
Refining Mobile UML State Machines

Alexander Knapp1, Stephan Merz2, and Martin Wirsing1

1 Institut für Informatik, Ludwig-Maximilians-Universität München
{knapp,wirsing}@informatik.uni-muenchen.de

2 INRIA Lorraine, LORIA, Nancy
Stephan.Merz@loria.fr

Abstract. We study the semantics and refinement of mobile objects, considering
an extension of core UML state machines by primitives that designate the location
of objects and their moves within a network. Our contribution is twofold: first, we
formalize the semantics of state machines in MTLA, an extension of Lamport’s
Temporal Logic of Actions with spatial modalities. Second, we study refinement
concepts for state machines that are semantically justified in MTLA.

1 Introduction

Software development for mobile computing and mobile computations requires appro-
priate extensions of the traditional methods and concepts for more traditional system
models. Moreover, the correctness and security of implementations of systems based
on mobile code presents a major concern, as mobile agents may roam the network and
must be guaranteed to work reliably in different locations and in different environments.

In this paper, we attempt to combine semi-formal modeling techniques for mobile
systems with formal semantics and refinement. For modeling, we consider an extension
of state machines in the “Unified Modeling Language” (UML [14]) for mobility. We
first formalize the semantics of mobile state machines in MTLA [11], an extension of
Lamport’s Temporal Logic of Actions [9] with spatial modalities. Building on this log-
ical semantics, we study refinement concepts for mobile state machines. In particular,
we consider two notions of spatial refinement: the first one provides for an object to
be split into a hierarchy of cooperating objects. The second one can be used to justify
implementations of some high-level object by a set of objects that need not reside at the
same location.

There has been much interest in formalizing concepts of UML as well as in seman-
tic foundations for mobile computations, and we mention only the most closely related
work. Deiß [6] suggested an encoding of (Harel) Statecharts in TLA, without consid-
ering either mobility or refinement. Several formal models of mobile computation have
been proposed, either in the form of calculi as in [5, 12] or of state machine models
as in [8], and sometimes accompanied by logics to describe system behavior [4, 13],
but we are not aware of refinement notions for mobile computation. Our definitions of
refinement of state machines are partly inspired by [15, 16]; a related notion has been
elaborated in [17].

 275

�

� � ��

�

�

� � ��

�

�

� � ��

�

�
�

�

�
�
�

�
�
�

�
�

�

�
�

�

�
�
�

�
�
�

�
�

�

�
�

�

�
�
�

�
�
�

�
�

�n2n1

ag

n3 n2n0 n1 n3

ctl = Idle ctl = Shoppingag

n0 � � n2n0 n1 n3

ag ctl = Shopping

Fig. 1. Prefix of a run.

1.1 Mobile UML

Mobile UML [2, 3, 10] extends UML [14] by concepts for modeling mobile compu-
tation. The extension is described in terms of the UML itself, using stereotypes and
tagged values as meta-modeling tools. Most importantly, instances of classes distin-
guished by the stereotype location denote locations where other objects may reside.
Mobile objects are instances of classes with the stereotype mobile and may change
their locations over life-time. An actual movement of a mobile object is performed by
a move action that takes the target location as its parameter.

1.2 MTLA

The logic MTLA [11] is an extension of Lamport’s Temporal Logic of Actions [9]
intended for the specification of systems that rely on mobility of code. Due to space
restrictions, we refer to [11] for precise definitions of its syntax and semantics and only
recall the basic intuitions and notations.

Following the intuition of the Ambient calculus [5] due to Cardelli and Gordon,
we represent a configuration of a mobile system as a finite tree of nested locations.
In this view, mobility is reflected by modifications of the location hierarchy, as agents
move in and out of nested domains. Unlike in the Ambient calculus, we assume that
locations carry unique (“physical”) names. Moreover, instead of endowing each node
of a configuration tree with a process, MTLA associates a local state with every node. A
run is modeled as an ω-sequence of configuration trees. For example, Fig. 1 shows three
configurations of a system run. The transition from the first to the second configuration
models a local action that changes the value of the local attribute ctl associated with
location ag . The second transition represents a move of ag from the location n0 to the
location n1.

The logic MTLA contains both temporal and spatial modalities. Its formulas are
evaluated over runs, at a given location. Temporal modalities refer to the truth value of
formulas at suffixes of a run. For example �F asserts that F holds of all suffixes of the
run, at the current location.

Similarly, spatial modalities shift the spatial focus of evaluation, referring to loca-
tions below the current one. For example, the formula m[F] asserts that F is true of the
current run when evaluated at location m, provided such a location occurs (strictly and
at arbitrary depth) below the current location, otherwise m[F] is trivially satisfied. The
dual formula m〈F 〉 asserts that the location m occurs beneath the current location, and
that F holds there. For example, the run of Fig. 1 satisfies the formula ag [ctl = Idle]

276

at the root location. We frequently use a more convenient dot notation to refer to local
attributes at a given location and write, e.g., ag .ctl = Idle.

As in TLA, we use formulas to describe systems as well as their properties. State
transitions are specified using transition formulas that contain primed symbols, as in
ag .ctl = Idle∧ ag .ctl ′ = Shopping. When P is a state formula (i.e., without primed
symbols), we write P ′ for the transition formula obtained by replacing all flexible sym-
bols by their primed counterparts; intuitively, this formula asserts that P holds of the
successor state. MTLA adds a transition formula α.n 2 β.n where n is a name and
α and β are sequences of names. This formula asserts that the subtree rooted at name
n within the tree indicated by α moves below the path β. The next-state relation of a
system is specified by the temporal formula �[A]v asserting that every transition that
modifies the expression v must satisfy the action formula A. Similarly, �[A]α.n , where
n is a name and α is a sequence of names stipulates that every transition that removes
or introduces location n below the subtree indicated by α must satisfy A.

