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ABSTRACT

Environmental sound recognition (ESR) has extensive vari-
ous civilian and military applications. Existing ESR methods
generally tackle this problem by employing various sig-
nal processing and machine learning methods. Herein, an
ESR paradigm based on feature extraction from pre-trained
deep convolutional neural networks (CNN), the derivation
of higher-order statistics by compact bilinear pooling and
normalisation. In particular, we consider two deep ImageNet
architectures for deep feature extraction, and the Random
Maclaurin (RM) to produce the compact bilinear features. A
support vector machine (SVM) with homogeneous mapping
is used in the classification stage. Two publicly available
environmental sound datasets are used to verify the efficacy
of the approach namely, ESC-50 and ESC-10. We compare
the proposed method with various previous state-of-the-art
methods. Presented results indicate the suitability of the
higher-order statistics of DEEP SPECTRUM representations
for ESR classification tasks.

Index Terms—Environmental sound classification, deep
spectrum features, convolutional neural networks, compact
bilinear pooling

1. INTRODUCTION

Environmental sound recognition(ESR) is an important com-
puter audition topic, which helps achieve content-based sound
retrieval [1], smart home monitoring for elderly people [2],
improving autonomous navigation [3], surveillance [4], and
sound-based animal and bird species determination [5], to
name but a few tasks. As with many other areas of computer
audition, deep neural networks (DNN), in particular convolu-
tional neural networks (CNN), have become the predominant
approach for ESC. This is due in part to the ability of CNNs
to learn robust, task specific feature representations.

CNNs generally consist of a combination of convolu-
tional, pooling, and fully connected layers. Feature represen-
tation are learnt through thefiltering action of convolutional
layers. Work of presented by Piczak [6], demonstrated that
a CNN, comprising of two convolutional layers with max
pooling and two fully connected layers, was easily able to
outperfrom a Mel-spectrum baseline system for a range of
ESC tasks. A range of neural network based approaches was
compared in [7]. The presented results indicate the suitabil-
ity of using CNNs to learn features directly from the mel-
spectrum for ESC tasks. Recently, Aytar et al. [8] proposed
the Soundnet system for ESC. This approach which transfers
discriminative visual knowledge into the audio modality, can
be considered state-of-the-art for ESC.

Herein, we propose and develop an ESR approached
based on compact bilinear deep spectrum based CNN fea-
tures. Bilinear CNN features have been shown to be effective
infine-grained image classification tasks [9], however, they
produce high dimensional feature vectors [10]. In this regard,
thecompact bilinear modelhas been proposed to alleviate this
drawback [10]. The proposed method uses pre-trained CNN
models, namely VGG-M and VGG-D for DEEP SPECTRUM
feature extraction [11]. DEEP SPECTRUM features,first in-
troduced by Amiriparian et al. [12], have shown promise in
a range of computer audition tasks such as acoustic surveil-
lance [13] and speech-based emotion recognition [14]. The
Random Maclaurin(RM) approximation is then utilised to
obtain the compact bilinear features [10, 15]; RM is consid-
ered due to its computational efficiency [10]. The approach is
tested on two publicly available environmental sound datasets
namely, ESC10 and ESC50 [16], with the proposed method
achieving state-of-the-art results on both datasets.

The rest of the paper is organized as follows. Related
works are discussed in Section 2.The proposed methodology
is then introduced in Section 3. The experimental details and
results are presented in Section 4. We conclude the paper and
offer future work directions in Section 5.
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Fig. 1. An illustrative overview of the proposed methodology. The input audio signal () is converted into a spectrogram from
which deep features are extracted using both the VGG-M and VGG-D deep CNN imageNets. Compact bilinear pooling
and normalisation is then used to form thefinal feature representation for classification with a support vector machine. The

displayed audiofile is dog bark File ID: 1-59513-A

2. RELATED WORKS

Neural Networks, CNNs in particular, are now the pre-
dominant approach for ESR [17]. A limiting factor when
using CNNs for ESC is the amount of available training data.
In this regard, Salamon et al. [18] explored data augmen-
tation approaches for CNN-based ESC. Results presented
by the authors indicate that data augmentation enabled the
training of a deeper CNN model capable of state-of-the-art
performances on the UrbanSound8K dataset [19]. Similarly,
to locate salient sound events in the UrbanSound8K dataset,
Su et al. [20] proposed a weakly supervised learning ap-
proach based on CNN. The proposed approach was able to
perform accurate sound event localisation, without specific
training using temporal annotations.

