to be done to satisfy the
authorization constraints, e.g. by modeling the login process. Thus,
our approach is complementary to SecureUML.

Jürjens [9] defines a UML profile, UMLsec, for model based secu-
rity engineering. While UMLsec is focused on data confidentiality
and integrity, our approach concentrates on modeling access con-
trol in Web applications.

Other researchers have given graphical notations for modeling

aspect-oriented programms [1, 16, 17]. In contrast, the focus of
our work is aspect-oriented modeling of software systems.

5. CONCLUSIONS AND FUTUREWORK
In this paper, we have used aspect-oriented techniques to model ac-
cess control in Web applications. Access control is associated with
navigation nodes where each navigation node has a state machine
describing how to gain access to that node, e.g. by first authenticat-
ing to the Web application. Access control is a cross-cutting fea-
ture of Web applications. Navigation nodes using the same rules
for authentication are grouped under the same aspect. This facili-
tates modification of access rules for navigation nodes without hav-
ing to interfere with the functional model of the Web application.
There are other cross-cutting concerns in Web-applications besides
access-control. We plan to apply the techniques developed in this
paper to requirement elicitation, process modeling, and personal-
ization.

Currently we are working on an implementation of the aspect-
oriented extensions of UWE in ArgoUWE, a UML 1.x based CASE
tool that we have developed to support modeling Web applications
with UWE [10].

Furthermore, we plan to integrate the presented approach with the
authorization constraints of SecureUML [13, 2] and to develop a
formal semantics of the aspect-oriented extension of UWE. This
will allow us to use model-checking techniques to verify that the
access rules satisfies the corresponding authorization constraints.

6. ACKNOWLEDGMENTS
This work has been partially supported by the EU project AG-
ILE (IST-2001-32747). We would also like to thank Axel
Rauschmayer for fruitful discussions related to this paper.

7. REFERENCES
[1] M. Basch and A. Sanchez. Incorporating Aspects into the

UML. In Proc. 3rd Wsh. Aspect-Oriented Modeling with
UML, Boston, 2003.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven security
for process-oriented systems. In Proc. 8th ACM Symp. Access
Control Models and Technologies (SACMAT 2003), pages
100–109. ACM Press, June 2003.

[3] P. Brusilovsky. Methods and Techniques of Adaptive
Hypermedia. International Journal of User Modeling and
User-Adapted Interaction, 6(2–3):87–129, 1996.

[4] S. Casteleyn, O. De Troyer, and S. Brockmans. Design Time
Support for Adaptive Behavior in Web Sites. In Proc. 18th
ACM Symp. Applied Computing, pages 1222–1228. ACM
Press, 2003.

[5] S. Casteleyn, O. De Troyer, and S. Brockmans. Design time
support for adaptive behaviour in Web sites. In Proc. 18th
ACM Symposium on Applied Computing, Melbourne, USA,
pages 1222 – 1228. Publ. ACM, 2003.

[6] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,
and M. Matera. Designing Data-Intensive Web Applications.
Morgan Kaufmann, 2003.

[7] I. Garrigós, J. Gómez, and C. Cachero. Modelling Dynamic
Personalization in Web Applications. In J. M. C. Lovelle,



B. M. G. Rodrı́guez, L. J. Aguilar, J. E. L. Gayo, and M. del
Puerto Paule Ruı́z, editors, Proc. 3rd Int. Conf. Web
Engineering, volume 2722 of Lect. Notes Comp. Sci., pages
472–475. Springer Verlag, 2003.

[8] J. Gómez, C. Cachero, and O. Pastor. Extending a
Conceptual Modelling Approach to Web Application Design.
In B. Wangler and L. Bergman, editors, Proc. 12th Int. Conf.
Advanced Information Systems Engineering (CAiSE’00),
volume 1789 of Lect. Notes Comp. Sci., pages 79–93.
Springer Verlag, 2000.

[9] J. Jürjens. Secure Systems Development with UML. Springer
Verlag, 2004.

[10] A. Knapp, N. Koch, G. Zhang, and H.-M. Hassler. Modeling
Business Processes in Web Applications with ArgoUWE. In
T. Baar, A. Strohmeier, A. Moreira, and S. J. Mellor, editors,
Proc. 7th Int. Conf. Unified Modeling Language (UML’04),
volume 3273 of Lect. Notes Comp. Sci., pages 69–83.
Springer Verlag, 2004.

[11] N. Koch and A. Kraus. Towards a Common Metamodel for
the Development of Web Applications. In J. M. C. Lovelle,
B. M. G. Rodrı́guez, L. J. Aguilar, J. E. L. Gayo, and M. del
Puerto Paule Ruı́z, editors, Proc. 3rd Int. Conf. Web
Engineering (ICWE’03), volume 2722 of Lect. Notes Comp.
Sci., pages 497–506. Springer Verlag, 2003.

[12] N. Koch and M. Wirsing. The Munich Reference Model for
Adaptive Hypermedia Applications. In P. De Bra,
P. Brusilovsky, and R. Conejo, editors, Proc. Adaptive
Hypermedia and Adaptive Web-Based Systems (AH‘02),
Lect. Notes Comp. Sci., pages 213–222. Springer Verlag,
2002.

[13] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Security.
In J.-M. Jézéquel, H. Hußmann, and S. Cook, editors, Proc.
5th Int. Conf. Unified Modeling Languageng Language
(UML’02), volume 2460 of Lect. Notes Comp. Sci., pages
426–441. Springer Verlag, 2002.

[14] Object Management Group. Unified Modeling Language
Specification, Version 1.5. Specification, OMG, 2003.
http://www.omg.org/cgi-bin/doc?formal/
03-03-01.

[15] G. Rossi, A. Fortier, J. Cappi, and D. Schwabe. Seamless
Personalization of E-Commerce Applications. In 2nd Int.
Wsh. Conceptual Modeling Approaches for e-Business
(eCOMO’01), volume 2465 of Lect. Notes Comp. Sci., pages
457–470. Springer Verlag, 2001.

[16] D. Stein, S. Hanenberg, and R. Unland. An UML-based
Aspect-Oriented Design Notation For AspectJ. In Proc. 1st
Int. Conf. Aspect-Oriented Software Development, pages
106–112. ACM, 2002.

[17] D. Stein, S. Hanenberg, and R. Unland. On Representing
Join Points in the UML. In Proc. 2nd Wsh. Aspect-Oriented
Modeling with UML, 2002.


