
Semantics of UML State Machines

Alexander Knapp

Institut für Informatik, Ludwig-Maximilians-Universität München
knapp@pst.ifi.lmu.de

Abstract. The abstract syntax and semantics of a simplified subclass of UML
state machines is defined.

1 UML State Machines

We illustrate the main concepts of UML state machines by a simple UML model of
an automatic teller machine (ATM), shown in Fig. 1: The class diagram in Fig. 1(a)
specifies an (active) class Bank. Classes define attributes, i.e., local variables of its
instances, and operations and signals that may be invoked on instances by call and
send actions, respectively.

The state machine for class Bank is shown in Fig. 1(b), consisting of states and
transitions between states (we number the states for short reference later on). States
can be simple (such as Idle and DispenseMoney) or composite (such as Verifying); a
concurrent composite state contains several orthogonal regions, separated by dashed
lines. Moreover, fork and join (pseudo-)states, shown as bars, synchronize several tran-
sitions to and from orthogonal regions; junction (pseudo-)states, represented as filled
circles, chain together multiple transitions. Transitions between states are triggered by
events. Transitions may also be guarded by conditions and specify actions to be exe-
cuted or events to be emitted when the transition is fired. For example, the transition
leading from state Idle to the fork pseudostate requires signal verifyPIN to be present;
the transition branch from VerifyingCard to CardValid requires the guard cardValid to be
true; the transition branches to Idle set the Bank attributes tries and cardValid. Events
may also be emitted by entry and exit actions that are executed when a state is acti-
vated or deactivated. Transitions without an explicit trigger (e.g. the transition leav-
ing DispenseMoney), are called completion transitions and are triggered by completion
events which are emitted when a state completes all its internal activities.

The actual state of a state machine is given by its active state configuration and by
the contents of its event queue. The active state configuration is the tree of active states;
in particular, for every concurrent composite state each of its orthogonal regions is ac-
tive. The event queue holds the events that have not yet been handled by the machine.
The event dispatcher dequeues the first event from the queue; the event is then pro-
cessed in a run-to-completion (RTC) step. First, a maximally consistent set of enabled
transitions is chosen: a transition is enabled if all of its source states are contained
in the active state configuration, if its trigger is matched by the current event, and if
its guard is true; two enabled transitions are consistent if they do not share a source
state. For each transition in the set, its least common ancestor (LCA) is determined,

i.e. the lowest composite state that contains all the transition’s source and target states.
The transition’s main source state, that is the direct substate of the LCA containing the
source states, is deactivated, the transition’s actions are executed, and its target states
are activated.

The example state machine simulates card and PIN validation of a bank computer.
After initialization the bank computer is in state Idle. The reception of signal done leads
to finalizing the state machine, whereas on reception of signal verifyPIN the verification
process is started in state Verifying. If the card is invalid, the bank computer immediately
returns to state Idle. If the PIN is invalid, it is checked whether the maximum number of
trials is exceeded. If this is the case, the card is marked invalid; otherwise the number of
trials is incremented by one. In both cases, the bank computer returns to state Idle. If the
PIN is valid, the number of trials is reset to zero. If both the PIN and the card are valid,
state DispenseMoney is entered from which the bank computer returns to state Idle.

«signal» done
«signal» verifyPIN

inv: maxTries >= 0Bank
boolean cardValid
boolean PINValid
int tries = 0
int maxTries

(a) Class diagram

CardValidVerifyingCard

VerifyingPIN

PINIncorrect

entry / tries = 0
PINCorrect

Idle DispenseMoney

[else]

[cardValid]

Verifying

[tries < maxTries] / tries++

[else] / cardValid = falseverifyPIN

done

[else]

[PINValid]

0

2

1

10

3

4

5

6

7

(b) State machine diagram for class Bank

Fig. 1. UML model of an ATM

2 Semantics of UML State Machines

The semantics of UML state machines is defined by an execution algorithm. This al-
gorithm forms the basis for embedding UML state machines into temporal logic and,
in particular, the symbolic execution technique. Our semantical account of UML state
machines follows the semantics definition of the UML 1.5 specification [2] as closely
as possible, but fills in some of the gaps of the specification. We mainly follow the ideas
presented by Lilius and Porres [1]. However, we refine the definition of compound tran-
sitions and maximally consistent sets of compound transitions.

