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Abstract. An algebraic approach to the view consistency problem in software
development is provided. A view is formalised as a sentence of a viewpoint lan-
guage; a viewpoint is given by a language and its semantics. Views in possibly
different viewpoints are compared over a common view for consistency by a het-
erogenous pull-back construction. This general notion of view consistency is il-
lustrated by several examples from viewpoints used in object-oriented software
development.

1 Introduction

The use of views in software development supports an often desirable “separation of
concerns”. Each stakeholder of a software system may express his view of the sys-
tem from his own viewpoint and may employ the notation most appropriate for this
viewpoint. In particular, most viewpoints taken by system stakeholders concentrate on
parts of the whole system under construction which may either be rather orthogonal
and separated by clean interfaces, or may overlap in intricate ways. However, the use of
different views in software development poses the problem to ensure consistency, i.e.,
to guarantee that there is an overall integration of the views that is implementable in a
software product. On the one hand, this means to integrate partial descriptions of the
system; on the other hand, different notations and their semantics have to be compared.

The “system-model” solution to the view consistency problem embeds all view-
points used for software development in a single, unifying system model and com-
pares the embedded views over the system model’s semantics. This approach has been
put forward, for example, by stream-based [6], graph grammar [7] and rewrite system
models [13], or the integration of different specification formalisms, like CSP and Z [8,
19] or a combination of algebraic specifications and labelled transition systems [12,
16]. However, an encompassing single system model renders reasoning on different
views in a formalism suitably adapted to the view’s viewpoint rather difficult. The
“heterogeneous-specification” line of research concentrates on the comparison and in-
tegration of different, heterogeneous specification formalisms, retaining the formalisms
most appropriate for expressing parts of the overall problem. Most prominently, insti-
tutions [9] and general logics [11] are used as a formal basis establishing a powerful
framework for heterogenous specifications and heterogenous proofs [2, 15, 14]. These
investigations, which concentrate on formal, logic-based software development, is com-
plemented by set-based frameworks for view comparison and integration [3, 5].
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Our approach to the view consistency and integration problem in software devel-
opment follows the “heterogeneous specification” approach, but applies these ideas to
general software development. A viewpoint is given by a language and its semantics; a
view in a viewpoint is a sentence of the viewpoint’s language. We introduce a suitable
notion of translations between viewpoints and view consistency for views in different
viewpoints. We also define a general notion of consistency of views in possibly differ-
ent viewpoints over a common view in maybe yet another viewpoint using a heteroge-
nous pull-back construction. In particular, this construction avoids the unification of all
different viewpoints into a single, formal system model. We illustrate our notion of con-
sistency by several examples for viewpoints used in common object-oriented software
development such as class diagrams and state machine diagrams.

The remainder of this paper is structured as follows: Sect. 2 motivates the use of
multiple views and the consistency problem by means of examples. Sect. 3 introduces
our algebraic notion of viewpoints and views. The translation of viewpoints and views is
defined in Sect. 4. The algebraic notion of view consistency is presented in Sect. 5. We
conclude by an outlook to further research topics. The appendices contain the formal
definitions for the viewpoints used in the examples.

2 Multiple Views

In software development, multiple views and viewpoints are ubiquitous. As a simple ex-
ample, consider the description of the interaction of an automatic teller machine (ATM)
with a bank in Fig. 1. Using the “Unified Modeling Language” (UML [4]), the static
structure of such a system may be specified by a UML class diagram as in Fig. 1(a).
The dynamic behaviour of instances of the classes ATM and Bank may be given by state
machine diagrams, see Fig. 1(d) for an ATM, Fig. 1(e) for a Bank. Finally, collaboration
diagrams may be used for specifying desired (cf. Fig. 1(b)) or undesired behaviours (cf.
Fig. 1(c)) of interaction.

These views overlap and thus must be checked for consistency in several ways: First
of all, the static structure and both of the state machines can be considered consistent if
the state machines refer only to attributes, association ends, operations, and receptions
that are declared in the class diagram. This syntactical notion of consistency amounts to
extracting a class diagram from the state machines and checking whether this extracted
class diagram is contained in the given class diagram of the static structure. In the same
way, the collaboration diagrams can be checked for their class-diagram compatibility
and, moreover, the same signature check must be applied to the collaborations and the
state machines. Thus, when comparing the diagrams from a class-diagram or signature
viewpoint, there must be translations from the views and their viewpoints under com-
parison into the signature viewpoint where consistency checking is signature inclusion.
The same technique of consistency checking applies for showing that a collaboration is
indeed realised by interacting state machines. As a collaboration specifies possible mes-
sage exchanges and their order, the message exchanges of the interacting state machines
have to be compared to these possible partial orders of message exchanges for inclu-
sion. Hence, comparing diagrams from an interaction viewpoint involves translations
from the views and their viewpoints under comparison into the interaction viewpoint
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«signal» done
verifyPIN()

«signal» PINVerified

«signal» abort
«signal» reenterPIN

1

atm

1

bank Bank

int maxNumIncorrect = 2
int numIncorrect = 0
boolean cardValid = true

ATM

(a) Class diagram

atm bank
a : ATM b : Bank

1: verifyPIN()
3: verifyPIN()

4: PINVerified
2: reenterPIN

(b) Expected collaboration

atm bank
a : ATM b : Bank

3: verifyPIN()

4: PINVerified
2: abort

1: verifyPIN()

