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Abstract

In many clinical settings, the evaluation of pain is achieved
through a manual diagnostics procedure relying heavily
on verbal descriptions from the patient. Such procedures
can be time-consuming, costly, liable to subjective biases
and therefore often inaccurate. The automatic evaluation
of pain based on paralinguistic speech cues has the poten-
tial to enable objective methodologies for improving the
objectivity and accuracy of pain diagnosis. In this regard,
we herein introduce a novel audiovisual pain database, the
Duesseldorf Acute Pain Corpus, in which 844 recordings
were collected from 80 subjects whose speech was col-
lected while they undertook a cold pressor pain induction
paradigm. The database is split into speaker independent
training/development/test sets for a three-class level of pain
classification task and we provide a comprehensive set of
benchmark experimental results. The feature representa-
tions tested include functionals and bag-of-audio-words from
three feature sets: the Computational Paralinguistics Chal-
lenge (ComParE) features, mel-frequency ceptral coeffi-
cients, and deep spectrum representations. We use sup-
port vector machines and long short-term memory recur-
rent neural networks (LSTM-RNN) as the classifiers. The
best result, 42.7% unweighted average recall on the test
set, is obtained by LSTM-RNN working on the deep spec-
trum representations.

1 Introduction

Pain, a neural perception within the human brain, is a highly
important reaction from an individual in terms of their psy-
chological and physical health [1, 2]. In clinical practice,
pain analysis plays a valued auxiliary role in the diagno-
sis of many health conditions. For example, the diagnosis
of certain pathologies, as well as assessing their severities,
can benefit from pain information, such as cancer [3] and
Alzheimer [4]. Typical pain information solicited during
clinical examinations includes pain location, type, time,
length, and level [5]. Notwithstanding the importance of
pain analysis, clinical examinations rely heavily on pain
self-reports like questionnaires or drawings from patients
such as the Numerical Rating Scale and the Visual Ana-
logue Scale [6].

A particular disadvantage of conventional methods to
evaluate of pain level is subjectivity, especially in relation
to age and gender. This can potentially introducing biases,
from either the patients or the clinician, during the pain
evaluation procedure. In this context, the automatic and
objective evaluation of pain levels aims at creating a more
unified, comprehensive and efficient standard for the mea-

surement of pain, thus enabling more accurate and efficient
diagnostic procedures. Systems for the automatic detec-
tion of pain have started to be proposed and developed in
the relevant literature. In particular, these approaches are
based on facial expressions [7–9], body gestures, or mo-
tion descriptors [10, 11]. In addition, the voice is also an
important parameter to evaluate pain, as it contains consid-
erable information which is not only related to the physio-
logical health like the cardiovascular system [12], but also
the mental health such as depression [13].

While a large number of research works have been un-
dertaken on various voice pathology detection paradigms,
e. g., glottal cancer, laryngeal disorders, vocal cord paraly-
sis, etc. [14], to the best of the authors’ knowledge, there is
very little research on the evaluation of pain level from the
voice. Recently, a database of the speech for pain detec-
tion was collected and analysed [15]. However, the practi-
cality of applying state-of-the-art deep learning topologies
is limited by the small size of this corpus; 400 short sam-
ples from 27 participants. The newly collected Duessel-
dorf Acute Pain (DAP) Corpus, on the other hand, contains
twice as many samples, as well as detailed annotations re-
lating to the speaker’s level of pain. The database contains
844 samples recorded from 80 subjects, with a total length
of approximately 3 hours. The participants performed dif-
ferent read and free-form speech tasks, during which pain
was induced using a cold pressor test.

