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ABSTRACT
Machine learning based heart sound classification represents an

efficient technology that can help reduce the burden of manual

auscultation through the automatic detection of abnormal heart

sounds. In this regard, we investigate the efficacy of using the pre-

trained Convolutional Neural Networks (CNNs) from large-scale

image data for the classification of Phonocardiogram (PCG) signals

by learning deep PCG representations. First, the PCG files are seg-

mented into chunks of equal length. Then, we extract a scalogram

image from each chunk using a wavelet transformation. Next, the

scalogram images are fed into either a pre-trained CNN, or the same

network fine-tuned on heart sound data. Deep representations are

then extracted from a fully connected layer of each network and

classification is achieved by a static classifier. Alternatively, the

scalogram images are fed into an end-to-end CNN formed by adapt-

ing a pre-trained network via transfer learning. Key results indicate

that our deep PCG representations extracted from a fine-tuned

CNN perform the strongest, 56.2 % mean accuracy, on our heart

sound classification task. When compared to a baseline accuracy of

46.9 %, gained using conventional audio processing features and a

support vector machine, this is a significant relative improvement

of 19.8 % (p < .001 by one-tailed z-test).
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1 INTRODUCTION
Heart disease continues to be a leading worldwide health bur-

den [16]. Phonocardiograph is a method of recording the sounds

and murmurs made by heart beats, as well as the associated tur-

bulent blood flow with a stethoscope, over various locations in

the chest cavity [11]. Phonocardiogram (PCG), as the product of

phonocardiograph, is widely employed in the diagnosis of heart

disease. Enhancing conventional heart diseases diagnostic methods

using the state-of-the-art automated classification techniques based

on PCG recordings, is a rapidly growing field of machine learning

research [13]. In this regard, the recent PhysioNet/ Computing in
Cardiology (CinC) Challenge in 2016 [3], has encouraged the de-

velopment of heart sound classification algorithms, by collecting

multiple PCG datasets from different groups to construct a large,

more than 20 hours of recordings, heart sound database. The two-

class classification of normal/ abnormal heart sound was the core

task of the PhysioNet/ CinC Challenge 2016.

In recent years, Convolutional Neural Networks (CNNs) have
proven to be effective for a range of different signals and image

classification tasks [7, 9]. In particular, large-scale CNNs have rev-

olutionised visual recognition tasks as evidenced by their perfor-

mances in the ImageNet Large Scale Visual Recognition Competi-

tion (ILSVRC) [23]. On the back of the challenge, a large number
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of pre-trained CNNs have been made publicly available, such as

AlexNet [10] and VGG [30]. Similarly, CNNs have also been suc-

cessfully used for the detection of abnormal heart sounds [14].

Herein, we utilise the Image Classification CNN (ImageNet) to

process scalogram images of PCG recordings for abnormal heart

sound detection. Scalogram images are constructed using wavelet

transformations [22]. Wavelets are arguably the predominate fea-

ture representation used for heart sound classification [8], and have

successfully been applied in other acoustic classification tasks [19–

21]. Moreover, instead of training CNNs from scratch, which can

be a time-consuming task due in part to the large hyperparameter

space associated with CNNs, we explore the benefits of using the

aforementioned pre-trained ImageNet to construct robust heart

sound classification models. Such an approach has been employed

in other acoustic classification paradigms [1, 4], but to the best of

the authors’ knowledge it has not been verified for PCG based heart

sound classification. Further, we also explore if transfer-learning

based adaptation and updating of the ImageNet parameters can

further improve the accuracy of classification.

The remainder of this paper is structured as follows: first, we

describe our proposed approach in Section 2; the database descrip-

tion, experimental set up, evaluation method and results are then

presented in Section 3; finally, our conclusions and future work

plans are given in Section 4.

2 METHODOLOGY
In this section, we describe the classification paradigms we test for

abnormal heartbeat detection. This consists of: (i) a conventional

audio-based baseline system; (ii) two deep PCG representation

systems combined with a Support Vector Machine (SVM) classifier;

(iii) two end-to-end CNN based systems.

2.1 Baseline Classification System
As a baseline, we use a system based on the INTERSPEECHCOMpu-

tational PARalinguistics challengE (ComParE) audio feature

set [29], and SVM classification. The combination of ComParE

features and SVM have been used in a range of similar acoustic

classification tasks such as snore sound classification [28]. The

ComParE feature set is a 6373 dimensional representation of an

audio instance and is extracted using the openSMILE toolkit [5]; full

details of the audio features presented in ComParE can be found

in [5].