Hiding of state components can be expressed in MTLA using existential quantifi-
cation. For example, ∃∃∃∃∃∃ag .ctl : F holds if one can assign some value to the attribute
ctl of location ag at every state such that F holds of the resulting run. As in TLA, the
precise definition is somewhat more complicated in order to preserve invariance under
stuttering. One may also quantify over names and write ∃∃∃∃∃∃n : F ; this hides the name as
well as all its attributes. These quantifiers observe standard proof rules. In particular,
we have the introduction axioms

(∃∃∃∃∃∃ -ref) F{t/n, t1/n.a1, . . . , tk/n.ak}⇒ ∃∃∃∃∃∃n : F
(∃∃∃∃∃∃ -sub) m〈true〉 ⇒ ∃∃∃∃∃∃n : m.n〈true〉 (m �≡ n)

The axiom (∃∃∃∃∃∃ -ref) asserts that ∃∃∃∃∃∃n : F can be derived by finding a “spatial refine-
ment mapping” that substitutes witnesses for the hidden name n as well as for its at-
tributes. The axiom (∃∃∃∃∃∃ -sub) allows us to introduce a new sublocation n of an existing
location m.

2 Statecharts and Their MTLA Semantics

We introduce state machines for mobile objects and provide them with a formal seman-
tics based on MTLA. Our concepts are illustrated by means of the “shopper” example:
A mobile shopping agent is sent out to gather offers for some item in several shops;
when returning to its home base, the shopping agent presents the offers that it has found.

2.1 State Machines for Mobility

UML state machines, an object-oriented variant of Statecharts as defined by Harel [7],
are an expressive and feature-rich class of state transition systems with a complex se-
mantics [18]. In this paper, we consider a restricted class of state machines, but extended
by a special move action. In particular, we consider neither hierarchical nor pseudo-
states, with the exception of a single initial state per state machine. We consider only
events triggered by asynchronous signals (excluding call, time, and change events) and

 277

name : String

present(offers : List)

«location» Site

«mobile» Shopper

offer(o : Offer)
look(i : Item)

name : String
home : Site

(a) Class diagram.

Idle

Shopping

offer(o) /
offers=add(offers,o)

home.present(offers)
[@home] /

(lookFor,offers)
look(item) /

= (item, {})

/ ANY l : Site :
move(l)

[@home]

(b) State machine for the shopper.
Fig. 2. High-level model for the shopper.

ignore deferred events. Although our encoding could be extended to encompass all fea-
tures of UML state machines, the simplifications we impose let us concentrate on the
problems of mobility and refinement that are our primary concern.

Transitions of state machines carry labels of the form trig[grd]/act , any and all of
which can be absent. The trigger trig denotes a signal receptions of the form op(par)
where op is the name of an operation declared in the class and par is a list of parameters.
The guard grd is a Boolean expression over the attributes of the class and the parameters
that appear in the trigger clause. In addition, we allow for guards e1 ≺ e2 that refer to
the hierarchy of objects; such a clause is true if (the object denoted by) e1 is currently
located beneath e2. The most common form is self≺ e, requiring the current object to
be located below e, which we abbreviate to @e. The action act denotes the response
of an object, beyond the state transition. For simplicity, we assume that all actions are
of the form ANY x : P : upd ;send ;move where each of the constituents may be absent.
Herein, P is a predicate over location objects, and ANY x : P functions as a binder
that chooses some location object x satisfying P which can be used in the remainder
of the action. The upd part is a simultaneous assignment (a1, . . . ,ak) = (e1, . . . ,ek) of
expressions ei to attributes ai . The send part is of the form e.op(par) and denotes the
emission of a signal op with parameters par to receiver object e. Finally, the move part
consists of a single move(e) action that indicates that the object should move to the
location object whose identity is denoted by e. We require that all free variables in the
action are among the attributes of the class, the parameters introduced by the trigger, and
the location x bound by ANY. Figure 2(b) shows a first state machine for our shopping
agent, based on the class diagram of Fig. 2(a). For the subsequent refinements, we will
not explicitly indicate the class diagrams, as they can be inferred from the elements that
appear in the state machines.

Our interpretation of transitions deviates in certain ways from the UML standard.
First, the UML standard prioritizes triggerless transitions (so-called “completion transi-
tions”) over transitions that require an explicit triggering event. In contrast, we consider
that completion transitions may be delayed; this less deterministic interpretation is more
appropriate for descriptions at higher levels of abstraction. As a second, minor devia-
tion, we allow guards to appear in transitions leaving a state machine’s initial state.

278

2.2 MTLA Semantics of State Machines

We formalize systems of interacting, mobile state machines in MTLA. The formaliza-
tion enables us to prove properties about systems specified in UML. We will also use it
to justify correctness-preserving refinement transformations.

In MTLA, every object is represented by a MTLA location whose local state in-
cludes a unique, unmodifiable identifier self . We denote by Obj the set of all MTLA
locations that represent objects of a given object system. The subset Loc denotes the
set of MTLA locations that represent UML Location objects (including Mobile Loca-
tions), and the formalization of a system of state machines at a given level of abstraction
is with respect to these sets Obj and Loc. An object configuration is represented as a
tree of names as described in Sect. 1.2.

