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9.1 INTRODUCTION

UML interactions describe possible message exchanges between system instances.
The UML 2 [45] offers a powerful interaction language, which, besides integrating
such standard operations as sequential, parallel, and iterative composition of inter-
actions, provides means to specify recursive and negative behavior (i.e., behavior
forbidden in system implementations).

The current UML 2 language for interactions is a complete overhaul of the interac-
tionlanguage of earlier versions. The UML 1 dialect was, on the one hand, based on the
interaction diagrams of OOSE’s [31], on the abstract, visual programming languages
used by Fusion [13] and Syntropy [15], and also on ITU’s message sequence charts
(MSCs [30]). On the other hand, in the form of collaborations, it was also enriched
with notions from role modeling in OORam [2]. Quite some effort has been spent
on providing UML 1 sequence and collaboration diagrams with a formal semantics
(see, e.g., [19,21,34,47]), thus making them amenable for use in formally based soft-
ware development. However, it was realized that the language showed some defects
in expressivity for more complex software engineering purposes, in particular with
respect to modular modeling, describing alternatives, and combining interactions in
different ways.

The UML 2 interaction language countered the deficiencies in expressivity of
its previous version by incorporating and adapting many constructs of MSCs [30].
Additionally, means were introduced for distinguishing behavior that an implement-
ing system should show and behavior that the system must not show, which was
inspired by live sequence charts (LSCs [16]) and from software testing notions
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and notations [54]. The increase in expressivity, and also in complexity, of the
UML 2 interaction language spurred new efforts in providing it with a formal seman-
tics [12,20,23,36,39,40,43,49,50]. In particular, the division of behaviors into being
positive or valid for a system, negative or invalid, and finally, being inconclusive if itis
neither positive nor negative, has received much attention. All these types of behavior
are described by a single interaction, but it has not been clear how the different types
are to be combined and how they interact [12,36,49].

In the present chapter we provide and discuss the formal semantics for UML 2
interactions following the UML specification [45] as closely as possible and also inte-
grating the existing research results on the semantics of interactions. First, an
interleaved, trace-based, denotational semantics is detailed which is built in several
steps. The presentation starts from simple, basic interactions that are similar to what
was present in UML 1. It is then extended by considering different message types,
executions, combinations of interactions, and constraints. Finally, high-level interac-
tions are integrated. A discussion of some alternative proposals to a formal semantics
follows. In particular, an operational approach and a truly concurrent approach with
event structures are considered. UML 2 interactions are related briefly with MSCs
and LSCs. Finally, an overview of some notions of implementation and refinement
of interactions and their role in verification and animation are given.

9.2 TRACE-BASED SEMANTICS

A trace-based formal semantics for UML 2 interactions is developed. According to
the UML 2 specification document, an interaction describes valid (or positive) and
invalid (or negative) traces of event occurrences. The union of the two sets of valid and
invalid traces need not cover the entire universe of traces. A trace that is neither valid
nor invalid for an interaction is said to be inconclusive for the interaction. Moreover,
the semantics that we propose allows traces that are both valid and invalid for the
same interaction. Hence, our semantics is based on a four-valued logic.

In developing the semantics, we proceed in a step-by-step manner, beginning with
the core language constructs for describing basic interactions and then moving on
to different communication types, combined fragments (including negation), con-
straints, and high-level interactions. For a start, however, in the following subsection
we give a brief review of some mathematical concepts necessary to define appropriate
semantic domains.

9.2.1 Pomsets

The formal semantics that we propose for UML 2 interactions employs partially
ordered, labeled multisets which were introduced by Pratt [48] for modeling
concurrency.

A labeled partial order (abbreviated 1po) (X, <x, Ax) consists of a set X, a partial
order <y on X (i.e., a relation on X that is reflexive, antisymmetric, and transitive),
and a labeling function Ax on X. An isomorphism between two Ipos (X, <x,Ax)
and (Y, <y, Ay) is a one-to-one mapping ¢ from X onto ¥ which is monotonic with
respect to <y and <y, whose inverse mapping is also monotonic and which is label
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preserving [i.e., Ax(x) = Ay(p(x)) for all x € X]. A partially ordered, labeled multiset,
or pomset is the isomorphism class of an lpo, denoted [(X, <x, Ax)].

A pomset p is said to be finite if for some (and hence, for all) (X, <x,Ax) € p the
basic set X is finite. A pomset p = [(X, <x,Ax)] is said to be finitary if for all x € X
the set {x’ € X | x’ <x x} is finite. A pomset p is said to be linear or a trace if for some
(X, <x,Ax) €p the ordering <y is total on X. Let 3¢ be a binary, symmetric relation
on labels. A pomset p = [(X, <x, Ax)] is said to be s<-linear if it holds that Vx;, x; € X.
Ax(x)) 32 Ax(x2) = x1 <x x2 Vx3 <x x1. A pomset g is said to be an extension of
a pomset p if there are two representatives (X, <y,Ay) € p and (¥, <y,Ay) € g such
that X =Y and <x C <y and Ax =Ay. A pomset g is said to be a linearization of
a pomset p if g is a linear extension of p. A pomset q is said to be a ¢-linearization
of a pomset p if g is a 3<-linear extension of p. The set of all linearizations or
s¢-linearizations of p is denoted by p} and p 3|, respectively. A function f that maps
labels to labels is lifted to pomsets by defining f([(X, <x, Ax)]) = [(X, <x.f o Ax)].
Given a pomset p =[(X, <x,Ax)] and a Boolean predicate 7 on labels, we define
the restriction of p with respect to & by plrn =[(X’, <x N (X’ x X'), Ax[X’)] with
X' ={x € X|z(Ax(x))}.

The empty pomset, represented by (@, @, @), is denoted by &. Let p = [(X, <x, Ax)]
and ¢ =[(Y, <y, Ay)] be pomsets such that X N Y =@. The concurrence of p and g,
written as p | g, is given by [(XUY, <xU<y,Ax UXy)]. The concatenation of p
and g, written as p; g, is given by [XUY,<xU<yU(X x Y),AxUAy)]. Given a
binary, symmetric relation 3¢ on labels, the s¢-concatenation of p and g, written as p;
g, isgivenby [(XUY,(Sx U<y U{(x,y) €X x Y | Ax(x) 3= Ay()D*,Ax UAy)]. Itis
easy to ascertain that these definitions do not depend on the choice of representatives.
Note that concatenation and 3<-concatenation are associative, and concurrence is
associative and commutative.

A process is a set of pomsets. An n-ary function f that maps pomsets to pomsets
is lifted to processes P4y, ..., P, by defining

fP....P)={f(p1,....Pn)P1 €P1,...,Pn € Py}

(e.g., P13 Py={p; 5 p2|p1 € P} Apy € P;}). For an n-ary function f that maps
pomsets to processes, the image elements of the lifting of f are “flat-
tened” [i.e., f(P1,...,Pn)= U ®1,.--,Pn)lP1 €P1,...,pn € P,}]. For instance,
Pl = U{pl|Ip € P}. Furthermore, we define the n-fold s<-iteration of a process P,
written P, as follows: P = {¢} and P"tD) = P 3 p®,

9.2.2 Core Language

9.2.2.1 Basic Interactions The sample basic interaction ex1 in Figure 9.1(a)
specifies two instances x and y, which exchange messages a and b. The dispatch of a
message (depicted by the arrow tail) and the arrival of a message (arrowhead) on the
lifeline of an instance (dashed line) are called event occurrences or, more precisely,
message event occurrences. The pictorial representation of a basic interaction carries
the intuitive meaning of a partially ordered set of event occurrences: The dispatch of
a message occurs before the arrival of the same message, and the event occurrences



208 INTERACTIONS

7]
Q
o
>
-

- x
bed
=
<

sd ex1 J
=] ]

o0
BIR
x| |2
N
S (R
=<

%

X

-
- <

sd ex3 J

I i ia

1 —
—— M e L8
i b P b | |t b
1] 1 @-I l-@ |. 1 1 ]
P I P P el

@) (b) ©) @

FIGURE 9.1 Basic interaction diagram (a), with labeled event occurrences (b), with an
- additional general ordering (c), and with lost and found messages (d).

on the lifeline of an instance are ordered from top to bottom. Thus, if we symbolize
the dispatch of a from x by 1, the arrival of a at y by 2, the dispatch of b from x by 3,
and the arrival of b at y by 4 [see Figure 9.1(b)], the interaction ex1 defines two valid
traces: 1234 and 1324. All other traces are inconclusive for this interaction.
Additional ordering relations between event occurrences can be specified by means
of general orderings. Interaction ex2, shown in Figure 9.1(c), is essentially equal to
interaction ex1, except that a general ordering is added (depicted by a dotted line with
an arrowhead placed somewhere in the middle of the dotted line). The general ordering
in ex2 specifies that the arrival of message a has to occur before the dispatch of message
b. Hence, only the trace 1234 remains valid for interaction ex2, whereas the trace 1324
is inconclusive. Finally, messages can get lost (depicted by a small black circle at the
arrow end of the lost message) and messages can also be found (depicted by a small
black circle at the arrow tail of the found message) [see Figure 9.1(d)]. We interpret
a found message as a message whose origin lies outside the scope of the description.

9.2.2.2 Metamodel Figure9.2 shows the fragment of the UML 2 metamodel that
comprises the core language constructs for describing basic interactions. Metaclass
Interaction is a subclass both of Behavior (from BasicBehaviors) and of Interaction-
Fragment, the latter being an abstract notion of the most general interaction unit.
An Interaction owns a set of Lifelines, a set of Messages, and an ordered set of
InteractionFragments.

A Lifeline represents a system instance which participates in the Interaction.
The mechanism by means of which these system instances are specified is not
self-explanatory because it is interwoven with the concept of the context clas-
sifier of the Interaction (see BasicBehaviors::Behavior::context). Syntactically, a
Lifeline references an instance of a concrete subclass of ConnectableElement (from
InternalStructures). There are two such concrete subclasses specified in the package
CompositeStructures, namely Property and Port. We discuss only the former here:
A Property (from InternalStructures) is a specification of a set S of instances that
are owned by a containing classifier instance. In the simplest case, this “contain-
ing classifier” coincides with the context classifier of the Interaction. If the Property
concerned is multivalued (i.e., § may contain more than one instance), the Lifeline
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FIGUREY.2 Fragment of the UML 2 metamodel that comprises the core language constructs
for describing basic interactions.

may have an expression (the selector) that specifies which particular instance of S
is represented by the Lifeline. If the selector is omitted, this means that an arbitrary
representative of the multivalued Property is chosen. As already mentioned, Lifelines
are depicted by vertical dashed lines. The left Lifeline of Interaction ex1, for instance,
references a nonmultivalued Property named x which is typed by a Class named X;
see Figure 9.1(a).