We first define the abstract syntax of the sublanguage of UML state machines from
the UML specification [2] for which our semantics is valid. Apart from those language
constructs which we do not discuss here (i.e. history, sync, and choice pseudostates,
call and deferred events, and internal transitions), this definition introduces the follow-
ing restriction: A transition from an initial pseudostate must target a non-pseudostate
contained in the same composite state as the initial pseudostate. Abandoning this re-
striction would lead to a more intricate definition of compound transitions. In particu-
lar, when an initial pseudostate could target a junction pseudostate, this would amount
to treating dynamic choice points as the guards on the transitions from such a junction
pseudostate have to be evaluated only after the state containing the initial pseudostate
has been entered. However, such a transition could leave the initial pseudostate’s con-
tainer and thus render the choice of transitions to be executed invalid. This case has no
relevance in most practical applications.

The semantics of UML state machines is defined in two steps: First, we present a
procedure for statically computing the configurations and the compound transitions of a
state machine. Due to our syntactical restriction, compound transitions are trees of state
machine transitions (describing the chaining of junctions, forks, and entries of states)
with a possible fan-in prefix (describing joins) that represent a move from a configura-
tion into another configuration. Second, we define an algorithm for run-to-completion
steps which first computes a maximally consistent set of compound transitions for a
given event and then executes the set of compound transitions.

2.1 Abstract Syntax of UML State machines

We assume an expression language Exp that at least includes boolean expressions (like
true, false, e1 ∧ e2, etc.) and an action language Act that at least includes a skip state-
ment, and sequential (;) and parallel (‖) composition of statements. Furthermore, we
assume a set of events Event which includes ∗ denoting a completion event.

A state s has a kind kind(s) ∈ {initial, final, simple, composite, concurrent, junction,
join, fork}, an entry action entry(s) ∈ Act , and an exit action exit(s) ∈ Act . A
pseudostate is a state s with kind(s) ∈ {initial, junction, join, fork}; we require that
entry(s) = skip and exit(s) = skip for each pseudostate s. A composite state is a
state s with kind(s) ∈ {composite, concurrent}.

A state hierarchy is given by a tree (S, E) where S is a finite set of states and
E ⊆ S × S a non-empty substate relation such that the constraints below are satisfied.
We write substates(s) = {s′ ∈ S | (s, s′) ∈ E} for the substates of state s:

1. If substates(s) 6= ∅ then kind(s) ∈ {composite, concurrent}.
2. If kind(s) = concurrent then #substates(s) ≥ 2 and kind(s′) = composite for all

s′ ∈ substates(s).
3. If kind(s) = composite then #{s ∈ substates(s) | kind(s′) = initial} ≤ 1.

We further write container(s) for the container state of state s if s is not the root state;
substates+(s) = {s′ ∈ S | (s, s′) ∈ E+} for the set of transitive substates of state
s; substates∗(s) = substates+(s) ∪ {s} for the set of reflexive, transitive substates of
s; and initial(s) for the initial state contained in the composite state s if it exists. The
least common ancestor of a set of states M ⊆ S not containing the root state, denoted
by lca(M), is the least composite state c w.r.t. E such that M ⊆ substates+(c); the
least common reflexive ancestor of M ⊆ S, written lca=(M), is the least state s w.r.t.
E such that M ⊆ substates∗(s).

Given a state hierarchy H = (S, E), a transition t over H has a source state
source(t) ∈ S, a target state target(t) ∈ S, a triggering event trigger(t) ∈ Event ,
a guard expression guard(t) ∈ Exp, and an effect action effect(t) ∈ Act , such that the
following constraints are satisfied:

1. kind(source(t)) 6= final.
2. kind(target(t)) 6= initial.
3. If kind(source(t)) = initial then target(t) is not a pseudostate.
4. If kind(source(t)) = initial then container(target(t)) = container(source(t)).
5. If kind(source(t)) = fork then target(t) is not a pseudostate.
6. If kind(target(t)) = join then source(t) is not a pseudostate.
7. If kind(source(t)) = composite then kind(container(source(t))) 6= concurrent.
8. If kind(target(t)) = composite then kind(container(target(t))) 6= concurrent.
9. If kind(source(t)) ∈ {initial, fork, join} then guard(t) = true.
10. If kind(target(t)) = join then guard(t) = true.
11. If kind(source(t)) = initial then effect(t) = skip.
12. If source(t) is a pseudostate, then trigger(t) = ∗.