The local state at each node represents the attributes of the corresponding object,
including self . In addition, we use the attributes ctl to hold the current control state of
the object (i.e., the active state of the corresponding state machine) and evts to repre-
sent the list of events that are waiting to be processed by the object. Objects interact
asynchronously by sending and receiving messages. In the MTLA formalization, the
communication network is represented explicitly by an attribute msgs located at the
root node of the configuration tree.

Every transition of an object is translated into an MTLA action formula that takes a
parameter o denoting the location corresponding to the object. For lack of space, we do
not give a precise, inductive definition of the translation, but only indicate its general
form. In the following, if ϕ is an MTLA expression (a term or a formula), we write
ϕx and ϕo , respectively, for the expressions obtained by replacing x by x .self and by
replacing all attributes a of o by o.a.

The action formula representing a transition is a conjunction built from the transla-
tions of its trigger, guard, and action components. The automaton transition from states
src to dest is reflected by a conjunct o.ctl = src∧o.ctl ′ = dest.

A trigger op(par) contributes to the definition of the action formula in two ways:
first, the parameters par are added to the formal parameters of the action definition.
Second, we add the conjunct

¬empty(o.evts)∧head(o.evts) = 〈op,par〉∧o.evts ′ = tail(o.evts)

asserting that the transition can only be taken if the trigger is actually present in the
event queue and that it is removed from the queue upon execution of the transition.
For transitions without an explicit trigger we add the conjunct UNCHANGED o.evts to
indicate that the event queue is unmodified.

A Boolean guard g over the object’s attributes is represented by a formula go , in-
dicating that g is true at location o. A constraint e1 ≺ e2 on the hierarchy of objects is
represented by a conjunct of the form∨

o1,o2∈Obj

o1.self = (e1)o ∧o2.self = (e2)o ∧o2.o1〈true〉

The representation of an action consists of action formulae for multiple assignment,
message sending, and moving. If an action shows an ANY x : P quantifier the conjunc-
tion acts of these formulae are bound by a disjunction

∨
x∈Loc Px

o ∧ actsx . In more
detail, a multiple assignment to attributes is represented by a formula

 279

o.a ′1 = (e1)xo ∧ . . .∧o.a ′k = (ek)xo ∧UNCHANGED 〈o.ak+1, . . . ,o.an〉
where ak+1, . . . ,an are the attributes of o that are not modified by the assignment and
where x is the variable bound by ANY. Sending a message e.op(par) is modeled by
adding a tuple of the form 〈ex

o ,op,parx
o 〉 to the network msgs . For actions that do not

send a message we add the conjunct msgs ′ = msgs . If the action contains a clause
move(e), we add a conjunct∨

l∈Loc

l .self = ex
o ∧ ε.o2 l .o

that asserts that o will move to (the location with identity) eo . Otherwise we add the
conjunct

∧
l∈Loc[false]l.o , which abbreviates

∧
l∈Loc(l .o〈true〉 ⇔ �l .o〈true〉), to indi-

cate that the object does not enter or leave any location in Loc.
To model the reception of new events by the object, we add an action RcvEvt(o,e)

that removes an event e addressed to o from the network and appends it to the queue
evts of unprocessed events while leaving all other attributes unchanged. We also add an
action DiscEvt(o) that discards events that do not have associated transitions from the
current control state. The entire next-state relation Next(o) of object o is represented as
a disjunction of all actions defined from the transitions and the implicit actions RcvEvt
and DiscEvt , existentially quantifying over all parameters that have been introduced in
the translation.

A state predicate Init(o) defining the initial conditions of object o is similarly ob-
tained from the transition from the initial state of the state machine. Finally, the overall
specification of the behavior of an object o of class C is given by the MTLA formulas

IC (o) ≡ ∧ Init(o)∧o.evts = 〈〉∧�[Next(o)]attr(o)∧�[false]o.self
∧ ∧

l∈Loc �[Next(o)]l.o
(1)

C (o) ≡ ∃∃∃∃∃∃o.ctl ,o.evts : IC (o) (2)

The “internal” specification IC (o) asserts that the initial state must satisfy the ini-
tial condition, that all modifications of attributes of o and all moves of o (entering or
leaving any location of Loc) are accounted for by the next-state relation, and that the
object identity is immutable. Here, attr(o) denotes the tuple consisting of the explic-
itly declared attributes and the implicit attributes ctl and evts . For example, the formula
IShopper(ag) shown in Fig. 3 defines the behavior of an object ag of class Shopper
introduced in Fig. 2(b). The “external” specification C (o) is obtained from IC (o) by
hiding the implicit attributes ctl and evts .

The specification of a finite system of objects consists of the conjunction of the
specifications of the individual objects. Moreover, we add conjuncts that describe the
hierarchy of locations and objects and that constrain the network. For our shopper exam-
ple, we might assume a typical system configuration being given by the object diagram
in Fig. 4. This configuration can be translated into the formula

Sys ≡ ∃∃∃∃∃∃msgs : ∧ ∧N
i=1 shi〈self = shop-i ∧ joe[false]∧∧N

j=1 shj [false]〉∧Site(shi)
∧ joe〈self = joe∧∧N

i=1 shi [false]〉∧Site(joe)
∧ joe.ag〈self = shopper〉∧Shopper(ag)
∧ ∧

l∈Loc �[false]l.sh1,...,l.shN ,l.joe

∧ msgs = 〈〉∧�
[∨

o∈Obj Next(o)
]
msgs

280

Init(ag) ≡ ag .ctl = Idle∧∨
l∈Loc(l .ag〈true〉∧ag .home = l .self)