A Message defines a particular communication between Lifelines of an Interaction.
A Message may, and usually does, associate two MessageEnds that are referenced
by sendEvent and receiveEvent. A MessageEnd can either be a MessageOccur-
renceSpecification or a Gate. The former specifies a message event occurrence, as
mentioned above; Gates are dealt with in Sections 9.2.4 and 9.2.6. Message has
a derived attribute messageKind whose value (complete, lost, found, or unknown)
depends on the presence or absence of the MessageEnds. If both MessageEnds are
present, messageKind is complete [see, e.g., message a in Figure 9.1(a)]. If only
sendEvent or only receiveEvent is present, messageKind has the values lost and
found, respectively [see message a (first dispatch) and message ¢ in Figure 9.1(d),
respectively]. If both MessageEnds are absent, which preferably should not occur,
then messageKind is unknown. Message has also a second attribute called mes-
sageSort, which specifies the type of communication action used to generate the
message. The present section deals with asynchronous communication only (i.e., mes-
sageSort is asynchCall or asynchSignal); synchronous communication is treated in
Section 9.2.3. A Message may specify a Connector on which the Message is sent. If
both MessageEnds of a Message are specified as MessageOccurrenceSpecifications,
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the Connector must link the ConnectableElements represented by the Lifelines that
are covered by the two MessageEnds.

An InteractionFragment is an abstract notion of the most general interaction unit.
InteractionFragment is the root class of a composite pattern (see Section 9.2.4)
and has several direct subclasses. For the time being we are interested in basic
interactions;! thus, Figure 9.2 shows only two of the direct subclasses of Interac-
tionFragment: namely, OccurrenceSpecification and Interaction. The former is an
abstract? class that specifies the occurrence of an Event. An OccurrenceSpecifica-
tion covers (lies on) exactly one Lifeline, which represents the instance where the
specified event is to occur. The order of OccurrenceSpecifications along a Lifeline is
“significant, denoting the order in which these OccurrenceSpecifications will occur”
[45, p. 491).3

As mentioned above, the semantics of Interactions is based on traces. A trace is
a sequence of event occurrences. In general, the semantics of an Interaction or an
InteractionFragment is given by a pair of sets of traces: namely, a set of valid (or
positive) traces and a set of invalid (or negative) traces. However, negative traces
are associated only with the use of negative CombinedFragments (see Section 9.2.4).
In this section as well as in Section 9.2.3, the semantics of interactions are given
solely by a set of positive traces P because the set of negative traces is always
empty.

The UML specification document [45, p. 497] describes the semantics of an
OccurrenceSpecification to be “just the trace of that single OccurrenceSpecification,”
thereby identifying an event that occurs in a (semantic) trace with its specifying (syn-
tactic) OccurrenceSpecification. Although this identification is a legitimate approach,
we prefer to consider an OccurrenceSpecification o as a syntactic unit which specifies
(an occurrence of) a semantic event e, although this “event” is not only given by the
Event that is referenced by o but also contains information about the role that o plays
in the interaction, in particular, which Lifeline [ is covered by o. Actually, e contains
the same information as o. Bearing this in mind, we declare that an OccurrenceSpec-
ification has only one trace, which consists of only one occurrence of the event e that
is specified by the OccurrenceSpecification (i.e., P = {e}).

! A basic interaction is defined as an Interaction that does not own CombinedFragments. For the purposes
of this section, however, a basic interaction is simply an Interaction whose constituent InteractionFragments
are all OccurrenceSpecifications.

2 Three class diagrams of the UML specification document [45] (the diagrams on pp. 460, 461, and 462)
treat OccurrenceSpecification as an abstract class. In contrast, the class diagram (p. 463) as well as the
specification text treat OccurrenceSpecification as a concrete class. We have decided to regard the metaclass
OccurrenceSpecification as abstract.

3The authors of the present chapter are not absolutely certain of the necessity of the order designator
at the nonnavigable end of the association between OccurrenceSpecification and Lifeline (see Figure 9.2).
In our opinion, the order designator is redundant because the order of OccurrenceSpecifications along
a Lifeline is completely specified by weak sequencing of the InteractionFragments that are owned by an
Interaction.
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The semantics of a basic interaction is specified as follows: Let I be an Interaction
that owns pairwise distinct* OccurrenceSpecifications o0y, . . ., 0, (in this order) with
positive trace sets {e1},...,{e,}, respectively. A binary, temporal relation — on
O={o;li=1,...,n}is defined such that forall i,j € {1,...,n}, 0; = o; if, and only
if, at least one of the following conditions is satisfied:

1. o0; and o; are referenced by a Message (with messageKind = complete) via
sendEvent and receiveEvent, respectively.

2. o; and o; are referenced by a GeneralOrdering via before and after, respectively.
3. 0; and o; cover the same Lifeline and i < (i.e., o; lies above 0;).

The semantics of I can then be specified as the set of all traces e;-1(1)éx-1(n) With
a permutation 7 on {1, ...,n} such that for all i,j € {1, ...,n}, 0; — oj implies that
7(i) < (). Quite evidently, such a permutation 77 can exist only if (O, — ) is adirected
acyclic graph, with emphasis on acyclic. Calling (O, —) the specification graph of
basic interaction /, we end up with the following constraint: The specification graph
of a basic interaction must not have (directed) cycles.’

9.2.2.3 Example By instantiating the metamodel, we obtain the instance dia-
gram in Figure 9.3, which is (a part of) the abstract syntax of the basic interaction ex1
in Figure 9.1(a). For reasons of readability, the model elements for message b are
omitted. We assume that the collaboration C in Figure 9.4(a) underlies® the interac-
tion ex1. Furthermore, we assume that the connector named “channel,” which is part
of C, is typed with association A of the class diagram in Figure 9.4(b).

9.2.2.4 Semantics We define a formal semantics of basic interactions by first
mapping the metamodel in Figure 9.2 to an appropriate domain of pomsets and then
defining valid traces as linearizations of these pomsets. For this purpose we assume

*In terms of object identity.

3 Note that this constraint, albeit necessary, is not specified by the UML specification document. However,
the idea of this constraint underlies several passages in the specification text, such as the following notation
instruction: “A message is shown as a line from the sender message end to the receiver message end. The
line must be such that every line fragment is either horizontal or downwards when traversed from send
event to receive event” [45, p. 493].

6 An Interaction is an emergent behavior. Emergent behavior results from the interaction of one or more
participant objects. If the participating objects are parts of a larger composite object, an emerging behavior
can be seen as indirectly describing the behavior of the container object also (cf. [45, p. 419]). In this case,
the container object serves as a (pseudo-)execution context of the emergent behavior. The question arises
from which metaclass a container object has to be selected if it is supposed to serve as a pseudoexecution
context of an interaction of system instances contained in the container object. Since the object has to be
referenced by Behavior::context it has to be selected as a BehavioredClassifier (from BasicBehaviors) Since
the object contains system instances that are represented by ConnectableElements, it has to be selected as a
StructuredClassifier (from InternalStructures). Consequently, the object must be an instance of a metaclass
which is a specialization of both BehavioredClassifier and StructuredClassifier. Metaclass Collaboration
(from Collaborations) meets these requirements.
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FIGURE 94 Underlying Collaboration C (a) of interaction ex1 and a class diagram (b)
containing an association A for the purpose of typing the Connector “channel” in C and in
Figure 9.3.

two primitive domains for instances I and messages M. Metavariables s, r, ! range
over I and m ranges over M. Using §, 7 € I ::= I | —, the domain of (message) events
E is defined as follows:

e € E::= snd(s,7,m)
| rev(s, r,m)

An event of the form snd(s, r,m) or rev(s, r, m) represents the dispatch and arrival
of a message m (with messageKind = complete) from sender instance s to receiver
instance r, respectively. An event of the form snd(s, —, m) represents the dispatch
of a message m (with messageKind = lost) from sender instance s. An event of the
form rcv(—, r, m) represents the arrival of a message m (with messageKind = found)
at receiver instance r. We define:

a:E— p0 nw:E—M
a(snd(s, 7, m)) = {s} u(snd(s,r,m)) =m
a(rev(s, r,m)) = {r} ulrev(s,r,m)) =m

If a(e) = {1}, the instance [ is said to be active for event e. Since we identify instances
with their representing lifelines, we call « the lifeline function. If instance / is active
for event e, we also say that e lies on lifeline /. We define a binary, symmetric conflict
relation 3 C E x E as follows: e; 3¢ e; if, and only if, ar(e1) N a(ez) # D. Hence, two
events are in conflict if, and only if, they lie on the same lifeline.

The domain ID comprises all finitary pomsets [(O, <¢, A0)] such thatran (Ap) CE,
with ran(Ap) denoting the range of Ap. An element o€ O of the basic set
of a representative (0, <p,Ap) of a pomset pe) denotes an occurrence of
event Ao(0). A pomset p €D is said to be locally linear if it is -linear. We define
P={peD|pislocally linear} and T={p € D| p is a trace}. Clearly, T C P C D and
¢ € T. By identifying a pomset [({0}, <(o}, A{o))] With event Afo)(0) we can regard E
as a subset of T. Given n events ey, e3,...,e, € E with n> 1, we also write the finite
tracee;;€z; ... e, as e1ey-« - ey,
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TABLE 9.1 Formal Semantics
of Basic Interactions

PI—1 : Basic — o(T)
PIBI =Bl

A pomset p € D is said to be well formed if there is n € Nand my, . .., m, € M and
515715+« ., Gny Fn) € (I x I)\ {(—, =)} such that’

p e MGy, Fr,m) |l -+ | Mg, nyma)) 3}

where M(S,7,m) is defined as follows: M(s,r, m)=snd(s,r,m);rcv(s,r,m),
M(s, —, m)=snd(s, —, m), and M(—, r,m)=rcv(—, r,m). Well-formed pomsets are
obviously finite and locally linear.

For the purpose of developing our semantics, basic interactions are given syntac-
tically by well formed pomsets. We define Basic={B € P| B is well formed} and
use B as a metavariable that ranges over Basic. The formal semantics of basic inter-
actions is given by a semantic function P[] which maps basic interactions to sets
of positive (valid) traces (see Table 9.1). As mentioned above, basic interactions do
not have negative traces.

