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ABSTRACT

For the Acoustic Scene Classification task of the IEEE AASP

Challenge on Detection and Classification of Acoustic Scenes and

Events (DCASE2017), we propose a novel method to classify 15

different acoustic scenes using deep sequential learning, based on

features extracted from Short-Time Fourier Transform and scalo-

gram of the audio scenes using Convolutional Neural Networks. It

is the first time to investigate the performance of bump and morse

scalograms for acoustic scene classification in an according con-

text. First, segmented audio waves are transformed into a spectro-

gram and two types of scalograms; then, ‘deep features’ are ex-

tracted from these using the pre-trained VGG16 model by prob-

ing at the fully connected layer. These representations are then fed

into Gated Recurrent Neural Networks for classification separately.

Predictions from the three systems are finally combined by a mar-

gin sampling value strategy. On the official development set of the

challenge, the best accuracy on a four-fold cross-validation setup is

80.9%, which increases by 6.1% when compared with the official

baseline (p < .001 by one-tailed z-test).

Index Terms— Audio Scene Classification, Deep Sequential

Learning, Scalogram, Convolutional Neural Networks, Gated Re-

current Neural Networks

1. INTRODUCTION

As a sub-field of computational auditory scene analysis (CASA) [1],

acoustic scene classification attempts to identify the acoustic envi-

ronment. It has been used in several applications such as context-

aware computing [2], mobile robots [3], serious games [4] and

many more. This year’s scene classification task of the IEEE AASP

Challenge – DCASE2017 [5] – provides a unique opportunity to

present models and audio feature representations customised for

this task. The challenge requires the participants to classify the au-

dio data into fifteen classes based on the acoustic scene they repre-

sent. The corpus has been divided into a non-public evaluation set

and four-folds, each featuring training set and development set.

Different from the representations extracted from 1D audio

samples directly, such as energy, frequency, and voice-based fea-

tures [6], features extracted from 2D spectrograms recently show

significant improvement in music [7], snore sound [8], and acoustic

scene classification [9]. Those methods mostly extract Short-Time

Fourier Transformation (STFT) spectrograms from audio waves. In

contrast, wavelet transformation incorporates multiple scales and

localisation as an extension of Fourier transform to reach the op-

timum of the time-frequency resolution trade-off. Wavelet fea-

tures have been shown to be efficient in snore sound classifica-

tion [10–12] and acoustic scene classification [13] recently. Mo-

tivated by this success, we additionally investigate and present the

capability of the deep feature representations of two types of scalo-

grams in this study for the first time to our best knowledge in com-

bination with pre-trained deep nets for image classification.

In the recent years, Convolutional Neural Networks (CNNs)

became popular in deep learning for visual recognition tasks [14]

thanks to their capability of highly nonlinear mapping of input im-

ages to output labels. Several CNN structures have been presented

in succession, such as AlexNet [15], VGG [16], GoogLeNet [17],

and ResNet [18]. It is also worth to design CNNs for processing

spectrograms in acoustic tasks [7, 9, 19]. But as CNNs trained on

a large scale data set are more robust and stable than those neural

networks trained on relatively smaller number of (audio) samples,

it might be worthwhile to reuse such nets to extract features from

the spectrogram or scalogram for acoustic or other acoustic tasks

through transfer learning [20].

In the transfer learning context, feeding powerful representa-

tions from CNNs into a classifier, such as a support vector machine

(SVM), could achieve good prediction results [8]. However, as

acoustic scene audio waves are relatively longer than speech sig-

nals which happen in a short time, there is a limitation in learn-

ing sequence by sequence using SVM. To break this bottleneck,

several models for sequential learning have been proposed, in-

cluding recurrent neural networks (RNNs) [21], long short-term

memory (LSTM) RNNs [22], or Gated Recurrent Neural Networks

(GRNNs) [23]. LSTM RNNs and CNNs are combined in [24] to

improve the classification performance. Hence, sequential learning

methods will be helpful to achieve a higher performance.

The contribution of our approach for acoustic scene classifica-

tion is described as follows. First, we propose to extract the sequen-

tial features from a spectrogram (STFT) and two types of scalo-

grams, namely (bump wavelet [25] and morse wavelets [26]), by

the VGG16 model [16]. Second, we connect CNNs with a sequen-

tial learning method by feeding the features into GRNNs. Finally,

the predictions from the three models are fused by the margin sam-

pling value method. To our best knowledge, very little research

has been undertaken exploring deep CNN feature representations

of scalograms on sequential learning in audio analysis, let alone for

acoustic scene classification.

