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Abstract. We propose a new technique for interactive formal verification of tem-
poral properties of UML state machines. We introduce a formal, operational se-
mantics of UML state machines and give an overview of the proof method which
is based on symbolic execution with induction. Usefulness of the approach is
demonstrated by example of an automatic teller machine. The approach is imple-
mented in the KIV system.

1 Introduction

The “Unified Modeling Language” (UML [14]), the de facto standard notation for spec-
ifying object-oriented software systems, offers state machine diagrams as an operational
view of the dynamic aspects of a system, which are a variant of the statechart notations
introduced by Harel [5]. Most attempts to verify properties of UML state machines use
model checking (see e.g. [11, 10, 16]). Model checking allows a fast and simple way
to check, whether a property holds or not. However, the major disadvantage of model
checking is that it needs to search the whole state space of the state machine for a vio-
lation of the property and thus the verification success highly depends on the size of the
state space. If the state space of a state machine is unlimited, e.g. by using an unbounded
integer variable, verification of true properties normally fails.

We pursue another approach to the verification of UML state machines. In con-
trast to model checking, interactive verifiers such as KIV [3] are designed for systems
with an infinite state space. Our goal is to provide a uniform, interactive, intuitive and
efficient proof method for verifying properties of UML state machines. We have cho-
sen symbolic execution with induction as proof method, because this method has been
successfully applied to the verification of sequential programs (e.g. [7, 17]) and gives
very intuitive proofs. Furthermore, symbolic execution can be automated to a very large
extent. We have also shown how to carry over the proof method to the verification of
parallel programs [2]. Here, we demonstrate how to apply the method to the verification
of UML state machines.

To our knowledge, this is the first such approach to interactive verification of UML
state machines. In contrast to other approaches, we do not formalise the semantics of
UML in the existing logic, but derive a calculus to directly execute state machines. We
have been able to efficiently support not only a subset but all of the main features of

                                                       
                                     



                                        435

UML state machines such as hierarchical and concurrent states, compound transitions,
and a rich action language. Thus, our approach is more complete than e.g. the Omega
project [15]. Compared to other interactive calculi for the verification of similar concur-
rent systems (e.g. [12, 4]), the proof method of symbolic execution promises a higher
degree of automation, a uniform treatment of safety and liveness properties, and the use
of invariants which are easier to come up with.

We assume the reader to be familiar with UML state machines and to have at least
basic knowledge in temporal logic and sequent calculus. The remainder of this paper is
structured as follows: In Sect. 2, we give a short introduction to constructing temporal
proofs with symbolic execution and induction. Section 3 describes UML state machines
and introduces an example. Section 4 formally defines an operational semantics of UML
state machines. How to turn the operational semantics of UML into a calculus rule for
symbolic execution is sketched in Sect. 5. A safety property of the example is verified
in Sect. 6. Section 7 summarizes the results and outlines future work.

2 Temporal Logic Framework

The logical formalism is a variant of ITL (Interval Temporal Logic [13]). It is based
on (finite or infinite) linear sequences π of valuations which we call intervals. A single
valuation (which we also call state) is described by first-order predicate logic formu-
lae over static variables v and dynamic variables V . Different valuations of an inter-
val π may assign different values to the dynamic variables V . In addition, a valuation
gives values to primed variables V ′ and double-primed variables V ′′; the relation be-
tween unprimed and primed variables is interpreted as system transitions, the relation
between primed and double-primed variables as environment transitions. System and
environment transitions alternate, the value of V ′′ being equal to V in the next valua-
tion. Temporal operators, we support, include �ϕ (ϕ always holds), �ϕ (eventually ϕ
holds), ϕ until ψ, ϕ unless ψ, ◦ϕ (there is a next state which satisfies ϕ), •ϕ (if there
is a next state, it satisfies ϕ), and last (the current state is the last) with their standard
semantics. The proof method is based on a sequent calculus.

We focus on a subset of proof obligations, here: Our goal is to take an initial variable
condition I , a system S, a configuration C, and a temporal property ϕ and to prove that
S,C, I � ϕ. In other words, all runs of system S which satisfy C and I in its initial
state must satisfy ϕ. The proof method is symbolic execution with induction. In the
following, we show how to symbolically execute a temporal formula ϕ, how to execute
an arbitrary system description S, and how to use induction to prove properties for
infinite system runs. In Sect. 5 we show how to apply this general proof method to the
verification of UML state machines.