Our initial analysis on the DAP Corpus is a three-class
(mild/moderate/severe) level-of-pain classification task, in
which we set benchmark accuracies using three popular
computational paralinguistic paradigms. In particular, we
use speech representations in the form of the INTERSPEE-
CH COMPUTATIONAL PARALINGUISTICS CHALLENGE
(COMPARE) features [16], Mel-Frequency Cepstral Coef-
ficients (MFCCs), and image-based DEEP SPECTRUM fea-
tures learnt via transfer learning from Image Neural Net-
works (ImagNet) [17]. In addition, Bag-of-Audio-Words
(BoAW) features [18] are utilised on the aforementioned
low-level features as well. Given the links between pain
and emotion [2], these are feature representations are cho-
sen as they have frequently been shown to capture emo-
tions in speech [19–22]. For classification, we consider
static Support Vector Machines (SVM), and temporal con-
textual Long Short-term Memory Recurrent Neural Net-
works (LSTM–RNN), both of which have also been suc-
cessfully employed in speech emotion recognition [20–22].

The remainder of this paper is structured as follows:
the DAP Corpus is introduced in Section 2; the experi-
ments, key settings and results are then presented in Sec-
tion 3; and finally, our conclusions and future work direc-
tions are given in Section 4.
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Figure 1: The pipeline of the approaches used in the
benchmarks. The COMPARE, MFCC, and DEEP SPEC-
TRUM features and the BoAW derived from these are fed
into SVMs or LSTM–RNNs for classification. The audio
wave is from the file ’dev_0.wav’.

2 Pain Data Collection

2.1 Participants

As already mentioned, the DAP corpus consists of speech
recorded from 80 participants (41m, 39 f), with a total of
844 audio recordings. Their ages vary from 19 to 64 years
old – on average, 35.3 years, with a standard deviation of
14.9 years. For participation in the study, the following
inclusion criteria was used: age between 18 and 70 years.
the exclusion criteria used included: psychotropic drugs,
beta-blockers or analgesic medication (24 h before mea-
surements), and decreased vascular perfusion. All of the
subjects gave their written as well as oral consent to par-
ticipate. They were informed that they could discontinue
the study whenever they wanted and without giving any
reason for their decision. A cold pressor test was used as
the pain stimulus source. The left hand was immersed up
to the wrist in ice-chilled water (0.5–1.5◦C). The water tub
(2.8 l) was shaken manually by the experimenter every 30 s
to prevent the water from warming up around the skin.

2.2 Collection Paradigm

All recordings were made in quiet rooms with a micro-
phone/headset/hardware setup, the tasks were presented on
a computer in front of the participants. Audio files were
recorded with a 44.1 kHz sample rate, and down-sampled
to 16 kHz with a quantisation of 16 bit. The speech ma-
terial consisted of different reading passages and speak-
ing tasks while performing an experimental pain induc-
tion procedure (The Cold Pressor Test, duration 15 min-
utes). The participants were asked to read aloud sentences
regarding voice commands in German as used for driver
assistance systems (How can I reach the fastest the Czech
embassy in the Perle-Baumgaertner Street?) [“Wie komme
ich am zügigsten zur tschechischen Botschaft auf der Perle-
Baumgärtner-Straße?”] and a German short story “The
North Wind and the Sun” (widely used within phonetics,
split into 2 parts of nearly equal length). Furthermore,
spontaneous dialogue speech was elicited by asking sub-
jects to book a doctor’s appointment. Within each exper-
imental pain induction session of about 15 minutes, the
voice commands were repeated 5 times, the short story and
doctor appointment twice.

2.3 Annotations

To annotate the data, participants rated their level of pain
on the clinically reliable and valid 11-point Numeric Pain
Rating Scale (NPRS [23]). The NPRS was used to capture
the subjects’ level of pain. The scale is anchored with the
phrase “0 = no pain” and “10 = worst imaginable pain”.

2.4 Sample Processing

The length of all recorded samples taken together, is ap-
proximately 3 hours in total. The time length of the indi-
vidual clips varies from 3.5 s to 66.9 s with 12.8 s on aver-
age. Details of the recordings are described in Table 1. The
database is split into three speaker independent datasets
(train/development/test), considering the balance of gen-
der and age among each. The three classes are consistent
intervals according to the pain level: 1) mild: 0–2; 2) mod-
erate: 3–5; 3) severe: 6–10.

