
Universität Augsburg

Verification of Mondex Electronic

Purses with KIV: From Transactions to

a Security Protocol

D. Haneberg, G. Schellhorn, H. Grandy, W. Reif

Report 2006-32 December 2006

Institut für Informatik
D-86135 Augsburg



2



Copyright c© D. Haneberg, G. Schellhorn, H. Grandy, W. Reif
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —



Under consideration for publication in Formal Aspects of Computing

Verification of Mondex Electronic
Purses with KIV: From Transactions
to a Security Protocol
Dominik Haneberg, Gerhard Schellhorn, Holger Grandy, and Wolfgang Reif
Lehrstuhl für Softwaretechnik und Programmiersprachen,

Universität Augsburg, D-86135 Augsburg, Germany

Abstract. The Mondex case study about the specification and refinement of an electronic purse as defined
in [SCW00] has recently been proposed as a challenge for formal system-supported verification. In this paper
we report on two results.

First, on the successful verification of the full case study using the KIV specification and verification
system. We demonstrate that even though the hand-made proofs were elaborated to an enormous level of
detail we still could find small errors in the underlying data refinement theory as well as the formal proofs
of the case study.

Second, the original Mondex case study verifies functional correctness assuming a suitable security pro-
tocol. We extend the case study here with a refinement to a suitable security protocol that uses symmetric
cryptography to achieve the necessary properties of the security-relevant messages. The definition is based
on a generic framework for defining such protocols based on abstract state machines (ASMs). We prove the
refinement using a forward simulation.

Keywords: Mondex, Refinement, ASM, Verification, Security Protocol, Z

1. Introduction

In this paper we describe the efforts done with KIV to solve the challenge of verifying the Mondex refinements.
Our work has two parts. The first half of this paper is concerned with the original development in [SCW00]:

refinement of an abstract specification that specifies money transfer using transactions to a communication
protocol (the ‘concrete level’).

We show that verifying the refinement mechanically with KIV can be done with about a person month of
effort. The results presented here extend those of [SGHR06a] to the full case study including the operations
that archive failure logs from a smart card to a central archive. Since we do not have to repeat a description of
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the case study, we can give more details and how we encoded the Z specifications in KIV than in [SGHR06a].
We also give some background on KIV in Sect. 2. This should give a better impression how close our work
is to the original work.

To do formal proofs for the Mondex case study required that we provide a formalisation of the underlying
data refinement theory given in [CSW02]. Sect. 3 describes a small correction we found when we translated
it to formal specifications in KIV. We also give an improved theory that integrates the use of invariants with
using backward simulation for the contract approach. This improvement allowed us to derive the Mondex
development in Sect. 4 as one refinement instead of two as in the original development: the second refinement
is simplified to an invariance proof for the communication protocol. Sect. 5 describes the verification and
gives several small corrections for the invariant.

Mondex Smart Cards have become famous for having been the target of one of the first ITSEC evaluations
of the highest level E6 [CB99]. Nevertheless the case study assumes a suitable security protocol rather than
proving it. Therefore the second part of our paper discusses a refinement of the communication protocol to
a security protocol that uses abstract cryptography.

Section 6 discusses our general approach to the specification of E-commerce protocols in general, that was
used in other case studies as well ([HGRS05], [Han06], [GHRS06], [HGRS06]). The approach uses abstract
state machines (ASM, [Gur95], [BS03]) and has a generic attacker model.

In Sect. 7 we show how this approach can be applied to define and verify a refinement of the communi-
cation protocol of Mondex (i.e. the concrete Mondex level) to a security protocol based on symmetric keys
and DES. The verification uses ASM refinement ([BR95], [Sch01], [Bör03]) and the alternative formalisation
of the Mondex protocol using ASMs described in [SGHR06a] and [SGH+07].

The work presented here is done in the context of a project in which we develop a systematic approach
for the development of E-commerce protocols, starting with informal specifications using UML, using ASMs
and ASM refinement for formal verification and ending with verified Java code.

Therefore, current work is in progress to verify Java Card code as a refinement of the security protocol
given in this paper. Sect. 10 gives an outlook on this work and concludes.

For the interested reader, our specifications and proofs as well as the Java code we are currently working
on is available as a Web presentation at [KIV].

2. Background on KIV

KIV is an interactive theorem prover based on sequent calculus over many-sorted higher-order dynamic logic.
The syntax of the logic is

S = bool | nat | . . .
T = S | T+ → T
E = X | OP | λ x. e | e(e′) | ∀ x. ϕ | ∃ x. ϕ | [α]ϕ | 〈α〉ϕ | 〈|α|〉ϕ
Based on a set of sorts S that always includes booleans and natural numbers, types T are recursively

defined to be either sorts or function types. Expressions E are typed (we write e : t), and boolean expressions
ϕ :bool are used as formulas. An expression is either a variable from X, an operation from OP, a lambda
expression, an application, a quantified formula or a formula of dynamic logic. Equality, boolean constants
true, false : bool and operators (e.g. ∧ : bool× bool → bool) as well as primitive theory of natural numbers
that defines 0, successor and an induction principle are built in.

The three dynamic logic operators are used to express properties of a program α. [α]ϕ means “all runs
of α that terminate end in a state where ϕ holds” , 〈α〉ϕ means “some run of α terminates in a state where
ϕ holds” and 〈|α|〉ϕ expresses “all runs of α lead to a state where ϕ holds”. Using Dijkstra’s wp-calculus
notation the formulas are equivalent to wlp(α, ϕ), ¬ wlp(α,¬ ϕ) and wp(α, ϕ).

Programs α can either be a sequential program, an ASM rule or a Java program. All programs use
valuations of higher-order variables as states. The dynamic functions of an ASM are represented as function
variables. For Java, an extra variable is used to represents the heap (see [Ste04]). The semantics of a program
is a relation over states augmented with a ⊥ element to express nontermination.

Basic specifications consist of signatures and axioms over this logic. Induction principles can be defined
that restrict the loose semantics of data types to term generated ones. Free data types can be defined using
a notation similar to the one of functional languages from which axioms are generated automatically.

Structured algebraic specifications are built up with the standard operators (see e.g. [CoF04]) union,



Verification of Mondex with KIV 3

enrichment, renaming and actualisation of parametric specifications. An operation called instantiation that
generalises actualisation is explained in the next section, since it is the main operation used to express
relations between various forms of data refinement.

KIV also has an extension of this logic with temporal logic operators [BDRS02] which allows to reason
about interleaved programs and statecharts [TOWS04], but this extension is not used here.