In image processing it is now becoming standard prac-
tice to use deep pre-trained CNNs, such as ALEXNET [21],
VGG16 and textscVGG19 [11], for feature extraction [22].
The use of pre-trained image CNNs for feature extracted has
also transitioned into the audio domain; as previously men-
tioned, DEEP SPECTRUM features have been used for a wide
range of audio based detection tasks [12, 13, 14]. Recently,
Ren et al. [23] explored VGG16 based DEEP SPECTRUM de-
rived from either spectrograms and scalograms for the task
of acoustic scene classification. highlighting the promise of
this approach, a fusion of three different DEEP SPECTRUM
approaches was able to outperform the Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) 2017 chal-
lenge baseline system.

The DEEP SPECTRUM feature extraction methodology
produces a high-dimensional and sparse feature representa-
tion. Compact Bilinear Pooling [10] represents a promising

technique to help alleviate this issue. Compact Bilinear Pool-
ing has been shown to produce state-of-the-art results in
image classification tasks such asfine-grained visual recog-
nition [9, 10], texture classification [10] and indoor scene
recognition [10]. To the best of the authors knowledge, this is
thefirst time they have been explored for ESC.

3. PROPOSED METHOD

The proposed approach is based on the processing of DEEP
SPECTRUM features with compact bilinear pooling and nor-
malisation (cf. Figure 1). The following subsections focus
on the bilinear pooling (cf. Section 3.1) and compact bilinear
pooling (cf. Section 3.2) operations which are the novel ex-
tensions to the DEEP SPECTRUM paradigm. For further infor-
mation on DEEP SPECTRUM feature extraction the interested
reader is referred to both [12, 14].

3.1. Bilinear Pooling

Bilinear pooling or second-order pooling wasfirst introduced
to the computer vision community in [24]. It constructs a
global feature vector for a given input image using the opera-
tion:

B(X) =Y =l

ses

in whichB(X)is acxcmatrix often denoted asc 2 vec-

tor,X= (z 1,...,75),7s €R )is a set of local features in
our case DEEP SPECTRUM FEATURES, andSa set of row
and column spatial locations. If the local features are ex-
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Fig. 2. Exemplar spectrogram images taken from each of 10 classes in the ESC-10 dataset: a) dog bark (File ID: 1-59513-
A), b) rain (File ID: 1-17367-A), c) sea waves (File ID: 1-28135-A), d) a baby cry (File ID: 1-22694-A), e) a clock ticking
(File ID: 1-21934-A), f) a person sneezing (File ID: 3-144692-A), g) a helicopter (File ID: 1-172649-A), h) a chainsaw (File
ID:1-19898-A), i) a rooster (File ID: 3-116135-A), and j) afire crackling (File ID: 1-4211-A).

tracted from a CNN model, the obtained B(X)feature matrix
is known as bilinear CNN features.

3.2. Compact Bilinear Pooling

As bilinear pooling constructs a high dimensional feature
space, a low dimensional projection function,¢(z)eR ¢
whered<c, is needed to create a more compact feature rep-
resentation [10]. Given two sets of local features X, Yand

a comparison kernelk(x, y)which satisfies(¢(z),4(y)) =
Ek(x, y)the compact bilinear pooling operation is given by:

B(X)= >3 (¢(ws)b(yu)?

seSuelU

&Y Y (d(@)0y) @

seSuelU
= (C(X), C(Y),

where(-,-) ? denotes a second order polynomial kernel and

O(X) = > d(z)3)

seS

the compact bilinear feature vector. In this work, the Random
Maclaurin (RM) approximation is used as the low dimen-
sional projection function. In the RM procedurew ;w2 €R ¢
are two random—1,+1vectors andé(z) =(w 1, ) (w2, x),
then for non-random vectorsz, yeR

Elp(x),0(y)] =El{w 1,2) (wa, )]
=(z,y) >.

Therefore, when using RM, each projected entry requires
the expectation of the quantity to be approximated. For full

“

details on this procedure the reader is referred to [10, 15]. Af-
ter parametrisation of the compact features, we apply a signed
squared root operation and instance-wiseL o, normalisation
before classification.

4. DATASETS AND EXPERIMENTAL WORKS

4.1. Datasets

The ESC-10 dataset contains 400 audiofiles in 10 sound
event categories: dog bark, rain, sea waves, baby cry, clock
tick, person sneeze, helicopter, chainsaw, rooster, andfire
crackling [16]. The ESC-50 dataset is an expanded corpora
containing 2000 short audiofiles in 50 classes[16]. Each
ESC-50 class contains 40 audiofiles in 5 main categories.
These categories include animals, natural soundscapes and
water sounds, human (non-speech) sounds, interior-domestic
sounds, and exterior-urban noises, respectively. All audio
files in the ESC-10 and ESC-50 datasets are 5 seconds in
duration and have a sampling frequency of 44.1 kHz.