(c) Erroneous collaboration

ReturningCard

AmountEntryVerification

CardEntry

Counting

Dispensing

PINEntry

Giving Money

PINVerified

abort

/ ^bank.done

/ ^bank.verifyPIN()

reenterPIN

(d) State machine diagram for class ATM

CardValidVerifyingCard

Idle

PINCorrect

entry / numIncorrect = 0

PINIncorrect

VerifyingPIN

[else] / ^atm.abort

[cardValid]

[else] / cardValid = false; ^atm.abort

/ ^atm.PINVerified

[numIncorrect < maxNumIncorrect]
/ numIncorrect++; ^atm.reenterPIN

done

Verifying

verifyPIN()

(e) State machine diagram for class Bank

Fig. 1. Multiple views in a UML model of an ATM.
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Account

bal : int

deposit(n : int)
withdraw(n : int)

context Account::deposit(n : int)
post: bal = bal@pre+n

(a) Client view

Account

bal : int
count : int

deposit(n : int)
withdraw(n : int)
bonus() : int
treshold() : int

context Account::deposit(n : int)
post: if count < treshold()

then count = count@pre+1 and
bal = bal@pre+n

else count = 0 and
bal = bal@pre+n+bonus()

(b) Management view

Fig. 2. Multiple views in UML models of a bank account.

where consistency checking is partial order inclusion. Similarly, the interaction view-
point can be used to check that message exchanges given by a collaboration diagram
are not included in the message exchanges of interacting state machines.

An analogous approach applies when a system is viewed from different angles by
different stakeholders. Consider the (over-simplified) descriptions of a bank account
depicted in Fig. 2, using UML and the “Object Constraint Language” (OCL [18]) as a
pre-/postcondition language: A client may take the straightforward view of an account
represented in Fig. 2(a), whereas the management of the bank may want to apply a
special bonus rule for frequent customers thus taking the view in Fig. 2(b).

As in the previous example, several viewpoints are employed in both descriptions.
From the structural viewpoint, UML class diagrams are used for specifying the static
structure of a system, from the behavioural viewpoint the desired behaviour is expressed
in terms of OCL pre-/postconditions on operations. Thus, taking the views as heteroge-
nous views combined from views in the structural and the behavioural viewpoint, both
the management and the client view can be checked for internal consistency. Further-
more, the views in the structural viewpoint may be considered to be consistent as the
structural view in the management view simply extends the structural view in the client
view. However, the behavioural views of the client and the management on the be-
haviour of the operation Account::deposit are inconsistent, as the client specification
does not take into account the bonus feature of the management view.

3 Viewpoints and Views

Generalising from the examples above, a viewpoint of software development consists
of a syntactic domain, a semantic domain, and a mapping from the syntax into the
semantics. The syntactic domain captures the viewpoint notation, most conveniently in
terms of an abstract syntax. A sentence of this abstract syntax conveys the information
expressed in a view according to the viewpoint’s notation. The semantic domain defines
appropriate models for the abstract syntax.
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More concretely, a viewpoint V is represented by a formal language category L,
a semantic domain category D, and a semantic functor Mod : Lop → D. A view in a
viewpoint V = (L, D, Mod) is a specification object V in the formal language category
L; its semantics, i.e. its models, is given by Mod(V ) ∈ D. Note that we choose the
opposite language category Lop for the semantics in order to express the well-known
contravariance of syntax and semantics in logic and model-theory [1].

Example 3.1. The structural viewpoint Struct , cf. Fig. 1(a) and the class diagrams in
Fig. 2(a) and 2(b) for concrete examples and App. B.1 for a detailed definition, uses
the language StructDiag of structure or class diagrams, comprising classes with typed
attribute and method signatures and the (binary) associations between classes. As the
semantic domain StructAlg the class of many-sorted algebras over the many-sorted
algebraic signatures induced from structure diagrams is employed. The signature of a
structure diagram consists of sorts from the classes and operations from the attributes,
methods, and associations. The model functor ModStruct maps a structure diagram to
the algebras over its induced signature.

Example 3.2. The behavioural viewpoint Beh , cf. Fig. 2(a) and 2(b) for concrete ex-
amples and App. B.2 for a detailed definition, uses the language BehSpec of pre-/
postconditions for annotating methods of classes. As the semantic domain BehAlg the
class of many-sorted algebras over the many-sorted algebraic signature induced from
pre-/postcondition annotations is employed. The signature of pre-/postconditions con-
sists of sorts for the classes and operations from the attributes and associations. The
model functor ModBeh maps a pre-/postcondition specification to the algebras over its
induced signature such that the methods applied to a state satisfy the pre-/postconditions.

Example 3.3. The instance viewpoint Inst , cf. App. B.3 for a detailed definition, uses
the language InstDiag of object diagrams, comprising typed objects with typed slots
and their values and (binary) links between objects. As the semantic domain InstAlg the
class of many-sorted algebras over the many-sorted algebraic signatures induced from
object diagrams is employed. The signature of an object diagram consists of sorts for
the types of the objects, operations from the attributes and links, and constant operations
for the objects. The model functor ModInst maps an object diagram to the algebras over
its induced signature such that the valuations of the slots and the links are satisfied.

Example 3.4. The interaction viewpoint Inter , cf. Fig. 1(b) and 1(c) for concrete ex-
amples and App. B.4 for a detailed definition, uses the language InterDiag of collabo-
ration diagrams, comprising objects and a partial order of message exchanges between
these objects. As the semantic domain InterAlg the class of algebras representing par-
tial orders of messages between objects is employed. The model functor ModInter maps
a collaboration diagram to the class of partial orders of messages between objects that
contain at least the partial order of message exchanges specified in the collaboration.