The question remains how the metamodel in Figure 9.2 is to be mapped into the
new (syntactic) domain Basic: Let / be a basic interaction and (O, —) the specification
graph of I; see Section 9.2.2.2. Since (O, —) is an acyclic graph, the O-reflexive-
transitive closure of — is a partial order on O; we define <o by — *, Basic interaction /
is then mapped to [(O, <¢, L0)], where A is a labeling function O — E, whose defi-
nition is straightforward; in particular, synchronous messages (see Section 9.2.3) and
coregions (see [45]) can be dealt with easily. The only interesting issue in defining
Ao is how a Message M is to be mapped to a message identificator m € M. One
possibility would be to use the Message M itself (i.e., the object identificator). How-
ever, we define m as the set of any information that is conveyed by the message and
can be used by the receiver to distinguish between two messages coming from the
same sender. In particular, m comprises the name of M, arguments, and any kind of
message content. Note that the resulting mapping of the metamodel into Basic is not
injective (see Figure 9.5). A receiver instance cannot determine the order in which it
receives two completely identical messages.

9.2.3 Synchronous and Asynchronous Messages

9.2.3.1 Communication Types The sample interaction ex4 in Figure 9.6
models the establishing of a connection between a client instance x and a server
instance y and the subsequent processing of a client request by an instance z that has
been created by y for this very purpose. Unlike the previous examples, which used
only asynchronous communication (depicted by open arrowheads), interaction ex4

7 The concurrence of n =0 pomsets is defined by the empty pomset &.
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FIGURE 9.5 Two structurally distinct basic interaction diagrams that are both mapped to
the same element snd(s, r, m) snd(s, r, m) rev(s, r, m) rcv(s, r,m) € Basic.
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FIGURE 9.6 Sample interaction diagram that uses different types of communication.

also specifies messages reflecting synchronous calls to operations (depicted by filled
arrowheads). These messages are connect(), request(), callback(), and delegate(). A
synchronous call to an operation typically results in a reply message, which is shown
graphically by a dashed line. Reply message connect():ok, for instance, delivers a
return value ok, indicating that a connection with the server has been established
successfully. Messages start() and ready represent an asynchronous call to an oper-
ation and a signal, respectively. Message create(x) designates the creation of a new
instance z, with the argument x informing z what its communication partner is. The
X at the bottom of the lifeline of z depicts a destruction event that represents the
destruction of instance z.

An execution specification (also known as activation bar or focus of control) is a
notation that can appear on a lifeline to indicate the time during which an instance
is active (i.e., executes a behavior or performs an action). In the case of a behavior, the
execution specification is called a behavior execution specification, which is depicted
by a thin rectangle that covers a part of a lifeline (e.g., instance x is active right from
the start). In the case of an action, the execution specification is called an action
execution specification, which is depicted by a wider, labeled rectangle, where the
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FIGUREY.7 Indiagram (a), which is notalegal UML 2 diagram, we used shading to indicate
that an execution specification is blocked. In contrast, diagram (b) is legal UML 2, but it may
be considered bad style.

label identifies the action that is executed (see action logConnect, which represents
the writing of log data to a database).

The intuitive semantics of synchronous calls to operations is that after dispatching
the synchronous message connect() the behavior execution specification on life-
line x is blocked until the corresponding reply message connect():ok is received. In
Figure 9.7(a), shading is used to indicate the part of the behavior execution specifica-
tion on lifeline x that is blocked by message connect(). Note that this form of shading
is not a legal UML 2 notation, although it has actually been used in the literature
(see, e.g., [51]). Regardless of how a blocked execution specification is depicted, the
question arises whether message arrows may depart from positions on a lifeline where
the lifeline is covered by a blocked execution specification; see, for example, mes-
sage stillWaiting in Figure 9.7(b), which informs a user u that client x is still waiting
for a reply message from server y. At first sight, from a sequential operational point
of view, the dispatch of message stillWaiting would be unimplementable because the
behavior execution specification on lifeline x is blocked by the synchronous message
connect(). This view on synchronous messages, although legitimate, is by no means
mandatory, because one and the same execution specification may represent behavior
- that emerges from several concurrent subbehaviors (e.g., parallel regions of a state
machine). Even if one of the concurrent subbehaviors is blocked by a synchronous
call, the other subbehaviors can still be active and send messages (although this may
be considered bad style).

9.2.3.2 Metamodel Figure 9.8 shows the fragment of the UML 2 metamodel
that is relevant to the new language constructs introduced by Figure 9.6. Model
elements that have already appeared in our previous metamodel diagrams are shaded.
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Attribute Message::messageSort specifies the type of communication action that
was used to generate a message. It has the enumeration type MessageSort with values
synchCall, asynchCall, asynchSignal, createMessage, deleteMessage, and reply.
These values are read, respectively, as follows: A synchronous call to an operation
as in the case of message connect() (see Figure 9.6); an asynchronous call to an
operation such as start(); an asynchronous send action as in the case of ready; a
pseudomessage standing for the creation of another lifeline instance such as create(x);
a pseudomessage standing for the termination of another lifeline (not shown); and a
reply message to an operation call such as connect():ok.

Metaclasses ExecutionSpecification, BehaviorExecutionSpecification, and Action-
ExecutionSpecification correspond directly to the graphical model elements of the
same name (written as separate, uncapitalized words). An ExecutionOccurrence-
Specification represents a point in time at which an action or a behavior starts or
finishes. The duration of an ExecutionSpecification is represented by two Execu-
tionOccurrenceSpecifications: the “start ExecutionOccurrenceSpecification” (upper
end of an activation bar) and the “finish ExecutionOccurrenceSpecification” (lower
end of an activation bar). These two ExecutionOccurrenceSpecifications reference
the ExecutionSpecification to which they belong via ExecutionOccurrenceSpecifica-
tion::execution.® Start ExecutionOccurrenceSpecification and finish ExecutionOccur-
renceSpecification may coincide? if they belong to an ActionExecutionSpecification.

The semantics of an ExecutionSpecification is given by the trace sf where s and f are
the start ExecutionOccurrenceSpecification and the finish ExecutionOccurrenceSpec-
ification of the ExecutionSpecification, respectively (and s # f). In the case of s=f,
the semantics is simply given by the trace s. An ExecutionSpecification references
two OccurrenceSpecifications via ExecutionSpecification::start and ExecutionSpec-
ification::finish (for short: start and finish). Based on our interpretation,10 start and

8 We adjusted the multiplicity value at the nonnavigable end of the directed association between Execu-
tionOccurrenceSpecification and ExecutionSpecification; compare Figure 9.8 with the class diagram of the
UML specification document [45, p. 463].

9 In terms of object identity.

10To the authors of the present chapter, the text of the UML specification document [45] that refers
to metaclass ExecutionSpecification has appeared difficult to interpret consistently. On the one hand,
the specification document states that “the duration of an ExecutionSpecification is represented by two
ExecutionOccurrenceSpecifications” (p. 478). This is in line with the description of ExecutionOccurrence-
Specifications as “moments in time at which actions or behaviors start or finish” (p. 478). On the other hand,
the class diagram on p. 463 of the specification document specifies a multiplicity of 1 at the nonnavigable
end of the directed association between ExecutionOccurrenceSpecification and ExecutionSpecification. Fur-
thermore, the type of the association ends ExecutionSpecification::start and ExecutionSpecification::finish is
specified as OccurrenceSpecification—not as ExecutionOccurrenceSpecification, as one might expect. This
means that MessageOccurrenceSpecifications as well as ExecutionOccurrenceSpecifications may “desig-
nate” (p. 479) the start or the finish of a behavior or an action. The question arises whether this actually
means that MessageOccurrenceSpecifications may specify the boundary points of the time interval during
which a behavior is executed. Two considerations weigh against this interpretation. First, a MessageOc-
currenceSpecification cannot reference an ExecutionSpecification. Second, even if the arrival of a message
causes execution of a behavior, typically some time elapses between the arrival of the message and the
start of the execution.
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FIGURE 9.9 Suggested interpretation of (a) start and (b) finish.

finish generally do not coincide with s and f, respectively. Instead, start references an
OccurrenceSpecification which lies so closely above s that the time interval between
start and s is smaller than the resolution limit of the diagram. Typically start is a
MessageOccurrenceSpecification of an incoming Message which causes the speci-
fied behavior to start [see Figure 9.9(a)]. Association end finish has a similar meaning:
It references an OccurrenceSpecification which lies so closely above f that the time
interval between finish and f is smaller than the resolution limit of the diagram. Typi-
cally, finish is a MessageOccurrenceSpecification of an outgoing reply message with
a return value [see Figure 9.9(b)]. The authors of the present chapter want to point
out that the meaning of start and finish which is conveyed by Figure 9.9 is just a
suggestion for a consistent interpretation of the UML specification text. We further
wish to stress that UML interactions do not imply statements about causality. They
merely deal with temporal relationships.

A few notes about delete messages and destruction events are necessary. Since
DestructionEvent is a specialization of Event — and not of ExecutionEvent —and since
ExecutionOccurrenceSpecification::event redefines OccurrenceSpecification::event,
a DestructionEvent cannot be referenced by an ExecutionOccurrenceSpecification.
Since we decided!! to regard the metaclass OccurrenceSpecification as abstract, a
DestructionEvent can only be referenced by a MessageOccurrenceSpecification. This
means that a destruction event cannot occur separately on a lifeline (as it is depicted,
for example, in Figure 9.6). Actually, a message head is supposed to point at the
destruction event. A delete message lends itself to this purpose. Whenever an instance
decides to destruct itself, it has to send itself a delete message.?

9.2.3.3 Semantics We define adomain MSort = {sc, ac, as, cm, dm, r} that cor-
responds directly to enumeration type MessageSort. The values listed between the

"Fora (very) short discussion of this question, see footnote 2.

12 As a matter of fact, this pseudocommunication has little to do with actual processes in a runtime
environment.
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braces stand for synchCall, asynchCall, asynchSignal, createMessage, deleteMes-
sage, and reply, respectively. Futhermore, we assume a domain for executions X
which is the union of two disjoint, primitive subdomains for behavior executions
and action executions. To facilitate a stepwise expansion of our semantics, we intro-
duce a domain of information sets i € Info, which for the purposes of this section
is defined as Info = pgn(X) X pan(X). If (start, finish) is the information set of
an event occurrence o, start and finish represent the sets of all executions whose
ExecutionSpecification references the OccurrenceSpecification of o via Execution-
Specification::start and ExecutionSpecification::finish, respectively. The domain of
events E is defined as follows:

e € E ::= snd(s, 7, m,ms,i)
| rev(s, r,m,ms, i)
| exec(l,x,i)

An occurrence of an event of the form snd(s, 7, m, ms, (start, finish)) means:

1. In the case of 7= r: Dispatch of a message m (with messageKind = complete
and messageSort = ms) from sender instance s to receiver instance r.

2. In the case of 7= —: Dispatch of a message m (with messageKind = lost and
messageSort = ms) from sender instance s.

An occurrence of an event of the form rev(s, r, m, ms, (start, finish)) means:

3. Inthe case of § = s: Arrival of a message m (with messageKind = complete and
messageSort = ms) from sender instance s at receiver instance r.