2.1 Symbolic Execution

Our principle of symbolic execution is to rewrite an arbitrary temporal formula ϕ to an
equivalent formula

ϕ ↔ τ0 ∧ last ∨
∨

1≤i≤n
(τi ∧ ◦ϕi)
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where τi are formulae in first-order predicate logic. Either the system represented
by ϕ terminates with condition τ0, or one of n possible transitions τi is executed and
execution continues with ϕi in the next step. As an example, consider rewrite rule

(alw) �ϕ ↔ ϕ ∧ •�ϕ

which unwinds an always operator such that ϕ must hold now and always in the future.
Our calculus provides rewrite rules to similarly unwind all of the temporal operators.
By unwinding the single temporal operators with these rules, it is possible to rewrite
arbitrary temporal formulae to receive an equivalent formula of the form stated above.
Details can be found in [2].

2.2 Executing System Descriptions

We apply the same strategy of symbolic execution to almost arbitrary system descrip-
tions S which describe the operational behaviour of systems as follows: a function
exec(S,C) is implemented which returns the possible transitions τ with configurations
C0 for the next state. This function can be used in the rule (to be read bottom-up)

(execute)
{τ ∧ ◦(S ∧ C0), I � ϕ | 〈τ, C0〉 ∈ exec(S,C)}

S,C, I � ϕ

to execute a system S in configuration C. The transition τ relates variable condition
I to the variable condition in the next state. We use the execute rule to integrate UML
state machines into our formalism (see Sect. 5). An implementation for exec(S,C) is
rather straightforward if the operational semantics of S is formally defined. The rule
(execute) is sound if implementation of exec(S,C) is sound.

This approach avoids the overhead in proof size, which would result if we specify
the semantics of UML within our logic. In this case, we would need several basic rules
to execute a single state machine step. In our experience, application of rule (execute)
is very efficient.

2.3 Taking a Step

After system and temporal formula have been rewritten and execution does not termi-
nate, rule (step) can be applied.

(step)
S,C, I0 � ϕ

τ, ◦(S ∧ C), I � •ϕ
where I0 := (I ∧ τ)[V, V ′, V ′′/v0, v1, V ]

Condition I0 in the next state is received by replacing in the original I and transition
τ all unprimed and primed dynamic variables V and V ′ with fresh static variables v0
and v1, the double-primed variables V ′′ correspond to the unprimed variables in the
next state. In addition, the leading operators ◦ and • are eliminated. Symbolic execution
continues in the next state.
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2.4 Induction

Symbolic execution needs not to terminate. Therefore, we use noetherian induction over
a supplied induction term T

(ind)
Γ, T = n,�(T < n → (

∧
Γ → ∨Δ)) � Δ

Γ � Δ

The fresh static variable n is assigned to the initial value of T . Always, if the value of
T is less than the initial value n, the induction hypothesis

∧
Γ → ∨Δ can be applied.

This general induction principle can be applied to prove arbitrary temporal properties.
Special derived rules are defined to prove certain temporal properties without induction
term. A derived rule for proving safety properties is as follows.

(ind alw)
Γ, •(
∧

Γ → ∨Δ) until ¬ϕ � Δ

Γ � �ϕ,Δ

Formula �ϕ in the succedent corresponds to a liveness condition �¬ϕ in the an-
tecedent and therefore the induction is performed over the number of steps it takes to
satisfy ¬ϕ. Special rules without induction terms can be given for all safety properties;
a term T must only be provided to establish liveness conditions.

2.5 Sequencing

Executing concurrent systems is costly, because in every step typically a number of
nondeterministic transitions can be executed leading to large proofs. However, execut-
ing several transitions often leads to the same state, no matter in which order they are
executed. In this case, an extended sequent rule

(seq)
Γ, ρ1 ∨ ρ2 � Δ

Γ, ρ1 � Δ Γ, ρ2 � Δ

can be applied which contains two conclusions to contract two proof obligations with
the same temporal formulae. Additional predicate logical formulae ρ1 and ρ2 are com-
bined as disjunction. This approach leads to proof graphs instead of proof trees and
works best, if automatic simplification is able to significantly reduce ρ1 ∨ρ2. An exam-
ple proof graph can be found in Fig. 4.