Stationary(ag) ≡ ∧
l∈Loc [false]l .ag

Deq(ag ,msg) ≡ ¬empty(ag .evts)∧head(ag .evts) = msg ∧ag .evts ′ = tail(ag .evts)
Look(ag , item) ≡ ∧ ag .ctl = Idle∧ag .ctl ′ = Shopping∧Deq(ag ,〈look, item〉)

∧ ag .lookFor ′ = item ∧ag .offers ′ = {}∧UNCHANGED ag .home
∧msgs ′ = msgs ∧Stationary(ag)

Offer(ag ,o) ≡ ∧ ag .ctl = Shopping∧ag .ctl ′ = Shopping∧Deq(ag ,〈offer,o〉)
∧ ag .offers ′ = add(ag .offers,o)∧UNCHANGED 〈ag .lookFor ,ag .home〉
∧msgs ′ = msgs ∧Stationary(ag)

Present(ag) ≡ ∧ ∨
l∈Obj ag .home = l .self ∧ l .ag〈true〉

∧ ag .ctl = Shopping∧ag .ctl ′ = Idle
∧ UNCHANGED 〈ag .lookFor ,ag .offers,ag .home,ag .evts〉
∧msgs ′ = msgs ∪{〈ag .home,present,ag .offers〉}
∧ Stationary(ag)

Move(ag) ≡ ∨
l∈Loc∧ l .self ∈ Site

∧ ag .ctl = Shopping∧ag .ctl ′ = Shopping
∧ UNCHANGED 〈ag .lookFor ,ag .offers,ag .home,ag .evts〉
∧ msgs ′ = msgs ∧ ε.ag 2 l .ag

RcvEvt(ag ,e) ≡ ∧ 〈ag .self ,e〉 ∈msgs ∧msgs ′ = msgs \〈ag .self ,e〉
∧ ag .evts ′ = append(ag .evts,e)
∧ UNCHANGED 〈ag .ctl ,ag .lookFor ,ag .offers,ag .home〉
∧ Stationary(ag)

DiscEvt(ag) ≡ ∧ ¬empty(ag .evts)∧ag .evts ′ = tail(ag .evts)
∧ ¬∃i : head(ag .evts) = 〈look, i〉∨ag .ctl �= Idle
∧ ¬∃o : head(ag .evts) = 〈offer,o〉∨ag .ctl �= Shopping
∧ UNCHANGED 〈ag .ctl ,ag .lookFor ,ag .offers,ag .home〉
∧msgs ′ = msgs ∧Stationary(ag)

Next(ag) ≡ ∨ (∃i : Look(ag , i))∨ (∃o : Offer(ag ,o))∨Present(ag)
∨Move(ag)∨ (∃e : RcvEvt(ag ,e))∨DiscEvt(ag)

attr(ag) ≡ 〈ag .ctl ,ag .lookFor ,ag .offers,ag .home,ag .evts〉
IShopper(ag) ≡ ∧ Init(ag)∧ag .evts = 〈〉∧�[Next(ag)]attr(ag) ∧�[false]ag .self

∧ ∧
l∈Loc �[Next(ag)]l .ag

Fig. 3. MTLA specification of the shopper behavior (see Fig. 2(b)).

«location» sh : Site1

«location» sh : SiteN

«location» joe : Site

«location»
ag : Shopper

...

Fig. 4. Object diagram for the shopper example.

The formula in the scope of the existential quantifier asserts that the configuration
contains the N + 1 sites sh1, . . . ,shN and joe, and a shopping agent ag . Moreover, joe
and the shops are immobile and unnested locations, whereas ag is situated beneath
joe. The last conjunct asserts that messages are only sent and received according to
the specifications of the participating objects. The external specification is obtained by

 281

Idle

Returning

Ready
look(item) /

= (item, {})
(lookFor,offers)

(offers)
/ home.present

/ ANY x : nbs(loc) :

loc=x; move(x)

ArrivedWaitOffer

offer(o) /
offers=add(offers,o)

Shopping

/ loc.getOffer(lookFor)

loc=home

[@home]

[@home]

Fig. 5. Refined state machine for the shopper.

hiding, via existential quantification, the set of messages in transit, which is implicit at
the UML level.

For this example, Obj is the set {sh1, . . . ,shN , joe,ag} and Loc = Obj \ {ag}.
Moreover, we define a set Site containing the identities of the elements of Loc, i.e.
Site = {shop-1, . . . ,shop-N , joe}.

One purpose of our formalization is to prove properties about a system of objects.
For the shopper example, we can deduce that the shopping agent is always located at its
home agent or at one of the shops, expressed by the formula

�

(∨
l∈Loc

l .ag〈true〉
)

(3)

3 Refinement of State Machines

In an approach based on refinement, interesting correctness properties of systems can
already be established for models expressed at a high level of abstraction. Subsequent
models introduce more detail, but ensure that all properties are preserved. In this paper,
we focus on the refinement of state machines, and we add a “spatial” dimension to re-
finement that allows a designer to introduce more structure in the object hierarchy. In
particular, a single high-level object can be refined into a tree of sub-objects. Through-
out, we assume that the public interface of a refining class contains that of the refined
one, and that the sets Obj and Loc of objects and Location objects of the refining model
are supersets of those of the refined model.

3.1 Interface Preserving Refinement

Usually, early system models afford a high degree of non-determinism, which is re-
duced during system design. For example, consider the state machine for the shopping
agent shown in Fig. 5, which imposes a number of constraints with respect to the state
machine shown in Fig. 2(b). After arriving at a new shop location (whose identity is
recorded in the additional attribute loc), the agent may now either query for offers by

282

sending a new message getOffer or it may immediately move on to another neighbor
location. In the former case, the agent waits until the offers are received, adds them to
its local memory, and then moves on. When the agent arrives at its home location, it
may quit the cycle, presenting the collected offers and returning to the Idle state.