4. In the case of § = —: Arrival of a message m (with messageKind = found and
messageSort = ms) at receiver instance r.

Finally, an occurrence of an event of the form exec(l, x, (start, finish)) means:

5. Ifxisabehavior execution, the occurrence denotes an (upper or lower) boundary
point of the time interval during which the behavior is executed by instance /.

6. If x is an action execution, the occurrence denotes the (idealized) point in time
at which the action is performed by instance /.

Using m e M:=m | —, the lifeline function & and the message function p are
redefined as follows:

a:E— o) n:E— M

a(snd(s, 7, m,ms, i)) = {s} u(snd(s, 7,m,ms,i)) =m
a(rev(s, rym,ms,i)) = {r} w(rev(s, r,m,ms,i)) =m
a(exec(l, x, i)) ={l}  wu(exec(l,x,i)) ==
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FIGURE 9.10 Sample interaction diagram using combined fragments.

9.2.4 Combined Fragments

9.2.4.1 Complex Interactions All interaction diagrams that have been dis-
cussed in previous sections are basic interaction diagrams. In the present section, we
turn to complex interactions, which are characterized by the presence of combined
fragments. A combined fragment defines an expression of interaction fragments. It
is depicted by a solid-outline rectangle, in which an interaction operator is specified
in a pentagon in the upper left-hand corner of the rectangle (pentagon descriptor).
If the arity of this operator is greater than 1, the interaction operands are sepa-
rated from each other graphically by dashed horizontal lines. More than one operator
may be specified in the pentagon descriptor. This is shorthand for nesting combined
fragments.

In addition to message m1, the sample interaction ex8 in Figure 9.10 specifies
four combined fragments of kind loop(1,3), alt, critical, and neg.!> The combined
fragment with operator kind loop(1,3) has only one operand, which is a com-
bined fragment with operator kind alt. The latter, in turn, has two operands: (1)
a basic interaction consisting of message m2, and (2) a combined fragment of
type critical together with a message m3 which enters the combined fragment via
a combined fragment gate named g. No notation is specified for gates. They are
merely points on the frame of a combined fragment. However, they may have explicit
names.

13 We postpone an explanation of the semantics of these operators to the following section.
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9.2.4.2 Metamodel Figure 9.11 shows the fragment of the UML 2 metamodel
that comprises the language constructs for describing complex interactions with gates.
As already mentioned in Section 9.2.2.2, InteractionFragment is the abstract notion
of the most general interaction unit. InteractionFragment is the root class of a com-
posite pattern and has seven direct subclasses: Interaction, OccurrenceSpecification,
ExecutionSpecification (see Section 9.2.3), CombinedFragment, InteractionOperand,
Statelnvariant (see Section 9.2.5), and Continuation.'* A CombinedFragment ref-
erences at least one InteractionOperand via CombinedFragment::operand. Each
InteractionOperand is itself an InteractionFragment, and may, moreover, reference
any finite number of InteractionFragments via InteractionOperand::fragment.

The semantics of an InteractionFragment is given by a pair of sets of traces: namely,
a set of valid (or positive) traces and a set of invalid (or negative) traces. These sets
need not be disjoint nor their union cover the entire universe of traces. The semantics
of InteractionOperands as well as the semantics of Interactions are compositional
in the sense that the semantics of an InteractionOperand (or an Interaction) is built
mechanically from the semantics of its constituent InteractionFragments.!3 The con-
stituent InteractionFragments are ordered and combined by an implicit seg-operation
(weak sequencing).

Given an ordered set of traces tj =e[,1€12...€105--.>ln = €n1€n2-.-€ny,, the
weak sequencing of t1,...,1, is defined by the set of all traces ex(1yex(2) - - - €xq)
where I=11+ .-+ +1,, and m is a bijection (i.e., a one-to-one and onto mapping),
w:{,2,....1}) - {(1,D,...,(L,1}),...,(n,1),...,(n,1p)}, i = (1(i), m2(i)) such
that for all 1 <i <j </, the following conditions hold:

1. If ex(;) and ez lie on the same lifeline, then (i) < m1(j).
2. If my (i) = m1(j), then m2(i) < m2(j).

The semantics of a CombinedFragment depends on the value of its attribute inter-
actionOperator. This attribute has the enumeration type InteractionOperatorKind with
the values strict, seq, par, loop, alt, ignore, neg, assert, critical, break, opt, and
consider. A description of the semantics of these operators can be found in the UML
specification document 2.1.2 [45, pp. 468-470].!6 We restrict ourselves to citing some
defining phrases in Table 9.2, and refer to our formal semantics in Section 9.2.4.4 for
the rest.

9.2.4.3 Abstract (Term) Syntax We assume a primitive domain for gates G
and use g as a metavariable that ranges over G. The domains Ig and Ig are defined by
rG,5G € Ig u=1|gandbyrg,3g € Ig ::=[| g| —, respectively. The definition of the

14 A Continuation allows the concatenation of branches in alternatives; as it is a mere syntactic entity, it
is not covered in this chapter.

15 See UML specification document 2.1.2 [45, pp. 482, 486).
16 These three pages are a veritable wellspring of hermeneutical problems.
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TABLE 9.2 Semantics of Interaction Operators in Combined Fragments

strict “strict designates [read means] that the CombinedFragment represents a strict
sequencing between the behaviors of the operands.”

seq “seq designates that the CombinedFragment represents a weak sequencing
between the behaviors of the operands.”

par “par designates that the CombinedFragment represents a parallel merge
between the behaviors of the operands.”

loop “loop designates that the CombinedFragment represents a loop. The loop
operand will be repeated a number of times.”

alt “alt designates that the CombinedFragment represents a choice of behavior.”

ignore “ignore designates that there are some message types that are not shown
within this combined fragment.”

neg “neg designates that the CombinedFragment represents traces that are defined
to be invalid.”

assert “assert designates that the CombinedFragment represents an assertion. The
sequences of the operand of the assertion are the only valid continuations.
All other continuations result in an invalid trace.”

critical “critical designates that the CombinedFragment represents a critical region.
A critical region means that the traces of the region cannot be interleaved by
other OccurrenceSpecifications.”

break “break designates that the CombinedFragment represents a breaking scenario
in the sense that the operand is a scenario that is performed instead of the
remainder of the enclosing InteractionFragment.”

opt “opt designates that the CombinedFragment represents a choice of behavior
where either the (sole) operand happens or nothing happens.”

consider “consider designates which messages should be considered within this

combined fragment. This is equivalent to defining every other message to
be ignores.”

Source: Excerpts from UML specification document 2.1.2 [45, pp. 468-470, 473].

domain of events [E is extended as follows:

ecE u=e¢lep

e € E; = snd(s, 7g, m, ms, i)
| rev(Sg, r,m,ms, i)
| exec(l, x,i)

ep € E, ::= gsnd(g,rg,m, ms,'i)
| grev(sg, g, m, ms, i)

An event e is either a real event ¢; or a pseudoevent ep, wWhere real events are
of the form snd(s, 7, m, ms, i), rcv(s,r,m,ms,i), and exec(l,x, i), as introduced in
Section 9.2.3.3. Now, areal event of the form snd(s, g, m, ms, i) represents the dispatch
of a message m (with messageKind = complete and messageSort = ms) from sender
instance s to gate g. Similarly, a real event of the form rev(g, r, m, ms, i) represents
the arrival of a message m (with messageKind = complete and messageSort = ms)
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TABLE 9.3 Abstract Syntax of Interaction Terms

B q
CF
o

strict,,(O; ,O07)
seq,(01,02)
par,(0y, 02)
loop,(m, 1, 0)
alt,(0y, 02)
ignore,(M, O)
neg,(0)
assert,(0)
critical,(0)
break,(01, 0;)
T

T € IFragment

CF € CFragment

(O (S

O € I0perand

from gate g at receiver instance r. A pseudoevent of the form grev(sg, g, m, ms, i)
occurs whenever a message m coming from sender sg enters (i.e., arrives at) a gate g.
A pseudoevent of the form gsnd(g, rg, m, ms, i) occurs whenever a message m has
passed through a gate g and leaves the gate on the other side in the direction of rg.
The definitions of the lifeline function « and the message function p are extended as
follows:

a:E— pdg) p:E->M

a(snd(s,7,m,ms,i)) = {s} w(snd(s, 7, m, ms, i)) =m
a(rev(s, r,m,ms,i)) = {r} u(rev(s, r, m, ms, i) =m
a(exec(l, x, 1)) ={l} u(exec(l, x, i) = -

a(gsnd(g, rg,m,ms,i)) = {g}  u(gsnd(g,rg,m,ms,i)) =m
a(grevisg, g,m,ms,i)) ={g}  u(grev(sg,8,m,ms,i)) =m

The definition of the conflict relation 3¢ given in Section 9.2.2 remains unchanged.
Note that we consider gate identifiers g as a form of pseudolifelines.

The abstract syntax of interactions is given by the grammar in Table 9.3. Therein,
T ranges over terms representing interaction fragments (ferms for short), B ranges
over terms representing basic interactions (basic terms or leaf terms for short),
CF ranges over terms representing combined fragments (combined terms for short),
O ranges over terms representing interaction operands,'’m ranges over natural num-
bers, firanges over natural numbers or 0o, and M ranges over g, (M). The occurrences
of metavariable g that adorn each operator symbol constitute a numbering schema that
allows us to identify each basic term uniquely and each loop-operator inside a term.
For this purpose we define the domain of paths by g e Path::=€|gn, n € {1,2}, with
1 denoting a left (or sole) operand and with 2 denoting a right operand. The concatena-
tion of two paths g, ¢’ is written g.¢’. Each operator symbol inside a term is annotated

' In Section 9.2.5, constraints (i.c., guard expressions) are added to the syntax of these terms.
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with a unique path identifier g (see Table 9.3). The function top : IFragment — Path
(“topmost operator path”) maps a term T to the path g with the topmost (or outer-
most) operator of T is annotated. We inductively define a unary predicate “is well
numbered” on terms as follows:

1. B, is well numbered.

2. If T is a well-numbered term and uop € {loop, ignore, neg, assert, critical}, and
if there is a path r such that top(T) =g.1.r, then uop,(T) is a well-numbered
term.

3. If 71 and T, are well-numbered terms and bop € {strict, seq, par, alt, break}, and
if there are paths r; and r, such that top(T1) = g.1.r; and top(T3) = q.2.r2, then
bopy(T1,T2) is a well-numbered term.

In the following, we always use terms with the implicit understanding that these
terms are well numbered. Furthermore, we use the name Empty for the term that
represents the empty (basic) interaction; Empty is given by [(@, D, D)]. opi(T)
abbreviates alt (Empty, T'), and consider (M, T) abbreviates ignore (M \ M, T).