3 UML State Machines: An Example

We use a simple UML model of an automatic teller machine (ATM), shown in Fig. 1,
as our running example: The class diagram in Fig. 1(a) specifies an (active) class Bank.
Classes define attributes, i.e., local variables of its instances, and operations and signals
that may be invoked on instances by call and send actions, respectively. Additionally,
invariants restrict the state space of class instances.
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The state machine for class Bank is shown in Fig. 1(b), consisting of states and
transitions between states (we number the states for short reference later on). States
can be simple (such as Idle and PINCorrect) or composite (such as Verifying); a con-
current composite state contains several orthogonal regions, separated by dashed lines.
Moreover, fork and join (pseudo-)states, shown as bars, synchronize several transitions
to and from orthogonal regions; junction (pseudo-)states, represented as filled circles,
chain together multiple transitions. Transitions between states are triggered by events.
Transitions may also be guarded by conditions and specify actions to be executed or
events to be emitted when the transition is fired. For example, the transition leading
from state Idle to the fork pseudostate requires signal verifyPIN to be present; the tran-
sition branch from VerifyingCard to CardValid requires the guard cardValid to be true;
the transition branches from CardValid to Idle set the Bank attributes tries and cardValid.
Events may also be emitted by entry and exit actions that are executed when a state is
activated or deactivated. Transitions without an explicit trigger (e.g. the transition leav-
ing DispenseMoney), are called completion transitions and are triggered by completion
events which are emitted when a state completes all its internal activities.

«signal» done
«signal» verifyPIN

inv: maxTries >= 0
Bank

boolean cardValid
boolean PINValid
int tries = 0
int maxTries

(a) Class diagram

CardValidVerifyingCard

VerifyingPIN

PINIncorrect

entry / tries = 0

PINCorrect

Idle DispenseMoney

[else]

[cardValid]

Verifying

[tries < maxTries] / tries++

[else] / cardValid = falseverifyPIN

done

[else]

[PINValid]

0

2

1

8

3

4

5

6

7

(b) State machine diagram SC Bank for class Bank

Fig. 1. UML model of an ATM
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The actual state of a state machine is given by its active state configuration and by
the contents of its event queue. The active state configuration is the tree of active states;
in particular, for every active concurrent composite state each of its orthogonal regions
is active. The event queue holds the events that have not yet been handled. The event
dispatcher dequeues the first event from the queue; the event is then processed in a
run-to-completion (RTC) step. First, a maximally consistent set of enabled transitions
is chosen: a transition is enabled if all of its source states are contained in the active
state configuration, if its trigger is matched by the current event, and if its guard is
true; two enabled transitions are consistent if they do not share a source state. For each
transition in the set, its least common ancestor (LCA) is determined, i.e. the lowest
composite state that contains all the transition’s source and target states. The transition’s
main source state, that is the direct substate of the LCA containing the source states, is
deactivated, the transition’s actions are executed, and its target states are activated.

The example state machine simulates card and PIN validation of a bank computer.
After initialization the bank computer is in state Idle. The reception of signal done leads
to finalizing the state machine, whereas on reception of signal verifyPIN the verification
process is started in state Verifying. If the card is invalid, the bank computer immediately
returns to state Idle. If the PIN is invalid, it is checked whether the maximum number of
trials is exceeded. If this is the case, the card is marked invalid; otherwise the number of
trials is incremented by one. In both cases, the bank computer returns to state Idle. If the
PIN is valid, the number of trials is reset to zero. If both the PIN and the card are valid,
state DispenseMoney is entered from which the bank computer returns to state Idle.

4 Semantics of UML State Machines

The semantics of UML state machines is defined by an execution algorithm. This algo-
rithm forms the basis for embedding UML state machines into temporal logic and, in
particular, the symbolic execution technique. Our semantical account of UML state ma-
chines follows the semantics definition of the UML 1.5 specification [14] as closely as
possible, but fills in some of the gaps of the specification. We take up the ideas presented
by Lilius and Porres [11]; however, we use a simplified notion of compound transitions
and correct the definition of maximally consistent sets of compound transitions.

We first define the abstract syntax of the sublanguage of UML state machines from
the UML specification [14] for which our semantics is valid. Apart from those language
constructs which we do not discuss here (i.e. history, sync, and choice pseudostates, call
and deferred events, and internal transitions), this definition introduces the following
restriction: A transition from an initial pseudostate must target a non-pseudostate con-
tained in the same composite state as the initial pseudostate. Abandoning this restriction
would lead to a more intricate definition of compound transitions, which, however, has
no relevance in most practical applications.