Intuitively, the state machine of Fig. 5 is a refinement of the one shown in Fig. 2(b)
because the states of the refined state machine can be mapped to those of the high-level
state machine such that every transition of the lower-level machine either is explicitly
allowed or is invisible at the higher level. In particular, the states Ready, Arrived, Wait-
Offer, and Returning can all be mapped to the high-level state Shopping, as indicated by
the dashed line enclosing these states. Assuming that the set nbs(s) contains only iden-
tities in Site, for all s ∈ Site, each transition of the refined model either corresponds to
a transition of the abstract model or to a stuttering transition. For example, the transition
from Arrived to WaitOffer is invisible at the level of abstraction of the model shown in
Fig. 2(b).

We now formalize this intuition by defining the notion of a state machine R refin-
ing another state machine M for a class C . Semantically, refinement is represented in
linear-time formalisms by trace inclusion or, logically, by validity of implication. How-
ever, we will be a little more precise about the context in which M and R are supposed
to be embedded. Both machines are specified with respect to attribute and method sig-
natures ΣR and ΣM that include all method names that appear in transition labels (either
received or sent), and we assume that ΣR extends ΣM . Similarly, we assume that the
sets ObjR and LocR of MTLA names for the objects and the Location objects at the
level of the refinement are supersets of the corresponding sets ObjM and LocM at the
abstract level. Finally, the refinement may be subject to global hypotheses about the
refined system, such as the hierarchy of names, that are formally asserted by an MTLA
state predicate H . Thus, we say that the class R with associated state machine formal-
ized by the MTLA formula CR refines class M whose state machine is described by
CM under hypothesis H if for all system specifications SysM and SysR where SysR

results from SysM by replacing all occurrences of CM (o) by CR(o) and by conjoining
some formulas such that SysR implies �H , the implication SysR⇒ SysM is valid.

In order to prove that R refines M , we relate the machines by a mapping η that
associates with every state s of R a pair η(s) = (Inv(s),Abs(s)) where Inv(s) is a set
of MTLA state predicates, possibly containing spatial operators, and where Abs(s) is a
state of M . With such a mapping we associate certain proof obligations: the invariants
must be inductive for R, and the (MTLA formalizations of the) transitions of the ma-
chine R must imply some transition allowed at the corresponding state of M , or leave
unchanged the state of M .

Theorem 1. Assume that M and R are two state machines for classes CM and CR

such that the attribute and method signature ΣR of CR extends the signature ΣM of
CM , and that η is a mapping associating with every state s of R a set Inv(s) of MTLA
state predicates and a state Abs(s) of M . If all of the following conditions hold then R
refines M under hypothesis H . We write ϕ for

ϕ{Abs(o.ctl)/o.ctl ,o.evts
ΣM /o.evts ,msgs
ΣM /msgs}

where e
Σ denotes the subsequence of elements e whose first component is in Σ.

 283

Idle

Returning

Ready
look(item) /

= (item, {})
(lookFor,offers)

offers=add(offers,o)
offer(o) /

(offers)
/ home.present

Incoming
/ ANY x : nbs(loc) :

loc=x; move(incoming(x))loc=home

[@home]

move(dock(loc))
admit() /

DockedWaitOffer
/ loc.getOffer(lookFor)

refuse()

[@home]

Fig. 6. Spatial refinement of the network sites.

1. Abs(sR
0) = sM

0 where sM
0 and sR

0 denote the initial states of M and R. Moreover,

|= H ∧ InitR(o)⇒ o[Inv(sR
0)]∧ InitM (o)

holds for the initial conditions InitR and InitM of M and R.
2. For every transition of R with source and target states s and t formalized by the

MTLA action formula A(o,par):

|= H ∧H ′∧o[Inv(s)]∧A(o,par)⇒ o[Inv(t)′]

3. For every state s of R and every outgoing transition of s formalized by formula
A(o,par), let Abs(s) denote the corresponding state of M , let B1(o,par1), . . . ,
Bm(o,parm) be the MTLA formulas for the outgoing transitions of Abs(s), let
attrM (o) be the tuple of attributes defined for M and LocM the set of locations
for M . Then:

|= H ∧H ′∧o[Inv(s)]∧A(o,par) ⇒
∨ ∨m

i=1(∃pari : Bi(o,pari))
∨ UNCHANGED 〈attrM (o),msgs
ΣM 〉∧

∧
l∈LocM

[false]l.o

Theorem 1 ensures that R can replace M , subject to hypotheses H . In particular, all
properties expressed by MTLA formulas that have been established for the high-level
system will be preserved by the implementation.

In order to prove that the state machine of Fig. 5 refines that of Fig. 2(b) (with re-
spect to H ≡∀s ∈ Site : nbs(s)∈ Site) we must define the mapping η. We have already
indicated the definition of the state abstraction mapping Abs . For the mapping Inv , we
associate (the MTLA encoding of) @home with state Returning and ag .loc ∈ Site with
all other states. It is then easy to verify the conditions of Theorem 1. In particular, the
transitions leaving state Arrived do not modify the shopping agent’s attributes, and they
do not send messages contained in the original signature. They are therefore allowed by
condition (3) of Theorem 1.