3. Specifying the Data Refinement Theory

The data refinement theory underlying the Mondex case study is defined in [CSW02] in three stages: first,
the general data refinement theory of [HHS86] is given. Second the contract embedding [WD96] of partial
relations is defined and corresponding proof rules for forward and backward simulation are derived. Third
the embedding of input and output into the state is discussed.

We have formalised the first two parts of the theory already for [Sch05]. A standard encoding of relations
as boolean functions is used, since there are no predefined sets or relations in KIV.

As an example, a standard data type DT = (GS,S, INIT, {OPi}i∈I,FIN) becomes a generic specification
with parameter sorts GS, S and I and operations

INIT : GS× S → bool OP : I → S× S → bool FIN : S× GS → bool

The central specification construct needed to relate the three stages of the development of the data
refinement theory and also the application of the theory to Mondex is specification instantiation, a generalised
form of actualisation. This construct is similar to theory interpretation in the IMPS system [Far94] and works
as follows: given a (generic) specification G, a subspecification P (the parameter) of G can be instantiated with
a theory A (the actual specification). The instantiation uses a mapping σ. Mappings σ generalise morphisms:
they allow to map each sort of P to a tuple of types of A and each operation of type t to a tuple of closed
expressions of type σ(t). σ must also rename operations in G \ P such that they are disjoint to those of A.
The instantiation is correct, if A is more specific than σ(P), i.e. if the axioms of A imply σ(Ax) for every
axiom Ax of P. This must be shown by discharging proof obligations. The resulting specification is σ(G) ∪ A.

Specification instantiation is used several times:

• Given a specification G that has the backward simulation conditions for refinement as axioms and a
specification A that has the refinement condition

∀ is ∈ I∗ • CINIT o
9 COPis

o
9 CFIN ⊆ AINIT o

9 AOPis
o
9 AFIN

as axiom, setting P := G and σ to be identity gives an instantiated specification SP, where we have to
prove that backward simulation implies refinement.

• Using the specification with the backward conditions as P, setting G := SP where we proved refinement
and setting up a specification A which defines the proof obligations for backward simulation of the
contract approach, we can define a mapping from states of A to states + ⊥, that maps the operations of
the contract approach to embedded operations. This leads to proof obligations where we have to show
that the original backward conditions for the embedded operations are implied1 by the proof obligations
of the contract approach, just as it is done in [CSW02].

• Embedding of input and output can be shown to specialise the contract approach by instantiating global
states with the tuple consisting of new global state, input and output list.

• Finally, the Mondex refinement can be derived as an instance of the refinement theory by mapping the
abstract state AS of the refinement theory to the tuple of the two variables balance and lost (and similar
for CS, see next section for more details).

The final proof obligations we derived are slightly different from the ones in [CSW02], since we found that
the embedding used was not fully correct: input and output sequences are embedded into the initialisation
and finalisation relation using an empty relation (e.g. empty[GO,CO] in section 4.4.1 to embed output in

1 we usually prove the reverse implication too, to show that the proof obligations are maximally general.
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initialisation). This relation is not total and should be replaced with a relation that relates every input to
the empty sequence as output (so empty[GO,CO] is then defined as GO× {〈〉}).

With this corrected definition some of the proofs in Section 4.4 must be slightly modified. This results
in the additional proof obligation “totality of input initialisation” given below.

In the Mondex case study the proof obligations are applied restricting the state space of the concrete level
to those states for which an invariant holds (the ‘between’ level), and the second refinement basically proves
that this invariant indeed holds. This approach can be improved to one refinement by adding invariants
directly to the refinement theory.

Adding invariants is trivial for forward simulation, where one can just form a conjunction of invariants
and simulation relation (see Theorem 2.4.2 in [DB01]), but it is nontrivial for backward simulation. The full
theorem for backward simulation can be found in [SGHR06a]. It is proved using the standard embedding of

the contract approach [BDW99] for operations, but using
◦
T =̂ (T B AINV) ∪ {CS⊥ \ CINV} × AS⊥ for the

simulation relation T instead of
◦
T =̂T ∪ {⊥} × AS⊥.

Based on this theorem input and output can be added to prove (we give implicitly universally quantified
proof obligations as defined in KIV):

Theorem 3.1. (Backward Simulation with IO using Invariants)
Assume an abstract data type ADT = (AINIT,AIN,AOP,AFIN,AOUT) consisting of

• parameter sorts GS, GI, GO, AS, AI and AO

• AINIT : AS → bool (the set of initial states)
• AIN : GI× AI → bool, (inputs initialised from global inputs)
• AOP : I → AI× AS× AS× AO → bool (operations read an input, modify the state and produce output)
• AFIN : AS× GS → bool (finalising a local state gives a global state)
• AOUT : AO× GO → bool (finalising output to global output)

together with an invariant AINV : AS → bool and a concrete data type CDT = (CINIT,CIN,COP,CFIN,COUT)
with invariant CINV : CS → bool are given. CDT uses the same global data GI,GS,GO but different lo-
cal data CI,CS,CO. Then a backward simulation consisting of IT : CI× AI → bool, T : CS× AS → bool and
OT : CO× AO → bool proves correctness of the refinement (in the same sense as in [CSW02]), if the following
proof obligations can be verified:

CINV(cs) ∧ COP(i)(cin, cs, cs′, cou′) ∧ T(cs′, as′) ∧ AINV(as′) ∧ OT(cou′, aou′)
∧ (∀ as, ain. T(cs, as) ∧ AINV(as) ∧ IT(cin, ain) → (ain, as) ∈ dom(AOP(i)))

→ ∃ as, ain. IT(cin, ain) ∧ T(cs, as) ∧ AINV(as) ∧ AOP(i)(ain, as, as′, aou′) (correctness)

CINV(cs) ∧ (cin, cs) 6∈ dom(COP(i))
→ ∃ as, ain. T(cs, as) ∧ AINV(as) ∧ IT(cin, ain) ∧ (ain, as) 6∈ dom(AOP(i)) (applicability)

AINIT(as) → AINV(as) (initially abstract invariant)
CINIT(cs) → CINV(cs) (initially concrete invariant)
CINV(cs),COP(i)(cin, cs, cs′, cou′) → CINV(cs′) (abstract invariant preserved)
AINV(as),AOP(i)(ain, as, as′, aou′) → AINV(as′) (concrete invariant preserved)
CINIT(cs) ∧ T(cs, as) → AINIT(as) (state initialisation)
CIN(gin, cin) ∧ IT(cin, ain′) → AIN(gin, ain′) (input initialisation)
CINV(cs) ∧ CFIN(cs, gs) → ∃ as. AINV(as) ∧ T(cs, as) ∧ AFIN(as, gs) (state finalisation)
COUT(cou, gou′) → ∃ aou. OT(cou, aou) ∧ AOUT(aou, gou′) (output finalisation)
∃ cs. CINIT(cs) (totality of state initialisation)
∃ cin′. CIN(gin, cin′) (totality of input initialisation)
CINV(cs) → ∃ gs′. CFIN(cs, gs′) (totality of state finalisation)
∃ gou′. COUT(cou, gou′) (totality of output finalisation)
∃ ain. IT(cin, ain) (totality of input)