2.2 Scalogram Representation
In this study, to transform the PCG samples into images which can

be processed by an ImageNet, the scalogram images are generated

using the morse wavelet transformation [17] with 2 kHz sampling

frequency. We have previously successfully used these scalogram

images for acoustic scene classification [21]. When creating the

images, we represent frequency, in kHz, on the vertical axis, and

time, in s, on the horizontal axis. We use the viridis colour map,

which varies from blue (low range) to green (mid range) to red

(upper range), to colour the wavelet coefficient values. Further, the

axes and margins marking are removed to ensure only the neces-

sary information is fed into the ImageNet. Finally, the scalogram

(a) Normal (a0007.wav) (b) Abnormal (a0001.wav)

Figure 1: The scalogram images are extracted from the first
4 s segments of normal/ abnormal heart sounds using the
viridis colour map. The samples from which these scalo-
gram images have been extracted are described in parenthe-
ses.

images are scaled to 224 × 224 for compatibility with the VGG16

ImageNet [30], which will be introduced in Section 2.3.

The scalogram images of a normal and an abnormal heartbeat

are given in Figure 1. It can even be observed by human eyes that,

there are some clear distinctions between the two classes in these

(exemplar) images.

2.3 Convolutional Neural Networks
We use an ImageNet to process the scalogram images for heart

sound classification. The VGG16 ImageNet is chosen due to its suc-

cessful application in the ILSVRC Challenge
1
. VGG16 is constructed

from 13 ([2, 2, 3, 3, 3]) convolutional layers, five maxpooling layers,

three fully connected layers {fc6, fc7, fc} and a soft-max layer for

1000 labels according to the image classification task in the Ima-

geNet Challenge. The receptive field size of 3 × 3 is used in all of

the convolutional layers. The full details of VGG16, including the

training procedure, are described in [30]. The structure and param-

eters of VGG16 are obtained from Pytorch
2
. Further, we use VGG16

for either feature extraction or classification by transfer learning,

both of which are described in the following sub-sections.

2.4 Deep PCG Feature Representations
ImageNet has gathered considerable research interest as a feature

extractor for a task of interest, e. g., [1]. In this regard, this sub-

section presents two methodologies for unsupervised PCG feature

extraction using VGG16.

2.4.1 PCG Feature Extraction from ImageNet. The activations
of the first fully connected layer fc6 of VGG16 are employed as our

feature representations. These features have previously proven to

be effective in the task of acoustic scene classification [21]. Essen-

tially, we feed the scalogram images into VGG16 and then the deep

PCG feature representations of 4096 attributes are extracted as the

activations of all neurons in the first fully connected layer fc6.

2.4.2 PCG Feature Extraction from adapted ImageNet. AsVGG16
is normally employed for image classification tasks on a very dif-

ferent data from that required for heart sound classification, the

1
http://www.image-net.org/challenges/LSVRC/

2
http://pytorch.org/
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feature extraction method described in the previous sub-section

may yields a sub-optimal feature representation. We therefore also

employ a transfer learning methodology (see Section 2.5.2) to adapt

the parameters of VGG16 to better suit the task of abnormal heart

sound detection. After the adaptation according to Section 2.5.2, the

scalogram images are fed into the updated CNN model and a new

set of deep representations (also with 4096 attributes) are extracted

from the first fully connected layer fc6.
2.4.3 Classification Methodology. We perform classification of

the heart sound samples into one of two classes: normal and abnor-

mal. The process is achieved for the deep PCG feature representa-

tions via a linear SVM; the robustness of SVM for such a classifica-

tion task is well-known in the literature [6]. Herein, our two deep

feature representations are denoted as pre-trained VGG+SVM for

the set-up described in Section 2.4.1 and learnt VGG+SVM for the

set-up described in Section 2.4.2.

2.5 End-to-end ImageNet based Classification
With the aim of constructing a robust end-to-end heart sound CNN

classifier, we adapt the parameters of VGG16 on the heart sound

data by transfer learning. To achieve this, we use two different

approaches, both of which are described below.

2.5.1 Learning Classifier of ImageNet. Noting that there are

three fully connected layers in VGG16, we create our ImageNet

classifier, herein denoted as learning Classifier of VGG16, by freezing
the parameters of the convolutional layers and fc6, and updating

(using scalogram images of heart sound data) the parameters of

the final two fully connected layers and the soft-max layer for

classification.

2.5.2 Learning ImageNet. In this method, herein denoted as

learning VGG, we replace the last fully connected layer with a

new one which has 2 neurons and a soft-max layer in order to

achieve the 2-class classification task. We then update the entire
network (again, using scalogram images of heart sound data) so

that all VGG16 parameters are adapted to the heart sound data.

This method represents a faster way to achieve a full CNN based

classification than training an entire CNN from scratchwith random

initialisation of parameters.

