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Abstract

Early test development and specification enhance the
quality and robustness of software as experience with agile
software development methods shows. The methods propa-
gate test-first techniques and early prototyping through ex-
ecutable design models. We propose to enhance test-driven
development to a more general property-driven develop-
ment technique: Property-driven development ties together
automatic tests, formal specification, and executable UML
models by developing these three views together instead of
one after the other as is common practice. Scenarios and
properties serve as a combined basis for system specifi-
cation and test cases. By extracting common properties of
several scenarios we obtain invariants and pre- and post-
conditions. The behavior of the system is described UML
state machines. For testing we insert invariants and pre-
and postconditions as assertions in the code generated from
the state machines. For verification, we use model checking.
For this we have to restrict the models to finite domains.
Therefore we construct suitable abstractions of the scenar-
ios and the system behavior and verify the abstractions us-
ing a model checker.

1. Introduction

The two main questions when developing software are:
“Are we developing the right software” and “Are we de-
veloping the software right”. The first question is about the
software meeting the explicit and implicit requirements of
the customer and the second question is about the quality
and reliability of the software. Does the software indeed
perform the way it is intended?

∗ This research has been partially supported by the InOpSys project (WI
841/6-1) sponsored by Deutsche Forschungsgemeinschaft (DFG) and
by the EC 5th Framework project AGILE: Architectures for Mobility
(IST-2001-32747).

The first problem concerns user requirements elicitation.
In most cases the detailed user requirements are not known
up front. Instead, they evolve with the feedback from the de-
velopment process. There are several approaches to provide
feedback: One way is to present the customer with several
diagrammatic views on the software for inspection and dis-
cussion [5]. UML, for example, provides diagrams like use-
case diagrams, activity diagrams, and class diagrams for this
purpose. Another means are executable models and proto-
types which allow one to simulate the behavior of the soft-
ware. Finally, an excellent means for getting feedback is
the running program. This is also the most expensive way
to provide feedback.

Building the model right implies that one has to know
what the right system is. This requires an independent view
on the software which states the properties the software
should have and against which the software can be checked.
These properties are the formalization of the functional and
non-functional requirements of the proposed system. As we
have seen above, these requirements are likely to be un-
known in all detail before starting the implementation of
the software. Thus, we propose to develop the specification
of the software together with the software.

This idea is also present in extreme programming [2].
Extreme programming is an agile software development
process that emphasizes small iterations with the customer
being able to play with the software almost from the begin-
ning. In addition, tests are written before the actual code is
written, called test-driven development [3]. This provides
a second, more declarative view on the software, enhances
the quality of the code, and provides the safety net that al-
lows one to react to changes in requirements resulting from
the feedback with the software.

However, extreme programming has two drawbacks.
First, tests can only express particular scenarios but not
more general properties of the software to be built. Sec-
ond, with extreme programming already the program code
is built. Thus, the power of using more abstract model-
ing techniques is lost and the programmer is forced to deal
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Figure 1. Overview over the process.

with implementation details.
We propose a property-driven approach where an exe-

cutable model of the software is developed together with its
specification and tests. We work on the design level and use
abstract executable models instead of directly writing code.
Then the resulting code is either obtained manually by re-
fining the model, by generating code from the model, or by
transforming the model into other models which are more
suitable for code generation, e. g. using techniques from
model-driven architecture [13].

In Sect. 2 we introduce the property-driven software de-
velopment process. Section 3 applies an iteration of the pro-
cess to the MUD game case study developed in the EU-
project AGILE1. Finally, Sect. 4 contains some concluding
remarks.

2. The Process

Property-driven development is an iterative pro-
cess guided by user stories and use cases (cf. Fig. 1). The
steps of the process are the following:

1. Select a use case from the current user story.

2. Define a scenario, either an intended scenario or a sce-
nario which is not permitted, as a UML interaction di-
agram.

3. Generate tests from the interaction diagram.

4. Extend the current model to cope with the new sce-
nario until all tests succeed.

5. Identify system properties by generalizing the sce-
nario.

6. Depending on the type of properties, either instrument
the model with assertions generated from the proper-
ties and run the tests again, or use model checking
techniques to verify or validate the property.

1 Architectures for Mobility; www.pst.ifi.lmu.de/projekte/
agile.

Step 1 As with extreme programming we capture the func-
tional and non-functional requirements by so-called user
stories. Each user story describes an aspect of the behav-
ior of the software system relevant to the customer. Starting
from a user story—selected according to the priority given
to the user story by the customer—the first step is to identify
the use cases involved in that user story. While a user story
describes a particular use scenario of the system, a use case
describes a functionality of the system. Thus a user story
may involve several functionalities from a system, while, in
general, several user stories are needed to describe the com-
plete functionality of one use case.