The proof of this theorem uses the corrected empty-relation and instantiates the previous theorem, but
otherwise proceeds like the one in [CSW02]. The new proof obligations now can be used to verify the two
Mondex refinements in one instead of two steps.
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4. Specification of the Mondex Refinement

The two most important concepts of Z are its built-in set theory, and the use of schemata to build up and
structure specifications. To translate a Z specification into a KIV specification, one has to express these
concepts in the higher-order dynamic logic KIV uses.

For sets there are basically two options, depending on whether we want finite sets or arbitrary ones. For
finite sets KIV’s library offers a predefined data type of sets, that are generated by the empty set ∅ and an
insert function (written infix ++), that adds an element to a set. Semantically this means that every set
can be expressed as the value of a term ∅ ++ a1 ++ . . . ++ an given a suitable valuation for the elements
a1 . . . , an. For deduction, term generatedness implies a structural induction principle.

Infinite sets like toInEpv2 are usually represented as characteristic predicate toInEpv and use this trans-
lation also for many other relations (like the operations of the last section).

An alternative is to use a specification of infinite sets. We defined such a specification for the ether,
since it is directly modified by operations on sets in the protocol. The specification was copied from the
original specification of the library, and the term generatedness axiom was removed, which caused KIV’s
correctness management to leave only those theorems valid which had a proof that did not depend on
finiteness of the sets. The theorems that became invalid were removed. A function {p} (written as brackets
around the argument to have an intuitive notation) is added to the specification that allows to construct
the set of all elements that satisfy the characteristic predicate p. {p} is the set {a : p(a)}. Using the test
predicates isStartFrom and isStartTo the initial ether is specified as (using overloading for the brackets: {⊥}
and {readExLog} are singleton sets)

ether = {isStartFrom} ∪ {isStartTo} ∪ {⊥} ∪ {readExLog}

Schemata are used in Z for various purposes. There are some in the Mondex case study that just define
free data types, like messages. Others define invariants like the specification of BetweenWorld. Still others
define data types and restrictions on them, like PayDetails, which defines a five tuple and the restriction
from 6= to. Still others define operations and their composition.

In KIV these issues are separated: Data types are put into specifications, e.g. messages and PayDetails are
specified as free data types. The invariants of BetweenWorld as well as the restriction from 6= to are encoded
as predicates. Schemata that define operations still play another role, and we translate them to ASM rules.
This suggests itself, since operations will be implemented by programs on smart cards. It also improves
automation of proofs, since the symbolic execution heuristic for programs becomes applicable. Since the
semantics of programs is a relation too, the translation is relatively simple: Equations x′ = f(x) are translated
to assignments x := f(x) and nondeterministic relations like nextSeqNo′ > nextSeqNo are translated to

choose n with n > nextSeqNo in nextSeqNo := n

Preconditions of schemata are encoded as the tests of conditionals. Schema composition and disjunction
are translated to compounds and nondeterministic choice, e.g. Abort o

9 StartFrom ∨ Abort is translated to
ABORT#; STARTFROM# ∨ ABORT# in KIV. The # sign is added by convention to distinguish program
identifiers from predicates. The requirement that Mondex operations should be total is naturally expressed
as the requirement that the corresponding ASM rules should terminate.

Schema promotion that is used to lift operations from one purse to the set of authentic purses is not
directly available in KIV. In our encoding of operations as programs we could have used auxiliary ASM rules,
that have one purse as argument. We decided not to do that, since it prevents the following simplification
of the state: the original specification defines a (partial) function AbAuthPurse (and similarly ConAuthPurse)
that maps authentic names of purses to a tuple of name, abalance and lost. A constraint enforces that the
duplicated name in the domain and range of this function are the same. Our specification simply uses two
functions abalance and lost from names to the respective values and thereby avoids the duplication and the
constraint. We abbreviate this tuple as astate in the following. For the concrete state we similarly have
cstate = balance, exLog, status, nextSeqNo, pdAuth, ether, archive.

2 While we did not notice it, [JW06] found that toInEpv is specified in [SCW00] as a finite set, resulting in an inconsistency.



6 D. Haneberg et al.

To apply the algebraic refinement theory of the previous section, we define the relation OP of a total
program OP# which modifies state as

OP(state, state′) ↔ 〈OP#〉 state = state′

As an example we show the translation of the operation handling requests (the promoted ReqPurseOkay
from p. 32 of the original work):

REQ#(msg, receiver)
if msg ∈ ether ∧ msg = req(pdAuth(receiver)) ∧ state(receiver) = epr
then balance(receiver) := balance(receiver)− pdAuth(receiver).value

status(receiver) := epa
outmsg := val(pdAuth(receiver))

else IGNORE#
The conditions of the test msg = req(pdAuth(receiver)) (AuthenticReqMessage expanded) and status = epr

are from ReqPurseOkay, the test msg ∈ ether is from expanding the promotion scheme ΦBOp, p.45. The else
case makes the fact explicit, that when the test is negative, only an Ignore can be executed3 in the schema
disjunction (p. 50) that defines Req:

Req =̂ Ignore ∨ ∃ ∆ConPurse • ΦBOp ∧ ReqPurseOkay

Finally the Req operation is defined by

Req(msg, cstate, cstate′, outmsg′)
↔ 〈IGNORE#(; outmsg) ∨ choose receiver with authentic(receiver) in REQ#; LOSEMSG#〉

(cstate = cstate′ ∧ outmsg = outmsg′)
where LOSEMSG# adds the output message outmsg to the ether. Since we prove the refinement from

abstract to concrete level directly LOSEMSG# may also drop messages when constructing the new ether:

LOSEMSG#
choose ether′ with ether′ ⊆ ether ∪ {outmsg} in ether := ether′

Theorem 3.1 is applied using the Req operation as one COP(i). Simulation relations R, RIN, ROUT as
well as the definitions of global states, inputs and outputs are copied from [SCW00]. An invariant AINV for
the abstract states is not needed, we set it to true. The only difficult part is the definition of the invariant
CINV for the concrete level. We found that the required formulas to do this are distributed in 3 places:

• The property of payment details that requires pd.from 6= pd.to for every relevant pd used (Section 4.3.2).
• The properties of purses P-1 to P-4 (section 4.6).
• The properties B-1 to B-16 of the intermediate state that define an invariant for the concrete state

(section 5.3).

