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ABSTRACT

This paper describes our contribution to the Acoustic Scene Classi-

fication task of the IEEE AASP Challenge on Detection and Clas-

sification of Acoustic Scenes and Events (DCASE 2017). We pro-

pose a system for this task using a recurrent sequence to sequence

autoencoder for unsupervised representation learning from raw au-

dio files. First, we extract mel-spectrograms from the raw audio

files. Second, we train a recurrent sequence to sequence autoen-

coder on these spectrograms, that are considered as time-dependent

frequency vectors. Then, we extract, from a fully connected layer

between the decoder and encoder units, the learnt representations

of spectrograms as the feature vectors for the corresponding audio

instances. Finally, we train a multilayer perceptron neural network

on these feature vectors to predict the class labels. In comparison

to the baseline, the accuracy is increased from 74.8% to 88.0% on

the development set, and from 61.0% to 67.5% on the test set.

Index Terms— deep feature learning, sequence to sequence

learning, recurrent autoencoders, audio processing acoustic scene

classification

1. INTRODUCTION

Machine learning algorithms for audio processing typically operate

on expert-designed feature sets extracted from the raw audio sig-

nals. Arguably among the most widely used features are Mel-band

energies and features derived from them, such as Mel Frequency

Cepstral Coefficients (MFCCs). Both feature spaces are widely

used in acoustic scene classification [1–3], with the former being

employed in the DCASE 2017 Challenge baseline system [4], and

the later being the low level feature space used by the winners of

the DCASE 2016 acoustic scene classification challenge [5].

It takes considerable effort and human intervention to manu-

ally engineer such features for a specific purpose, which then may

not perform well on unrelated tasks. Further, many feature spaces

such as MFCCs are non-task specific and are equally adept in a

range of audio and speech-based classification tasks [6–8]. For

these reasons, among others, unsupervised representation learning

has recently gained considerable popularity as a highly effective

substitute for using conventional feature sets [9, 10]. Representa-

tion learning with deep neural networks (DNNs), in particular, has

been shown to be superior to feature engineering for a wide variety

of tasks, including speech recognition [6, 11] and music transcrip-

tion [11,12]. However, the advantages of deep representation learn-

ing are yet to be fully established for acoustic scene classification.

Audio sequences are typically varying length signals; this

presents a drawback for deep representation learning using archi-

tectures such as convolutional neural networks (CNNs) which typ-

ically require inputs of fixed dimensionality. Furthermore, typical

DNN architectures used for representation learning, such as stacked

autoencoders or Restricted Boltzmann Machines, do not explicitly

account for the inherent sequential nature of acoustic data [9]. For

the learning of fixed-length representations of variable-length se-

quential data, sequence to sequence learning with recurrent neural

networks (RNNs) has been proposed in machine translation [13,14].

Moreover, RNNs have been successfully used in a range of audio-

based classification tasks such as novelty detection [15], scene

classification [16], and speech recognition [17].

In this paper, we extend the RNN encoder-decoder model pro-

posed by Cho et. al. [13] to develop a recurrent sequence to se-

quence autoencoder for deep unsupervised representation learning

suitable for use with acoustic data. Sequence to sequence autoen-

coders have been employed for unsupervised pretraining of RNNs,

with promising results on text classification and image recognition

tasks [18], as well as machine translation [19]. Variational sequence

to sequence autoencoders have been used to learn representations of

sentences, and to generate new sentences from the latent space [20].

Furthermore, de-noising recurrent autoencoders have been used for

reverberated speech recognition [21], moreover, in this approach,

variable-length representations of audio are learnt. Despite this suc-

cess in a range of applications, to the best of the authors’ knowl-

edge, there is no previous work on extracting the learnt representa-

tions from sequence to sequence autoencoders for further process-

ing, such as audio classification.

The remainder of this paper is organised as follows: In Sec-

tion 2, we describe our proposed recurrent sequence to sequence

autoencoder approach in detail. Subsequently, we outline our exper-

imental evaluation and results thereof for the DCASE 2017 Acous-

tic Scene Classification challenge in Section 3. Finally, concluding

remarks and our future work plans are given in Section 4.

2. APPROACH

A high-level overview of our system is given in Figure 1. First, mel-

spectrograms are extracted from the raw audio files (cf. Figure 1a).