9.2.4.4 Intermediate Semantics We define a formal semantics of complex
interactions by employing a two-step approach: First, we compositionally define
two semantic functions P;[—], NVi[—] : IFragment — g(T), which map interaction
terms to sets of positive and negative traces, respectively. The pair (P,[7T, Mi[T]) is
said to be the intermediate semantics of a term T. In a second step, filtering functions
#(T) — e(T) are employed to map the intermediate semantics to the (definitive)
semantics. Pseudoevents and gate identifiers may occur in the intermediate semantics,
but they do not occur in the (definitive) semantics.

Both specification of the formal semantics of critical regions that occur in the
body of a loop and of the handling of gates require event occurrences to be equipped
with additional semantic information. For this purpose, we redefine the domain of
information sets as follows:

Info = pn(X) X pan(X) X gan(Path) x [Path - N] x Path

Let (start, finish, region, loop, basic) be the information set of an event occurrence o.
Then region is the set of all paths that identify critical-operators whose operands
contain the syntactic specification of o. The function loop maps a path that identifies
a loop-operator to the iteration number of the loop to which the event occurrence o
belongs. loop is a partial function, with loop(q) = 0 meaning “loop is not defined at g”
because either g does not identify a loop-operator or the operand of the loop-operator
does not contain the syntactic specification of 0. The path basic identifies the basic
term that contains the syntactic specification of 0. The meanings of start and finish
remain unchanged (see Section 9.2.3).

Let g € Path and n e N. Moreover, let f;, ggn, and h, denote three functions
E — E, which are defined as follows. If e€E is an event with information set
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i = (start, finish, region, loop, basic), then fy(e) is the event that is obtained from e
by substituting (start, finish, region U {q}, loop, basic) for i; g4 »(e) is obtained from e
by substituting (start, finish, region, looplq — n], basic) for i; and hy(e) is obtained
from e by substituting (start, finish, region, loop, q) fori. We liftf,, g4 », and h, to pom-
sets (see Section 9.2.1), and for each p € D we let (p), be defined by f,(p), plg > n]
be defined by g,.4(p), and [p], be defined by h,(p). Furthermore, we define the n-fold
iteration of a process P C D with respect to g, written P,(,") , as follows: PO = {e} and
PV =Plg > n+1] 5 PP

Let M € M be aset of messages. On pomsets in D, the filtering relation mfilter (M) :
D — (D) removes some elements of p whose labels show a message in M. More
precisely, we first define mfilter (M) on event-labeled sets as follows. Let O be a
setand A : O — E a labeling function. Then O’ € mfilter (M)(O, }) if O’ C O and
u(M(0)) € M for any o€ O \ O'. For an event-labeled partial order (O, <¢, Ap), we
set (0, <o N (O x O'),A0|0) € mfilter M) O, <o, ro) if O’ € mfilter (M)(O, Ao).
Finally, we extend these definitions to event-labeled pomsets peD by setting
p € mfilter (M)([(O, <0, A0)]) ifthereis (O', <¢, Aop) € mfilter (M)(O, <g, Ao) such
that p=[(0', <o, Ao’)]. The relation mfilter (M) obviously is well defined. Given
a pomset peD, by mfilter(M)~!(p) we denote {geD|p € mfilter (M)(g)}. This
“inverse relation” is lifted to processes in the usual way (see Section 9.2.1). Given a
process P C D, we write P(M) for mfilter (M)~(P). Furthermore, we define <(P) to
be the prefix closure of P. :

The intermediate semantics of complex interactions is given by a pair of seman-
tic functions P;[[—] and N;[—] that map interaction terms to sets of positive and
negative traces, respectively; see Tables 9.4 and 9.5. These sets constitute an inter-
mediate semantics since their traces may contain pseudoevents as well as gate
identtfiers.

The semantics of the positive fragment of the language closely follows the tex-
tual description of the specification (see Table 9.2). Indeed, the literature [12,36,49]
shows a broad consensus on the semantics of this fragment. On the contrary, for
the negative fragment the specification leaves room for different interpretations, and
consequently diverging proposals have been made (see also [27]). In line with Kobro
Runde et al. [36], we have adopted the view that a trace is negative for an interaction
fragment whenever it has exhaustively traversed a negative subfragment. Only assert
is an exception to this rationale, since, following the specification, it makes negative
everything that is not explicitly positive.

9.2.4.5 Filtering Let T, be the set of all traces of occurrences of real events that
do not contain gate identifiers. We define a filter Fgare : $2(T) — (). This filter (1)
removes all pseudoevents from a trace, (2) replaces all gate identifiers in events of the
form snd(s, g, m, ms, i) and rcv(g, r,m, ms, i) with the lifelines of the actual receiver
and the actual sender of the message, respectively, and (3) discards the trace if the
actual sender or the actual receiver of a message cannot be determined or if the trace
is malformed for some other reason. This “gate filter” works as follows. Let P € T be
a process consisting of traces. For each trace ¢ € P, the following rewriting rule (R)
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TABLE 9.4 Intermediate Semantics of Complex Interactions

(Positive Fragment)
P;[—1 : IFragment — g(T)
LA = [Bl],

Pillstrict,(01,02)1 = Pil[011:Pil0:1
Pillseq, (01,001 = (PillO1] ;= PllOIDY
Pillpar, (01, 02)]1 Plol I PIo:DI

Pillloop,(m, 7, O)] = U,,,S.-<;,+1((7’i[[0]])f,’))i
Pillalty(01,02)1 = PO IVUPR[0:]
Pillignore, (M, 0)1 = (PIOT{M))]
Pillneg,(O)] = {¢}

Pillassert,(0)] = Pl0o]

Pillcritical,(0)1 = (PIOD),

Pilibreak, (01,021 = PO TU(QPIO1]D) sx PIOD)

TABLE 9.5 Intermediate Semantics of Complex Interactions

(Negative Fragment)

N[—1 : IFragment — $(T)

MIIBqE =0

Nillstrict,(01,02)1 = (P01 MIO0:B)UWMNIO:1; Pil0:D)
UWLO0T; MI0: 1)

Nilseq,(01,0,)1 = (P01 M[O0:1)4 UMIOLT 5= PO
U011 5 MIO2DDY

Nillpar,(01,02)1 = (PIO I N0 UWNLO:T | PIO D)

UWMIOTIIMIO DL

Mllloopy(m, 7,001 = Upsici (RIOTUNIODD) \ (PIODD)

Nilaty (01,021 = MIO:TUMIO:]

Nillignore, (M, 01 = (M[ONKM)){

Nillneg,(O)] = PIOIUMIO]

Ni[asserty(O)] = (T\RIODHUNIO]
Ni[eriticaly(O)] = (MIOoD),

Nillbreaky(01,02)1 = MEO1JU(Q(PI01]) 55 MO

U(QWEOID 5= P01
U(QWMIO1D) 5x MLO2Y

is iteratively applied to ¢ as long as the rule matches:

R tiathbtsctadts — t1d tytstsd ts

where a = snd(s, g, m, ms, (start, finish, region, loop, q)),
b = grev(s,g,m,ms,(, -, _, ),
¢ =gsnd(g,lg,m,ms,(_,_,_. g
d = k(g,lg,m,ms,(start, finish', region’, loop’, q'))
a’ = snd(s, I, m, ms, (start, finish, region, loop, q)),
d' = k(s,lg, m,ms, (start , finish', region’, loop', q")),
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TABLE 9.6 Semantics of Complex
Interactions

PI-1, N1 : IFragment — gp(T;)

PI-1 Ferit© ]:gale oPil-1
Nﬁ_]] Ferit ofgale OME"‘II

with ((k=rcv and Ig € I) or (k= grcv and Ig € G)), and t1,%,13,24 € T do not
containa, b, ¢, d, respectively. If the resulting trace is an element of T (i.e., if it does
not contain pseudoevents or gate identifiers), the trace is retained as an element of
Fgae(P); otherwise, the trace is discarded.

Afilter Foris - 9(Ty) — g(Ty) isrequired to prevent traces from violating atomicity
constraints specified by critical-constructs. For the purpose of defining this filter, let o :
E — gpgn(Path) and £ : E — [Path — N] be two functions that map an event e to the
third and fourth components of the information set of e, respectively. For each path g,
the set prefix(q) ={q’ | 3¢".q = ¢'q" } contains all prefixes of g; in particular, ¢ €
prefix(q). We say that a (finite) trace t = e e3 - - - e, € Ty preserves atomicity if for all
1<i<j<k<nandforall g € Path, g € g(e;) and £(e;)[ prefix(q) = £(¢;)| prefix(q)
whenever g € g(e;) N o(ex) and £(e;)| prefix(q) = £(ex)| prefix(g). Given a process
P C T,, we define F1(P) by {t € P |t preserves atomicity}.

9.2.4.6 Semantics The semantics of complex interactions is given by a pair of
semantic functions P[[—]) and N'[—]) that map terms to sets of positive and negative
traces of occurrences of real events, respectively (see Table 9.6). Therein, P;[—]) and
Ni[—1] are the semantic functions defined in Tables 9.4 and 9.5, respectively. The
filtering functions Fgaee and Feri¢ are defined in Section 9.2.4.5.

9.2.5 Constraints

9.2.5.1 Guards and State Invariants The sample interaction ex9 in Fig-
ure 9.12 illustrates the use of guards and state invariants. The combined fragment
of type alt which is contained in ex9 has two guarded operands: The first (upper)
operand has the guard z.p >=1; the second (lower) operand has an else-guard. These
guards have the following meanings:

1. If the upper operand is chosen and the dispatch of m2 occurs before the dispatch
of m3, the Boolean expression z.p >= 1 has to be true with respect to the global
state of the system that exists directly before the dispatch of m2.

2. If the upper operand is chosen and the dispatch of m3 occurs before the dispatch
of m2, the Boolean expression z.p >=1 has to be true with respect to the global
state that exists directly before the dispatch of m3.

3. If the lower operand is chosen, the Boolean expression z.p >=1 has to be false
with respect to the global state directly before the dispatch of m4.

The state invariant 2 > z.p >=0 on the lifeline of z is evaluated in the global state
of the system that exists directly before the next event occurs on the same lifeline
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FIGURE 9.12 Sample interaction diagram using guards and state invariants.

after the state invariant. This may be the dispatch of m2, the dispatch of m4, or the
arrival of m5.