A state machine (for a class C) is given by a pair (H,T) where H = (S, E) is a
state hierarchy and T a finite set of transitions over H such that the constraints below
are satisfied for all t ∈ T . We write outgoings(s) for the set {t ∈ T | source(t) = s};
incomings(s) for the set {t ∈ T | target(t) = s}; sources(M) for the set {source(t) |
t ∈ M}; and targets(M) for the set {target(t) | t ∈ M}:

1. If kind(s) = initial then #outgoings(s) = 1.
2. If kind(s) = junction then #incomings(s) = 1 and #outgoings(s) ≥ 1.
3. If kind(s) = fork then #incomings(s) = 1 and #outgoings(s) ≥ 2.
4. If kind(s) = join then #outgoings(s) = 1 and #incomings(s) ≥ 2.
5. If kind(s) = fork then there is an s′ ∈ S with kind(s′) = concurrent such that

targets(outgoings(s)) ⊆ substates+(s′) \ substates(s′) and the following holds:
if t, t′ ∈ outgoings(s) such that {target(t), target(t′)} ⊆ substates+(s′′) for
some s′′ ∈ substates+(s′) then t = t′.

6. If kind(s) = join then there is an s′ ∈ S with kind(s′) = concurrent such that
sources(incomings(s)) ⊆ substates+(s′)\substates(s′) and the following holds:
if t, t′ ∈ incomings(s) such that {source(t), source(t′)} ⊆ substates+(s′′) for
some s′′ ∈ substates+(s′) then t = t′.

Conditions (5) and (6) require forks and joins to come from and go to different orthog-
onal regions of a concurrent composite state.

2.2 Configurations and Compound Transitions

The configurations of a state machine ((S, E), T) are given by the smallest subsets C
of S that satisfy the following conditions:

1. The root state of S is in C.
2. No state s ∈ C is a pseudostate.
3. If kind(s) = composite then there is a single s′ ∈ C such that container(s′) = s.
4. If kind(s) = concurrent then all states s′ ∈ S with container(s′) = s are in C.

In particular, composite states are or-states, concurrent states and-states.
The compound transitions of a state machine ((S, E), T) represent semantically

complete transition paths that originate from a set of non-pseudostates and target a set
of simple states. More precisely, a compound transition consists of three parts: The op-
tional tail part of a compound transition may have multiple transitions in T originating
from a set of mutually orthogonal regions that are joined by a join pseudostate. The
middle part of a compound transition is a finite chain of transitions in T joined via
junction pseudostates. Finally, the optional head part of a compound transition is a tree
of transitions in T : If a transition in the middle part of a compound transition or in its
head part itself targets a composite state the head part continues at the initial state of
this composite transition; if a transition targets a concurrent composite state the head
part continues at all initial states of the orthogonal regions of the concurrent composite
state; if a transition targets a fork pseudostate the head part continues with the transi-
tions outgoing from the fork pseudostate which target mutually orthogonal regions and
simultaneously continues at the initial states of all those orthogonal regions that are not
targeted by transitions outgoing from the fork pseudostate.

In the ATM example, the compound transitions outgoing from VerifyingCard just
consist of middle parts:

〈{}, 〈VerifyingCard→ junction, junction→ Idle〉, {}〉,
〈{}, 〈VerifyingCard→ junction, junction→ CardValid〉, {}〉.

The fork transition from Idle consists of a middle part and a tail part:

〈{}, 〈Idle→ fork〉, {〈fork→ VerifyingCard〉, 〈fork→ VerifyingPIN〉}〉 .

The join transition to DispenseMoney consists of a head part and a middle part:

〈{〈CardValid→ join〉, 〈PINCorrect→ join〉}, 〈join→ DispenseMoney〉, {}〉 .

We present an algorithm for computing the compound transitions of a state ma-
chine ((S, E), T) in two steps: The procedure compounds in Fig. 2 for computing the
compound transitions outgoing from a non-pseudostate in S relies on the procedure
forwardTrees in Fig. 3 that computes the middle and head parts of compound transitions,

compounds(state) ≡
compounds← ∅
joinTargets← ∅
for forwardTree ∈ forwardTrees(state) do

if join ∈ {kind(s) | s ∈ targets(forwardTree)}
then joinTarget← choose({s | s ∈ targets(forwardTree) ∧ kind(s) = join})

if joinTarget /∈ joinTargets
then joinTargets← joinTargets ∪ {joinTarget}

for joinFT ∈ forwardTrees(joinTarget) do
compounds← compounds ∪ {〈incomings(joinTarget), joinFT〉}

od
fi

else compounds← compounds ∪ {〈∅, forwardTree〉}
fi

od
compounds

Fig. 2. Compound transitions algorithms (1).

also called forward trees, outgoing from an arbitrary state in S. Herein, the (simple) tar-
get states of the leaf transitions of a forward tree f are denoted by targets(f).