Theorem 1 can also be used to justify refinements that modify the spatial hierarchy
of locations. Consider the state machine shown in Fig. 6. It is based on the idea that
prior to interacting with an object, incoming agents are first placed in a special subloca-
tion for security checking. Instead of a simple, atomic move from one shop to another

284

ShoppingIdle GotRoute look(item) /
(dt.tgt, dt.res)

= (item, {})

offer(o) /
dt.res=add(dt.res,o)

[not empty(path.rt)] /
path.rt = tail(path.rt);
move(head(path.rt))

route(r) /
path.rt = r

[r in Seq(Site)]

[@home]

[@home] / home.present(dt.res)

Fig. 7. Spatial refinement of the shopper.

as in Figs. 2(b) and 5, this version moves the shopping agent first to the “incoming”
sublocation of the target location. If the agent is accepted by the host, as modeled by
the reception of an admit signal, it transfers to the “dock” sublocation where the real
processing takes place. Otherwise, the host will send a refuse signal, and the shopping
agent moves on to another neighbor host. Here we assume that every location l ∈ Loc
contains sublocations l in and l dock . Moreover, we assume functions incoming and
dock that look up the id’s of the corresponding sub-locations for a given network site.

Formally, Theorem 1 can again be used to show that the “docked” shopper of Fig. 6
is a refinement of that shown in Fig. 5 with respect to the hypothesis

H ≡
∧

l∈LocM

∧ l .l in〈true〉∧ l .l dock〈true〉
∧ incoming(l .self) = l in.self ∧dock(l .self) = l dock .self

The states Incoming and Docked are mapped to the single high-level state Arrived, and
the invariant mapping associates (the MTLA encoding of) @loc with the location In-
coming and ag .loc ∈ Site with all states. Indeed, the move action labeling the transition
from the Ready to the Incoming state will be formalized by an MTLA action formula∨

l∈LocR ε.ag 2 l in.ag , which implies the corresponding formula
∨

l∈LocM ε.ag 2
l .ag formalizing the move between the high-level states Ready and Arrived, using the
hypothesis H . Similarly, H and the invariant establish that the move between the In-
coming and Docked states maps to a stuttering action: Clearly, the local attributes and
the message queue are left unchanged. Moreover, the invariant associated with state In-
coming asserts that the agent is located beneath the site (with identity) loc. Therefore, a
move to the “dock” sublocation of that same site is invisible with respect to the locations
in LocM : the action implies [false]l.ag , for all l ∈ LocM .

For these kinds of refinement to be admissible, it is essential that the spatial oper-
ators of MTLA refer to locations at an arbitrary depth instead of just the children of
a node and that it is therefore impossible to specify the precise location of the agent.
In fact, we consider the concept of “immediate sublocation” to be as dependent on the
current level of abstraction as the notion of “immediate successor state”, and MTLA
allows to express neither.

3.2 Interface Refinement I: Spatial Distribution of State

Frequently, refinements of the spatial hierarchy will be accompanied by a distribution
of the high-level attributes over the hierarchy of sublocations of the refined model. For
a simple example, departing again from the high-level shopper of Fig. 2(b), consider

 285

the state machine shown in Fig. 7. Here we assume that the shopping agent contains
two sub-agents path that determines the path to follow through the network and dt that
collects the data, and we have replaced the attributes lookFor and offers of the high-
level shopper by attributes tgt and res assigned to the dt sub-agent1. The transition
from Idle to GotRoute determines the route of the agent. It is guarded by the condition
r ∈ Seq(Site), asserting that r is a list of (identities of) network sites.

Spatial distribution of attributes is similar to the concept of data refinement in stan-
dard refinement-based formalisms. Intuitively, the refinement of Fig. 7 is admissible
provided that the public interface is preserved. We will therefore assume that the at-
tributes item and offers have been marked as private in the class diagram for the abstract
shopper, ensuring that no other object relies on their presence.

Formally, we modify slightly the MTLA formalization of state machines, taking
into account the visibility (either “private” or “public”) of attributes. We redefine the
external specification of the behavior of an object o of class C with private attributes
a1, . . . ,ak as the MTLA formula

C (o) ≡ ∃∃∃∃∃∃o.a1, . . . ,o.ak ,o.ctl ,o.evts : IC (o) (4)

where IC (o) is defined as before by formula (1). Since the specification of an object
system is based on the external object specification, private attributes are invisible at the
system level, and the definition of refinement modulo a hypothesis remains as before.

The verification of refinement relies on conditions generalizing those of Theorem 1,
provided that the private attributes of the high-level object can be computed from those
of the implementation via a refinement mapping [1]. The relation between the two di-
agrams R and M is therefore given by the mapping η as before, complemented by
terms t1, . . . , tk that represent the values of the private high-level attributes a1, . . . ,ak .
These terms have then to be substituted for the attributes in the formulas concerning the
high-level state machine M .

Theorem 2. Extending the context of Theorem 1 by terms t1, . . . , tk , we now write ϕ for

ϕ{Abs(o.ctl)/o.ctl ,o.evts
ΣM /o.evts ,msgs
ΣM /msgs , t1/o.a1, . . . , tk/o.ak}

If the set of public attributes of R is a superset of those of M then R refines M under
hypothesis H up to hiding of attributes o.a1, . . .o.ak if the conditions of Theorem 1 hold
for this new interpretation of substitution.

For the example shown in Fig. 7, the hypothesis is

H ≡ ag .path〈true〉∧ag .dt〈true〉

The implementation states Idle and GotRoute are both mapped to the abstract state
Idle. The invariant mapping assigns the state formula ag .path.rt ∈ Seq(Site) to the
states GotRoute and Shopping. Finally, the refinement mapping is defined by substi-
tuting ag .dt .res and ag .dt .tgt for ag.offers and ag.lookFor , respectively. All proof
obligations of Theorem 2 are then easily verified.