3 Experiments and Results

In this section, the feature sets, experimental set-up and re-
sults are given. The feature sets include COMPARE,MFCC,
and DEEP SPECTRUM representations. In addition, BoAW
features are extracted from the three feature sets accord-
ingly. Both SVM and LSTM–RNN classifiers are used in
this work. An overview of the experimental framework is
given in Figure 1.

3.1 Feature Representations

3.1.1 The COMPARE Acoustic Feature Set

The COMPARE feature set, as the official baseline fea-
tures employed in the INTERSPEECH COMPARE chal-
lenges [16], is considered in this work. Through the com-
putation of various functionals over spectral and prosodic
low-level descriptor (LLD) contours, a 6 373 dimensional
feature vector is generated for each audio instance when
using this feature set. We extract these features using the
open source OPENSMILE toolbox and the scripts provided
as part of the COMPARE 2016 challenge [16]. Full details
of the feature set and OPENSMILE can be found in [24].
It is worth noting, given the aforementioned links between
pain and emotion [2], the (considerably smaller) extended
GenevaMinimalistic Acoustic Parameter Set (EGEMAPS) [25]
was also initially considered in this work. However, pre-
liminary testing indicated that COMPARE were better suited
to the task of pain recognition.

3.1.2 MFCCs Acoustic Feature Set

MFCCs are employed in this work due to their success
in speech emotion recognition [20] and in tasks related to
pain detection, such as infant cry [26] analysis. We use
the adapted version of the OPENSMILE toolkit from the
COMPARE 2016 challenge to extract the features; first,
MFCCs 1–14 are extracted as LLDs, and then 100 func-
tionals are generated from each LLD, according to the def-
initions provided in the 2016 Script [16]. Thus, in total,
1400 = 14× 100 MFCCs features are yielded per audio
instance.

3.1.3 DEEP SPECTRUM Features

DEEP SPECTRUM features, generated from time-frequency
images – spectrograms or scalograms – of audio instances
by pre-trained image neural networks, have been success-
fully applied for a range of acoustic and speech classifica-
tion tasks [21, 27–29]. In this work, the DEEP SPECTRUM
representations are obtained by processing mel-spectrogram
images of the audio instances through the VGG16 neural
network [30]. VGG16 is a Convolutional Neural Network
trained for the 1 000-class image classification task pro-
posed in the 2015 ImageNet Large Scale Visual Recogni-
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Table 1: An overview of partitioning of the DAP Corpus. The speech recordings have been divided into three classes
according to the Numeric Pain Rating Scale (NPRS): mild (0–2); moderate (3–5); and, severe (6–10).

Dataset Total mild mod. severe
Durations(s)

Total Min Max Avg

Training 526 320 127 79 6704.4 3.5 66.9 12.7
Development 163 95 42 26 2062.7 3.7 39.7 12.7
Test 155 108 25 22 2018.0 3.8 36.0 13.0
Total 844 523 194 127 10785.0 3.5 66.9 12.8

(a) mild (b) moderate (c) severe

Figure 2: The mel-spectrogram images of speech samples
with different labels (mild/moderate/severe). The images
are extracted from the first 3.5 s segment of the audio files
recorded from the same person: (a) ‘train_250.wav’, (b)
‘train_53.wav’, (c) ‘train_337.wav’.

tion Competition (ILSVRC) [17]. We obtained the param-
eters of VGG16 from Pytorch1.

To extract the DEEP SPECTRUM features, firstly, the
audio clips are segmented into chunks whose length and
overlap depend on the classifier being used (cf. Section 3.2.1
and Section 3.2.2 for details), then, the mel-spectrogram
image for each chunk is generated using 128 mel filter-
banks and plotted with the viridis colour map. The im-
ages are then resized to 224×224 pixels to be compatible
with VGG16. The rescaled images are then processed by
VGG16, which is constructed from 13 ([2, 2, 3, 3, 3]) con-
volutional layers, five maxpooling layers, three fully con-
nected layers, and a soft-max layer. The DEEP SPECTRUM
representations are finally created from the activations of
the first fully connected layer.

