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Abstract

Rare acoustic event detection, as evidenced by the recent
IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE 2017), is a growing
field of acoustic classification research. Rare audio events
often possess unique spectral and temporal structures
which can aid their identification. In this regard, we in-
vestigate the advantages of a hybrid combination of con-
volutional neural network and a recurrent neural network
to classify rare occurring sound events in audio streams.
Our developed system uses log-Mel spectrograms fed into
convolutional layers to first extract high-level, shift- in-
variant spectral features. Recurrent layers are then used
to learn the long-term temporal context from obtained
high-level features. Finally, using a feed forward neural
network with sigmoid activations, a sequence of probabil-
ity estimations is used to predict the onset and presence
of the rare sounds. We develop and test our system on
the Detection of Rare Sound Events task of the DCASE
2017 challenge. Key results presented indicate that our
proposed approach outperforms the challenge baseline,
improving the overall detection error rate from 0.63 to
0.29 on the evaluation dataset.

1 Introduction

Monitoring systems using audio sensors, in addition to
video sensors, are becoming increasingly popular [1]. Au-
dio is especially useful when video fails to effectively de-
tect an event. In situations where video is occluded, au-
dio event detection is more effective to use, given that
the event has an audio characteristic. Rare sound event
detection (RSED) is a newly proposed task that aims to
automatically detect certain emergency sounds in acous-
tic signals with a high degree of accuracy. Such a system
has many benefits in surveillance and smart home sys-
tems, including gunshot and intrusion detection or baby-
cry monitoring.

This need has given rise to research interest in devel-
oping better techniques for audio event detection, both
monophonic [2] and polyphonic sound events [3, 4]. Mon-
itoring systems need to be able to focus on the specific
alarm of interest with high accuracy. Since these sounds
rarely occur simultaneously, it is useful to explore mono-
phonic sound event detection (SED) techniques for such
a task. As for the algorithms applied, SED has seen
use of non-negative matrix factorisation (NMF) [5] for
source separation, and hidden Markov models [2] and

support vector machines (SVMs) [6] for acoustic mod-
elling. However, recent approaches using deep learning
have been more effective [3, 7). In this paper, we utilise
a convolutional recurrent neural network (CRNN) deep
learning approach for precise onset detection of emer-
gency sound events. CRNNs were first proposed for doc-
ument classification [8] and can be regarded as state-of-
the-art in many audio tasks [9]. Convolutional neural
networks (CNNs) themselves are well known for their
ability to learn robust, task specific feature representa-
tion and have been successfully applied in SED [10, 11],
speech recognition [12] and audio analysis [13, 14]. At
the same time, recurrent neural networks (RNNs) are
well known for their strengths in modelling temporal se-
quences. Long short-term memory (LSTM) RNNs have
also been used in related tasks of event detection [4],
scene classification [15], and sound classification [7]. In
this work, we use a combination of a CNN and an RNN]
along with a feed forward network (FFN) to classify and
detect the sound class of interest with a relatively pre-
cise time of onset. This hybrid combination allows for the
global temporal context to be taken into account, while
efficiently extracting features [9], and thus reducing the
network complexity.

2 Approach

A high-level overview of our deep learning approach is
given in Figure 1. Our system is composed of five main
components: a) augmented mixture generation, b) ex-
traction of log-Mel spectrogram, c¢) feature extraction
with a CNN, d) temporal modelling with an LSTM-RNN,
and e) final predictions using a FFN and post-processing.

2.1 Pre-processing

Recently, several researches have demonstrated the ad-
vantage of using log-Mel energies for SED [16, 3]. A
major advantage borne by these features in comparison
to simple spectrograms is the filtering of frequency com-
ponents with log scale filter banks similar to human ears.
Exploring the advantages of Mel-spectrogram based fea-
tures, we use them in this study. First, we extract frame-
wise spectrogram with window size of 46 ms, and then
apply 128 Mel-filters to frequency component of each of
the frame. We also apply a logarithm on the amplitude.
We then break the Mel-spectrogram into chunks with
timestep (7) to be fed into the convolutional neural net-
work.
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Figure 1: Illustration of the proposed CRNN approach composed of convolutional and recurrent neural networks for feature
extraction and a feed forward network to generate the final predictions. A detailed account of the procedure is given in Section 2.
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Figure 2: The structure of the 2D convolutional neural net-
work applied for extracting high-level features from the input
Mel-spectrograms.