Step 2 After having identified the use cases, a use case is
selected and the scenarios of that use case relevant for the
current user story are identified. We have two kinds of sce-
narios, scenarios that describe the intended behavior of the
system and scenarios that are not allowed to occur. We use
the interaction diagrams of UML 2.0 [12] to model such
behaviors as they allow us to model both types of scenar-
ios which is not possible with previous versions of UML.

Step 3 Next we select one of these scenarios and generate
JUnit [4] or Fit [7] tests for them from their interaction dia-
gram. JUnit is a unit testing framework developed by Kent
Beck and Erich Gamma for Java, and Fit is a similar frame-
work as JUnit but uses HTML tables instead of Java classes
for defining the tests and is mainly used for acceptance test-
ing. We are now able to run the tests against the current
model of the system. Of course these tests will fail as the
current model is not yet extended to cope with the defined
scenario. This will be done in the next step.

Step 4 In this step, the current model is extended to cope
with the scenarios defined in the previous step. We use UML
class diagrams to describe the structure of the model and
UML state machines to describe their behavior. The HUGO2

tool allows us to generate executable Java code from the
state machines. HUGO is a UML model translator that sup-
ports UML static structure, UML state machines, and UML
interactions. For translating a UML model with HUGO, the
UML model has to consist of a set of active classes with
their accompanying state machines. Such a UML model can
either be given as an XMI 1.0/1.1-file or in a simple textual
format called UTE.

Step 5 Running the tests successfully is a pretty good in-
dication that the state machine indeed implements the in-
tended behavior, i. e., that we developed the software right.
However, tests are only able to express particular scenarios
and not general classes of scenarios. In this step the prop-
erties of the system are identified by generalizing from the
scenarios. Currently we can handle two types of properties:

2 www.pst.ifi.lmu.de/projekte/hugo
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Figure 2. The MUD game.

OCL formulas [15] for class invariants and pre- and post-
conditions for methods, and safety and liveness properties
expressed in an extension of OCL by path quantifiers and
temporal operators as used in CTL.

Step 6 To validate the OCL constraints, we would like to
instrument the state machines with the OCL constraints by
adding the invariants, pre- and postconditions before and
after each method call. Since this is not yet supported by
our tools we proceed actually as follows. We use HUGO

to translate the state machines into Java code. In a second
step we translate the OCL constraints to the Java Model-
ing Language (JML) [11] and use the assertion generator
for JML to instrument the generated code [6]. When run-
ning the tests, these assertions will be executed as well.
Thus in this step we check the validity of the OCL prop-
erties from which assertions were generated. For tempo-
ral properties we use HUGO to translate the UML model
and the constraints into specifications for the model check-
ers SPIN [8] and UPPAAL [10] and for the interactive the-
orem prover KIV [14]. The actual verification is performed
by these off-the-shelf tools.

The next iteration starts by looking at the current use
case. Are all interesting scenarios defined and dealt with?
If this is not the case, the next iteration starts with the next
scenario. After finally all interesting scenarios for a use case
have been dealt with, we can move on to the next relevant
use case in the current user story. Similarly, after all the sce-
narios and use cases relevant for a user story have been fin-
ished, one moves on to the next user story.

3. The MUD Game

To illustrate the property-driven development process,
we use a multi-user dungeon game (MUD) played via mo-
bile phones. At the beginning of the game, the player is in
the start room of a maze of connected rooms. His task is
to find the special room from which he can advance to the
start room of the next level or finish the game, if there is no
next level (cf. Fig. 2). While moving through the rooms, the
player can interact with other players by talking to them,
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Figure 3. User stories for the MUD game.

trading objects with them, and fighting. These players can
be human or computer controlled.

3.1. User Stories, Uses Cases, and Tests

The MUD game is divided into the following user stories
(cf. Fig. 3):

1. One player game. Only one player is present in the
game and he can move through the rooms of the game.

2. Multi-player game. Now the game contains several hu-
man players that move through the game and that in-
teract by talking and trading objects.

3. Multi-player game (fighting). In this user story the
players can also interact by fighting each other.

4. Game with computer-controlled players. In this user
story, computer controlled players are added to the
game.

5. Adding distribution. In the previous user stories distri-
bution did not play a role. In this user story we move
to a more concrete level by adding distribution aspects
to our model.

While user stories 1 to 4 represent functional requirements,
user story 5 adds a requirement on the architecture of the
system. The order in which the user stories are defined re-
sults in first producing a model for the functional require-
ments of the game and then adding implementation details,
like distribution, to the model.