Note that our definition of compound transitions deviates from the explanations
in the UML specification [2]. There, compound transitions are not required to target
simple states only, but may as well stop at composite states. The proper initialization of
composite and concurrent composite states is left to the entry procedure for composite
states. In fact, as mentioned above, this is necessary for handling choice pseudostates
and initial in conjunction with junction pseudostates.

The notions of source states, target states, trigger, guard, and effect are transferred
from transitions to compound transitions in the following way: The source states of
a compound transition τ , written sources(τ), are the source states of the transitions
in the tail part of τ , if τ shows a tail part, and the source state of the middle part,
otherwise. Analogously, the target states of τ , written targets(τ), are the target states
of the transitions in the head part of τ , if τ shows a head part, and the target state of the
middle part, otherwise. The trigger of τ is the set of triggers of the transitions in the tail
part of τ , if τ shows a tail part, and the trigger of the first transition in the middle part
otherwise. The guard of τ is the conjunction of all guards of transitions in τ . Finally,
the effect of τ is the sequential composition of the effects of the tail, the middle, and
the head part of τ , where the effects in the tail and the head are conjoined in parallel
whereas the effects in the middle part are composed sequentially. These definitions are
naturally extended to sets of compound transitions which show the same trigger.

We recall some notions on compound transitions τ from the UML specification
that will be used for the definition of the execution semantics of state machines, in
particular, when computing maximally conflict free sets of compound transitions in a
given configuration C: The main source state of τ , mainSource(τ), is given by the
state s = lca(lca=(sources(τ)), lca=(targets(τ))) if kind(s) = concurrent, and it is
given by the state s′ ∈ substates(s) with lca=(sources(τ)) ∈ substates∗(s′), oth-

forwardTrees(state) ≡
forwardTrees← ∅
for outgoing ∈ outgoings(state) do
target← target(outgoing)
if kind(target) = junction
then for targetFT ∈ forwardTrees(target) do

forwardTrees← forwardTrees ∪ {〈outgoing, targetFT〉}
od

elsif kind(target) = fork
then container← lca(targets(outgoings(target)))

regionsFTs← 〈〉
for region ∈ substates(container) do
regionTs← {t ∈ outgoings(target) | target(t) ∈ substates(region)}
if regionTs 6= ∅
then transition← choose(regionTs)

if kind(target(transition)) ∈ {composite, concurrent}
then regionFTs← 〈〉

for regionFT ∈ forwardTrees(target(transition)) do
regionFTs← regionFTs ∪ {〈transition, regionFT〉}

od
regionsFTs← regionsFTs :: 〈regionFTs〉

else regionsFTs← regionsFTs :: 〈{〈transition〉}〉
fi

else regionsFTs← regionsFTs :: 〈forwardTrees(initial(region))〉
fi

od
n← #substates(container)
for 〈regionFTsi〉1≤i≤n ∈ regionsFTs do
forwardTrees← forwardTrees ∪ {〈outgoing, 〈regionFTsi〉1≤i≤n〉}

od
elsif kind(target) = composite

then for initialFT ∈ forwardTrees(initial(target)) do
forwardTrees← forwardTrees ∪ {〈outgoing, initialFT〉}

od
elsif kind(target) = concurrent

then regionsFTs← 〈〉
for region ∈ substates(target) do
regionsFTs← regionsFTs :: 〈forwardTrees(initial(region))〉

od
n← #substates(target)
for 〈regionFTsi〉1≤i≤n ∈ regionsFTs do
forwardTrees← forwardTrees ∪ {〈outgoing, 〈regionFTsi〉1≤i≤n〉}

od
else forwardTrees← forwardTrees ∪ {〈outgoing〉}

fi
od
forwardTrees

Fig. 3. Compound transitions algorithms (2).

erwise. The main target state of τ , mainTarget(τ) is defined analogously, but ex-
changing sources(τ) and targets(τ). The set of states exited by τ in configuration C,
exited(C, τ), consists of substates∗(mainSource(τ))∩C. The set of states entered by
τ in configuration C, entered(τ), is substates∗(mainTarget(τ))∩C. Again, the defi-
nitions for entered and exited are naturally extended to sets of compound transitions.