3.1.4 Bag-of-Audio-Words

BoAW extracts sparse histograms of occurrences as audio
representations; each LLD vector in a given audio clip is
assigned to an audio word from a codebook learnt from
some training data and the histograms are created by count-
ing the number of assignments for each audio word. BoAW
has been applied for a series of acoustic tasks, notably for
speech emotion recognition where it has achieved state-of-
the-art accuracies [22]. We create BoAW features for each
of the aforementioned data partitions using the OPENXBOW
toolbox [18], applying an adapted version of the baseline
script from the 2017 INTERSPEECH COMPARE Chal-
lenge [31].

For the COMPARE features, we quantise 65 extracted
LLDs (see [24] for details) and similarly, for the MFCC,
we quantise the 14 extracted LLDs. Noting that there is no
LDD representations of the DEEP SPECTRUM features and
we extract multiple representations per utterance by cutting

1http://pytorch.org/

each clip into non-overlapping chunks of 3.5 seconds, we
then quantised the DEEP SPECTRUM features from each
chunk. For all features, the codebook generation was done
by OPENXBOW default random sampling setting, and we
conducted an iterative search to identify the optimal code-
book size (Cs ∈ {125,250,500,1k,2k}), with the number
of assignments consistently set to 10.

3.2 Classification Set-up

In this sub-section, we introduce the experimental setup for
the two classifiers.

3.2.1 Support Vector Machines

Due to the well established ability of SVMs to generalise,
especially in relation to small and unbalanced dataset, they
are commonly used to set the benchmark accuracies e. g.,
[16, 31]. In this study, SVM is also used as our bench-
mark classifier. Both the functionals and BoAW feature set
of COMPARE, MFCC, as well as the original and bagged
DEEP SPECTRUM representations are fed into the SVM
models (cf Figure 1). For the actual implementation we
use the WEKA toolkit2, using linear kernels and tuning
the complexity parameter C ∈ [10−6;10−1] on the devel-
opment partition.

Note that, for SVM classification we extract multiple
DEEP SPECTRUM representations by cutting each clip into
non-overlapping chunks of 3.5 s (as per the BoAW fea-
tures). We then use Margin Sampling Value (MSV) for
late-fusion to generate a single prediction per clip. MSV
is designed to identify the most confident predicted label,
which has the highest difference between the first and sec-
ond highest probabilities of predictions for one correspond-
ing sample [32]. We have previously successfully used
MSV for fusing multiple models in a similar experimen-
tal set-up for an acoustic scene classification task [27].

3.2.2 Long Short-Term Memory Recurrent Neural Net-
works

LSTM neural networks, as a particular type of RNN that
facilitate learning over many time steps, have already been
widely used for a manifold applications, such as speech
emotion recognition [33], voice conversion [34], and speech
synthesis [35]. An LSTM is constructed by a forget gate,
an input gate, and an output gate that allow each neuron
to learn when data can enter, leave or be deleted memory
during system training.

In our experiments, we vary the number of layers (M )
for the LSTM–RNNs: we set the number of neurons in
our one layer LSTM–RNNs as 60; the numbers of neurons

2https://www.cs.waikato.ac.nz/ml/weka/
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Table 2: Performances comparison of speech-based pain
detection approaches evaluated on the development and
test sets of the DAP corpus. The experimental results are
evaluated by the Unweighted Average Recall (UAR).