In the following, we assume that the first user story has
already been finished and that we are working on the multi-
player game user story. The use cases identified for this user
story are shown in Fig. 5 and we select the use case trade
objects to work on. The first scenario of that use case, shown
in Fig. 4, is the successful trade scenario. We start with as-
serting that the first player has a book and the second player
has a mask. Then the first user initiates the trade by send-
ing his player object the request to offer the second user
the book. For example, he can do this by selecting on his
mobile phone the book in his inventory and then selecting
the option for trading. The second user receives from his
player object the request for a trade, for example, by pre-
senting a dialog on the display of the second player. The
second user accepts the trade by offering the mask. Finally,
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Figure 4. Scenario for a successful trade.

the first player accepts the counter offer by closing the trade
which again is displayed on the second user’s screen. We as-
sert that the first player has the mask and the second player
has the book. In addition, the first player has set his attribute
successTrade to true to indicate that a successful trade
has taken place.

Note that no interaction is shown between the player ob-
ject of the first player and the second player object. We are
only interested in the interaction between the users and their
player objects but not in the interaction between the player
objects because we are defining the behavior of the MUD
game relevant to the customer and not its implementation.

To generate tests from the interaction, we translate the
above scenario to the following Fit table (cf. Fig. 6). The
head of the table, fit.ActionFixture, is the name

MUD

User

Look around

Move around

Trade objects

. . .

Figure 5. Use cases for the multi-player game
user story.

fit.ActionFixture
start Trading
check has book p1 true
check has mask p2 true
action offer book p1
action offer mask p2
action close trade p1
check has mask p1 true
check success trade p1 true
check has book p2 true

Figure 6. Fit table representing the success-
ful trade scenario.

of a class defining how the following rows are to be in-
terpreted. Start, action, and check are Fit keywords
defined by fit.ActionFixture; the interpretation of
offer, close trade, has, and successTrade have
to be provided by the modeler in so-called fixture classes, in
this case class Trading. Finally, book, mask, and true
are parameters to the operations.

3.2. The Model

The next step of property-driven development is to ex-
tend the model from the previous iteration in such a way
that the tests generated from the scenario in this iteration
succeed. The extended class diagram is shown in Fig. 7.
Classes PersonalObject, and Offer are added to the
class diagram of the previous iteration and class Player
is extended by the attribute successTrade and methods
has, offer, and closeTrade. The class diagram shown
in Fig. 7 uses the stereotypes for mobile objects and loca-
tions from Baumeister et al. [1].

The behavior of the player class if given by the state ma-
chine in Fig. 8. The state machine defines the behavior of
the players that is sufficient to satisfy the tests for the suc-
cessful trade scenario but nothing more. We test that the
state machine implements the successful trade scenario by
running the generated Fit tests from Fig. 6 against Java code
generated by HUGO from the state machine.

3.3. Verification and Validation

By looking at the successful trade scenario we see that
it tests that book and mask are exchanged, but what about
other objects like sword and shield? To express that we do
not care about what objects are being exchanged, as long
as they are being exchanged, we cannot use tests alone; in-
stead we have to use more expressive formulas like the post-
condition on closeTrade in Fig. 7.
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Figure 7. Class diagram for the successful
trade scenario.

By instrumenting the code generated from the state ma-
chine with assertions generated from the constraints, we are
able to check with each executed test that the pre- and post-
conditions are not violated. Note that this approach can be
only used as a first validation of the specification w. r. t. the
model. In particular, since the tests only check the exchange
of book and mask, the assertions are only tested for the ex-
change of book and mask. However, in comparison to the
corresponding test, which is only executed once, the asser-
tions are checked also with the execution of the other tests.
In later stages of the development where we have additional
scenarios and thus additional tests for trading, the assertion
generated from the postcondition for closeTrade is al-

waiting

receivedOffer

offer(o,to)/
lo.p._recOffer(o,this)

closeTrade()/
lo.p._closeTrade()
successTrade=true
has->including(lo.object)
lo.p._del(lo.object)

offer(o,from)/
lo.p._recOffer(o,from)

_closeTrade()/
u.closeTrade()
has->incl.(lastOffer.object)
p._del(lastOffer.object)

lo.p is short for
lastOffer.player

_recOffer(o,from)/
u.offer(o,from)

Figure 8. Player state machine.
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Figure 9. Abstracted player state machine.

ways checked whenever during these tests a closeTrade
is performed.

In addition to OCL constraints we can use temporal logic
formulas to express desired safety and liveness properties of
the system. For example we express that the trading proto-
col we have defined so far does not deadlock and that both
players agree on the successful outcome of the trade, i. e.,
that after performing closeTrade, the successTrade
attribute of both players is true.