Subsequently, a recurrent sequence to sequence autoencoder is

trained on these spectra (cf. Figure 1b), which are viewed as time-

dependent sequences of frequency vectors. The learnt represen-

tations of the spectrograms are then extracted for use as feature
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Figure 1: Illustration of the proposed representation learning and classification approach. Except for the final classification, the approach is

entirely unsupervised. A detailed account of the procedure is given in Section 2.

vectors for the corresponding instances (cf. Figure 1c). This step

is repeated for the different spectral representations made possible

by the stereo recordings provided in the challenge dataset, with the

resulting set of learnt representation – per audio instance – being

concatenated together (cf. Figure 1d). Finally, we train a multilayer

perceptron (MLP) (cf. Figure 1e) on the fused feature vectors to

predict the labels of instances.

2.1. Spectrogram Extraction

First, the power spectra of audio samples are extracted using peri-

odic Hann windows with width w and overlap 0.5w. From these,

we then compute a given number Nm of log-scaled Mel frequency

bands. Finally, the mel-spectra are normalised to have values in

[−1; 1], since the outputs of the recurrent sequence to sequence au-

toencoder are constrained to this interval.

The challenge corpus contains audio samples which have been

recorded in stereo [4]. In such data sets, there may be instances

in which important information related to the class label has been

captured in only one of the two channels. Following the winners

of the DCASE 2016 acoustic scene classification challenge [5], we

thus extract mel-spectrograms from each individual channel, as well

as from the mean and difference of the two channels.

We extract separate sets of mel-spectrograms for different pa-

rameter combinations, each containing one mel-spectrogram per au-

dio sample. As illustrated in Figure 1, representations are learnt

independently on different sets of mel-spectrograms, and we inves-

tigate feature-level fusion of these representations.

2.2. Recurrent Sequence to Sequence Autoencoders

We use recurrent sequence to sequence autoencoders to learn rep-

resentations of the extracted mel-spectra in an unsupervised man-

ner [13,14]. An illustration of the structure of these autoencoders is

shown in Figure 2. Mel-spectra are viewed as a time-dependant se-

quence of frequency vectors in [−1; 1]Nm , each of which describes

the amplitudes of the Nm Mel frequency bands within one audio

frame. This sequence is fed to a multilayered encoder RNN, which

updates its hidden state in each time step based on the input fre-

quency vector. Therefore, the final hidden state of the encoder RNN

contains information about the whole input sequence. This final

hidden state is transformed using a fully-connected layer, and an-

other multilayered decoder RNN is used to reconstruct the original

input sequence from the transformed representation.

The encoder RNN consists of Nl layers, each containing Nu

Gated Recurrent Units (GRUs) [13]. During our initial system

design phase we conducted experiments using Long Short-Term

Memory cells instead of GRUs. However, we observed that this
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Figure 2: An overview of the implemented recurrent autoencoder.

did not lead to improvements in system performance. The hidden

states of the encoder GRUs are initialised to zero for each input

sequence, and their final hidden states in each layer are concate-

nated into a one-dimensional vector. This vector can be viewed as

a fixed-length representation of a variable-length input sequence,

with dimensionality Nl ·Nu, if the encoder RNN is unidirectional,

and dimensionality 2 ·Nl ·Nu if it is bidirectional.

The representation vector is then passed through a fully con-

nected layer with hyperbolic tangent activation. The output dimen-

sionality of this layer is chosen in such a way that it can be used to

initialise the hidden states of the decoder RNN.

The decoder RNN contains the same number of layers and units

as the encoder RNN. Its task is the frame-by-frame reconstruction

of the input mel-spectrogram, based on the representation which

was used to initialise the hidden states of the decoder RNN. At the

first time step, a zero input is fed to the decoder RNN. During subse-

quent time steps t, the expected decoder output at time t−1 is fed as

input to the decoder RNN [14]. Stronger representations could po-

tentially be obtained by using the actual decoder output instead of

the expected output, since this reduces the amount of information

available to the decoder. However, during initial experiments we

observed that our approach greatly accelerates model convergence

with negligible effects on representation quality.

The outputs of the decoder RNN are passed through a single

linear projection layer with hyperbolic tangent activation at each

time step in order to map the decoder RNN output dimensionality to

the target dimensionality Nm. The weights of this output projection

are shared across time steps. In order to introduce greater short-term

dependencies between the encoder and the decoder, our decoder

RNN reconstructs the reversed input sequence [14, 22].

Autoencoder training is performed using the root mean square

error (RMSE) between the decoder output and the target sequence

as the objective function. Dropout is applied to the inputs and out-

puts of the recurrent layers, but not to the hidden states. Once train-

ing is complete, the activations of the fully connected layer are ex-

tracted as the learnt representations of spectrograms.