Two compound transitions τ1 and τ2 are in conflict in configurationC, written τ1]C

τ2, if exited(C, τ1) ∩ exited(C, τ2) 6= ∅; more generally, a compound transition τ is
in conflict with a set of compound transitions T in configuration C, written τ]C T , if
τ]C τ ′ for some τ ′ ∈ T . If τ1]C τ2 let S1 and S2 be the sets of states in sources(τ1)
and sources(τ2), resp., that show the maximal numerical distance from the root state
of (S, E); τ1 is prioritized over τ2 in configuration C, written τ1 ≺C τ2, if S1 ⊆
substates+(S2). Again, τ ≺C T for a compound transition τ and a set of compound
transitions T in configuration C if τ ≺C τ ′ for some τ ′ ∈ T .

2.3 Run-To-Completion Semantics

The execution semantics of a UML state machine is described in the UML specification
as a sequence of run-to-completion steps. Each such step is a move from a configuration
of the state machine to another configuration. The sequence of steps starts in the initial
configuration of the state machine, i.e., the configuration that is targeted by the forward
tree outgoing from the initial state of the root state of the state machine’s state hierar-
chy. In a run-to-completion step from some configuration, first, an event is fetched from
the event queue. Second, a maximally consistent set of enabled compound transitions
outgoing from the states of the current configuration and whose guards are satisfied is
chosen. If such a set, also called a step, exists, all its compound transitions are fired si-
multaneously: First, all states that are exited by the step are left in an inside-out manner,
executing the exit actions of these states; each such that is marked to be not completed,
as it is not part of the configuration any more. Second, the gathered effect of the step is
executed. Third, all states that are entered by the step are entered in an outside-in man-
ner, executing the entry actions of these states. Furthermore, after executing the entry
action of a state this state is marked as complete, i.e. a completion event for this state is
generated.

More formally, let ((S, E), T) be a state machine. We assume a structure of en-
vironments η for state machines that provides the following primitive operations: An
event can be fetched by fetch(η); the completion of a state s can be recorded by
complete(η, s); the revocation of a state s from being completed can be recorded by
uncomplete(η, s); a statement a can be executed by exec(η, a); given a configura-
tion C and an event e all compound transitions of ((S, E), T) that are triggered by e
can be computed by enabled(η, C, e); and, finally, the validity of an expression g can
be checked by η |= g.

The enabledness of compound transitions in a configuration C by an event e is in-
deed solely defined on the basis of the triggers of compound transitions and thus only
involves the completed states that have been previously recorded with the environment.
The fireable sets of compound transitions, which are maximally consistent sets of en-
abled compound transitions are computed by the steps algorithm in Fig. 4(a). The exe-
cution of a state machine in some configuration and some environment is defined by the

steps(env, conf, event) ≡
transitions← enabled(env, conf, event)
{step | 〈guard, step〉 ∈ steps(conf, transitions) ∧ env |= guard}

steps(conf, transitions) ≡
steps← {〈false, ∅〉}
for transition ∈ transitions do

for 〈guard, step〉 ∈ steps(transitions \ {transition}) do
if transition]conf step
then if transition ≺conf step

then guard← guard ∧ ¬ guard(transition)
fi

else step← step ∪ {transition}
guard← guard ∧ guard(transition)

fi
steps← steps ∪ {〈guard, step〉}

od
od
steps

(a) Transition selection algorithm.

RTC(env, conf) ≡
〈event, env〉 ← fetch(env)
steps← steps(env, conf, event)
if steps 6= ∅
then choose step ∈ steps
〈env, conf〉 ← fire(env, conf, step)

fi
〈env, conf〉

(b) Run-to-completion step algorithm.

fire(env, conf, step) ≡
for state ∈ insideOut(exited(conf, step)) do
env← exec(env, exit(state))
conf← conf \ {state}
env← uncomplete(env, state)

od
env← exec(env, effect(step))
for state ∈ outsideIn(entered(conf, step)) do
env← exec(env, entry(state))
conf← conf ∪ {state}
env← complete(env, state)

od
〈env, conf〉

(c) Transition firing algorithm.

Fig. 4. State machine execution algorithms.

RTC algorithm in Fig. 4(b) which uses the algorithm for firing a compound transitions
step in Fig. 4(c).

References
1. Johan Lilius and Iván Porres Paltor. Formalising UML State Machines for Model Checking. In

Robert France and Bernhard Rumpe, editors, Proc. 2nd Int. Conf. Unified Modeling Language
(UML’99), volume 1723 of Lect. Notes Comp. Sci., pages 430–445. Springer, Berlin, 1999.

2. Object Management Group. Unified Modeling Language Specification, Version 1.5. Specifi-
cation, OMG, 2003. http://www.omg.org/cgi-bin/doc?formal/03-03-01.