2.6 Late-fusion Strategy
As the PCG recordings in the PhysioNet/ CinC Challenge are of

varying lengths (cf. Section 3.1), we segment the recordings into

non-overlapping chunks of 4 seconds. We therefore employ a late-

fusion strategy to produce a single label (normal/ abnormal) per

recoding. Our strategy is based on the probabilities of predictions,

pi , i = 1, ...n of each i-th segment of a PCG sample, as outputted

by the SVM or the soft-max layer; we choose the label of a PCG

sample according to the highest probability max {pi } gained from

each chunk.

3 EXPERIMENTS
3.1 Database
Our proposed approaches are evaluated on the database of Phys-

ioNet/ CinC Challenge 2016 [12]. This dataset is focused on classifi-

cation of normal and abnormal heart sound recordings. As the test

set labels for this data are not publicly available, we use the training

set of the database and split it into a new training/ development/

test set. There are totally 3240 heart sound recordings collected

from 947 pathological patients and healthy individuals. The dataset

consists of six sub-databases from different research groups:

(1) MIT heart sounds database: The Massachusetts Institute of
Technology heart sounds database (MIT) [31, 32] comprises 409 PCG

and ECG recordings sampled at 44.1 kHz with 16 bit quantisation

from 121 subjects, in which there are 117 recordings from 38 healthy

adults and 134 recordings from 37 patients. The recording duration

varies from 9 s to 37 s with a 32 s average length.

(2)AADheart sounds database:Aalborg University heart sounds
database (AAD) [25–27] is recorded at a 4 kHz sample rate and 16

bit quantisation. It contains 544 recordings from 121 healthy adults

and 151 recordings from 30 patients. The recording length varies

from 5 s to 8 s with an 8 s average length.

(3) AUTH heart sounds database: The Aristotle University of
Thessaloniki heart sounds database (AUTH) [18] includes 45 record-
ings in total from 11 healthy adults and 34 patients. Each healthy

adult/ patient gives one recording and the recording length varies

from 10 s to 122 s with a 49 s average length. The sampling rate is

4 kHz with 16 bit quantisation.

(4)UHAheart sounds database: The University of Haute Alsace
heart sounds database (UHA) [15] is sampled at 8 kHz with a 16 bit

quantisation. It contains 39 recordings from 25 healthy adults and

40 recordings from 30 patients. The recording length varies from

6 s to 49 s with a 15 s average length.

(5) DLUT heart sounds database: The Dalian University of
Technology heart sounds database (DLUT) [33] includes 338 record-
ings from 174 healthy adults and 335 recordings from 335 patients.

The recording length varies from 8 s to 101 s with a 23 s average

length. The sampling rate is 8 kHz with a 16 bit quantisation.

(6) SUA heart sounds database: The Shiraz University adult
heart sounds database (SUA) [24] is constructed from 81 recordings

from 79 healthy adults and 33 recordings from 33 patients. Except

for three recordings sampled at 44.1 kHz and one at 384 kHz, the

sampling rate is 8 kHz with 16 bit quantisation. The recording

duration varies from 30 s to 60 s with a 33 s average length.

A detailed overview of database is described in Table 1. In this

work, we split the dataset into a training set (including MIT, AUTH,

UHA, and DLUT) and a test set (including AAD and SUA). Further,

we carry out a three-fold cross validation by excluding the databases

MIT, AUTH, or UHA (in their entirety) for fold 1, fold 2, or fold 3

(c. f., Table 2) respectively for validation, noting that due to its large

size, DLUT is always used in system training.

3.2 Setup
We generate scalogram images using the Matlab-2017 wavelet tool-

box
3
. During training/ adaptation of VGG16, both for last two layers

of VGG16 (cf. Section 2.5.1), and the entire network (cf. Section 2.5.2),

the learning rate is 0.001, the batch size is 64, and the epoch is set as

50. The cross entropy is applied as the loss function and stochastic
gradient descent is used as the optimiser. The deep representations

(cf. Section 2.4), with a dimensionality of 4096, are extracted from

fc6 of VGG16.

3
https://de.mathworks.com/products/wavelet.html
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Table 1: An overview of the training and test partitions used in this work. The training set is structured by four sub-sets from
four different databases of the PhysioNet/ CinC dataset, and the test set is by two. The PCG recordings in this dataset are
annotated by the two-class labels (normal/ abnormal).

Dataset Database Recordings Normal Abnormal

Durations (s)

Total Min Max Average

Training MIT 409 117 292 13328.08 9.27 36.50 32.59

AUTH 31 7 24 1532.49 9.65 122.00 49.44

UHA 55 27 28 833.14 6.61 48.54 15.15

DLUT 2141 1958 183 49397.15 8.06 101.67 23.07

Total 2636 2109 527 65090.86

Test AAD 490 386 104 3910.20 5.31 8.00 7.98

SUA 114 80 34 3775.45 29.38 59.62 33.12

Total 604 466 138 7685.65

Table 2: Performances comparison of the proposed approaches with baseline. The methods are evaluated on the 3-fold devel-
opment set and the test set. The experimental results are evaluated by Sensitivity (Se), Specificity (Sp), and theMean Accuracy
(MAcc).