In the following, our work aims at proposing a novel approach

that makes use of CNNs and GRNNs by transfer learning, as well

as presenting the experimental results obtained on DCASE2017.
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Figure 1: Framework of our proposed system. One type of spectrogram (STFT) and two types of scalograms (bump and morse wavelet) are

generated from the segment audio files. Next, we use pre-trained CNNs to extract features from these images at the first fully connected layer

fc6. After that, the features are fed into GRNNs to be trained and the final predictions are combined by a decision fusion strategy.

2. METHODOLOGY

An overview of our system can be seen in Figure 1. It mainly

includes three components: deep sequential feature extraction,

GRNN classification, and decision fusion, which will be introduced

in this section after presenting the task.

2.1. Database

We evaluate our proposed system on the dataset of the acoustic

scene classification task in the IEEE AASP Challenge on Detection

and Classification of Acoustic Scenes and Events [5]. Each record-

ing is split into several independent 10 s segments. The dataset con-

tains 15 classes, including beach, bus, cafe/restaurant, car, city cen-

ter, forest path, grocery store, home, library, metro station, office,

park, residential area, train, and tram. The database is divided into

an unlabelled evaluation set and four folds, each of which contains

a training set and a development set. For each class, the develop-

ment set contains 312 segments of 10 s from 52 minutes of audio

recordings.

2.2. Deep Sequential Image Feature Extraction

2.2.1. Spectrograms

As written, we generate a STFT spectrogram and two types of scalo-

grams, which are now described in more detail as follows.

a) STFT spectrogram. We use the STFT algorithm [27] with a

Hamming window, a frame time of 40 ms and overlap of 20 ms, to

compute the power spectral density by the dB power scale. At the

time t, for a signal x(t) with window function ω(t) and time index

τ , the STFT is defined by

X(τ, ω) =

∫
∞

−∞

x(t)ω(t− τ)e−jωt
. (1)

b) Bump scalogram. As a special type of continuous wavelet

transform (CWT), the bump wavelet [28] with the scale s and the

window ω is defined in the Fourier domain as

Ψ(sω) = e

(

1−
1

1−(sω−µ)2/σ2

)

1[(µ−σ)/s,(µ+σ)/s], (2)

where µ and σ are two constant parameters.

c) Morse scalogram. The morse wavelet generation is proposed

in [26], in which it is defined by

ΨP,γ(ω) = u(ω)αP,γω
P2

γ e
−ω

γ

, (3)

where u(ω) means the unit step, ω is the window, αP,γ stands for a

normalising constant, P and γ are the time-bandwidth product and

the symmetry.

The spectrogram and scalograms are plotted by MATLAB us-

ing the viridis colour map, which was shown to be better suited than

other colour maps or a gray image in [8]. It is a uniform colour map

varying from blue to green to yellow. Moreover, the plots are (obvi-

ously) made to have no axes or margins, and are scaled to squared

images with 224×224 pixels for VGG16-based feature extraction,

as shown in Figure 2.

2.2.2. Convolutional Neural Networks

With the spectrograms and scalograms for acoustic scenes, the pre-

trained CNNs are employed to extract our deep spectrum features.

We use the VGG16 model provided by MatConvNet [29] as it

worked successfully in the ImageNet Challenge 2014 1. VGG16

consists of 16 layers, including 13 convolutional layers, and 3 fully

connected layers. The convolutional layers are split into five stacks

with maxpooling layers, which use the same kernel size 3×3 and

different numbers of channels [64, 128, 256, 512, 512]. The final

fully connected layer is followed by a softmax function to generate

a 1000-label classification on ImageNet data set. A framework of

the VGG16 architecture is described in Table 1.

For our deep sequential feature extraction, the images are fed

into the pre-trained VGG16 as input and the features are extracted

1http://image-net.org/challenges/LSVRC/2014/results
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(a) STFT

(b) bump wavelet (c) morse wavelet

Figure 2: The STFT spectrogram and two types of scalograms for

the acoustic scenes. All of the images are extracted from the first

audio sequence of DCASE2017’s “a001 0 10.wav” with a label res-

idential area.

from the activations on the first fully connected layer fc6, which

includes 4096 neurons. Therefore, we extract deep features with

4096 attributes from all segmented audios.

2.3. Gated Recurrent Neural Networks

Similar to LSTM-RNNs, GRNNs are able to learn sequence infor-

mation as a special type of RNN. The GRNNs contain a gated re-

current unit (GRU) [23], which consists of two gating units (reset

gate r and update gate z), an activation h, and a candidate activa-

tion h̃, as shown in Figure 3. Different from LSTM, the information

flows inside the GRU without separate memory cells so that a GRU

needs less parameters. Hence, GRNNs converge faster than LSTM,

i. e., they need less epochs during training iterations to obtain the

best model [23].