Example 3.5. The machine viewpoint Mach , cf. Fig. 1(d) and 1(e) for concrete exam-
ples and App. B.5 for a detailed definition, uses the language MachDiag of state ma-
chine diagrams, comprising classes with their attributes and methods, and a mapping
of classes to state machines. Each state machine is given by a set of states, an initial
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state, and a set of transitions. Each transition is annotated with an event accepted by
the transition, its effects and messages that are sent when the transition is taken. As the
semantic domain MachAlg the class of algebras representing the possible transitions
of the state machines is employed. The model functor ModMach maps a state machine
diagram to the class of algebras with transitions for the machines in the diagram.

4 Translation

Viewpoints and thus views may be related by translations: Certain information of a
view can be extracted and reformulated in another viewpoint. Translations may well in-
duce partial loss of information, as not all viewpoints carry comparable data and not all
viewpoints allow the specifier to express a software design at the same level of detail.
In particular, translation may not always be possible syntactically. However, whenever
information is shared between viewpoints, such as information on types in the struc-
tural, instance, interaction, and machine viewpoints, translations afford the necessary
extraction mechanism.

A translation transfers information from one viewpoint V1 = (L1, D1, Mod1) into
another viewpoint V2 = (L2, D2, Mod2). A syntactic viewpoint translation τ from
V1 to V2 uses viewpoint notations: τ : L1 → L2. Corresponding to the contravariant
behaviour of the model functors, a semantic viewpoint translation μ from V1 → V2
operates contravariantly on the semantic domains of the viewpoints: μ : D2 → D1.
A viewpoint translation from V1 to V2 consists of a pair of syntactic and semantic
viewpoint translations (τ, μ) : V1 → V2.

Example 4.1. We consider the translation of the instance viewpoint Inst into the struc-
tural viewpoint Struct . Syntactically, a class diagram can be induced from an object
diagram by turning type names, slots, links, and links ends into classes, attributes, as-
sociations, and association ends. Thus we have a syntactic viewpoint translation τ :
InstDiag → StructDiag . As an algebra in StructAlg always can be interpreted as
an algebra in InstAlg by forgetting the methods, we also have a semantic viewpoint
translation μ : StructAlg → InstAlg.

Example 4.2. There is also a syntactical translation of the structural viewpoint Struct
into the instance viewpoint Inst : τ : StructDiag → InstDiag can be trivially defined
by translating each structure diagram into the empty object diagram. However, there
is a more natural semantic translation from the structural viewpoint into the instance
viewpoint μ : InstAlg → StructAlg by forgetting the additional object constants.

Example 4.3. In a similar way to translating the instance viewpoint into the structural
viewpoint, there is a syntactical translation τ : InstDiag → InterDiag of the instance
viewpoint Inst into the interaction viewpoint Inter : The objects are kept, but the in-
teraction diagram will contain no messages. Conversely, the interaction viewpoint can
be translated syntactically into the instance viewpoint, τ : InterDiag → InstDiag , by
keeping the objects and adding links between objects which exchange messages.

Example 4.4. The examples 4.1 and 4.3 can be combined into a syntactic translation
τ : Inter → Struct which infers the classes and associations from the interaction
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diagram. However, there is also a direct syntactic translation from Inter to Struct that
also keeps the messages.

Example 4.5. A syntactic translation of the interaction viewpoint into the machine view-
point can be achieved as follows: Each class of an object in the interaction is associated
with a machine that accepts the messages incoming to the object. An incoming mes-
sage is answered by all following outgoing messages [10]. This syntactic translation is
complemented by a a semantic translation of the interaction viewpoint Inter into the
machine viewpoint Mach , i.e. μ : MachAlg → InterAlg . The machines in a machine
algebra are run concurrently from their initial states. Each machine that fires a transition
sends messages to the other machines. The receiving machine reacts to the incoming
event by subsequently firing a transition. Thus, every run of the machines induces a
partial order of exchanged messages.

5 Consistency

Given the notions of viewpoints, views, and viewpoint translations introduced above,
the view consistency problem in software development amounts to relating views in
different viewpoints by syntactical or semantical translations, and checking whether the
overlapping parts of the views are acceptable to the software engineers. In particular,
views may be consistent from certain viewpoints, but deemed to be inconsistent from
others. Therefore it seems advisable to introduce a point of comparison between two
views. This point of comparison can be chosen as a view in the viewpoint from one
of the views to be related, or may be of yet another viewpoint. Moreover, the point
of comparison view can specify the minimal requirements for the compared views or
can embrace all the information, relative to the chosen viewpoint, that is expected to
be available in the views to be compared. Finally, views can be compared syntactically
involving syntactic translations, or semantically using semantic translations.

5.1 Syntactic Consistency

The syntactic consistency check for two views over a common point of comparison
view necessitates the syntactic translation of the views under comparison into the view-
point of the point of comparison. We call two views consistent over a common view
if there are embeddings of the common view in the translated versions of the views
under comparison. More precisely, when comparing the views V1 and V2 in viewpoints
V1 = (L1, D1, Mod1) and V2 = (L2, D2, Mod2), respectively, over a point of com-
parison view V in a viewpoint V = (L, D, Mod) we require that there are syntactic
viewpoint translations τ1 : V → V1, τ2 : V → V2 from the viewpoint V . Given these
translations there must be embeddings ι1 : V → τ1(V1) and ι2 : V → τ2(V2). If D
admits push-outs, we obtain the following diagram:

V1 V V2

V ′

τ1↓
⊂ →←

ι1
⊃

C ← ⊃ V ′′

τ2↓

⊂
ι2

→
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Here, the point of comparison view V is shared between the (translated) views V1
and V2, that is, V contains symbols that should have the same meaning in V1 and V2.