The semantics of UML state machines is defined in two steps: First, we describe a
procedure for statically computing the configurations and the compound transitions of a
state machine. Due to our syntactical restriction, compound transitions are trees of state
machine transitions (describing the chaining of junctions, forks, and entries of states)
with a possible fan-in prefix (describing joins) that represent a move from a configura-
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tion into another configuration. Second, we define an algorithm for run-to-completion
steps which first computes a maximally consistent set of compound transitions for a
given event and then executes the set of compound transitions.

4.1 Abstract Syntax of UML State Machines

We assume an expression language Exp that at least includes boolean expressions (like
true, false, e1 ∧ e2, etc.) and an action language Act that at least includes a skip state-
ment, and sequential (;) and parallel (‖) composition of statements. Furthermore, we
assume a set of events Event which includes ∗ denoting a completion event.

A state s has a kind kind(s) ∈ {initial, final, simple, composite, concurrent, junction,
join, fork}, an entry action entry(s) ∈ Act , and an exit action exit(s) ∈ Act . A
pseudostate is a state s with kind(s) ∈ {initial, junction, join, fork}; we require that
entry(s) = skip and exit(s) = skip for each pseudostate s. A composite state is a
state s with kind(s) ∈ {composite, concurrent}.

A state hierarchy is given by a tree (S,E) where S is a finite set of states and
E ⊆ S × S a non-empty substate relation such that the constraints below are satisfied.
We write substates(s) = {s′ ∈ S | (s, s′) ∈ E} for the substates of state s:

1. If substates(s) �= ∅ then kind(s) ∈ {composite, concurrent}.
2. If kind(s) = concurrent then #substates(s) ≥ 2 and kind(s′) = composite for all

s′ ∈ substates(s).
3. If kind(s) = composite then #{s ∈ substates(s) | kind(s′) = initial} ≤ 1.

We further write container(s) for the container state of state s if s is not the root state;
substates+(s) = {s′ ∈ S | (s, s′) ∈ E+} and substates∗(s) = substates+(s) ∪ {s}
denote the set of (reflexive) transitive substates of s; and initial(s) is the initial state
contained in the composite state s if it exists. The least common ancestor of a set of
states M ⊆ S not containing the root state, denoted by lca(M), is the least composite
state c w.r.t. E such that M ⊆ substates+(c); the least common reflexive ancestor of
M ⊆ S, written lca=(M), is the least state s w.r.t. E such that M ⊆ substates∗(s).

Given a state hierarchy H = (S,E), a transition t over H has a source state
source(t) ∈ S, a target state target(t) ∈ S, a triggering event trigger(t) ∈ Event ,
a guard expression guard(t) ∈ Exp, and an effect action effect(t) ∈ Act , such that the
following constraints are satisfied:

1. kind(source(t)) �= final and kind(target(t)) �= initial.
2. If kind(source(t)) ∈ {initial, fork} then target(t) is not a pseudostate.
3. If kind(source(t)) = initial then container(target(t)) = container(source(t)).
4. If kind(target(t)) = join then source(t) is not a pseudostate.
5. If kind(source(t)) = composite then kind(container(source(t))) �= concurrent.
6. If kind(target(t)) = composite then kind(container(target(t))) �= concurrent.
7. If kind(source(t)) ∈ {initial, fork, join} then guard(t) = true.
8. If kind(target(t)) = join then guard(t) = true.
9. If kind(source(t)) = initial then effect(t) = skip.

10. If source(t) is a pseudostate, then trigger(t) = ∗.
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A state machine (for a class C) is given by a pair (H,T ) where H = (S,E) is a
state hierarchy and T a finite set of transitions over H such that the constraints below
are satisfied for all t ∈ T . We write outgoings(s) for the set {t ∈ T | source(t) = s};
incomings(s) for the set {t ∈ T | target(t) = s}; sources(M) for the set {source(t) |
t ∈ M}; and targets(M) for the set {target(t) | t ∈ M}:

1. If kind(s) = initial then #outgoings(s) = 1.
2. If kind(s) = junction then #incomings(s) = 1 and #outgoings(s) ≥ 1.
3. If kind(s) = fork then #incomings(s) = 1 and #outgoings(s) ≥ 2.
4. If kind(s) = fork then there is an s′ ∈ S with kind(s′) = concurrent such that

targets(outgoings(s)) ⊆ substates+(s′) \ substates(s′) and the following holds:
if t, t′ ∈ outgoings(s) such that {target(t), target(t′)} ⊆ substates+(s′′) for
some s′′ ∈ substates+(s′) then t = t′.