2.2 Convolutional Layers

The features, after extraction as chunks, are fed into a
convolutional layer with 2D filters. As depicted in Fig-
ure 2, the frequency time convolution is followed by non-
overlapping pooling to ensure no shrinking in time. Sub-
sequently, a 1D convolution along the spectral domain
is applied, which is then followed by max pooling along
the frequency domain. Rectified linear unit (ReLU) ac-
tivation is used in the convolutional layers, and batch
normalisation (BN) [17] is applied between them. Fur-
thermore, a dropout of 30 % is used for all layers to add
regularisation and also to minimise potential overfitting
problems caused by non-overlapping max pooling [18].
Convolutional layers, however, are capable of effectively
capturing only short-term temporal context, often in the
range < 200ms [16]. To achieve longer temporal mod-
elling, we pass the outputs from the CNN to a LSTM
network.

2.3 Recurrent Layers

The activations emerging from the CNN are passed to
a network comprising of two RNN layers (cf. Figure 3).
Each RNN layer consists of 128 hidden LSTM units, ap-
plied in the reverse direction, in contrast to the tradi-
tional bidirectional or unidirectional RNN layers. Our
preliminary results indicated that reverse RNN layers
work better for this specific problem, possibly because
it is more effective to first detect the peak, in order to
detect the onset precisely. We apply hyperbolic tangent
as the activation function and a dropout of 30 % for each
of the layer. At the end, a total of 128 features arc ob-
tained for each timestep, which are passed on to the fully
connected layer to obtain prediction results.

2.4 Fully Connected Layer

The features returned for each timestep from the LSTM-
RNN layers are fed into a fully connected FFN compris-
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Figure 3: Two backward RNN-LSTM layers with 128 hidden
units (h)each. Outputs (Z) are returned for all inputs (X)
during the timestep (7).

output
sequence

ing of a single layer with 128 hidden units, matching the
depth of the input features. We apply BN to the out-
put, so that the mean is close to 0 and standard devia-
tion is close to 1. The activation function used is ReLU,
which adds the desired non-linearity to activations. The
updated features are further fed into a time distributed
output layer with one sigmoid unit to obtain probabilities
at each timestep.

2.5 Post-processing

Sound events typically occur for a period of few hun-
dred milliseconds to a few seconds. Therefore, when a
particular frame shows activity presence, it is also likely
that the frames around it have higher chances of activity.
Additionally, if an activity is detected for n number of
frames, then not detected for two further frames and then
detected again, it is likely that the predictions from those
two frames are noisy. In order to overcome such an issue,
we use the technique of sliding ensemble to average the
overlapping predictions and obtain smoother outputs. A
window size equal to the number of timesteps and with
a hop size of 1 is used to obtain temporal probability
sequence. We then apply fixed thresholding to estimate
the presence of an event and the onset time. A threshold
of 0.8 for babycry and glassbreak and 0.5 for gunshot is
applied for event presence in an entire audio clip. If an
event is present in an audio clip, the peak is then calcu-
lated and a certain number of frames is checked before
the peak; the first frame with p > 0.5 is determined to
be the onset. Figure 4 illustrates the process of applying
the thresholds on an example prediction.
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Table 1: Contrast between the positive and negative labels,
illustrating the data imbalance.

Target Event | Positive | Negative

Babycry 413% | 95.87%
Glassbreak 2.47% 97.53%
Gunshot 2.47% 97.53%

Table 2: Final models comprising of weighted average en-
sembles. t(n) signifies number of timesteps (7) used for input
chunks.

Target Event | Timestep Ensemble

Babycry (t5 419 + t50)/3
Glassbreak t3
Gunshot (t3+15)/2

3 Experimental Settings

3.1 Database

The DCASE 2017 [19] challenge task 2 dataset has been
used for experiments in this work. It consists of samples
from 15 different everyday acoustic scenes (home, park,
train, cafe, etc.), some of which are mixed with isolated
recordings from one of the three different target sound
event classes, namely, babycry, glassbreak, and gunshot.
The isolated recordings are divided into segments, and
relevant target classes are selected by a human annota-
tor. Mixing is performed by adding a segment to the
30-second long background acoustic scene sample with a
random time offset. The mean duration of the events is
< 2.5, thus enforcing the idea of ‘rare’. There is also
a big gap between positive and negative labels in the
dataset (cf. Table 1).