18
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2.3. Multilayer Perceptron Classifier

A multilayer perceptron, similar to the one used in the challenge

baseline system [4], is employed for classification. Our MLP con-

tains two hidden fully-connected layers with rectified linear acti-

vation, and a softmax output layer. The hidden layers contain 150

units each, and the output layer contains one unit for each class la-

bel. Training is performed using cross entropy between the ground

truth and the network output as the objective function, with dropout

applied to all layers except the output layer. A range of different

classifiers were tested during our initial experimentation. However,

we observed that more sophisticated classification paradigms did

not aid our overall system performance.

3. EXPERIMENTAL SETTINGS AND RESULTS

3.1. Database

The DCASE 2017 acoustic scene classification challengeis carried

out on the TUT Acoustic Scenes 2017 data set [4]. This data set

contains binaural audio samples of 15 acoustic scenes recorded at

distinct geographic locations. For each location, between 3 and 5

minutes of audio were initially recorded and then split into 10 sec-

ond segments. The development set for the challenge contains 4 680

instances, with 312 instances per class, and the evaluation set con-

tains 1 620 instances with unknown labels.

A four-fold cross-validation setup is provided by the challenge

organisers for the development set. In each fold, roughly 75 % of

the samples are used as the training split, and the remaining samples

are used as the evaluation split. Samples from the same original

recording are always included in the same split. For further detail on

the challenge data and the cross fold validation set-up, the interested

reader is referred to [4].

3.2. Common Experimental Settings

We have implemented the representation learning approach outlined

above as part of the AUDEEP toolkit1 for deep representation learn-

ing from audio. AUDEEP is implemented in Python, and relies on

TENSORFLOW
2 for the core sequence to sequence autoencoder and

MLP implementations.

Both the autoencoders and MLPs are trained using the Adam

optimiser with a fixed learning rate of 0.001 [23]. Autoencoders

are trained for 50 epochs in batches of 64 samples, and we apply

20 % dropout to the outputs of each recurrent layer. Furthermore,

we clip gradients with absolute value above 2 [14]. The MLPs used

for classification are trained for 400 epochs without batching or gra-

dient clipping, and 40 % dropout is applied to the hidden layers.

Features are standardised to have zero mean and unit variance dur-

ing MLP training, and the corresponding coefficients are used to

transform the validation data.

3.3. Hyperparameter Optimisation

Our proposed approach contains a large number of adjustable hy-

perparameters, which prohibits an exhaustive exploration of the pa-

rameter space. Instead, we select suitable values for the hyperpa-

rameters in stages, using the results of our preliminary experiments

to bootstrap the process. During these experiments, we observed

1https://github.com/auDeep/auDeep
2https://www.tensorflow.org/
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Figure 3: Classification accuracy on the development set for differ-

ent FFT window widths (a), and different numbers of Mel frequency

bands (b). A detailed account of the experiments leading to these

results is given in Section 3.3.

that very similar parameter choices lead to comparable performance

on spectrograms extracted from different combinations of the audio

channels (mean, difference, left and right). We therefore performed

hyperparameter optimisation on the mean-spectrograms only, and

used the resulting parameters for the other spectrogram types.

In the first stage, we selected a suitable autoencoder configu-

ration, i. e. the optimal number of recurrent layers Nl, the number

of units per layer Nu, and either unidirectional or bidirectional en-

coder and decoder RNNs. In this stage, autoencoders are trained on

mel-spectrograms extracted with window width w = 0.16 seconds,

window overlap 0.5w = 0.08 seconds, and Nm = 320 Mel fre-

quency bands, without amplitude clipping. These choices proved

to be reasonable during our preliminary evaluation. We exhaus-

tively evaluated Nl ∈ {1, 2, 3}, Nu ∈ {16, 32, 64, 128, 256, 512}
and all combinations of uni- or bidirectional encoder and decoder

RNNs. The highest classification accuracy was achieved when us-

ing Nl = 2 layers with Nu = 256 units, a unidirectional encoder

RNN, and a bidirectional decoder RNN.

Our second development stage served to optimise the window

width w used for spectrogram extraction. We use the autoencoder

configuration determined in the previous stage, and once again set

Nm = 320. The window width w is evaluated between 0.04 and

0.36 seconds in steps of 0.04 seconds. For each value of w, the

window overlap is chosen to be 0.5w. As shown in Figure 3a, clas-

sification accuracy quickly rises above 84 % for w > 0.10 seconds,

and peaks at 85.0% for w = 0.20 seconds and w = 0.28 seconds.