5. If kind(s) = join then conditions (3) and (4) hold likewise with replacing target
by source and outgoings by incomings .

Conditions (4) and (5) require forks and joins to come from and go to different
orthogonal regions of a concurrent composite state.

4.2 Configurations and Compound Transitions

The configurations of a state machine ((S,E), T ) are given by the smallest subsets C
of S that satisfy the following conditions:

1. The root state of S is in C.
2. No state s ∈ C is a pseudostate.
3. If kind(s) = composite then there is a single s′ ∈ C such that container(s′) = s.
4. If kind(s) = concurrent then all states s′ ∈ S with container(s′) = s are in C.

In particular, composite states are or-states, concurrent states are and-states.
The compound transitions of a state machine ((S,E), T ) represent semantically

complete transition paths that originate from a set of non-pseudostates and target a set
of simple states. More precisely, a compound transition consists of three parts: The op-
tional tail part of a compound transition may have multiple transitions in T originating
from a set of mutually orthogonal regions that are joined by a join pseudostate. The
middle part of a compound transition is a finite chain of transitions in T joined via
junction pseudostates. Finally, the optional head part of a compound transition is a tree
of transitions in T : If a transition in the middle part of a compound transition or in its
head part itself targets a composite state the head part continues at the initial state of
this composite transition; if a transition targets a concurrent composite state the head
part continues at all initial states of the orthogonal regions of the concurrent composite
state; if a transition targets a fork pseudostate the head part continues with the transi-
tions outgoing from the fork pseudostate which target mutually orthogonal regions and
simultaneously continues at the initial states of all those orthogonal regions that are not
targeted by transitions outgoing from the fork pseudostate.

In the ATM example, the compound transitions outgoing from VerifyingCard just
consist of middle parts:
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〈{}, 〈VerifyingCard → junction, junction → Idle〉, {}〉,
〈{}, 〈VerifyingCard → junction, junction → CardValid〉, {}〉.

The fork transition from Idle consists of a middle part and a tail part:

〈{}, 〈Idle → fork〉, {〈fork → VerifyingCard〉, 〈fork → VerifyingPIN〉}〉 .

The join transition to DispenseMoney consists of a head part and a middle part:

〈{〈CardValid → join〉, 〈PINCorrect → join〉}, 〈join → DispenseMoney〉, {}〉 .

The algorithm for computing the compound transitions outgoing from a non-pseu-
dostate in S of a state machine ((S,E), T ) relies on a procedure that computes the
middle and head parts of compound transitions, also called forward trees, outgoing
from an arbitrary state in S; the details of the algorithms can be found in [8]. Note
that our definition of compound transitions deviates from the explanations in the UML
specification [14]. There, compound transitions are not required to target simple states
only, but may as well stop at composite states. The proper initialization of composite
and concurrent composite states is left to the entry procedure for composite states.

The notions of source states, target states, trigger, guard, and effect are transferred
from transitions to compound transitions in the following way: The source states of
a compound transition τ , written sources(τ), are the source states of the transitions
in the tail part of τ , if τ shows a tail part, and the source state of the middle part,
otherwise. Analogously, the target states of τ , written targets(τ), are the target states
of the transitions in the head part of τ , if τ shows a head part, and the target state of the
middle part, otherwise. The trigger of τ is the set of triggers of the transitions in the tail
part of τ , if τ shows a tail part, and the trigger of the first transition in the middle part
otherwise. The guard of τ is the conjunction of all guards of transitions in τ . Finally,
the effect of τ is the sequential composition of the effects of the tail, the middle, and
the head part of τ , where the effects in the tail and the head are conjoined in parallel
whereas the effects in the middle part are composed sequentially. These definitions are
naturally extended to sets of compound transitions which show the same trigger.