9.2.5.2 Metamodel Figure 9.13 shows the fragment of the UML 2 metamodel
that is relevant to guards and state invariants. Considering the class diagram, an

voovered - InteractionFragment
+cover
edBy Q +fragment |*
{ordered}
+enclosing
Operand §0..1
+covered State Combined !, 1. Interaction
ap * i +ope
Lifeline | Invariant Fragment o Operand
0.1 1
+invariant ||, 1 +guard\’; 0.1
N +Hnaxint
Kemel.: Interaction %3 Kernel:Value
Constraint Constraint +minint] Specification
0.1 0.1

FIGURE 9.13 Fragment of the UML 2 metamodel relevant to guards and state invariants.
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InteractionConstraint may be assigned only to an InteractionOperand (as a whole).!8
We therefore recommend placing a guard anywhere in the frame of an interaction
operand.

9.2.5.3 Abstract Syntax We assume a domain of constraints C € Constraint
whose syntax is left unspecified, except for the requirement that the domain contains
the logical connectives Vv, —, and the logical expression true. Interaction operands
are equipped with these constraints as follows (see Table 9.3):

O € I0perand ::= [C]T

The constraint C that occurs in an interaction operand [C]T acts as a guard for 7. If
an InteractionOperand (for fragments represented by T') does not specify a guard, the
InteractionOperand is translated into our term syntax as [true] 7. A CombinedFragment
of type k € {strict, seq, par} with more than two InteractionOperands is translated using
the following syntactic transformation:

k([CI]Tl seeey [Cn]Tn)
= k([C1]T, [true]k([C2]T7, . . ., [truelk([Cr—11Tn-1, [ChlTy) . . . )

A CombinedFragment of type alt with n >0 InteractionOperands is interpreted as
alt([C11T1,. .., [CalTn, [=(C1 V -+ V Cp)IEmpty).!? If n > 2, the latter is trans-
lated using the syntactic transformation given above. A CombinedFragment of type
loop with operand [C]T, lower bound m, and upper bound 7 is translated using the
following syntactic transformation:20

loop (m, 1, [C]T) = seq(T, ..., seq (T, loop 0,a—m,[C]T))...)

—r

m times

Furthermore, a new sort of pseudoevent is introduced, which. represents a state
invariant C lying on lifeline / (see Section 9.2.4.3):

ep €Ey = ... | stateinv(l,C,i)
We define a(stateinv(l, C, i)) by {/}, and u(stateinv(l, C, i)) by —.

18 However, several passages in the UML specification document indicate that an InteractionConstraint is—
at least graphically—assigned to a particular lifeline: namely, “the lifeline where the first event occurrence
[of the interaction operand] will occur” [45, p. 484). In addition, there is a formal constraint specifying
that a “guard must be placed directly prior to (above) the OccurrenceSpecification that will become the
first OccurrenceSpecification within this InteractionOperand” [45, p. 486]. Since the minimum of a partial
order of event occurrences is, in general, not determined uniquely, the quoted passages of the specification
document appear ill-formed to the authors of the present chapter.

19 UML specification document 2.1.2 [45, p. 468] states that if “none of the operands [of a combined
fragment of kind alt] has a guard that evaluates to true, [...] the remainder of the enclosing Interaction-
Fragment is executed.” This means that the set of positive traces of such an alt-fragment is {¢} (and not @).

20 UML specification document 2.1.2 [45, p. 470] states that “a loop will iterate minimum ‘minint’ number
of times [...]. After the minimum number of iterations have executed and the Boolean expression is false
the loop will terminate.” In our opinion, this means that the Boolean expression is not to be evaluated
during the first ‘minint’ iterations.
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9.2.5.4 Semantics Let T be the set of all global states of the overall system.
We assume a semantic function C[[—]] : Constraint — (X — {#t,ff}) which maps a
constraint and a global state to a Boolean value.2! Furthermore, we assume that C[[—]|
interprets C; V Ca, — C, and true in the canonical way.

A pair (0, e) € X xE is said to be a stateful event. We define E by ¥ xE and use e
‘as a metavariable that ranges over E. The lifeline function ¢, the message function g,
and the functions g and £ (see Section 9.2.4.5) are defined on stateful events (o, €) by
applying the respective functions to the second component e. Two stateful events ¢,
and g, are in conflict, written e 3 ¢,, if a(e;) Na(e,) # @. The domains of E-labeled
pomsets D, P, and T correspond directly to D, P, and T, respectively. For each (o, )
that occurs in a trace ¢ € T, the state o denotes the global state of the overall system
directly before the event e occurs. If the occurrence of e depends on whether a certain
constraint C evaluates to #f in the state o, the evaluation of C (to #f) and the event ¢
occur atomically.

A compositional definition of the semantics of interaction operands [ C]7T—narmely,
the one whose term 7" produces an empty trace e—requires a refined definition of
events:

ecE = e | ep|e(d)

Therein, e and e, range over real events and pseudoevents, respectively, as they are
defined in Section 9.2.4.3. A stateful event (o, £(i)) is said to be a state marker. A
state marker is a special form of pseudoevent that occurs only in traces, but not in
syntactic terms. We set a(o, £(i)) =@ (i.e., a state marker does not conflict with any
event). An occurrence of a state marker (o, £({)) in a trace ¢ € T indicates that the
state of the system at this point of the trace is o. A state marker (o, £(i)) is inserted
in a trace automatically whenever the constraint C of an interaction operand [C]T is
evaluated in a state o, the result of the evaluation is ##, and the term 7 produces an
empty trace.??

For each C € Constraint, we define a filter F¢ : go(T) — g(T) which (1) discards
each nonempty trace that starts with a stateful event (o, e) such that C is false in o,
and (2) replaces the empty trace ¢ (if any) with the set of all state markers (o, £(9))
such that C is true in . The symbol @ denotes an information set with an empty
region component and a totally undefined loop component. Formally, we define

Fc(P)={teP|IoceZ,ecE,t €T.t =(o,e)f AC[Cllo = 1t}
U{(o,e@) e e PAo e TACICo = 1)

21 The proposal by Calegari Garcia et al. {9] uses OCL/RT, an extension of OCL for real time (see [11,44]),
which in fact is based on a three-valued logic.

22 The latter is indicated by the symbol £ in the state marker.
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TABLE 9.7 . Intermediate Semantics
of Interactions with Constraints
(Positive Fragment)®

P;[—] : IFragment — p(T)
PilB,] =X(Bl]y)
PICIT] = Fc (PITT)

90nly clauses differing from Table 9.4
are shown.

TABLE 9.8 Intermediate Semantics of Interactions
with Constraints (Negative Fragment)®

N[~ : IFragment — p(T)
Nil[assert,(0)] = T \ P[O]
MIICIT] =Fc(PITDHUMITI

4Only clauses differing from Table 9.5 are shown.

A mapping ¥(—) is defined that transforms an E-labeled pomset p € D into a set of
E-labeled pomsets, thereby pairing off the labels e of p with all possible combina-
tions of states 0 € X, that is, X(¢)={¢} and Z(p) ={[(0, <0,Ap)]|30o : O —
.2y =(00,10)} for each p=[(0, <0, 20)] € D\ {¢}.

The intermediate semantics of interactions with constraints is given by a pair of
semantic functions P;[—] and Nj[—] that map interaction terms to sets of positive
and negative traces, respectively (see Tables 9.7 and 9.8).23

9.2.6 High-Level Interactions

9.2.6.1 References to Interactions The sample interaction ex10 shown in
Figure 9.14(a) references another interaction ex1t shown in Figure 9.14(b) in a ref.
Intuitively, the referenced interaction is expanded into the place where it is referred
to. In fact, the UML specification also allows to use arguments for formal parameters
of interactions; we do not handle parameters in this chapter.

9.2.6.2 Metamodel Figure 9.15 shows the fragment of the UML 2 metamodel
that is relevant to high-level interactions. An InteractionUse refers to an Interaction
via refersTo. The InteractionUse must cover all Lifelines of the enclosing Interaction
that appear within the referred Interaction. An InteractionUse has an ordered set of
arguments that must correspond to the parameters of the referred Interaction. Further-
more, an InteractionUse has a set of actualGates that must match the formalGates of

B The set of traces positively associated with a constrained interaction coincides with the definition by
Calegari Garcia et al. [9]. On the contrary, the set of traces negatively associated with a constrained
interaction does not; in that work, Mi{[C]T] = F-¢c (D) UMITL
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FIGURE9.14 (a) Sample interaction diagram ex10 using references to (b) another interaction
(ex11).
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FIGURE 9.15 Fragment of the UML 2 metamodel relevant to high-level interactions.

the referred Interaction. Since parameters and gates are mere syntactic constructs, we
do not handle them in our formal semantics.

9.2.6.3 Semantics Let us assume a syntactic category Name of names. The
abstract syntax of interactions is given by the grammar in Table 9.9. An interaction
environment v is a set of interactions sd(n, T) where all interactions in v have a
different name r.

Let g € Path. A function f; : E — E is defined as follows: If ¢ € E is an event
with information set i = (start, finish, region, loop, basic), then f,(e) is the event that
is obtained from e by substituting (start, finish, region’, loop’, basic’) for i, with basic’,

TABLE 9.9 Abstract Syntax of
High-Level Interaction Terms

n € Name
S € Interaction ::= sd(n,T)
T € IFragment == ... | ref(n)
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TABLE 9.10 Intermediate Semantics of High-
Level Interactions (Positive Fragment)®

Pil[—] : Interaction — (IEnvironment — g(T))
Pilrefy(m)lv = (Pi[T1v),. ifsd(n,T) € v

9Only clauses differing from Table 9.4 are shown.

TABLE 9.11 Intermediate Semantics of High-
Level Interactions (Negative Fragment)®

N[-1 : Interaction — (IEnvironment — &(T))
Nillrefy ()l = (M[TTv),. ifsd(n, T) e v

“Only clauses differing from Table 9.5 are shown.

region’, and loop’ being defined as g.basic, {q.q’ | §' € region}, and

loop(q') ifq" =4q.4

respectively. The function fq’ : E — E is defined on stateful events (o, €) by applying
the function f; to the second component e. We lift fq’ to pomsets (see Section 9.2.1).
For each p € D we define (p),. by f(p).

The intermediate semantics of high-level interactions is given by a pair of semantic
functions P;[—1] and Nj[—~] which map interaction terms to sets of positive and
negative traces, respectively (see Tables 9.10 and 9.11).

It appears that the specification treats interaction uses by macro expansion (“The
InteractionUse is a shorthand for copying the contents of the referred Interaction
where the InteractionUse is” [45, p. 487]). If also (mutually) recursive interactions
are to be handled, some notion of fixpoint in constructing the semantics has to be
involved. The semantic functions P;[—]] and NV;[—] can be rendered as a monotonic
F: p(T) x o(T) — (T) x p(T), where gp(T) x g(T) is equipped with the ordering
(X1,X2) € (X}, X;) if, and only if, X; S X] and X, € X7; thus, we are assured that the
least and the greatest fixpoint exist. If the least fixpoint is chosen, only finite (stateful)
traces can be produced; if the greatest fixpoint is chosen, infinite (stateful) traces are
also possible.