Example 5.1. Considering the structure diagram S from Fig. 2(b) and the behavioural
specifications B1 and B2 in Fig. 2(a) and Fig. 2(b), syntactic consistency of B1 and
B2 over S can be seen from the translations of behavioural specifications into struc-
ture diagrams: The additional pre-/postconditions are forgotten, thus the push-out in
StructDiag is isomorphic to S. Note that a comparison of B1 and B2 over the struc-
ture diagram from Fig. 2(a) would result in an enrich structure diagram also containing
bonus and threshold.

In general two behavioural specifications B1 and B2 are consistent over a struc-
ture diagram S if, and only if all classes, attribute signatures, operation signatures, and
association end signatures of S are contained in both behavioural specifications. The
push-out constructs the union of all features of B1 and B2 separately renaming the
features in B1 and B2 that are not present in S.

As the example illustrates it may sometimes be desirable to require that the point
of comparison already contains all information that can be deduced from the views un-
der comparison by translating these views into the common viewpoint. Such a point
of comparison view is called embracing and leeds to a similar consistency diagram as
for the shared case, but with arrows reversed such that C now becomes a pull-back in D:

V1 V V2

V ′

τ1↓
← ⊃
⊂

→

C ⊂ → V ′′

τ2↓

←

⊃

Example 5.2. We consider the comparison of the collaboration views I1 and I2 in
Fig. 1(b) and Fig. 1(c) over the embracing point of comparison view S in Fig. 1(a).
Translating I1 and I2 into structure diagrams, there are embeddings of these translated
interaction diagrams into S. Therefore I1 and I2 are syntactically consistent with re-
spect to S. The pull back contains only the classes ATM and Bank with their respective
methods PINVerified and verifyPIN.

5.2 Semantic Consistency

The semantic consistency check for two views over a comparison view involves the
construction of a common model such that the comparison view is extended by the
compared views consistently. The construction is dual to syntactic consistency. How-
ever, the existence of embeddings is sufficient to assess whether views are consistent
or not, as embeddings may also exist for semantically inconsistent views. We there-
fore have to inspect the pull-back, i.e., roughly speaking, the intersection, of the model
classes of the views. If the pull-back is empty, then the views are inconsistent; if it is
not empty, the views are formally consistent, but the feature interaction of the views
may still result in undesired behaviour which can be revealed by inspecting the models
of the pull-back.
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More specifically, let V1 and V2 be views in the viewpoints V1 = (L1, D1, Mod1)
and V2 = (L2, D2, Mod2), respectively, and let V be a (shared) point of comparison
view in viewpoint V = (L, D, Mod). We say that V1 and V2 are semantically con-
sistent with respect to V , if there are semantic viewpoint translations μ1 : V1 → V ,
μ2 : V2 → V from the viewpoint V and there exists a pull-back C in D such that the
following diagram commutes:

V1 V V2

Mod1(V1)

Mod1↓
Mod(V )

Mod↓
Mod2(V2)

Mod2↓

M1

μ1↓
← ⊃
⊂

→

C ⊂ → M2

μ2↓
←

⊃

Note that again the common view provides the viewpoint of the integrating model.
The commutation of the diagram above implies that V is a shared view between V1
and V2. The opposite case, that V embraces all information that can be extracted by
viewpoint translations from V1 and V2 leads to a diagram where the embedding arrows
between V ′

1 and V , and V ′
2 and V have to be reversed.

Example 5.3. The semantical consistency of the behavioural specifications B1 and B2
in Fig. 2(a) and Fig. 2(b) over the structure diagram S from Fig. 2(b) can be checked
as follows: The models of B1 are SigBeh(B1) = 〈{Account, int, State}, {bal : State ×
Account → int, . . . }〉-algebras subject to the behavioural specification post: bal
= bal@pre+n, the models of B2 are SigBeh(B1)-algebras subject to the behavioural
specification post: if count < threshold() . . . endif. But the models of B1 and
B2 in the behavioural viewpoint Beh can be translated into models in the structural
viewpoint Struct forgetting the additional sorts and operations. These translated models
can be trivially embedded in Mod(S) = SigStruct (S)-Alg . The pull-back in StructAlg
turns out to be the category of algebras over the amalgamated sum of the signatures
of B1 and B2 over the signature of S where all symbols from S are shared. In partic-
ular, the pull-back is not empty and thus B1 and B2 are semantically consistent over
S. However, this formal consistency may be misleading as bonusA is identically 0 for
A ∈ |C| or countA(s, a) <A thresholdA(s, a) for all s ∈ StateA, a ∈ AccountA; this
may not be desirable. Moreover, if a software designer requires bonus to be greater than
zero, the views become inconsistent.

More generally, in the case of behavioural specifications the semantic consistency,
i.e. the calculation of pull-backs, can be reduced to logical consistency by computing
the conjunction of the theories of the views under consideration (modulo renamings
required by the shared view).