Collecting these properties and the required definitions of AuxWorld (section 5.2) gives a suitable definition
of CINV: full details for the version without archives can be found in the technical report [SGHR06b], the
variant used here adds the two original properties (with the small correction described below) for archives
from BetweenWorld.

To allow direct verification of the refinement from the abstract to the concrete level, there is still one
detail we have to add: the concrete ether may lose messages, while BetweenWorld gives properties for an ether
that only hold if ether has not lost messages. Therefore we collect all properties that talk about the ether in
a predicate etherok(ether, . . .) and we use

∃ fullether. ether ⊆ fullether ∧ etherok(fullether, . . .)

in the invariant CINV. fullether is always the ether that has never dropped any message.
Otherwise there are the following minor technical differences and optimisations:

3 Finding out, which operation can be called in which situation, by checking the preconditions in the various schemata used
was one of the main difficulties we had to understand Z specification. In our translated version, this question becomes obvious.
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• The distinction between states eaFrom and eaTo is unnecessary. Therefore these states have been merged
into one idle state.

• Instead of directly using quantified formulas when defining CINV we have grouped the formulas and
defined predicates for them. This allows to define rewrite rules for the predicates (avoiding having to
unfold the predicate definition altogether) and to instantiate the universal quantifier of several related
properties at once.

• Predicates are not defined in the context of Z schemata, which provides implicit arguments. We have to
provide parameters explicitly.

• Set maybeLost (and similarly definitelyLost and chosenLost) must be a finite set in the definition of the
simulation relation R. Since this set is not finite a priori, but only during the run of the system (where
always only a finite number of purses may be in a protocol run), we have specified a predicate maybeLost.
To enforce a finite set during runs one has to claim that

∃ maybelostSet. ∀ pd. (pd ∈ maybeLostSet ↔ maybeLost(pd))
where maybeLostSet is a variable that ranges over finite sets. The simulation relation R is therefore

existentially quantified over the current sets maybelostSet, definitelyLostSet and chosenLostSet.
• Finiteness of the number of authentic purses (necessary to compute the sum of all balances) and the

existence of at least one authentic purse (necessary to ensure totality of operations) is specified by a
predicate authentic and the axiom

(∃ na. authentic(na)) ∧ ∃ authenticSet. ∀ na. (na ∈ authenticSet ↔ authentic(na))
The existence of at least two purses, necessary to enforce consistency of the Z specification of payment

details4 is not necessary in KIV, since the restriction from 6= to is just used in the invariant of the
communication protocol, not to restrict the type of payment details.

5. Verification of the Mondex Refinement

The only difficult proof obligations in the proof of refinement according to Theorem 3.1 are “Concrete
invariant preserved” and “Correctness” for every protocol operation.

To prove these two proof obligations, we first reduce them to properties of the elementary programs
REQ#, IGNORE#, ABORT# etc.. This step roughly corresponds to the derivation of lemmas for the in-
dividual operations in [SCW00], but we did not use the original proof structure any further. For the Req
operation, whose definition we gave in the previous section, we get one lemma for invariance

authentic(receiver) ∧ msg ∈ ether ∧ msg = req(pdAuth(receiver)) ∧ state(receiver) = epr
∧ CINV(cstate) ∧ 〈REQ#(msg, receiver)#〉 cstate = cstate′

→ CINV(state′)
and one for backward simulation. Since Req refines AbTransfer this lemma is

authentic(receiver) ∧ msg ∈ ether ∧ msg = req(pdAuth(receiver)) ∧ state(receiver) = epr
∧ 〈REQ#(msg, receiver)#〉 cstate = cstate′ ∧ R(cstate′, astate′) ∧ CINV(cstate)

→ ∃ astate. R(cstate, astate) ∧ 〈ABTRANSFER#〉 (astate = astate′)
The preconditions guarantee, that the test of the conditional in the definition of REQ# is positive, the

lemma for IGNORE# covers the negative case. The proofs of the lemmas then are done using the sequent
calculus of KIV, that reduces the initial goal to simpler goals until axioms are reached.

For the first lemma the proof starts automatically by symbolic execution of REQ#. In this case we get one
premise, other lemmas where the program contains a conditional (e.g. for Abort in LogIfNeeded) give several
premises. In each premise the two occurrences of CINV in the pre- and postcondition are then unfolded
automatically by heuristics. This leaves a conjunction of properties to prove. Those properties which are
unchanged by REQ# are trivially implied by the corresponding property from the precondition. Some others
can be proved automatically using rewrite rules. For some rest, in particular when the proof requires to use
several other properties from the precondition, some interaction is necessary to unfold definitions and to

4 this inconsistency was again found in [JW06].
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instantiate quantifiers. In some cases, where we were unsure whether a goal was provable, it was helpful to
be able to look up the corresponding case in [SCW00].

For the second lemma the proof structure is similar, but there are two additional quantifiers to instantiate.
The first is the existential quantifier for astate = abalance, lost. For all operations that do not transfer money,
astate can be set to be astate′.

The two exceptions are REQ# and the case of ABORT# where logging takes place. For REQ# there are
three cases, which are split manually. In the first case toInEpv is false, the two others depend on whether
pdAuth(receiver) ∈ chosenlost. These cases correspond to the ones in Section 18.3 of [SCW00] e.g. in the first
case astate must modify astate′ by moving pdAuth(receiver).value from lost(receiver) to abalance(receiver) to
accommodate the fact, that AbTransferLost will be executed.

The second quantifier is the quantification over the sets maybeLostSet, definitelyLostSet, chosenLostSet.
These sets must be instantiated with modified variants of their value maybeLostSet′, definitelyLostSet′ and
chosenLostSet′ after the operation. The instances again must be given interactively. Getting these instances
right is the main creative step of the proof. Since the correct instances are hidden in various subproofs in
[SCW00] we summarise them here:

• None of the three sets changes in STARTFROM# and STARTTO# since aborting directly after these
transitions will not lose money. Dually, the sets remain unchanged in ACK#, since the money has already
been transfered successfully. The sets also are unchanged in IGNORE# and INCREASE# as well as in the
operations for archiving exception logs.