We recall some notions on compound transitions τ from the UML specification
that will be used for the definition of the execution semantics of state machines, in
particular, when computing maximally conflict free sets of compound transitions in a
given configuration C: The main source state of τ , mainSource(τ), is given by the
state s = lca(lca=(sources(τ)), lca=(targets(τ))) if kind(s) = concurrent, and it is
given by the state s′ ∈ substates(s) with lca=(sources(τ)) ∈ substates∗(s′), oth-
erwise. The main target state of τ , mainTarget(τ) is defined analogously, but ex-
changing sources(τ) and targets(τ). The set of states exited by τ in configuration C,
exited(C, τ), consists of substates∗(mainSource(τ))∩C. The set of states entered by
τ in configuration C, entered(τ), is substates∗(mainTarget(τ))∩C. Again, the defi-
nitions for entered and exited are naturally extended to sets of compound transitions.

Two compound transitions τ1 and τ2 are in conflict in configuration C, written τ1 �C

τ2, if exited(C, τ1) ∩ exited(C, τ2) �= ∅; more generally, a compound transition τ is
in conflict with a set of compound transitions T in configuration C, written τ �C T , if
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τ �C τ ′ for some τ ′ ∈ T . If τ1 �C τ2 let S1 and S2 be the sets of states in sources(τ1)
and sources(τ2), resp., that show the maximal numerical distance from the root state
of (S,E); τ1 is prioritized over τ2 in configuration C, written τ1 ≺C τ2, if S1 ⊆
substates+(S2). Again, τ ≺C T for a compound transition τ and a set of compound
transitions T in configuration C if τ ≺C τ ′ for some τ ′ ∈ T .

4.3 Run-to-Completion Semantics

The execution semantics of a UML state machine is described in the UML specification
as a sequence of run-to-completion steps. Each such step is a move from a configuration
of the state machine to another configuration. The sequence of steps starts in the initial
configuration of the state machine, i.e., the configuration that is targeted by the forward
tree outgoing from the initial state of the root state of the state hierarchy. In a run-to-
completion step from some configuration, first, an event is fetched from the event queue.
Second, a maximally consistent set of enabled compound transitions outgoing from the
states of the current configuration and whose guards are satisfied is chosen. If such a
set, called a step, exists, all its compound transitions are fired simultaneously: First, all
states that are exited by the step are deactivated in an inside-out manner, executing the
exit actions of these states; each such that is marked to be not completed, as it is not
part of the configuration any more. Second, the gathered effect of the step is executed.
Third, all states entered by the step are activated in an outside-in manner, executing the
entry actions of these states. Furthermore, after executing the entry action of a state this
state is marked as complete, i.e. a completion event for this state is generated.

More formally, let ((S,E), T ) be a state machine. We assume a structure of en-
vironments η for state machines that provides the following primitive operations: An
event can be fetched by fetch(η); the completion of a state s can be recorded by
complete(η, s); the revocation of a state s from being completed can be recorded by
uncomplete(η, s); a statement a can be executed by exec(η, a); given a configu-
ration C and an event e all compound transitions of ((S,E), T ) that are triggered by
e can be computed by enabled(η, C, e); and, finally, the validity of an expression g
can be checked by η |= g. The enabledness of compound transitions in a configuration
C by an event e is indeed solely defined on the basis of the triggers of compound tran-
sitions and thus only involves the completed states that have been previously recorded
with the environment. The fireable sets of compound transitions, which are maximally
consistent sets of enabled compound transitions are computed by the steps algorithm
in Fig. 2(a). The execution of a state machine in some configuration and some environ-
ment is defined by the RTC algorithm in Fig. 2(b) which uses the algorithm for firing a
compound transitions step in Fig. 2(c).

5 Embedding of UML State Machines

Our goal is to make use of symbolic execution as interactive proof method for UML
state machines. Embedding state machines into our temporal framework of Sect. 2 re-
quires first to define state machines as temporal formulae and to extend our calculus
with rules for their symbolic execution.
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steps(env, conf, event) ≡
transitions ← enabled(env, conf, event)
{step | 〈guard, step〉 ∈ steps(conf, transitions) ∧ env |= guard}

steps(conf, transitions) ≡
steps ← {〈false, ∅〉}
for transition ∈ transitions do

for 〈guard, step〉 ∈ steps(transitions \ {transition}) do
if transition �conf step

then if transition ≺conf step
then guard ← guard ∧ ¬ guard(transition) fi

else step ← step ∪ {transition}
guard ← guard ∧ guard(transition) fi

steps ← steps ∪ {〈guard, step〉} od od
steps

(a) Transition selection algorithm

RTC(env, conf) ≡
〈event, env〉 ← fetch(env)
steps ← steps(env, conf, event)
if steps 
= ∅

then choose step ∈ steps
〈env, conf〉 ← fire(env, conf, step) fi

〈env, conf〉
(b) Run-to-completion step algorithm

fire(env, conf, step) ≡
for state ∈ insideOut(exited(conf, step)) do

env ← exec(env, exit(state))
conf ← conf \ {state}
env ← uncomplete(env, state) od

env ← exec(env, effect(step))
for state ∈ outsideIn(entered(conf, step)) do

env ← exec(env, entry(state))
conf ← conf ∪ {state}
env ← complete(env, state) od