Example 5.4. A comparison of the machine view A with the state machines in Fig. 1(d)
and 1(e) with the interaction view I of the collaboration in Fig. 1(b) leaves several pos-
siblities for choosing a common point of comparison view. We employ the empty inter-
action view ∅ as the shared view. The translation of ModMach(A) into the interaction
viewpoint amounts to all possible interaction sequences of the state machines. The pull-
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back C now contains all partial orders of message exchanges that are part of the partial
orders in ModInter (I) and the partial orders from the translation of ModMach(A).

In general, an interaction diagram is consistent with a machine diagram w. r. t. the
empty interaction diagram if there is a run of the collaboration diagram that is also a
run of the state machines. In the case of finite state systems, like the ATM example, this
property can be checked efficiently by model checking [17].

6 Conclusions

We have presented an algebraic framework for view consistency in software develop-
ment. The framework is inspired by the institution-based approaches to heterogeneous
specifications. Viewpoints are formalised as a pair of a syntactic and a semantic cate-
gory linked by a model functor. Views are objects in the syntactic category. Consistency
of views is defined by a heterogeneous pullback construction.

However, view consistency is merely a stepping stone to the successful employment
of different views in software development. Views on a system will evolve over the
software life-cycle, some may extend over all software development phases, some may
be replaced, refined, or be combined during construction. Taking views and viewpoints
serious hence in particular means to provide further support for separation of concerns
by view maintainance allowing the different stakeholders to keep their viewpoints of the
system. Correct view development, replacement, and refinement remain a challenge.
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A Many-Sorted Algebras

Signatures. A (many-sorted) signature 〈S, F 〉 consists of a set of sort symbols S and
a set of operations F of the form f : (si)1≤i≤k → s0 (k ∈ N) with f an operation
symbol and s0, s1, . . . , sk ∈ S. We require all sort symbols and all operation symbols
to be distinct.

A signature morphism σ : 〈S, F 〉 → 〈S′, F ′〉 is given by a map σ from the symbols
of 〈S, F 〉 to the symbols of 〈S′, F ′〉 such that a sort symbol is mapped to a sort symbol
and an operation symbol is mapped to an operation symbol; and the following condition
holds: Given an operation f : (si)1≤i≤k → s0 ∈ F the image σ(f) : (σ(si))1≤i≤k →
σ(s0) is in F ′.

The category Sig has as objects: signatures, and as morphisms: signature mor-
phisms. The composition of signature morphisms is defined as function composition;
the identity morphism on a signature is given by the identity on the signature’s symbols.

Algebras. Given a (many-sorted) signature Σ = 〈S, F 〉, a (many-sorted) Σ-algebra A
consists of a family of universes (sA)s∈S and a family of functions (fA)f∈F such that
fA : (sA

i )1≤i≤n → sA
0 for f : (si)1≤i≤n → s0 ∈ F .
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A Σ-algebra morphism α : A → A′ for a signature Σ = 〈S, F 〉 and alge-
bras A and A′ is given by a family of functions (αs : sA → sA′

)s∈S such that
αs0(f

A(u1, . . . un)) = fA′
(αs1(u1), . . . , αsn(un)) for f : (si)1≤i≤n → s0 ∈ F .

The category Σ-Alg has as objects: Σ-algebras, and as morphisms: Σ-algebra mor-
phisms. The composition of Σ-algebra morphisms is defined as function composition;
the identity morphism on a Σ-algebra is given by the family of identity functions on its
universes.

A signature morphism σ : Σ → Σ′ for signatures Σ = 〈S, F 〉 and Σ′ = 〈S′, F ′〉
induces a functor �σ : Σ′-Alg → Σ-Alg such that, for an A′ ∈ |Σ′-Alg |, sA′�σ =
σ(s)A′

for s ∈ S and fA′�σ = σ(f)A′
for f ∈ F ; and (α′ : A′ → B′)�σ = α :

A′�σ → B′�σ where (αs)s∈S = (α′
σ(s))s∈S .

The category Alg has as objects: the categories Σ-Alg for signatures Σ, and as
morphisms: for every signature morphism σ : Σ → Σ′ the reduct functor �σ . The com-
position of Alg-morphisms is defined as functor composition; the identity morphism on
the category Σ-Alg is given by the reduct functor from the identity signature morphism
id : Σ → Σ.

B Viewpoints

B.1 Structural Viewpoint

Syntax. A structure diagram 〈C, A〉 consists of a set of classes C and a set of associa-
tions A. Each class γ ∈ C is given by its (unique) name; a set of attributes of the form
a : τ with a a (unique) name and τ the name of a class in C; and a set of methods of the
form m : (τi)1≤i≤k → τ0 (k ∈ N) with m a (unique) name and τ0, τ1, . . . , τk names of
classes in C. Each association α ∈ A is given by a pair of association ends of the form
〈a1 : τ1, a2 : τ2〉 with a1, a2 (unique) names and τ1, τ2 names of classes in C.

A structure diagram morphism σ : 〈C, A〉 → 〈C′, A′〉 is given by a map σ from
the names of 〈C, A〉 to the names of 〈C′, A′〉 such that a class name is mapped to a
class name, an attribute name is mapped to an attribute name, &c; and the following
conditions hold: (1) Given a class γ ∈ C with name n, attributes a1 : τ1, . . . , ak : τk,
and methods m1 : (τ1i)1≤i≤k1 → τ10, . . . , ml : (τli)1≤i≤kl

→ τl0 the class γ′ ∈ C′

denoted by σ(n) has at least the attributes σ(a1) : σ(τ1), . . . , σ(ak) : σ(τk) and at
least the methods σ(m1) : (σ(τ1i))1≤i≤k1 → σ(τ10), . . . , σ(ml) : (σ(τli))1≤i≤kl

→
σ(τl0); (2) given an association 〈a1 : τ1, a2 : τ2〉 ∈ A there is an association 〈σ(a1) :
σ(τ1), σ(a2) : σ(τ2)〉 ∈ A′.