3.2 Configuration

The hyperparameters adjusted for our CRNN are given
in Table 3. The total duration of the training set is 25
hours, which is twice the size of the development set with
default parameters (event presence probability: 0.5, mix-
tures per class: 500, event to background ratio: -6, 0, 6).
For the training, mixtures were created with parameters
from the table. For the validation, the default train set
was used. And for testing, a pre-combined test set which
contains 1500 audio clips (500 per event class) was used.

4 Results and Discussion

The evaluation of the classification performance is done
using event-based error rate (ER) [20], which involves
calculating the true positives, false positives and false
negatives. These metrics were computed using the SED
toolbox provided in the challenge [19]. Table 2 shows
the timesteps combined and averaged for an ensemble.
Table 4 shows the results of our approach (CRNN) for
the three subtasks and compares the performance with

Table 3: Hyperparameters for our CRNNs for each subtask,
together with their approach identifiers. N. : total convolu-
tional layers; N, : total recurrent layers; Ir : learning rate;
Ird : learning rate decay. Each network is trained for atleast
100 epochs and then stopped using early stopping with pa-
tience of 15 epochs.

Parameters | Babycry Glassbreak  Gunshot
N, 2 2 2
N, 9 2 9
timesteps (1) | 5, 9, 50 3 3,5
Ir 0.001 0.001 0.001
Ird 0.01 0.01 0.01

Table 4: Comparison of our proposed CRNN and
CNN+FFN  approaches with the challenge baseline
(FFN) [19]. The CNN used here has the same hyper-
parameters as the CRNN.

ER Babyc. Glassb. Guns. Average
Model test test test dev  test
CRNN 0.21 0.19 0.41 | 0.17 0.29
CNN 0.48 0.27 0.56 | 0.35 043
FNN 0.80 0.38 0.53 | 0.53 0.63

a CNN and an FNN from the challenge baseline [19].
It can be clearly seen that the CRNN outperforms other
networks by a wide margin. The event glassbreak has the
best performance regardless of the network configuration.
It is due to the nature of the event that the frequency
component, at the moment when the glass breaks, is im-
pulsive and distinct in comparison to the background.
Therefore, short timestep is effective for this problem.
However, sometimes other events with similar onset fre-
quencies get confused. The event gunshot is also an im-
pulsive sound and requires short timestep analysis. But
in a gunshot, there are usually several vibrations between
the onset and the offset, hence relatively longer timestep
works effectively for this task. In the case of babycry, the
event lasts for longer periods and so requires the use of
longer timestep frames.

5 Conclusions and Future Work

To find the right parameters, several experiments were
conducted with different features and timesteps. Based
on our experiments, we observed that data augmentation
using synthetically created mixtures and frame concate-
nation timesteps are important hyperparameters in this
task. Therefore, it could be concluded that this is a data
driven approach and the context window sizes in this
task have direct effect on the performance of the trained
network.

Our results indicate that the post-processing step
(cf. Section 2.5) has strong impact on the value of pre-
dictions, as it helps to remove unwanted noise. We show
that the applied CRNN lead to better results in compar-
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Figure 4: An example of prediction on mix-
ture_devtest_babycry_057.wav. Threshold ¢1 detects event
presence in the audio clip, while threshold t2 detects the
onset time accurately.

ison to CNN and FFN approach. In addition, CRNNs
have less complexity compared to RNNs because of the
fact that CNNs provide abstraction and reduce the over-
all number of trainable parameters. Finally, based on
our experiments, we also conclude that using ensembles
of different timesteps leads to stronger predictions.

As part of future work, it would be of high interest to
experiment with more timestep ensembles to obtain ro-
bust predictions. We observed that in some cases, sound
events can get confused with one another. Hence, it
could be also worthwhile to use source separation tech-
niques as a preprocessing step. In the post-processing,
the step of sliding ensemble can be improved as well.
Finally, we want to explore the benefits of collecting fur-
ther data from social multimedia using our purpose built
software [21] to train the CRNN with more real-world
recordings.
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