To use a model checker to check these properties, we
have to restrict our model to finite domains by removing
all operations with infinite domains from the state machine
(cf. Fig. 9). The property of deadlock freedom can be ex-
pressed by the temporal OCL constraint:

AG not deadlock

And the property that both player objects p1 and p2 agree
on the outcome of a trade is:

AG (u1.inState(Idle) and
u2.inState(Idle)) implies
p1.successTrade == p2.successTrade

HUGO translates the resulting UML model into UPPAAL

timed automata: Each state machine is translated into a
timed automaton for representing its behavior proper as
well as a timed automaton for its event queue. The timed au-
tomata communicate over a shared network that temporar-
ily stores the messages that are exchanged between the state
machines and guarantees that each message is delivered to
its intended receiver within a predetermined time bound.
The deadlock property is translated into the timed CTL
logic of UPPAAL, expressing that a deadlock of the over-
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Figure 10. Corrected scenario for a success-
ful trade.

all system can only arise, if either some event queue or the
network has overflown.

Deadlock freedom is easily proved; however, the prop-
erty that both players agree on the outcome of the trade
does not hold. This reveals a bug in the original state ma-
chine in Fig. 8 and in our test scenarios. In the original sce-
nario (cf. Fig. 4), we have only tested for the first player
that he thinks that the trade was successful but not for the
second player. Thus, we have not only to correct the state
machine by setting successTrade to true in the transi-
tion from state receivedOffer to state waiting trig-
gered by event _closeTrade in Fig. 8, but also to correct
the test scenario to check for successTrade in the asser-
tion of the second player (cf. Fig. 10).

In addition to generating tests to check the validity of
scenarios, we can use HUGO to directly verify that the suc-
cessful trade scenario in Fig. 10 is a possible scenario of
the corrected state machine. In UTE, this interaction is ren-
dered as follows:

interaction successfulTrade {
u1 -> p1 : offer();
p2 -> u2 : offer();
u2 -> p2 : offer();
p1 -> u1 : offer();
u1 -> p1 : closeTrade();
p2 -> u2 : closeTrade();

assert p1.successTrade == 1 and
p2.successTrade == 1;

}

where u1 and u2 are the user objects, and p1 and p2 the
corresponding player objects. HUGO translates such an in-
teraction into an observer automaton [9] that runs concur-
rently with all objects of the model and registers all mes-
sages that are exchanged between the objects. The observer

Scenarios / Tests Model Properties

Use Case 1

Use Case 2

Use Case 1 … … …

Use Story 1

Use Story 2

…

…

Figure 11. The iterative nature of property-
driven development.

automaton validates that the exchanged messages adhere to
the order specified in the interaction. However, the observer
automaton allows for an arbitrary number of messages be-
tween two specified messages and thus can ignore inter-
nal message exchanges. For the resulting overall system of
timed automata, HUGO produces the requirement that the
final state of the observer automaton can be reached, i. e.,
that a run according to the interaction is indeed possible.
Furthermore, if the interaction specification ends with an
assert statement, a requirement is generated that when-
ever the final state of the observer automaton is reached the
asserted property must hold. For the successful trade exam-
ple we get the following UPPAAL formulas:

E<> observer.ObserverSuccess
A[] observer.ObserverSuccess imply

(objP1SM.successTrade == 1 and
objP2SM.successTrade == 1)

where objP1SM and objP2SM are the HUGO-generated
names for p1 and p2.

3.4. Next Iteration

We have up to now only dealt with the successful trade
scenario. A next scenario could consider the situation where
the trade is canceled by the second user. This yields another
extension of the class diagrams and the state machine. Fur-
thermore, additional constraints are defined, e. g., that af-
ter the trade was canceled, the objects proposed for trading
remain with their original owner and successTrade is
false. The properties of deadlock freedom of the trade pro-
tocol and that the users agree on the outcome of the trade
(successful or canceled) do not change and have to be ver-
ified again using the extended state machine of this itera-
tion.

4. Concluding Remarks

With property-driven development the specifica-
tion, tests, and executable model are developed together

                                                                                                        
                              

                                                                                                                                            



(cf. Fig. 11) which is important to get immediate feed-
back from the customer. This ensures that the system
we are building is the right system, that is, that the sys-
tem satisfies the needs of the customer. The specifica-
tion together with the tests increase our confidence that we
have built the system right, that is, that the software in-
deed performs as required by the customer. In addition
to raising our confidence in the software, the specifica-
tion can be used as a documentation for the system.

Property-driven development proceeds in small itera-
tions. Thus the changes to the specification, tests, and model
w. r. t. the previous iteration are only small. This makes it
easier to keep the three views synchronized. Keeping the
views synchronized allows to feed back knowledge gained
building one view into the other views. For example, one
may be able to simplify the model because making the prop-
erties the model should satisfy explicit reveals unnecessary
complexity in the model. Or, trying to find a model for the
desired properties, one may discover that the properties are
not complete, e. g., that some cases are missing or that the
specification is not implementable.

Specification and tests provide a safety net for easy refac-
toring of the model, so that it becomes easy to incorporate
the feedback from the customer, which is needed to imple-
ment the right system.

Currently we are integrating these techniques into a user-
oriented collaborative development environment.
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