• When REQ# executes successfully, there are two cases to consider: either the to purse who sent the
request is still in state epv: then the payment details of the request message enter maybelost and possibly
chosenlost. Reasoning backwards the payment details must be deleted from both sets. Otherwise the to
purse has already aborted the transaction after sending the request, so reasoning backwards the payment
details must be deleted from definitelylost. The two cases correspond to the two cases of a successful
respectively failed transaction in ABTRANSFER# (all other operations refine skip).

• Successful execution of VAL# means that the payment details of the message leave maybelost, so reasoning
backwards they must be added to maybelost.

• For ABORT# there are three cases to consider: First, if the purse does not log (in LOGIFNEEDED#),
then no critical transaction is in progress and all sets remain unchanged. Second, if the purse logs and
is in state epv, and if the corresponding from purse is either in state epa or has already logged the
payment details, then aborting moves the payment details from maybelost and chosenlost to definitelylost.
Reasoning backwards the payment details must be added to maybelost and chosenlost, and deleted from
definitelylost. In the remaining third case the payment details are already in definitelylost and all sets
remain unchanged.

Doing the proofs in KIV showed several minor flaws, that resulted in proof goals which could not be
closed. Each time the problem could be traced back to a specific point of the proof in [SCW00], where the
argument must be revised.

• The first problem is in section 29.4 in the proof of B-10 where it must be proved that

toInEpv ∨ toLogged ⇒ req ∧ ¬ ack

for all payment details pd. Now the problem is as follows: the implication is provable for pdAuth(receiver),
where receiver is the (to) purse receiving the val message (to which it responds with an ack message).
But this is not sufficient: if it would be possible that receiver is different from na := pdAuth(receiver).to
but has status(na) = epv and pdAuth(na) = pdAuth(receiver), then for this na the implication would be
violated. The solution to this problem is to add pdAuth(receiver).to = receiver when status(receiver) = epv
to P-3.

• A similar problem also exists when status(receiver) = epa (property P-4). For this case the formula
pdAuth(receiver).from = receiver has to be added.

• The fact that every val(pd) message in the ether has authentic(pd.from) has to be added: like property
authentic(pd.to) (B-1) is needed to have pd.to in the domain of the partial function ConAuthPurse in B-2,
this property is needed in order to have a determined value for ConAuthPurse pd.from in B-3.

• Empty sets of payment details must be avoided in exLogResult and exLogClr messages, since the hash
function is defined to be injective for nonempty sets only.
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• Assertions that pdAuth(receiver).to resp. .from must be authentic in P-3 and P-4. Our early proof attempts
lacked the authentic clauses in the definition of the predicates toInEpr, toInEpv and toInEpa. Without these
clauses the assertions were definitely necessary. After the correction we did not check whether the addition
was still necessary, but [TR06] and [JW06] confirm that they still are.

With these modifications the invariance proof was successful. The final proofs of the invariance lemmas
together have 889 proof steps and 189 interactions.

The lemmas for the simulation proof are similarly difficult, they required 752 proof steps and 173 inter-
actions. Deriving the proof obligations “Concrete invariant preserved” and “Correctness” of Theorem 3.1
from the lemmas, proving the remaining proof obligations and auxiliary lemmas requires a lot of technical
overhead (1467 proof steps and 261 interactions) but these proofs are all much simpler. Also none of these
proofs were affected by the corrections of the invariant.

When we started this case study we first specified two abstract state machines (ASMs, [Gur95], [BS03])
and tried the two main proofs for these. With this approach we already found all the problems present in
the main protocol (see [SGHR06a] for more details) except the correction for the archiving protocol, which
was not specified. Therefore the effort to do the full case study was as follows

• 1 week was needed to get familiar with the case study and to set up the initial ASMs.
• 1 week was needed to prove the essential proof obligations “correctness” and “invariance”, and to get a

correct invariant.
• 1 week was needed to specify the Mondex refinement theory of [CSW02] and to generalise the proof

obligations to cope with invariants (Section 3).
• 1 week was necessary to prove the data refinement as described in this section. This short time is due to

the fact, that the lemmas for invariance and simulation are nearly the same as the ones we proved for
the ASM.

• 3 days were needed to add the archiving protocol. Since the protocol for archiving is independent of
the main protocol, most proofs can be replayed. The two new properties that have to be added to the
invariant increase the proof size somewhat, but they do not cause any difficult problems.

Altogether one person month was needed to formally prove the Mondex case study. Of course the time
needed to do the verification and the automation of proofs is strongly influenced by the level of expertise
with formal verification in general and with the KIV system in particular.

Also getting the work done in this time was immensely helped by having a (nearly) correct simulation
relation. Usually most of the time is not needed to verify the correct solution, but to find invariants and
simulation relations incrementally.

6. The Prosecco Framework

Prosecco (Protocols for Secure Communication) is an ASM-based framework for the specification and
verification of smart card applications. Prosecco is described in [Han06]. It combines UML diagrams for the
description of the application with a formal protocol model based upon ASMs. The formal model is the basis
for the verification of properties, either by refinement of by direct proof attempts. In the graphical model a
class diagram is used to specify the state of the agents, a deployment diagram describes the communication
network and the attacker’s abilities, activity diagrams are used to model the security protocols. Agents
represent the active components taking part in the application; in the Mondex case study these are the
Mondex purses, the Mondex wallets (card terminals), the users and the attacker.

The formal Prosecco model of an application consists of two parts, first a structured algebraic speci-
fication defining data types, the communication network and the attacker. Second, an ASM describing the
protocol steps which can be performed by the agents of the application.

The algebraic specification consists of a library of basic definitions concerning the possible communication
between the agents which is extended by some application specific axioms which tailor the library to the
concrete application. An important part of the algebraic specification is the model of the communication
network and the description of the abilities of the attacker. Prosecco uses a detailed model of the com-
munication based on connections representing possible communication links between the different ports of
the agents which represent communication interfaces (cf. [HGRS06]). For each connection the specification
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contains axioms determining if the attacker can read, manipulate or suppress data transmitted over the
connection. Prosecco is therefore not limited to Dolev-Yao [DY81] style attackers. The attacker is repre-
sented in the ASM by his knowledge attacker–known. This is the set of data the attacker has acquired by
eavesdropping on the communication and analysing the data. The set is extended when the attacker learns
new messages and it is used by the attacker to created new messages on his own.

The Prosecco ASM specifies the dynamic aspects of the application, it describes operationally all steps
which are possible for the different agents of the application. The agents are modeled with an explicit internal
state used to store application specific data which is manipulated by the ASM rule. This is different to most
approaches for cryptographic protocol verification since in these approaches the agents do not have a state,
they usually only have certain data for cryptography, e.g. a key, which is not modified in the protocol runs.
The value of former nonces is taken from the trace of the current run (see e.g. [Pau98]). Similar to other
approaches is the idea of an application-independent data type to model the transmitted data and a uniform
model of the attacker’s treatment of these data.