The category StructDiag has as objects: structure diagrams, and as morphisms:
structure diagram morphisms. The composition of structure diagram morphisms is de-
fined as function composition; the identity morphism on a structure diagram is given by
the identity on the structure diagram’s names.

Signature. The signature of a structure diagram Sig(〈C, A〉) = 〈S, F 〉 is defined as
follows: (1) S contains a distinguished sort State. (2) Every class name in C gives
rise to a sort symbol in S. (3) An attribute a : τ of a class with name γ gives rise
to an operation a : State × γ → τ in F . (4) A method m : (τi)1≤i≤k → τ0 of
a class with name γ gives rise to operations m : State × γ × (τi)1≤i≤k → τ0 and
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mstate : State × γ × (τi)1≤i≤k → State in F . (5) An association 〈a1 : τ1, a2 : τ2〉
in A gives rise to the operations a1 : State × τ2 → τ1 and a2 : State × τ1 → τ2 in F .
(6) S and F are the least such sets under inclusion.

As each structure diagram morphism naturally induces a signature morphism,
the signature mapping on objects of StructDiag can be extended to a functor Sig :
StructDiag → Sig .

Semantics. The semantics Mod(〈C, A〉) of a structure diagram 〈C, A〉 is given by
Sig(〈C, A〉)-Alg . The full sub-category of Alg induced by the image of Mod is called
StructAlg. This semantics on objects of StructDiag is lifted to a functor Mod :
StructDiagop → StructAlg by setting Mod(σop : 〈C′, A′〉 → 〈C, A〉) = �Sig(σ) :
Mod(〈C′, A′〉) → Mod(〈C, A〉).

B.2 Behavioural Viewpoint

Syntax. A behaviour specification 〈C, pre, post〉 consists of a set of classes C and
mappings pre and post from the methods of classes from C to pre- and postcondition
specifications. Each class γ ∈ C is given by its (unique) name; a set of attributes of the
form a : τ with a a (unique) name and τ the name of a class in C; and a set of methods
of the form m : (xi : τi)1≤i≤k → τ0 (k ∈ N) with m a (unique) name, x1, . . . , xn

(unique) parameter names, and τ0, τ1, . . . , τk names of classes in C. A pre-condition of
a method m of class γ ∈ C is given by a boolean term involving the names of attributes
of γ and the parameter names of m. A postcondition of a method m of class γ ∈ C is
given by boolean term involving the names of attributes of γ, references to the pre-state
of attributes using the special notation @pre, and the special constant result.

A behaviour specification morphism β : 〈C, pre, post〈 is given by a map β from
the names of 〈C, pre, post〉 to the names of 〈C′, pre′, post′〉 such that a class name
is mapped to a class name, an attribute name is mapped to an attribute name, &c;
and the following conditions hold: (1) Given a class γ ∈ C with name n, attributes
a1 : τ1, . . . , ak : τk, and methods m1 : (x1i : τ1i)1≤i≤k1 → τ10, . . . , ml : (xli :
τli)1≤i≤kl

→ τl0 the class γ′ ∈ C′ denoted by σ(n) has at least the attributes σ(a1) :
σ(τ1), . . . , σ(ak) : σ(τk) and at least the methods σ(m1) : (σ(x1i) : σ(τ1i))1≤i≤k1 →
σ(τ10), . . . , σ(ml) : (σ(xli : σ(τli))1≤i≤kl

→ σ(τl0). (2) The homomorphic images of
the pre- and postconditions of a method m of class γ w. r. t. β is a pre- and postcondition
of β(m), resp.

The category BehSpec has as objects: behaviour specifications, and as morphisms:
behaviour specification morphisms. The composition of behaviour specification mor-
phisms is defined as function composition; the identity morphism on a behaviour spec-
ification is given by the identity on the behaviour specification’s names.

Signature. The signature of a behaviour specification Sig(〈C, pre, post〉) = 〈S, F 〉 is
defined as follows: (1) S contains a distinguished sort State. (2) Every class name in
C gives rise to a sort symbol in S. (3) An attribute a : τ of a class with name γ gives
rise to an operation a : State × γ → τ in F . (4) A method m : (τi)1≤i≤k → τ0 of
a class with name γ gives rise to operations m : State × γ × (τi)1≤i≤k → τ0 and
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mstate : State × γ × (τi)1≤i≤k → State in F . (5) S and F are the least such sets
under inclusion.

As each behaviour specification morphism naturally induces a signature morphism,
the signature mapping on objects of BehSpec can be extended to a functor Sig : BehSpec
→ Sig .

Semantics. The semantics Mod(〈C, pre, post〉) of a structure diagram 〈C, pre, post〉
is given by the full sub-category of Sig(〈C, pre, post〉)-Alg-algebras A satisfying the
following condition: The interpretation of a pre-condition of a method m : (xi :
τi)1≤i≤k → τ0 over an s ∈ StateA and parameters x1 = v1, . . . , xk = vk implies the
interpretation of the postcondition of m over s and mstateA(s, v1, . . . , vn) with x1 =
v1, . . . , xk = vk and resultA = m(s, v1, . . . , vn). The full sub-category of Alg induced
by the image of Mod is called BehAlg . This semantics on objects of BehSpec is lifted
to a functor Mod : BehSpecop → BehAlg by setting Mod(σop : 〈C′, pre′, post′〉 →
〈C, pre, post〉) = �Sig(σ) : Mod(〈C′, pre′, post′〉) → Mod(〈C, pre, post〉).