〈env, conf〉
(c) Transition firing algorithm

Fig. 2. State machine execution algorithms

State machines ((S,E), T ) are embedded into the temporal logic as a special for-
mula [((S,E), T )] with the following semantics:

π |= [((S,E), T )] iff π is a valid trace of ((S,E), T )

for sequences of valuations π. The definition of a valid trace is not given here, as it is
straightforward to derive from the definition of a single step as was defined in Sect. 4.
A state machine configuration is a formula conf which represents the active states: for
each state, a corresponding dynamic boolean variable is true if and only if the state is
part of the current active state configuration of the state machine. Attributes and the
event queue are represented as algebraic datatypes.

To define the calculus, we implement the function exec of rule (execute), which we
described in Sect. 2.2, by setting

exec([((S,E), T )], conf) = {〈guard ∧ 〈action〉DLV
′ = V, [((S,E), T )] ∧ conf0〉 |

〈guard, step〉 ∈ steps(conf, enabled(T )),
〈action, conf0〉 = fireaction(conf, step)} .
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Fig. 3. Tool chain to translate UML models into KIV

Function exec provides configuration conf and the enabled transitions in T to the
function steps of Fig. 2(a) which returns pairs of possible steps step and their corre-
sponding guards guard. The function enabled uses the head element of the event queue
as the current triggering event. We cannot use function fire of Fig. 2(c) to execute step
as we cannot provide an explicit environment env . Therefore, we define a similar func-
tion fireaction which returns instead of a modified environment an action action which
combines all of the environment updates as a sequential program. The guard, the ac-
tion and the modified configuration conf0 are combined to form the result of exec. (The
special formula 〈action〉DLV

′ = V of Dynamic Logic (DL [6]) takes the unprimed val-
ues of variables V as input to action, modifies the unprimed variables according to
the sequential program and uses the modified variables to evaluate formula V ′ = V .
This formula is used to “copy” the new values of the unprimed variables to the primed
variables V ′.)

This algorithm can be further optimized to ensure that the number of steps which
are returned by steps is as small as possible: the context formulae which represent
the symbolic environment can be used to automatically simplify guards, and the state
hierarchy is exploited to faster detect transition priorities.

We implemented the calculus described above in the interactive verifier KIV. To
complete the integration, we use a standard UML modelling tool (e.g. ArgoUML [1])
to draw state machines, and translate the resulting XMI-files to KIV with the model
translator Hugo/RT [9]. The complete tool chain is shown in Fig. 3. This translation is
fully automatic.

6 An Example Proof

The proof method for UML state machines is very simple: we repeatedly execute steps
and test whether we have already encountered the current active state configuration
earlier in the proof; in this case, we have executed a cycle and the current goal can be
closed with an inductive argument.

As example proof we show for state machine SC Bank that the state DispenseMoney
can only be entered, if tries ≤ max-tries and PINValid is true. So the property to show is

(prop) �(DispenseMoney → tries ≤ maxTries ∧ PINValid) .

With initial state machine configuration C ≡ Idle and variable condition I ≡ tries =
0 ∧ maxTries ≥ 0 the proof obligation is

(init) [SC Bank], Idle, tries = 0 ∧ maxTries ≥ 0 � (prop) .
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Fig. 4. Proof graph for the example proof

As precondition, we assume that the state machine SC Bank of Fig. 1 is in state Idle
and the initial conditions of the class diagram hold. The event queue is unspecified;
we make no demands on the events in the initial queue and the queue of the following
steps. In other words, the environment behaves arbitrarily. Note that the safety property
of (prop) is trivially true for all states with ¬DispenseMoney.