9.3 ALTERNATIVE SEMANTICS

9.3.1 Operational Semantics

An operational semantics for a part of the positive fragment of the term language of
UML interactions is defined. The reduced syntax of the term language is given in
Table 9.12. Therein, B ranges over Basic (as defined in Section 9.2.2) and p ranges
over Path (see Section 9.2.4).
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TABLE 9.12 Reduced Syntax of
Interaction Terms

B,
strict,(Th, 1)
seq, (T, T2)
par,(Th, T2)
loop,(T)
8|%(T| N Tz)

T € IFragment

9.3.1.1 Domains and Restriction Functions We define the domain E, of
events and the silent event T as EU{7}. The domain I, comprises all finitary pomsets
labeled with events from E.. We define a(t) = @ (i.e., the silent event does not conflict
with any event). The domains P, and T; comprise all pomsets p € I; such that p is
locally linear and a trace, respectively. We extend the lifeline function o to pomsets
p=1(0,<0,20)] € D; by a(p) = ,co ®(20(0)). Given a process P € D;, we set
a(P)= Upe p a(p). On processes in gp(D;) and for a set of lifelines L, the restriction
function restr(L) : p(D;) — g(D;) removes all those pomsets from a process which
show an event that lies on a lifeline of L [i.e., restr(L)(P)={p € P |a(p) N L=0}].
We also write P[L] for restr(L)(P).

Transition rules regarding the construct seq,(7;,72) can only be correct (with
respect to the denotational semantics) if it is guaranteed that after execution of an
event e of the term T, no event ¢’ of T is executed that conflicts with e. If a non-
deterministic choice construct (alt or loop) occurs in term Ty, it may happen that both
traces containing events conflicting with e (type 1) and traces not containing such
events (type 2) occur in the positive evaluation set of T7. The desired completeness
of the transition rules necessitates retaining traces of type 2, even though traces of
type 1 have to be discarded. One possible solution to this problem is based on a
syntactic transformation Ry, : Term — Term such that P[[Ry (T)]] = PIT1[L], where
Term is an appropriate extension of the language IFragment and L is a set of lifelines.
Typically, this “syntactic restriction function” is defined by Ry (T) = restr(L, T),
where restr (L, T) is a language extension whose denotational semantics is given by
‘Plrestr (L, T)] = PIT1[L] and whose operational semantics is given by the following
rule: :

Tt T _
(restr) = ifa@)NL=0
restr(L, T) — restr(L, T")

However, we choose a slightly different approach using a language extension None
whose denotational semantics is given by D[[None]] = @. The operational semantics
is given simply by the fact that there is no rule for None. The definition of the syntactic
restriction function Rz is shown in Table 9.13. Therein, uop is a unary operator and
bop is a binary operator. By induction on the structure of T € Term, it can easily be
shown that P[R.(T)]| =PITIIL].
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TABLE 9.13 Syntactic Restriction Function (for

Lcl)
R : Term — Term
Rz (None,) = None,

B, ifBYNL=0
Ru(B,) [ None, otherwise
Ry (uop,(T)) = uop,(R(T))
Ri(bop,(T1,T2)) = bopy(Ru(T1),RL(T2))

Furthermore, we introduce a function ren : Path x {1,2} x Term — Term, which
is defined as follows:

ren(p, n, const) " = const
_ | uoppngen(p,n,T)) ifgq=p.q
ren(p,n,uopy(T))y = [uopq(T) otherwise
bopp.n.q(ren(p,n, Ty),
ren(p, n, bopy(T1,T2)) = ren(p,n,T2)) ifq=p.q
bopg(T1, T2) otherwise

We also write , , T for ren(p, n, 7).

9.3.1.2 Transition System A configuration of our operational small-step
semantics is a term T € Term. The only terminal configuration is Empty, which is

defined by &. Transitions are of the form T > T” with T, T’ € Term, T # Empty, and
e € E;. The rules for the transition relation are shown in Table 9.14. In these rules
the variously decorated metavariables range as follows: T over Term, e over E, and
e over E;. Given a locally linear pomset B, Min (B) is defined as the set of all events
of B that are minimal with respect to the ordering of B. B\ {e} is obtained from B by
removing the (unique) occurrence of e.

9.3.2 Event Structures

An alternative definition of the formal semantics of UML 2.0 interactions is given by
Kiister Filipe {39,40]. The language is enriched with OCL constraints (see also [10])
as well as locations and temperature as defined for LSCs (see [16]). These additions
serve the needs of expressing liveness properties such as progress of a lifeline or
the requirement that a sent message may or must be received. The approach con-
centrates on positive behavior; that is, it does not consider negative traces as in the
semantics defined above. Then Kiister Filipe [40] purposely disregards some inter-
action building operators: neg since forbidden behavior can be expressed by a false
state invariant appended to the interaction modeling that behavior, and assert since
mandatory behavior can be indicated by a hot interaction fragment. The presentation
is, moreover, simplified by the omission of loop and strict, which can be integrated. In
other words, only alt, par, and seq are considered. The operator alt can have more than
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TABLE 9.14 Operational Semantics of Interactions (Part of Positive Fragment)

(basic) B, => (B\[e}); ife € Min(B)

) nS 7 .
(strict") : (strict?)  stricty(Empty,, T2) > T»
stricty(T1, T2) — strict,(T{,T2)
1 T —EP T{ =
(seq’) : (seq®)  seq,(Empty,,T2) > T»
seq,(T1, T2) — sequ(T{,T2)
Ty o T
(seq®) - 2
sed,(T1, T2) = seq,(Rag) (T1),T3) )
ST ,5T,
(par’) —! (par?) -
parq(T]: TZ) = parq(T;v TZ) parq(Tl’Tz) 4 parq(Tlv Té)
(par’)  pary(Empty,,Tp) > T, (par*)  par,(T1,Emplyy) 5> T
(loop')  loop,(T) > Empty, (loop?)  loop,(T) = seqy(T,loop,2(¢27))
(alt!) alty(T),T2) > T @)  alty(T),T2) > T»

two operands, each of them must be accompanied by a precondition, and at most one
of them is executed. The semantic domain is that of labeled event structures, a true-
concurrent model that naturally captures alternative and parallel behavior (see [55]).
Labeled event structures are nothing but labeled pomsets (see [48]) equipped with
a binary conflict relation. The abstract syntax for interactions is considerably more
involved than the one given above; in return, there is a relatively easy way to define,
given an interaction term, the conditions on a labeled event structure that, on the
one hand, satisfy the interaction and, on the other, may possibly lose cold messages.
Besides this logic for interobject communication, Kiister Filipe [40] defines a home
logic for the description of intraobject behavior.

Kiister Filipe expands her semantics by including the ref operator [39]. This oper-
ator references an interaction fragment which appears in a different diagram. This
fragment is called an interaction use. By means of ref, interactions can be decom-
posed or, put the other way, defined hierarchically and reused. Furthermore, ref allows
the decomposition of lifelines, whose messages can trespass the diagram boundaries
through gates. Lifeline decomposition can be used for modeling components whose
internals are hidden or unknown. Kiister Filipe addresses refinement by means of a
categorical construction over two categories of labeled event structures [39]. In this
setting, refinement consists of solving references to interactions and gates. This defi-
nition aims at formal reasoning and verification of complex scenario-based interobject
behavioral models; these matters have not been worked out yet.

This semantics over event structures, restricted to the simplest operators, is com-
parable to the positive semantics presented in the sections above. Beyond the core
constructs, the proposals seem to diverge, as different language fragments and
extensions are considered in each case.
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9.3.3 Other Formalisms: MSCs and LSCs

The language of message sequence charts (MSCs [30]) is designed to describe the
interaction between a number of independent message-passing instances. MSC is a
graphical scenario language, equipped with a formal semantics (see [24,25,32,41], to
name a few) and nevertheless of practical use. MSC captures interobject communica-
tion patterns typically emerging from use cases, and is easily used in conjunction with
other methods and notations. An MSC basic diagram usually contains an MSC head-
ing, a representation for one or more instances, possibly a condition, input and output
events including perhaps messages to the environment, and in some cases instance
terminations. An MSC diagram may refer to another one, and messages arising from
a referred diagram exit this diagram through a gate. The MSC language became
more sophisticated, allowing, besides higher-order diagrams, alternatives and restric-
tive conditions, general ordering, inline expressions, data, time, object orientation,
remote method calls, and so on.

Although widely used in industry, MSCs are expressively weak, as they permit
only the specification of sample scenarios that are based semantically simply on the
notion of partial order of events. MSCs allegedly turn from existential into universal
specification of behavior as the requirements evolve to a more formal and/or specific
design (see [7]). In particular, the language of MSCs leaves a number of questions
open like, such as specification of mandatory behavior, safety and liveness properties,
and activation time. ,

Live sequence charts (LSCs, [16]) increase the expressive power of MSCs by the
addition of constructs that allow the specification of liveness properties. LSCs impose
a clear distinction between possible and mandatory behavior and at both the global
and local levels.

As with basic MSCs, the elementary building blocks of an LSC are instances and
messages. Instances are depicted by an instance head, a lifeline, and possibly an
instance end. Messages are represented by arrows connecting lifelines. There are two
types of messages, synchronous and asynchronous. The former are associated with
horizontal arrows (—), the latter with slanted arrows with half stick heads (~). LSCs
allow the specification of time constraints either in the form of an MSC-style timer
or in interval notation. Mandatory behavior is specified by universal charts, possible
scenarios by an existential chart. Along lifelines a number of locations are identified:
for example, the point depicting the arrival of a message. Locations, messages, and
conditions have a temperature, hot or cold. Hot locations enforce progress (i.e., the
instance must move beyond the location), whereas at cold locations the instance need
not move farther. Hot messages imply that the message, if sent, will be received,
whereas cold messages may be lost. Hot conditions must be met; cold conditions that
fail to hold imply that the chart is to be exited.

An LSC consists, in general, of a pre-chart and a chart. The live interpretation
of such an LSC requires that the behavior specified by the chart must be exhibited
by a system whenever the system has shown the behavior specified by the pre-chart.
Live elements, called kot (indicating that progress is enforced), make it possible to
define forbidden scenarios. Mandatory and possible conditions, invariants, and other
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finesses, such as simultaneous regions and coregions, activation, and quantification
may also be specified.

The formal semantics of LSCs is based on the concept of timed Biichi automata
(see [7]). The acceptance criterion for Biichi automata takes the infiniteness of the
words into account. Timed Biichi automata also take the occurrence times of the
Ietters of words into account.