Development set Test set

fold 1 fold 2 fold 3 mean

performance [%] Se Sp MAcc Se Sp MAcc Se Sp MAcc Se Sp MAcc Se Sp MAcc

ComParE+SVM (baseline) 23.6 93.2 58.4 58.3 100.0 79.2 00.0 100.0 50.0 27.3 97.7 62.5 76.8 17.0 46.9

pre-trained VGG+SVM 57.2 70.9 64.1 41.7 85.7 63.7 17.9 81.5 49.7 38.9 79.4 59.1 24.6 87.1 55.9

learnt VGG+SVM 58.6 57.3 57.9 83.3 57.1 70.2 32.1 70.4 51.3 58.0 61.6 59.8 24.6 87.8 56.2
learning Classifier of VGG 68.2 51.3 59.7 79.2 14.3 46.7 35.7 40.7 38.2 61.0 35.4 48.2 33.3 63.7 48.5

learning VGG 83.6 40.2 61.9 95.8 28.6 62.2 53.6 44.4 49.0 77.7 37.7 57.7 12.3 95.7 54.0

When classifying by SVM, we use the LIBSVM library [2] with

a linear kernel and optimise the SVM complexity parameter C ∈
[10

−5
; 10
+1
] on the development partition. We present the best

results from this optimisation as the final result.

3.3 Evaluation Method
According to the official scoring mechanism of the PhysioNet/

CinC Challenge 2016 [12], our predictions are evaluated by both

Sensitivity (Se) and Specificity (Sp). For two-class classification, Se
and Sp are defined as:

Se =
TP

TP + FN
, (1)

Sp =
TN

TN + FP
, (2)

where TP denotes the number of true positive abnormal samples,

FN denotes the number of false negative abnormal samples,TN de-

notes the number of true negative normal samples, and FP denotes

the number of false positive normal samples.

Finally, the Mean Accuracy (MAcc) is given as the overall score

of the predictions, which is defined as:

MAcc = (Se + Sp)/2. (3)

3.4 Results
The experimental results of the baseline and proposed methods are

shown in Table 2. All CNN-based approaches achieve improvements

inMAcc over the baseline on test set. Although this consistency is

not seen on the development set, theMAccs achieved on the test set

indicate that the deep representation features extracted from scalo-

gram images perform stronger andmore robustly than conventional

audio features when performing heart sound classification.

When comparing the methods ‘learning Classifier of VGG’ and

‘learning VGG’, it is clear from the results that adapting the entire

CNNs is definitely more effective than only updating the last two

fully connected layers. Moreover, an in-general trend of the SVM

classification of features extracted from either the pre-trained or the

learnt VGG topologies performing stronger than the CNN classifiers

can be observed. This could be due in part to the SVM classifiers

being better to suit to the relatively smaller amounts of training

data available in the PhysioNet/ CinC dataset than the soft-max

classifiers.

Finally, the strongest performance, 56.2 %MAcc , is obtained on

the test set using the method ‘learnt VGG+SVM’. This MAcc offers
a significant relative improvement of 19.8 % on our baseline classi-

fier (p < .001 by one-tailed z-test), ComParE features and a SVM.

Therefore, our learnt CNN model is shown to extract more salient

deep representation features for abnormal heart sound detection
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when compared with features gained from the pre-trained VGG16

model.

4 CONCLUSIONS
We proposed to apply and adapt pre-trained Image Classification
Convolutional Neural Networks (ImageNet) on scalogram images

of Phonocardiogram (PCG) for the task of normal/ abnormal heart

sound classification. Deep PCG representations extracted from a

task-adapted version of the popular ImageNet VGG16 were shown

to be more robust for this task than the widely used ComParE

audio feature set. The combination of learnt VGG features and

a Support Vector Machine (SVM) significantly (p < .001 by one-

tailed z-test) outperformed the ComParE based baseline system.

We speculate this success is due to the autonomous nature of the

feature extraction associated with the ‘learnt VGG’ topology; the

representations are adapted to the dataset and therefore are more

robust than a ‘fixed’ conventional feature set.

In future work, data augmentation will be investigated for heart

sound classification to compensate for the unbalanced nature of the

dataset. Further, a new ImageNet topology based on the scalogram

images will be developed and validated on a variety of heart sound

datasets, e. g., AudioSet
4
, to build a robust ImageNet for heart sound

classification.
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