4.2. Experimental Settings

All experimental work is performed using the Matlab soft-
ware package 2017b on a computer having an Intel Core i7-
4810 CPU and 32GB memory. To form the spectrogram
images a Hamming window of width 1024 ms and overlap
256 ms is used with the number of Fast Fourier Transform
(FFT) points set to 1024; these values were set empirically
during initial experimentation. The power spectral density of
the spectrogram images are then computed on the dB power
scale and are saved with theviridiscolour map noting that

this colour map has previously shown to be highly suitable



Table 1. Obtained accuracy values for each compact bilinear
model.

Accuracy (%)
Models ESC-10 ESC-50
VGG-M & VGG-M 89.0 70.4
VGG-D & VGG-D 86.0 65.8
VGG-M & VGG-D92.5 74.6

when extracting DEEP SPECTRUM images [12]. The initial
spectrogram images have a size of 875x656 and are resized
to 224 %224 to be compatible with the VGG nets. Exem-
plar spectrograms from each of the 10 classes in ESC-10 are
given in Figure 2.

We extracted 4 096-dimensional DEEP SPECTRUM feature
vectors from the spectrogram images by using the activations
of layer 16 and layer 36 of VGG-M and VGG-D models
respectively [11]. It is worth noting that initial experiments
were also conducted using other layers, namely layer 18 of
VGG-M and layer 34 of VGG-D, however using the acti-
vations from these layers yielded weaker performances. For
the compact bilinear pooling of the extracted feature vectors,
three possible combinations of the extracted feature sets are
considered during the experimental works and their achieve-
ments are given in Table 1 for both datasets. In thefirst
model, we use the VGG-M architecture for both feature vec-
tors. Similarly for the second model, we use the VGG-D for
both feature vectors. Finally, in the third model, both VGG-
M and VGG-D architectures are used to obtain the compact
bilinear feature vectors.

A support vector machine (SVM) classifier is used to de-
termine the class label of the input signal. A SVM was con-
sidered due to its well established ability to handle sparse
data representations and its robustness to smaller amounts
of training data. Specifically, we implemented a SVM clas-
sifier with homogenous mapping from the LIBLINEAR li-
brary with the L2-regularised L2-loss dual solver [25]. The
SVM cost function parameterCwas searched in the range
of[107%,10 73,.-- 10 3].

4.3. Results

When comparing between our three different approaches, the
highest accuracy is obtained with the third compact bilinear
model (VGG-M & VGG-D) where 92.50 % (ESC-10) and
76.1 % (ESC-50) accuracies were obtained (cf. Table 1).The
second best accuracy values are obtained for the second
compact bilinear model (VGG-D & VGG-D), achieving ac-
curacies of 90.5 % and 73.0 % for the ESC-10 and ESC-50
datasets respectively. The weakest classification results were
produced by thefirst model (VGG-M & VGG-M) which

achieved ESC-10 and ESC-50 accuracies of 88.5% and

Table 2. Performance comparison of the proposed method
with state-of-the-art methods.

Accuracy (%)

Models ESC-10 ESC-50
CNN (Piczak) [6] 81.1 64.5
SoundNet [8] 92.2 74.2
Proposed Method92.5 74.6

72.2 %, respectively.

It is possible that the second models accuracy is higher
than thefirst one’s due to VGG-D having a deeper archi-
tecture than VGG-M [11]. In addition, the third models
strong result is reasonable as it combines DEEP SPECTRUM
from both VGG models to produce thefinal compact bilinear
feature vector. These results indicate that the VGG-M and
VGG-D captures different characteristics of input signals.
By synthesizing both information via bilinear pooling, we
can better make use of the complementarity nature of both
feature representations.

Further, we compare the obtained accuracies with pre-
vious aforementioned state-of-the-art method (cf. Table 2);
namely the CNN system proposed by Piczak [6] and the
SoundNet system [8]. Highlighting the advantages of the
proposed method, our third set-up (VGG-M & VGG-D) out-
performed Piczak’s CNN system and matched performance
with SoundNet, on both datasets. This result highlights that
the pooled higher-order statistics of DEEP SPECTRUM fea-
tures capture important ESR information.

5. CONCLUSION

In this paper, we proposed a compact bilinear pooling method
for environmental sound recognition (ESR). The proposed
method utilises compact bilinear pooling to effectively ex-
ploit higher-order statistics of CNN-based DEEP SPECTRUM
features. Using two publicly available datasets are used in ex-
periments, and various pooling models, based on the pretrain
VGG neural nets, were compared to assess the effectiveness
of the proposed approach. In addition, our approach was
compared against various state-of-the-methods. The obtained
results indicate the effectiveness of compact bilinear pooling
for ESR tasks. In the future work, we aim to investigate
multimodal bilinear pooling schemes for ESR.
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