The language of LSCs is thus much more expressive than that of MSCs or of
UML 2.0 interactions. Consequently, .SCs require a more involved domain for the
definition of a formal semantics. Complexity and expressive power of LSCs have
been studied by a number of people (see, e.g., [6,17,28]). Additionally, Harel and
Maoz [27] treat the constructs assert and neg not as operators but as modalities, give
an interpretation of them into LSCs, and define a UML 2.0 profile for the positive
fragment of the language of interactions that includes those modalities; the resulting
language is called modal sequence diagrams (MSDs).

9.4 IMPLEMENTATION AND REFINEMENT

The trace-based semantics of the preceding section assigns a pair of sets of traces to
each interaction: positive and negative traces. This semantics has been developed by
following the UML 2 specification as closely as possible. However, the specification
does not tell under which circumstances a given system can be said to be complying
with an interaction, or, put differently, when a system is an implementation of an
interaction. Moreover, it would be rather useful to also have a notion of refinement
for interactions.

9.4.1 Implementation

For discussing possible notions of implementation we take a system abstractly to be
a set of traces over stateful events E (see Section 9.2.5.4); that is, we assume that
implementations and the interpretation of interactions are grounded in a common
semantic domain. For concrete systems this representation in terms of traces may be,
at least partially, achieved by appropriate instrumentation in order to monitor their
particular stateful event occurrences.

As a first possible notion of implementation [12], we say that a system ] € T
implements an interaction S, written as I |=S, if I N PIS] # @ and I N N[[ST =2,
(i.e., if I shows at least one positive trace and does not show any negative trace).
The definition is sensible, since it can easily be verified by induction that in the
trace-based semantics each interaction shows at least one positive trace.* Another
possibility [36] is to require a system simply not to show any negative traces but

24 When an interaction operator such as “refuse” [36] is introduced, which does not show positive traces,
the implementation relation |= may be weakened as follows: I =5 if P[S1#®, I N PIS1# 9, and
INN[S]1=0.
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to be indifferent to positive and inconclusive traces. This notion of implementation
assumes that an assert is used to rule out inconclusive traces.

Either definition allows us to handle interaction formulas, introducing boolean
connectives for interactions. Writing Sy A Sy for “interaction S) and interaction $;
must hold,” then 1 =851 A §2 amounts to I =8; and 7 =8> in the classical sense
(ie, I N (PISiINPLS]) # D and I N NS U NS 1) = D). Similarly, writing
—§ for “interaction S must not hold,” then I =-S5, again interpreted classically,
amounts to INPIS] =B or INN[ST # B. Note that I = ~ S and I }=neg(T) [with
S =sd(n, T)] are quite different. We can also introduce an or connective Sy V §3 as
an abbreviation for —((—81) A (=352)), and again I =81 V $; is quite different from
I = alt (T, T») {with §1 =sd(n1, T1), S2» =sd(ny, T2)].

However, a single interaction or a set of interactions to be interpreted conjunctively
rarely are used to describe an entire system. Generally, interactions are employed for
describing particular situations of communication and interaction, and these situa-
tions may come up only once in awhile in a system and need not cover its complete
behavior. This can be expressed in interactions by surrounding the interaction frag-
ment describing such a partial behavior by ignore or consider. But what is left open is
the possibility of identifying when a given interaction has to be obeyed during system
execution and when it is not relevant, that is, being able to define a precondition under
which an interaction takes effect (see the discussion on LSCs in Section 9.3.3). Let
us write 51 > §7 to mean informally: If interaction S occurs in an implementation,
then §, has to occur afterward. This amounts formally to defining I = S) > 53 to hold
ifforallsy e Tand s € T with #; ;. 1 €1, if {11} =51, then {K} = S>.

9.4.2 Refinement

Refinement is a well-known concept in computer science. Given any specification
formalism, be it a mode! or a program, refinement refers to the verifiable transforma-
tion of an abstract (high-level) word into a concrete (low-level) word of that language.
Refinement can also cross language boundaries and relate a specification with a pro-
gram; in this case the relation is sometimes called implementation. The emphasis here
is put on the verifiability of the transformation. For this purpose, a formal semantics
is indispensable. ,

An implementation relation between interaction diagrams (or interaction terms)
and sets of traces supplies the natural basis for the definition of refinement: An inter-
action §' refines an interaction S, denoted by § ~» §’ if any implementation of §’ is also
an implementation of S (see [12]). Obviously, this refinement relation is reflexive,
transitive, and antisymmetric (i.e., a partial order). This definition is the classical,
model-theoretic notion; other possibilities are conceivable, like syntactical transfor-
mation of terms such that some conditions hold (e.g., the transformation rules are
semantics preserving or semantics narrowing).

On the one hand, S~ §' if 1 =5’ implies that ] k= S. On the other, /=S if I N
PIST # D and I N NS] = B. Therefore, refinement is verifiable.

Notice that if associated with S’ there are more positive traces and fewer negative
traces than with S (i.e., if P[ST € P[S'] and NTS'T € NST), then S~» §’. This is
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not necessarily the only possibility. The verification of refinement via computing the
sets of positive and negative traces can become very cumbersome. More interesting
than this type of mathematical gymnastics with pairs of pairs of arbitrarily big trace
sets is an inference system that allows the derivation of pairs of interaction terms in the
refinement relation. Unfortunately, the interaction-building operators do not possess
very useful properties in combination with a notion of refinement based on model
inclusion. For instance, in general they are not monotonic: that is S ~+ §] does not
imply op(Sy,...) ~» op(S}, . ..) for every operator op. In some cases an inference is
possible; a number of rules is given by Calegari Garcfa et al. [9,12].

A different notion of refinement in terms of reduction of uncertainty is given by
Storrle: Two interactions are in the refinement relation when the sets of positive and
negative traces of the abstract interaction, respectively, are included in the sets of
positive and negative traces of the concrete interaction (see [49,50]). This definition
requires disjointness of the sets of positive and negative traces associated with an
arbitrary interaction.

In contrast, Kobro Runde et al. [36] require disambiguation of inconclusive traces
and/or narrowing of the set of positive traces, thus reducing underspecification. This
work includes an enlightening discussion on the differences between underspecifica-
tion, object of disambiguation by refinement, and inherent nondeterminism, which is
notto be removed from the abstract specification. The approach is part of STAIRS [37],
a framework for stepwise development based on refinement of interaction specifica-
tions. Some interaction-building cperators are not monotonic with respect to this
notion of refinement, as discussed by Oldevik and Haugen [46]. Lund [43] presents a
trace generation algorithm which to a great extent conforms?® with the denotational
semantics for interactions defined in STAIRS, as well as algorithms for test generation
and test execution. Therein, trace generation and refinement & la STAIRS are used to
devise a method for refinement verification.

9.5 VERIFICATION AND VALIDATION

As descriptions of emergent behaviors, interactions lend themselves to be seen as
properties of a system that have to be verified. This view is also reflected by the
notions of implementation in Section 9.4.1. On the other hand, interactions may
also be interpreted as executable, high-level specifications, which should be used for
validation in system development.

9.5.1 Model Checking

To verify that a particular interaction is indeed satisfied by a given system, research has
concentrated mostly on the fully antomatic technique of model checking. Interactions

25 The operational semantics for seq does not take into account possible interleavings of events in the two
operands [see rule (seq%) in Table 9.14].
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are turned into logical, temporal formulas or directly to some kind of automata that
then can be run against the system.

Model checking of MSCs and LSCs has been studied in great detail (see 5,7,
33,42]). For UML interactions based on this previous work, a translation of a frag-
ment of interactions into interaction automata has been developed [35]. The language
fragment handles basic interactions and the operators seq, par, strict, ignore, as well as
state invariants; loop is restricted to containing only basic interactions, as otherwise the
model-checking problem becomes undecidable [1]. The interaction automata, inter-
preted as Biichi automata, are checked against instrumented UML state machines
using the model translation tool Hugo/RT and the model checker Spin.

A similar goal is followed by Charmy (3]. The focus of Charmy is on architec-
tural descriptions and verification of their consistency. The semantics of interactions,
given by translation rules, however, deviates from the one presented here; currently,
combined fragments are not supported.

9.5.2 Animation

The most outstanding example of interaction animation is the Play Engine (sec [29]).
The tool implements an extension of LSCs and supports two techniques. The first,
called play-in, allows the intended system to be supplied with scenario-based behavior
specificatons using a graphical user interface. The second, called play-out, permits
execution or animation of the behavior specified. These two techniques combined
constitute the play-in/play-out methodology.

The Play Engine can be used in more than one phase of system development: for
instance, for requirements elicitation and for prototyping and testing, The authors also
propose use of the Play Engine to program reactivity, which is based on interobject
communication and thus closer to the way in which systems and their behavior are
conceived. This is only possible because the language of LSCs was extended with
symbolic instances and allows a message to cause a change of state in the destination
instance. In this way, an instance can react to incoming messages also according to
its internal state.

The animation, or play-out, is highly nontrivial. The scenarios specified may
be very sophisticated, including the above-mentioned symbolic instances and state
changes caused by message processing as well as the entire paraphernalia of LSCs,
such as time and forbidden elements, may and must conditions, hot and cold messages,
and universal and existential charts.

The semantics of the LSCs extension is not given just in the form of a tool. The
Play Engine is accompanied by an operational semantics given as a transition system
whose definition is based on the concepts of object-oriented system modeling and
cut of a chart. There are two types of transitions, steps and supersteps. A superstep
is a sequence of steps, and a step is an event carried out by the system in response
to the input by the user. Once a stimulus has arrived, and due to underspecification
and/or nondeterminism, more than one superstep may be enabled. Some of these
enabled supersteps may, however, lead to an inconsistent system state that violates
a constraint. The smart play-out mechanism of the Play Engine uses formal analysis
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methods, mainly model checking, to find a correct superstep if one exists, or to prove
that a correct superstep does not exist. Complex case studies have been carried out
using the Play Engine, such as the one reported by Combes et al. [14].

Apart from the Play Engine there are other tools, like Rhapsody (see [4]) and
Unistep (see [52]), that support interaction animation. Because these tools are only
commercially available, details on the respective realizations are not public.

A further animation of interactions was reported by Burd et al. [8], focusing on
comprehensibility of interactions. An experiment was carried out which from a ped-
agogical point of view, showed that the number of misinterpretations considerably
declines when users are in front of an animated interaction instead of a static rep-
resentation. Animated interactions are also employed for requirements testing in the
spirit of control flow analysis (see [23]).

Some other approaches translate interactions into a formalism susceptible to ani-
mation. Fernandes et al. [20] translate interactions, possibly including the operators
opt, alt, par, and loop, and the interaction fragment ref, into colored Petri nets, which
are then animated. In a similar manner, a set of MSCs can be translated into a statechart
(see [26,38]) which is susceptible to animation (see, e.g., [4,18,53)).
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