Based on the deep sequence features extracted by pre-trained

CNNs, we design a two-layer GRNN, which is followed by a fully

connected layer and a softmax layer (see Figure 1). Therefore, we

obtain the classification predictions from the softmax layer for the

three different feature sets.

2.4. Decision Fusion

To improve the performance of our system, we apply a decision

fusion method on the three classification results from different fea-

ture sets. The Margin Sampling Value (MSV) method is introduced

in [30] as the difference of the first and second highest posteriori

probabilities for each predicted label of the test sample. We obtain

the final label by selecting the model which has the maximum MSV,

which is the most confident among the three models.

Table 1: Configurations of the VGG16 convolutional neural net-

works. ‘conv’ denotes convolutional layers, size means receptive

field size, and ‘ch’ stands number of channels.

Input: 224×224 RGB image

2×conv size: 3; ch: 64

Maxpooling

2×conv size: 3; ch: 128

Maxpooling

3×conv size: 3; ch: 256

Maxpooling

3×conv size: 3; ch: 512

Maxpooling

3×conv size: 3; ch: 512

Maxpooling

Fully connected layer fc6 with 4096 neurons

Fully connected layer fc7 with 4096 neurons

Fully connected layer with 1000 neurons

Output: softmax layer of probabilities for 1000 classes

z

hh
ht-1

ht

r
xt

Figure 3: Illustration of a Gated Recurrent Unit (GRU) [23]. r and

z represent the reset and update gates separately, and h and h̃ are

the activation and the candidate activation.

3. EXPERIMENTS

3.1. Setup

Each audio file is first segmented into a sequence of 19 audio sam-

ples with 50 % overlap and 1 000 msec duration. Next, we apply the

pre-trained VGG16 model provided by the MATLAB toolbox Mat-

ConvNet [29] on the STFT spectrogram, bump and morse wavelet

scalograms, and features are extracted from activations in the first

layer fc6 of the VGG16 model. Then, we use two-layer GRNNs

(120–60), followed by a fully connected layer and a softmax layer.

We implement this architecture in TensorFlow2 and TFLearn3 with

a fixed learning rate of 0.0002 (the optimiser is ’rmsprop’), and

train it for 30, 50, and 70 epochs. Finally, the margin sampling

value decision fusion method described in Section 2.4 is selected to

combine the three neural networks to obtain the final predictions.

3.2. Results

We train the three models in parallel but end at different epochs.

Table 2 presents the performances of the 4-fold evaluation on the

development set and their mean accuracies. We can see that, all

2https://github.com/tensorflow/tensorflow
3https://github.com/tflearn/tflearn
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Table 2: Performance comparison of different epochs (epoch∈{30,

50, 70}) of GRNNs on features extracted by CNNs from STFT

spectrogram, bump, and morse scalograms. The GRNNs are im-

plemented in two layers with 120 and 60 GRU cells in each layer

and a learning rate=0.0002.

accuracy [%] Fold1 Fold2 Fold3 Fold4 Mean

(a) STFT

epoch 30 77.9 72.5 73.1 79.3 75.7

epoch 50 79.2 74.7 74.3 77.7 76.5

epoch 70 77.1 75.8 72.9 77.4 75.8

(b) bump wavelet

epoch 30 74.5 75.4 73.9 77.2 75.2

epoch 50 73.6 72.9 73.6 73.2 73.3

epoch 70 69.7 73.4 72.6 72.1 72.0

(c) morse wavelet

epoch 30 74.5 75.4 73.9 77.2 75.2

epoch 50 73.6 72.9 73.6 73.2 73.3

epoch 70 69.7 73.4 72.6 72.1 72.0

performances from the three models are comparable with the base-

line of the DCASE2017 challenge. The results of STFT and bump

wavelets perform slightly better than the baseline. We find that the

best accuracy of each model is obtained at different epochs. For

the STFT spectrogram, we observe the best performance (76.5%) at

epoch 50, but both for bump and morse wavelet (75.2% and 72.6%)

at epoch 30.

Therefore, we apply late-fusion to the three GRNNs results to

obtain the final results, as shown in Table 3. We observe that epochs

affect the performances substantially. The similarity, however, is

that, the best performances in all epochs are achieved when com-

bining results of all three models, corroborating our assumption that

scalograms are efficient for acoustic scene classification. A further

improvement is observed for the combination of the best epoch from

each feature representation (STFT: 50, bump: 30, morse: 30): up

to 80.9% accuracy with a significant improvement of 6.1% accu-

racy over the baseline of the DCASE2017 challenge (p < .001 in a

one-tailed z-test [31]). Table 4 shows the confusion matrix for the

best performance, combining the best epoch for the neural network

of each model. Some classes, such as beach and car, are classi-

fied with high accuracies, while others, such as park and residential

area, are not easy to be recognised.