1 The renaming of the attributes is not necessary, but will make it clear in the following to which
model we are referring.

286

Idle Shopping

offer(o) /
offers=add(offers,o)

Shipping

[@home] /
home.present(offers)

look(item) /
(lookFor,offers)=(item,{})

[@home]
loc=home

ANY l : Site :
loc=l; move(l)

move(transit)

Fig. 8. State machine for the “slow shopper”.

3.3 Interface Refinement II: Virtualisation of Locations

Whereas the notions of spatial refinement that we have considered so far have intro-
duced new (sub-)objects, we have taken care to preserve the hierarchy of the objects
present at the abstract levels. Together with the choice of modalities of MTLA, which
cannot express the precise location of an object, we have thus been able to represent
refinement as implication and to preserve all MTLA properties. However, it can occa-
sionally be desirable to allow for refinements that do not at all times preserve the spatial
relationships imposed by the original specification.

For example, the previous specifications of the shopping agent have all assumed
that moves between locations happen atomically. Figure 8 presents a variation of the
original state machine of Fig. 2(b) where the agent moves to an intermediate transit
location, which is not included in Site, before moving to the next site. (A subsequent
refinement could add more structure to the transit location, modeling the transport of
the agent across the network.) We cannot use Theorems 1 or 2 to prove that this model
refines the original one because the move to the transit location cannot be mapped to
any high-level action. In fact, the MTLA formula representing the “slow shopper” does
not imply the formula encoding the original specification, and the invariant formula (3)
asserting that the shopping agent is always located at some location that represents a
network site does not hold of the slow shopper.

Such relationships can be formalized by considering a weaker notion of refinement,
abstracting from some of the names that occur in the original specification. In our run-
ning example, the name of the shopping agent should not actually be part of the inter-
face: the purpose of the system is that the agent’s home site learns about offers made by
other network sites; the use of a mobile agent is an implementation detail. We say that an
object system formalized by an MTLA formula Impl refines another system formalized
by Spec up to hiding of name n if the implication Impl ⇒∃∃∃∃∃∃n : Spec holds. In general,
the behavior required of object n at the abstract level may be implemented by several
implementation objects, hence it does not appear useful to give a “local” rule, similar
to Theorems 1 and 2, that attempts to prove refinement by considering a single state
machine at a time. Instead, the strategy in proving such a refinement is to define a “spa-
tial refinement mapping”, using the rules given in Sect. 1.2. For the slow shopper, we
first use rule (∃∃∃∃∃∃ -sub) to introduce a new sublocation, say l virtual , for every high-level
location l and then define a refinement mapping that returns the implementation-level
agent as long as it is not at the transit location, and otherwise the location l virtual as-
sociated with the previous site visited as stored in the attribute loc. The local attributes

 287

of the high-level shopper are simply obtained from those of the implementation-level
agent. Observe in particular that the invariant (3) cannot be proven of the specification
∃∃∃∃∃∃ag : Sys because ag is no longer free in that formula.

Refinement up to hiding of names allows for implementations that differ more rad-
ically in structure. For example, the single shopping agent of the initial specification
could be implemented by a number of shopping agents that roam the network in parallel,
cooperating to establish the shopping list. On the other hand, a correct implementation
could also be based on a client-server solution instead of using mobile agents.

4 Conclusion

We have studied the applicability of the logic MTLA proposed in [11] in view of for-
malizing Mobile UML State Machines [3] and of establishing refinement relationships
between models described in this language. A configuration of a mobile system is rep-
resented as a tree of names, and mobility is reflected by changes to the name hierarchy.
MTLA accomodates local attributes at every node in the tree, simplifying the formal-
ization of state-based notations such as UML state machines. The operators of MTLA
have been designed to support system refinement; in particular, all spatial operators re-
fer to nodes arbitrarily deep beneath the current node and not just its children as in other
spatial logics, e.g. [4].

We have assumed some simplifications and restrictions for our formalization of
Mobile UML state machines. In particular, we assume that spatial relationships are
specified using constraints e1 ≺ e2, comparing the relative positions of two objects at
the current level of abstraction. This assumption has been essential to obtain a sound and
elegant representation of refinement as implication of specifications for mobile systems.

Our main objective has been the study of three fundamental refinement principles,
focusing on refinements of the spatial hierarchy. We have indicated sufficient conditions
for verifying refinement. However, these conditions are incomplete: in particular, it is
well known that refinement mappings need to be complemented by devices such as his-
tory and prophecy variables in order to obtain completeness [1]. We have also ignored
liveness and fairness properties in this paper, and we have mostly restricted ourselves
to proving refinement “object by object”. We intend to study adequate composition and
decomposition concepts in future work.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comp. Sci.,
81(2):253–284, May 1991.

2. H. Baumeister, N. Koch, P. Kosiuczenko, P. Stevens, and M. Wirsing. UML for global com-
puting. In C. Priami, editor, Global Computing. Programming Environments, Languages,
Security, and Analysis of Systems, volume 2874 of Lect. Notes in Comp. Sci., pages 1–24,
Rovereto, Italy, 2003. Springer-Verlag.

3. H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing. Extending activity diagrams to
model mobile systems. In M. Aksit, M. Mezini, and R. Unland, editors, Objects, Compo-
nents, Architectures, Services, and Applications for a Networked World, volume 2591 of
Lect. Notes in Comp. Sci., pages 278–293, Erfurt, Germany, 2003. Springer-Verlag.