B.3 Instance Viewpoint

Syntax. An object diagram 〈O, L〉 is given by a set of objects O and a set of links L.
An object o ∈ O is given by a (unique) name; a type (name); and a set of slots of the
form a = v with a a (unique) name and v an object in O. Each link λ ∈ L is given
by a pair of link ends of the form 〈a1 = v1, a2 = v2〉 with a1, a2 (unique) names and
v1, v2 objects in O. An object diagram has to be well-typed: If o and o′ both show type
τ then: (1) if a = v is a slot of o with v an object with type τ there is a slot a = v′ of
o′ with v′ an object with type τ ; (2) if there is a link 〈a1 = o, a2 = v2〉 then there is
a link 〈a1 = o′, a2 = v′2〉; (3) if there is a link 〈a1 = v1, a2 = o〉 then there is a link
〈a1 = v′1, a2 = o′〉.

An object diagram morphism ι : 〈O, L〉 → 〈O′, L′〉 is given by a map ι from O to
O′ such that the following conditions hold: (1) Given an object o ∈ O with name n,
type τ , and slots a1 = v1, . . . , ak = vk, the object ι(o) ∈ O′ has type τ and at least the
slots a1 = ι(v1), . . . , ι(ak) = σ(vk); (2) given a link 〈a1 = v1, a2 = v2〉 ∈ L there is
a link 〈a1 = ι(v1), a2 : ι(v2)〉 ∈ L′.

The category ObjDiag has as objects: object diagrams, and as morphisms: object
diagram morphisms. The composition of object diagram morphisms is defined as func-
tion composition; the identity morphism on an object diagram is given by the identity
on the object diagram’s objects.

Signature. The signature Sig(〈O, L〉) = 〈S, F 〉 of an object diagram 〈O, L〉 is defined
as follows: (1) Every type name of an object in O gives rise to a sort symbol in S.
(2) Every object o in O with type τ gives rise to a constant operation o : → τ in F .
(3) A slot a = v of an object with type τ and v an object with type τ ′ gives rise to an
operation a : τ → τ ′ in F . (4) A link 〈a1 = v1, a2 = v2〉 in L with v1, v2 objects with
types τ1, τ2, resp., gives rise to the operations a1 : τ2 → τ1, a2 : τ1 → τ2 in F . (5) S
and F are the least such sets under inclusion.

As each object diagram morphism naturally induces a signature morphism, the sig-
nature mapping on objects of ObjDiag can be extended to a functor Sig : ObjDiag →
Sig .
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Semantics. The semantics Mod(〈O, L〉) of an object diagram 〈O, L〉 is given by the full
sub-category of Sig(〈O, L〉)-algebras A satisfying the following conditions: If a = v
is a slot in 〈O, L〉 then aA(oA) = vA; if 〈a1 = v1, a2 = v2〉 is a link in 〈O, L〉 then
aA
1 (vA

2 ) = vA
1 and aA

2 (vA
1 ) = vA

2 . The full sub-category of Alg induced by the image
of Mod is called InstAlg . This semantics on objects of ObjDiag is lifted to a functor
Mod : ObjDiagop → InstAlg by setting Mod(σop : 〈O′, L′〉 → 〈O, L〉) = �Sig(σ) :
Mod(〈O′, L′〉) → Mod(〈O, L〉).

B.4 Interaction Viewpoint

Syntax. An interaction diagram 〈O, M,≤〉 is given by a set of objects O, a set of
messages M , and a partial order ≤ ⊆ M × M . Each object o ∈ O is given by a
(unique) name and a type (name). Each message m ∈ M is given by a (unique) name;
a sender object in O, a receiver object in O, and a message label name.

An interaction diagram morphism μ : 〈O, M,≤〉 → 〈O′, M ′,≤′〉 is given by a map
μ from the names of 〈O, M,≤〉 to the names of 〈O′, M ′,≤′〉 such that object names are
mapped to object names, type names are mapped to type names, &c., and the following
conditions hold: (1) A message m ∈ M with sender s ∈ O, receiver r ∈ O, and label
l is mapped to message μ(m) ∈ M ′ with sender μ(s) ∈ O′, receiver μ(r) ∈ O′, and
label μ(l). (2) If m ≤ n for messages m, n ∈ M then μ(m) ≤′ μ(n).

The category InterDiag has as objects: interaction diagrams, and as morphisms:
interaction diagram morphisms. The composition of interaction diagram morphisms is
defined as function composition; the identity morphism on an interaction diagram is
given by the identity on the interaction diagram’s messages.

Signature. The signature Sig(〈O, M,≤〉) = 〈S, F 〉 of an interaction diagram
〈O, M,≤〉 is defined as follows: (1) S contains distinguished sorts Obj, Label, Msg,
and Boolean. (2) Every type name τ of an object in O gives rise to a sort symbol τ in
S. (3) F contains distinguished operation symbols sender : Msg → Obj, receiver :
Msg → Obj, label : Msg → Label, and ≤ : Msg×Msg → Boolean. (4) Every object
o ∈ O with type name τ gives rise to a constant operation symbol o : → τ . (5) Every
message label l in M gives rise to a constant operation l : → Label. (6) Every message
with identifier m gives rise to a constant operation symbol m : → Msg. (7) S and F
are the least such sets under inclusion.