To sum up, our proposed scalograms are helpful to improve

the performance on acoustic scene classification, and the presented

approach which connects sequence learning with pre-trained CNNs

can increase the accuracy on this task.

4. CONCLUSIONS

We proposed a method for classifying acoustic scenes that relies on

the ability of deep pre-trained CNNs to extract useful features from

STFT and wavelet representations. Using our deep image spectrum

features on GRNNs as a sequential learning method, we were able

to improve the performance significantly on the official develop-

ment set of the DCASE2017 challenge in a 4-fold cross validation,

achieving an accuracy of 80.9% (p < .001 in a one-tailed z-test).

In our experiments, we found that wavelet features are helpful to

increase the accuracy when combining with STFT spectrogram rep-

resentations. In future works, we will investigate which CNNs infer

Table 3: Performance comparison of different combinations of the

three feature sets by decision fusion on the multi-class classifier

GRNNs. The GRNNs are implemented in two-layers (120-60),

learning rate=0.0002, epoch∈{30, 50, 70,the best epoch (STFT:

50, bump: 30, morse: 30)}. All of the models are first trained inde-

pendently, and then combined to make a final decision by the MSV

method.

accuracy [%] Fold1 Fold2 Fold3 Fold4 Mean

ep
o

ch
3

0 STFT+bump 80.9 79.9 77.5 82.2 80.1

STFT+morse 79.8 79.4 76.8 81.5 79.4

bump+morse 76.7 77.5 76.0 77.5 76.9

STFT+bump+morse 80.9 80.1 78.7 81.7 80.3

ep
o

ch
5

0 STFT+bump 81.9 78.4 77.6 80.9 79.7

STFT+morse 81.5 80.4 76.4 79.7 79.5

bump+morse 76.7 77.5 76.0 77.5 76.9

STFT+bump+morse 82.1 79.9 78.4 80.0 80.1

ep
o

ch
7

0 STFT+bump 80.3 78.8 76.6 81.7 79.4

STFT+morse 80.3 78.3 76.1 80.9 78.9

bump+morse 72.8 75.9 72.5 76.1 74.3

STFT+bump+morse 80.2 79.1 77.2 82.7 79.8

b
es

t
ep

o
ch STFT+bump 82.6 79.5 77.5 80.9 80.1

STFT+morse 81.1 80.0 76.5 81.5 79.8

bump+morse 76.7 77.5 76.0 77.5 76.9

STFT+bump+morse 82.6 80.7 78.7 81.5 80.9

Table 4: Confusion matrix of the development set for the proposed

method, in which the values are averaged in the 4-fold cross valida-

tion. Our proposed approach achieves an accuracy of 80.9%.

A
ct

u
a

l

Prediction

b
ea

ch
bu

s
ca

fe
/r

es
t.

ca
r

ci
ty

ce
n
t.

fo
re

st
p
at

h
g
ro

c.
st

o
re

h
o
m

e
li

b
ra

ry
m

et
ro

st
.

o
ffi

ce
p
ar

k
re

si
d
.

ar
ea

tr
ai

n
tr

am

beach 68 0 0 0 2 1 0 1 0 0 0 2 4 0 1

bus 0 74 0 1 0 0 0 1 0 0 0 0 0 2 1

cafe/rest. 0 0 59 0 1 0 6 5 1 1 2 0 0 0 3

car 0 1 0 74 0 0 0 0 0 0 0 0 0 1 3

city cent. 0 0 0 0 66 0 1 0 0 1 0 2 8 0 0

forest path 1 0 1 0 3 71 0 0 0 0 0 0 2 0 0

groc. store 1 0 5 0 0 0 61 0 2 6 1 1 0 0 1

home 0 2 2 0 0 0 1 61 5 0 9 0 0 0 0

library 1 0 1 0 0 3 2 3 58 4 3 0 1 2 0

metro st. 0 0 0 0 1 0 3 0 4 71 0 0 0 0 0

office 0 0 0 0 0 0 0 4 1 0 73 0 0 0 0

park 4 0 0 0 5 0 0 0 2 0 1 48 19 0 0

resid. area 2 0 0 0 7 3 0 1 1 1 1 13 50 1 0

train 0 7 3 2 8 0 0 1 1 1 0 0 3 45 8

tram 0 0 1 2 1 0 2 0 0 1 0 1 0 3 69

the best representations from our audio representations, and experi-

ment with data augmentations of the training data.
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