COMPARE MFCC DEEP SPEC.
UAR [%] Dev Test Dev Test Dev Test

C Functionals + SVM

10−6 47.3 42.0 39.9 41.0 37.0 33.7
10−5 45.2 38.3 39.9 41.0 37.6 31.8
10−4 40.3 39.1 39.2 39.0 32.9 32.6
10−3 42.2 36.8 39.0 38.5 31.3 32.5
10−2 40.8 34.5 35.3 35.1 31.6 30.9
10−1 40.8 34.5 33.5 36.7 31.1 34.7

Cs BoAW + SVM

125 46.8 35.2 39.6 30.7 44.0 35.7
250 47.9 38.9 40.6 40.0 41.7 28.6
500 46.0 33.8 45.7 38.4 40.8 30.5

1000 43.9 39.4 43.3 38.8 40.0 35.5
2000 50.3 33.0 40.2 41.3 — —

M LSTM–RNNs

1 36.1 31.7 38.5 31.2 38.6 38.4
2 39.3 36.9 39.1 34.8 40.0 42.7
3 34.5 31.0 39.1 33.6 36.9 37.3

in our two layers LSTM–RNNs as 120–60; and the num-
bers of neurons in our three layers are 480–120–60. The
LSTM–RNNs are then followed by a highway network
layer and a softmax layer for classification; highway net-
works have been shown to perform better than fully con-
nected layers for very deep neural networks [36].

To generate a suitable sequential input for the LSTM–
RNNs, all audio clips are segmented into smaller chunks
with length of 0.6 s and overlap of 0.3 s before feature ex-
traction. Then, the features with time steps are fed into the
different LSTM–RNNs topologies. The predicted label of
the last ‘frame’ (small audio chunk with the length of 0.6 s)
is the output of the neural networks. The final predicted la-
bel is chosen from the results of multiple audio clips by the
MSV strategy as well as mentioned in Section 3.2.1.

The LSTM–RNNs are realised by the deep learning li-
brary TFLearn3. The learning rate is 0.0001, and the batch
size is set to 128. The results in Table 2 are the strongest
among the iteration number epoch ∈ [30;90].

3.3 Results and Analysis

All experimental results are given in Table 2. Performance
is evaluated using the Unweighted Average Recall (UAR)
rather than theWeighted Average Recall as the pain dataset
is highly unbalanced. Note that the reported ‘BoAW +
SVM’ results for each parameter value of Cs is the stron-
gest from a search on a set of C values (C ∈ [10−6;10−1])
on the development set. Further, no result is given for the
set-up DEEP SPECTRUM and BOAW with codebook size
Cs = 2000. This is because the number of training sam-
ples was less than 2000.

The results indicate that both the COMPARE andMFCC
feature sets perform stronger when combined with an SVM.

3http://tflearn.org/

Figure 3: Confusion matrix of the best performance of
42.7% on the test set. The result is obtained by the LSTM–
RNNs from the DEEP SPECTRUM features.

The DEEP SPECTRUM feature set, on the other hand, per-
forms better than the COMPARE and MFCC features when
using LSTM–RNNs. However, z-tests conducted on the
strongest performing systems (as marked in bold in Ta-
ble 2) indicated this was not at a significant level. The
best result of 42.7% UAR on the test set is obtained on
the DEEP SPECTRUM under LSTM–RNNs with two hid-
den layers. The confusion matrix of this result is given in
Figure 3. This plot indicates that the mild class is the eas-
iest to recognise. However, the severe class is difficult to
be classify correctly; we speculate this is due to the unbal-
anced nature of the dataset.

4 Conclusions

The misdiagnosis of pain levels through associated sub-
jective biases can increase the unnecessary costs and risks
associated with superfluous medical treatments. The mon-
itoring of behavioural signals such as speech can poten-
tially aid pain analysis by providing more objective evi-
dence. In this regard, the Duesseldorf Acute Pain Corpus,
a novel pain speech database collected as 844 recordings
from 80 subjects was introduced. We split the corpus into
training/development/test partitions and performed a set of
three-class level-of-pain classification tasks. The strongest
result of 42.7% UAR was achieved using DEEP SPEC-
TRUM features combined with a LSTM–RNN classifier.

In future work, the generation of adaptive ‘self-shaping’
DEEP SPECTRUM features will be investigated using evo-
lutionary learning, and the data augmentation will be de-
veloped to improve the performance of classification. We
also plan to annotate the data for emotions and explore
multitask classification paradigms.
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