The Prosecco approach uses a uniform model of the data used for communication to give way to an
application independent treatment of the attacker and to the possibility to build a library of reusable parts
for the Prosecco ASMs. This data type definition is inspired and quite similar to the messages (data type
msg) defined in [Pau98]. Our document model consists of two mutually recursive freely generated data types,
document and documentlist5:

document = ⊥
| intdoc(. .int : int) with is–intdoc
| keydoc(. .key : key) with is–keydoc
| noncesdoc(. .nonce : nonce) with is–noncedoc
| secretdoc(. .secret : secret) with is–secretdoc
| hashdoc(. .doc : document) with is–hashdoc
| encdoc(. .key : key; . .doc : document) with is–encdoc
| sigdoc(. .key : key; . .doc : document) with is–sigdoc
| doclist(. .list : documentlist) with is–doclist

documentlist = []
| . + . (. .first : document; . .rest : documentlist)

A document can therefore be a simple number (intdoc), some secret information (secretdoc), data used in
cryptography (noncedoc, keydoc), the result of a cryptographic operation (hashdoc, encdoc, sigdoc) or a list
of documents (doclist). Based on these data types the axioms for analysing and constructing documents are
given, e.g. the axiom

encdoc(key, doc) ∈ attacker–known ∧ key ∈ attacker–known ∧ symmetric(key) → doc ∈ attacker–known

states that a symmetrically encrypted document can be decrypted if the correct key is available. Analysing
documents is specified similar to the function analz of [Pau98]. Our model of cryptography is based on the
usual perfect cryptography assumption: decryption without the correct key is impossible, generation of a
hash value is injective. The axioms for generating new documents are somewhat dual to the axioms for
analysing documents, e.g. a signature can be constructed if the used key is known:

(attacker–known ` key) ∧ (attacker–known ` doc) →
(attacker–known ` sigdoc(key, doc))

The formalisation of the generation of documents is similar to the function synth of [Pau98].

7. Extending the Mondex Challenge

The original Mondex case study omits one aspect which is rather important for the security of the application:
how is it ensured that the req, val and ack messages cannot be forged by the attacker? In the original work
it is just assumed that it is possible to secure the messages needed for the communication protocol.

As proposed in [SGHR06a] we developed a cryptographic protocol which corresponds to the Mondex value
transfer protocol and uses symmetrically encrypted documents to represent req, val and ack. This extension

5 dots indicate pre-, post- and infix operands
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bridges the gap between the analysis of Mondex as it was done in [SCW00] and the usual verification of
cryptographic protocols. It considers the properties of cryptographic methods and therefore ensures that
the assumed unforgeability of the important messages of the Mondex protocol is effectively guaranteed. Our
refinement also introduces finiteness constraints (e.g. finite number of entries in the exception logs and a
maximum current balance of 32767, the greatest number that fits in a signed short) that are a first step
towards a Java implementation.

7.1. A Protocol with Symmetric Encryption

According to [Cla96] at least the first versions of Mondex cards used symmetric encryption, so the protocol we
proposed in [SGHR06a] is not unlikely. The security of the communication protocol of the concrete Mondex
level is based on the fact that no future req, val or ack messages are available to the attacker, i.e. contained
in the ether. The cryptographic protocol must be designed in a way that ensures that this is actually true.
Since the real security protocol of the Mondex smart cards has never been published, our protocol must be
seen as a proposal. Alternatives using RSA would have payloads that would be too big to be transferred by
single messages6. This would have led to modifications of the protocol structure since some messages of the
communication protocol would have been split into several messages on the security protocol level.

A symmetric encryption key KS shared between all Mondex smart cards is the foundation on which the
security of our cryptographic protocol relies. This key must not be known by the attacker, otherwise money
could be generated. The key is used to encrypt the data contained in a req, val or ack message, i.e. the
payment details of the transaction in which the Mondex card issuing the message currently participates. As
only genuine Mondex cards know this secret key, such a correctly encrypted message is accepted as authentic.

To prevent the misuse of a message, e.g. by using a req message as a val message and thereby creating
money, it is necessary to distinguish the three kinds of messages. To allow the smart cards to distinguish
the different messages, three pairwise distinct constant values REQ, VAL and ACK are introduced and the
corresponding constant is added to the data part which is encrypted when a req, val or ack message is
created.

Our protocol for the Mondex value transfer, written in a commonly used standard notation for crypto-
graphic protocols [Car94], is:
1. to → from : {REQ,pdAuth(to)}KS

2. from → to : {VAL,pdAuth(from)}KS

3. to → from : {ACK,pdAuth(to)}KS

Another possible approach to formulate a value transfer protocol based on common knowledge is the
usage of a HMAC (keyed hashing [BCK96]). In this case smart cards with support for an appropriate hash
algorithm are required and the common secret as well as the payment details would be hashed. The resulting
hash value proves the authenticity of the message.

7.2. The Prosecco Model of Mondex

The substitution of the cryptographic protocol for the communication protocol is not the only difference
between the two levels, the Prosecco model is more detailed in several other aspects as well. The Mondex
models described in [SCW00] do not deal with the technical conditions of real smart card applications. In
[SCW00] two purses communicate directly and the commands sent to the smart cards are chosen nondeter-
ministically from the current ether. In the Prosecco model two smart cards cannot communicate directly
(this is not possible in the real world), instead we have modeled explicitly the Mondex wallet, a small com-
puter with two smart card readers which executes the value transfer protocol between two Mondex purses.
The real Mondex smart cards and the Mondex wallet do not start protocol runs on their own, instead they
must be activated by the card owner. The Prosecco model reflects this and therefore has some user agents
that send commands to the Mondex wallets and start value transfers. The Prosecco model has another
agent which is not present in the models in [SCW00]: the attacker. The attacker is a malicious agent that
represents the threats that the Mondex application faces.

6 In reality communication with smart cards is done using APDUs (Application Protocol Data Units) which have a fixed
maximal size of 255 Bytes.
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Furthermore the Mondex purses on the Prosecco level have additional operations: the request of the
current sequence number and the purse’s name needed for startFrom and startTo messages and the request
of the current balance.