The complete proof is shown in Fig. 4. To demonstrate our proof scheme we explain
only the highlighted path. This exemplary run corresponds to the main use case scenario
of the automatic teller machine. All other runs of the state machine can be shown fol-
lowing the same pattern. For better understanding of the proof graph, we denoted the
nodes with the numbers of the actual states. The state numbers can be found in the state
machine diagram (see Fig. 1).

The state machine will always return to state Idle (1). To apply our induction scheme,
we must choose an appropriate invariant, because the variable tries may increase in each
cycle. We use

(inv) CardValid → tries ≤ maxTries

which can be easily shown with (init). This invariant is preserved in each cycle. Then,
to use the current sequent later as induction hypothesis, the rule (ind alw) is applied.

Now we can apply the rule execute to advance one step in our state machine:

(a) done ∧ 〈skip〉DL · · · ∧ ◦([SC Bank] ∧ Finalized), (inv) � (prop)
(b) verifyPIN ∧ 〈skip〉DL · · · ∧ ◦([SC Bank]∧

Verifying ∧ VerifyingCard ∧ VerifyingPIN), (inv) � (prop)
(c) ¬(verifyPIN ∧ done) ∧ 〈skip〉DL · · · ∧ ◦([SC Bank] ∧ Idle), (inv) � (prop)

[SC Bank], Idle, (inv) � (prop)

The lowest node in the proof graph (Fig. 4) depicts the application of this rule.
As expected from the state machine diagram, we get three premises: Either the state
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machine is finalized (2) with the event done (premise (a)) or the transition to state
Verifying (3+4) is taken with event verifyPIN (premise (b)) or the state machine remains
in state Idle (1) with any other event (premise (c)). In all cases the action is skip and
a special formula (omitted) assigns the values of all unprimed variables to their primed
complement. Premise (a) terminates and the proof is complete, premise (c) loops and
induction is applied. The only nontrivial case is premise (b). After simplification and
application of rule (step) we receive

[SC Bank], Verifying ∧ VerifyingCard ∧ VerifyingPIN, (inv) � (prop) .

The new active states are Verifying and its substates VerifyingCard (4) and
VerifyingPIN (3) and (inv) is preserved. Symbolic execution continues with the next step
where we receive four different states for each possible transition and one
state if no transition is enabled. We focus on the state Verifying, VerifyingCard (4) and
PINCorrect (6). This transition is only taken, if the attribute PINValid is true, so we can
assume PINValid to be true for the following steps. Like before, we invoke the next step.
One of the next states is Verifying, CardValid (7) and PINCorrect (6). This transition is
only possible if the attribute CardValid is true and due to the invariant we can conclude
that tries ≤ maxTries. The same state is also reachable by first entering CardValid (7)
and then entering PINCorrect (6). Both cases can be merged by sequencing, so there
is only one open goal. From this state we reach DispenseMoney (8). Because we have
shown PINValid and tries ≤ maxTries in the previous two steps property (prop) holds
in this state. The next step leads again to the state Idle (1), where we use the induction
hypothesis and close the current goal.

This proof scheme can be further automated. Our goal is to adapt the heuristics, so
that the only user interaction is the specification of an adequate invariant.

7 Conclusion

We have demonstrated how to integrate UML state machines into a proof method to in-
teractively verify temporal properties of state machines. As a first step, we have defined
a formal semantics of UML state machines and derived a proof rule for their symbolic
execution. As can be seen in the example, the resulting proofs are very intuitive as they
follow the different possible system runs. However, only small examples have been
tackled so far.

Symbolic execution in general turns out to be a very intuitive approach not only
to the verification of sequential programs but also to the construction of proofs for
concurrent systems, with the potential to dispel the prejudice that interactive proofs
in temporal logic are difficult. Proof rules for the execution of (most of) the temporal
operators are invertible ensuring that the calculus can be automated to a large extent. A
generic induction principle can be used to establish both safety and liveness properties.
Sequencing is used to avoid exponential growth of proof trees for nondeterministic
systems. A strategy to automatically apply sequencing is the key to efficiently use the
approach for larger case studies. As has been demonstrated with the integration of UML
state machines, proof rules for the symbolic execution of different formalisms can be
implemented, provided that a formal operational semantics is defined.
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Next steps are to further automate proofs, especially to automate sequencing, and
to look into compositional proofs. We expect that proofs like the one in Sect. 6 require
the invariant as the only user interaction. Very important for the future is to gain more
experience in larger case studies.
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