As each interaction diagram morphism naturally induces a signature morphism,
the signature mapping on objects of InterDiag can be extended to a functor Sig :
InterDiag → Sig .

Semantics. The semantics Mod(〈O, M,≤〉) of an interaction diagram 〈O, M,≤〉 is
given by the full sub-category of Sig(〈O, M,≤〉)-algebras A satisfying the following
conditions: (1) The sort symbol Boolean is interpreted as the standard booleans, i.e.
BooleanA = B. (2) Obj is interpreted as the union of the interpretion of all sort symbols
τ for object type names. (3) If m is a message in M with sender s, receiver r, and mes-
sage label l, then senderA(mA) = sA and receiverA(mA) = rA and labelA(mA) =
lA. (4) If m and n are messages in M with m ≤ n then ≤A(mA, nA) = true. The
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full sub-category of Alg induced by the image of Mod is called InterAlg . This seman-
tics on objects of InterDiag is lifted to a functor Mod : InterDiagop → InterAlg
by setting Mod(σop : 〈O′, M ′,≤′〉 → 〈O, M,≤〉) = �Sig(σ) : Mod(〈O′, M ′,≤′〉) →
Mod(〈O, M,≤〉).

B.5 State Machine Viewpoint

Syntax. A state machine diagram 〈C, μ〉 is given by a set of classes C and a mapping
μ of classes to machines. Each class γ ∈ C is given by its (unique) name; a set of
attributes of the form a : τ with a a (unique) name and τ the name of a class in C; and
a set of methods of the form m : (τi)1≤i≤k → τ0 (k ∈ N) with m a (unique) name
and τ0, τ1, . . . , τk names of classes in C. A machine of class γ ∈ C is given by a set S
of (unique) state names, a set T of transitions, and an initial state i ∈ S. A transition
of a machine of class γ is given by a source state s1 ∈ S, an incoming event e from
the method names of C, a guard as a boolean expression of the names of attributes of
γ and the names of parameters of the event e, an effect consisting of a statement over
the names of attributes of γ and the names of parameters of the event e and a subset of
outgoing messages, and a target state s2 ∈ S. An outgoing message of a machine of
class γ is given by the name of an attribute of γ and the name of a method name of the
class of this attribute and list of expressions over the names of attributes of γ and the
parameters of e.

A state machine diagram morphism β : 〈C, μ〉 → 〈C′, μ′〉 is given by a map β
from the names in 〈C, μ〉 to the names in 〈C′, μ′〉 such that class names are mapped
to class names, attribute names are mapped to attribute names, &c., and the following
condition holds: μ′(β(C)) = β(μ(C)) where β(μ(C)) is the homomorphic extension
of β to guards, statements, and expressions.

The category MachDiag has as objects: state machine diagrams, and as morphisms:
state machine diagram morphisms. The composition of state machine diagram mor-
phisms is defined as function composition; the identity morphism on a state machine
diagram is given by the identity on the state machine diagram’s classes, attributes, and
method names.

Signature. The signature Sig(〈C, μ〉) = 〈S, F 〉 of a state machine diagram 〈C, μ〉 is
defined as follows: (1) S contains distinguished sorts Obj, Set(Obj), Env, State, Msg,
and Set(Msg). (2) Every class name γ ∈ C gives rise to a sort symbol γ in S. (3) F
contains a distinguished operation symbol obj : Env → Set(Obj). (4) F contains
a distinguished operation symbol initial : → State. (5) F contains distinguished
operation symbols state : Obj× State× Env → State, env : Obj× State× Env →
Env, msg : Obj × State × Env → Msg. (6) An attribute a : τ of a class with name γ
gives rise to an operation a : Env × γ → τ . (7) A method (τi)1≤i≤k → τ0 of a class
with name γ gives rise to an operation m : γ × (τi)1≤i≤k → Msg. (7) S and F are the
least such sets under inclusion.

As each state machine diagram morphism naturally induces a signature morphism,
the signature mapping on objects of MachDiag can be extended to a functor Sig :
MachDiag → Sig .
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Semantics. The semantics Mod(〈C, μ〉) of a state machine diagram 〈C, μ〉 is given
by the full sub-category of Sig(〈C, μ〉)-algebras A satisfying the following conditions:
(1) The sort symbol Obj is interpreted as the union of the interpretions of the sort
symbols τ for classes. (2) The sort symbol Set(Obj) is interpreted as the standard sub-
sets of the interpretion of Obj; the sort symbol Set(Msg) is interpreted as the standard
subsets of the interpretion of Msg. (3) The operaton symbol env is interpreted as the
function that given an object in the interpretion of sort τ , a state s1 of the machine of
class τ , and an environment e yields the environment resulting from executing the ma-
chine for class τ in one step. The operation symbols state and msg are to be interpreted
similarly, but resulting in the state and the outgoing messages, respectively. The full
sub-category of Alg induced by the image of Mod is called MachAlg . This semantics
on objects of MachDiag is lifted to a functor Mod : MachDiagop → MachAlg by
setting Mod(σop : 〈C′, μ′〉 → 〈C, μ〉) = �Sig(σ) : Mod(〈C′, μ′〉) → Mod(〈C, μ〉).
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