Prosecco’s detailed model of the possible communication and the application specific description of the
attacker’s abilities replaces the assumptions over the attacker which were implicit in the definition and the
treatment of the ether in [SCW00]. The attacker model used in the Prosecco ASM for the Mondex case
study is a Dolev-Yao [DY81] style attacker, which has access to all communication channels and analyses
and composes documents following the usual perfect cryptography assumption. The additional complexity
on this level compared to the concrete world of [SCW00] arises from the fact that we have to prove that
analysing and composing the messages available to the attacker does not lead to the possibility that a future
req, val or ack message is created by the attacker. Therefore it is most important that the shared key remains
unknown to the attacker. If this is ensured, one can prove that the messages that represent req, val and ack
actually cannot be forged and therefore faithfully mimic the req, val and ack messages of [SCW00].

The possible steps of the application are described operationally by the main rule of the Prosecco ASM.
For example the part of the Prosecco ASM responsible for treating a req message is:

PREQ
if get–inpd(indoc) = pdAuth(agent)
then balance(agent) := balance(agent)− get–part(pdAuth(agent), 5).int

state(agent) := EPA
outdoc := encdoc(key(agent), doclist(intdoc(VAL) + pdAuth(agent)))

The ASM rule checks if the payment details received in the input message (get–inpd(indoc)) are equivalent to
the purse’s current payment details. If this is the case, the balance is decremented, the state of the purse is
set to EPA and the encrypted val message is generated as output. This ASM rule corresponds to the operation
REQ# presented in section 4 with one exception: The test if the purse’s state is EPR is done before the ASM
rule PREQ is executed.

The Prosecco ASM contains all steps of the communication protocol, i.e. all steps necessary to transfer
money between the purses, but we left out the archiving of exception logs because we wanted to focus on
the security protocol.

8. Refinement by Forward Simulation

The link between the concrete level of the original Mondex case study and the Prosecco ASM is established
using ASM refinement ([BR95], [Sch01], [Bör03]). We prove a forward simulation that guarantees that for
all runs of the Prosecco model of Mondex there exists a corresponding run of the communication protocol,
using the ASM model of the communication protocol that is defined in [SGHR06a] and verified in [SGH+07]).

The library of the KIV system offers a generic theory of ASM refinement which has to be instantiated
appropriately. The main proof task is to prove that each step of the Prosecco ASM either refines a step of
the communication protocol or refines an empty step.

The following section describes this central proof obligation and the definitions necessary for the proof.
These are a state mapping σ that links the states of the purses on the abstract and the concrete level and a
simulation relation that describes how the knowledge of the attacker is linked to the abstract ether.

On the Prosecco level the state of the Mondex purses is described by functions name : agent → int,
balance : agent → int, status : agent → int, pdAuth : agent → document, exLog : agent → documentlist and
nextSeqNo : agent → int. These encode the same information as in the communication protocol. Additionally
key : agent → key stores the symmetric key and exLogCounter : agent → int counts the number of exception
logs. Similar to astate and cstate in section 4 we use pstate to abbreviate this tuple. Application specific data
types of the communication protocol have been replaced with documents from the Prosecco library. E.g.
payment details are represented by a documentlist:

σ(mkpd(fromname, fromno, toname, tono, value)) =
doclist(intdoc(name2int(fromname)) + intdoc(fromno) + intdoc(name2int(toname)) + intdoc(tono)+

intdoc(value))
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and a request message req(pd) containing payment details pd is represented by an encrypted document

σ(req(pd)) = encdoc(KS, doclist(intdoc(REQ) + σ(pd)))
where KS is the symmetry key stored by every authentic purse.

Auxiliary functions are used to convert elementary data to integers, e.g. name2int with type name → int is
a bijection between authentic names and those integers which identify authentic purses. Not using application
specific data types allows a generic treatment of the attacker and the reuse of components of the ASM model
in various applications.

The state–mapping used in the simulation relation is a bijection between the states of the purses with
authentic names on the two levels and describes how the values of the fields on the Prosecco level are
derived from the values of the fields on the concrete level of [SCW00]. The state of purses without authentic
name is left unspecified. The complete axiom of the state–mapping relation is:

state–mapping(cstate, pstate) ↔ ∀ na. authentic(na) → pstate(σ(na)) = σ(cstate(na))

σ represents the joint application of the different mapping functions necessary to transform the different
parts of the state of a purse.

Given the state mapping which links cstate and pstate as the core, the forward simulation relation can
be defined. Besides the link between the states of the purses three further properties are needed in the
simulation relation:

1. The ether of the abstract level and the attacker’s knowledge of the Prosecco level must be equally
powerful, i.e. the same relevant documents can be generated from the ether and the set attacker–known
representing the attacker’s knowledge in the Prosecco ASM. More precisely the definition of the equiv-
alence between ether and attacker–known is that it is possible to generate the same documents from the
attacker’s knowledge attacker–known and from the set of documents resulting from applying the mapping
function on all elements of the ether:

ether ≡ attacker–known ↔ ∀ doc. ((attacker–known ` doc) ↔ (σ(ether|RVA) ` doc))
ether|RVA is the restriction of the ether to the security relevant encrypted messages req, val and ack.

2. The messages ⊥ and all startTo and startFrom messages must be contained in the ether.
3. The Prosecco ASM maintains an invariant PINV(pstate) which expresses well-formedness conditions on

the internal state of the purses (e.g. payment details of the current transaction contain valid documentlists
and the key stored by a purse is indeed the common secret key) as well as conditions concerning the
attacker (e.g. the common secret key of the Mondex purses is not contained in attacker–known).

The first property is needed in order to prove that all steps which are possible on the Prosecco level (i.e.
for which the attacker can generate the document triggering them) are also possible on the abstract level
because the corresponding messages are available in the ether. This is important for the critical messages req,
val and ack. This equivalence is the central part of the forward simulation, without a precise description of
the dependencies between the ether and the attacker’s knowledge the proof of the refinement theorem is likely
to fail. The second property is needed because on the Prosecco level startFrom and startTo messages are
represented as lists of integer documents. The attacker can always produce these, therefore on the abstract
level the corresponding messages must always be available. The full definition of the simulation relation R is

R(cstate, pstate) ↔ state–mapping(cstate, pstate) ∧ ether ≡ attacker–known
∧ {⊥} ∪ {isStartTo} ∪ {isStartFrom} ⊆ ether ∧ PINV(pstate)

With this simulation relation the main proof obligation is

R(cstate, pstate) ∧ 〈PSTEP#(pstate)〉 pstate = pstate′

→ ∃ cstate′. 〈CSTEP#(cstate) ∨ skip〉 (cstate = cstate′ ∧ R(cstate′, pstate′))
It states that given states cstate of the communication protocol level and pstate of the security protocol

which are in the simulation relation, and assuming a step PSTEP# of the Prosecco ASM may lead to a
new state pstate′, then either a step CSTEP# of the communication protocol or an empty “skip” step leads
to a state cstate′ which is in the simulation relation to pstate′ again. The proof obligation is quite similar
to the proof obligation of data refinement except that there is only one ASM rule on each level and that
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a 0:1 diagram is possible in the proof obligation without the need to explicitly add a skip operation to the
communication protocol.