288

4. L. Caires and L. Cardelli. A spatial logic for concurrency (part I). Inf. and Comp.,
186(2):194–235, Nov. 2003.

5. L. Cardelli and A. Gordon. Mobile ambients. Theor. Comp. Sci., 240:177–213, 2000.
6. T. Deiß. An approach to the combination of formal description techniques: Statecharts and

TLA. In K. Araki, A. Galloway, and K. Taguchi, editors, Integrated Formal Methods (IFM
1999), pages 231–250, York, UK, 1999. Springer-Verlag.

7. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Pro-
gramming, 8(3):231–274, 1987.

8. T. A. Kuhn and D. v. Oheimb. Interacting state machines for mobility. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, Proc. 12th Intl. FME Symposium (FM2003), volume 2805 of Lect.
Notes in Comp. Sci., pages 698–718, Pisa, Italy, Sept. 2003. Springer-Verlag.

9. L. Lamport. The Temporal Logic of Actions. ACM Trans. Prog. Lang. Syst., 16(3):872–923,
May 1994.

10. D. Latella, M. Massink, H. Baumeister, and M. Wirsing. Mobile UML statecharts with lo-
calities. Technical report 37, CNR ISTI, Pisa, Italy, 2003.

11. S. Merz, J. Zappe, and M. Wirsing. A spatio-temporal logic for the specification and refine-
ment of mobile systems. In M. Pezzè, editor, Fundamental Approaches to Software Engi-
neering (FASE 2003), volume 2621 of Lect. Notes in Comp. Sci., pages 87–101, Warsaw,
Poland, April 2003. Springer-Verlag.

12. R. D. Nicola, G. Ferrari, and R. Pugliese. Klaim: a kernel language for agents interaction and
mobility. IEEE Trans. Software Eng., 24(5):315–330, 1998.

13. R. D. Nicola and M. Loreti. A modal logic for Klaim. In T. Rus, editor, Algebraic Method-
ology and Software Technology (AMAST 2000), volume 1816 of Lect. Notes in Comp. Sci.,
pages 339–354, Iowa, 2000. Springer-Verlag.

14. Object Management Group. Unified Modeling Language Specification, Version 1.5. Specifi-
cation, OMG, 2003. http://cgi.omg.org/cgi-bin/doc?formal/03-03-01.

15. B. Paech and B. Rumpe. A new concept of refinement used for behaviour modelling with
automata. In Formal Methods Europe (FME’94), volume 873 of Lect. Notes in Comp. Sci.,
pages 154–174, Barcelona, Spain, 1994. Springer-Verlag.

16. P. Scholz. A refinement calculus for Statecharts. In Fundamental Approaches to Software
Engineering (FASE’98), volume 1382 of Lect. Notes in Comp. Sci., pages 285–301, Lisbon,
Portugal, 1998. Springer-Verlag.

17. M. Schrefl and M. Stumptner. Behavior-consistent specialization of object life cycles. ACM
Trans. Software Eng. Meth., 11(1):92–148, 2002.

18. M. von der Beeck. Formalization of UML-statecharts. In M. Gogolla and C. Kobryn, editors,
Proc. 4th Int. Conf. UML (UML 2001), volume 2185 of Lect. Notes in Comp. Sci., pages
406–421. Springer, 2001.

	Frontmatter
	Invited Speakers
	Algebraic Approaches to Problem Generalisation
	A Science of Software Design
	Glass Box and Black Box Views of State-Based System Specifications
	Abstraction for Safety, Induction for Liveness
	Counting Votes with Formal Methods
	Agent-Oriented Programming: Where Do We Stand?

	Contributed Talks
	On Guard: Producing Run-Time Checks from Integrity Constraints
	Behavioural Types and Component Adaptation
	Towards Correspondence Carrying Specifications
	Formalizing and Proving Semantic Relations between Specifications by Reflection
	Model-Checking Systems with Unbounded Variables without Abstraction
	A Generic Software Safety Document Generator
	Linear Temporal Logic and Z Refinement
	Formal JVM Code Analysis in JavaFAN
	Verifying a Sliding Window Protocol in μCRL
	State Space Reduction for Process Algebra Specifications
	A Hybrid Logic of Knowledge Supporting Topological Reasoning
	A Language for Configuring Multi-level Specifications
	Flexible Proof Reuse for Software Verification
	Deductive Verification of Distributed Groupware Systems
	Formal Verification of a Commercial Smart Card Applet with Multiple Tools
	Abstracting Call-Stacks for Interprocedural Verification of Imperative Programs
	Refining Mobile UML State Machines
	Verifying Invariants of Component-Based Systems through Refinement
	Modelling Concurrent Interactions
	Proof Support for RAISE by a Reuse Approach Based on Institutions
	Separate Compositional Analysis of Class-Based Object-Oriented Languages
	Abstract Domains for Property Checking Driven Analysis of Temporal Properties
	Modular Rewriting Semantics of Programming Languages
	Modal Kleene Algebra and Partial Correctness
	Modularity and the Rule of Adaptation
	Modal Abstractions in μCRL
	Semantics of Plan Revision in Intelligent Agents
	Generic Exception Handling and the Java Monad
	Expressing Iterative Properties Logically in a Symbolic Setting
	Extending Separation Logic with Fixpoints and Postponed Substitution
	A Formally Verified Calculus for Full Java Card
	On Refinement of Generic State-Based Software Components
	Techniques for Executing and Reasoning about Specification Diagrams
	Formalising Graphical Behaviour Descriptions
	Model-Checking Distributed Real-Time Systems with States, Events, and Multiple Fairness Assumptions

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