Based on the generic theory of documents and attacker knowledge from Section 6 that we developed
earlier the proof of the forward simulation itself is quite direct and not complicated. We only have 0:1
and 1:1 diagrams. A successful protocol step of the Prosecco ASM refines the corresponding step of
the communication protocol (1:1 diagram), the processing of malformed or unexpected documents refines
ABORT# (1:1 diagram), steps without abstract counterpart but unmodified state of the purses on the
Prosecco level, e.g. attacker and terminal steps and the new purse operations that report the current
balance and sequence number refine skip (0:1 diagram).

The proofs for the refinement from the communication protocol level to the security protocol level were
done by a student worker who had just taken a one semester practical course on formal methods and KIV.
They took him approximately 4 months including the proofs for the invariant on the Prosecco level. This
invariant contains not just information relevant for the refinement from the communication protocol level
but also a large part which is only relevant for the next refinement to the Java implementation. Especially
this part took at lot of time. Although the 4 months required for this refinement are quite long compared
to the effort for the refinement from the transaction to the communication protocol level (see section 5)
we consider the refinement from the communication protocol to the Prosecco ASM as the simpler one,
especially the invariant is less complex.

The proofs for the forward simulation from the communication protocol level to the security protocol
level required approximately 800 interactive proof steps, the total number of proof steps is approximately
4200, i.e. proof automation is about 80 %. The proof of the invariant PINV of the Prosecco ASM was done
independently of the forward simulation and required approximately 1200 additional interactive proof steps.
Compared to the proofs we reported on in Section 5 these proofs required more interactions. This is not
surprising since the efficiency of proving is strongly linked to the experience of the person developing the
proofs.

9. Related Work

Related work describing other specification and verification approaches for the Mondex case study can be
found in this issue.

Concerning the graphical modeling of security critical applications and especially security protocols,
UMLsec [Jür02, Jür05] is most similar to Prosecco. UMLsec is a UML profile which extends several UML
diagrams with security relevant annotations. UMLsec allows the investigation of various security properties,
not just security of cryptographic protocols. To specify cryptographic protocols, UMLsec uses sequence
diagrams to describe the messages of the protocol and class diagrams to describe the state of the agents
and add annotations marking security relevant information. UMLsec focuses on modeling, proof support
for the verification of properties of cryptographic protocols is offered by exporting parts of the model into
inputs for a model-checker. The verification also focuses on some standard properties of security protocols
(e.g. secrecy). In Prosecco the formal model is completely embedded in the KIV system. The Prosecco
approach also does not suffer from the limitations of model-checkers (finite state space) and is not limited to
standard properties. [Jür05] reports on the verification of CEPS, a proposal for a smart card-based electronic
payment system. The proof of the security property for the payment system as presented in [Jür05] is done
by hand, i.e. without tool-support.

In the context of verification of cryptographic protocols several approaches have been proposed. One
of the most influential publications was [BAN90] introducing the “Logic of Authentication” (aka. BAN-
Logic). A lot of protocols were found erroneous when they were analysed with the BAN-Logic. However
the BAN-Logic has some serious disadvantages. It does not support reasoning about secrecy since it was
developed for reasoning about authentication protocols. Furthermore no proof system for the BAN-Logic
was presented limiting the analysis to hand-made proofs. In the area of tool-supported protocol verification
fully-automated verification using model-checking is dominating (see e.g. [Low96],[MCJ97], [CJM98], [Zar98],
[BMV03], [SBP01]), but these are usually limited to standard properties like authenticity and secrecy (but
see T. Ramananandro’s work with Alloy in this issue). The security properties of the Mondex case study are
application-specific and quite different from those standard properties.

Two interactive approaches are [Pau98] and [RSG+01]. Paulson’s Inductive Approach [Pau98] is best-
known among the interactive verification techniques for security protocols. Paulson uses the theorem prover
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Isabelle to verify properties of the protocols based on inductively defined sets of traces. Each of these
traces represents a possible sequence of (communication-) events given the formalised protocol and a set of
agents and the attacker. Paulson has successfully analysed different large protocols (e.g. TLS [Pau99] and
SET [Pau01]). The main differences between Prosecco and the Inductive Approach are that Prosecco
has a graphical modeling language while in the Inductive Approach the axioms are written down directly,
the fact that Paulson does not model the state of the agents whereas Prosecco explicitely models the
internal state of the agents, the different approaches for describing the possible runs of the application,
an operational description in Prosecco and a relational approach in Paulson’s work and finally the focus
toward a refinement to real code which is very important within the Prosecco approach.

10. Conclusion and Further Work

We have specified and formally verified two refinements for Mondex electronic purses. The first refinement
solves the challenge to verify the development of the full case study [SCW00].

Our proof is based on an improved theory of backward simulation for the contract approach, that allows
to replace the second refinement of the original work by an invariance proof.

We feel that the effort to do this was rather small compared to the effort we assume it has taken to
write down proofs in [SCW00] at nearly calculus level. Despite this great detail we were still able to find
several small flaws: one in the underlying data refinement theory, where a proof obligation was missing and
three in the invariant. Therefore we feel justified to recommend doing machine proofs as a means to increase
confidence in the results.

As a second contribution we have verified a refinement of the concrete level of Mondex to a security pro-
tocol based on symmetric key cryptography. This refinement justifies the security assumptions that underly
the original work. The complexity of this refinement is somewhat easier than the one of the original case
study.

Together with [SGH+07], where we have developed a systematic approach to verify the Mondex refine-
ment, the second refinement is part of our work to develop verified Java Code for E-Commerce applications
using UML for informal specifications and ASMs for formal protocol definitions (another case-study is Cindy
[GHRS06], an electronic ticketing application, which has already been refined to Java [GSR06]).

For Mondex we are currently working on the verification of Java Card code as a refinement of the security
protocol level. In [GMB+06] we present three implementations for the Mondex case study using different
cryptographic techniques. The refinement proof will be based on the verification kernel approach ([GSR05]),
our refinement framework for Java [GSR06] and the Java Card calculus of KIV ([Ste04]). Java code is already
available on our web site [KIV].

Acknowledgements. We want to thank Bogdan Tofan, a student research assistant who helped us by
doing most of the proof work necessary for the refinement from the communication protocol to the security
protocol.
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