For larger values of w, classification accuracy decreases again. As a

larger window width may blur some of the short-term dynamics of

the audio signals, we choose w = 0.20 seconds. Correspondingly,

the window overlap is chosen to be 0.5w = 0.10 seconds.

In the final optimisation stage, we evaluated different numbers

of Mel frequency bands Nm ∈ {40, 80, 160, 320, 640}, the results

of which are shown in Figure 3b. Classification accuracy rises with

larger values of Nm until it reaches 85.0 % for Nm = 320. Increas-

ing Nm beyond 320 does not improve performance further, so we

choose Nm = 320 to minimise the amount of data the system has

to process.

3.4. Fusion Experiments

Given the supplied stereo audio tracks [4], we extract separate sets

of spectrograms from the mean and difference of channels, and

from the left and right channels individually (cf. Section 2.1). On

each set of spectrograms, an autoencoder is trained, and the learnt
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Table 1: Comparison of the classification accuracies of the different

variants of our proposed system with the challenge baseline. We

extract four different feature sets of spectrograms from the mean

(M) and difference (D) of channels, and from the left (L) and right

(R) channels separately. We obtain the highest accuracy after fusing

the features generated from all channels.

Accuracy [%]

System Features Devel. Eval.

Baseline 200 (per frame) 74.8 61.0

Proposed: Individual Feature Sets

Mean (M) 1 024 85.0 –

Left (L) 1 024 84.6 –

Right (R) 1 024 83.8 –

Difference (D) 1 024 82.0 –

Proposed: Fused Feature Sets

Mean, Left 2 048 86.2 –

Mean, Left, Right 3 072 86.9 –

All (M + L + R + D) 4 096 88.0 67.5

representations are extracted as features for the instances. This

results in four feature sets herein identified by the spectrogram type

from which they have been extracted (i. e. ‘mean’, ‘difference’,

‘left’, and ‘right’). On the development set, the ‘mean’ feature set

achieves the highest classification accuracy with 85.0 %, followed

by ‘left’ with 84.6 %, ‘right’ with 83.8 %, and ‘difference’ with

82.0 % (cf. Table 1). In order to determine if the different spectral

representations contain complementary information, we perform

feature-level fusion. We perform a weighted fusion, in which the

weights are proportional to performance of the individual systems.

Fusing the ‘mean’ and ‘left’ feature sets improves classification ac-

curacy to 86.2 % on the development set. Adding the ‘right’ feature

set further increases classification accuracy to 86.9 %, and fusing

all four feature sets results in 88.0 % accuracy (cf. Table 1). The

latter constitutes our best result on the development set, with an

improvement of 13.2 % over the baseline [4]. A confusion matrix

for this result is given in Figure 4.

Besides fusion between different channels, we also investigated

fusion between different window sizes w and numbers of Mel fre-

quency bands Nm. We also trialled fusion with various conven-

tional acoustic feature sets which we extracted from the raw audio

samples using the openSMILE toolkit [24]. However, we did not

identify a combination of these options which resulted in increased

performance on the development set.

3.5. Challenge Submission and Evaluation Set Results

For our submission to the DCASE 2017 Acoustic Scene Classifi-

cation Challenge, we select the four feature sets with the best per-

formance on the development partition, i. e. the ‘mean’ feature set

and all three fused feature sets. We extract spectrograms from au-

dio samples in the evaluation set using the same parameters that

we used for the development set. Subsequently, we extract the four

individual feature sets described above with the respective autoen-

coder that we trained on the development set. Finally, fusion of

these feature sets is performed as detailed above.

For prediction on the evaluation set, the MLP classifier is

trained using the entire development set as training data. As shown

Figure 4: Confusion Matrix of our strongest performing system on

the development partition of the TUT Acoustic Scenes 2017 data

set which achieved a classification accuracy of 88.0 %.

in Table 1, our approach achieved classification accuracies of

00.0 %, 00.0 %, 00.0 % and 00.0 % on the evaluation set.

4. CONCLUSIONS

Despite representation learning with deep neural networks (DNNs)

has shown superior performance of hand-crafted feature sets in a

variety of machine learning recognition and classification tasks,

such approaches have not been widely explored with the domain

of acoustic scene classification. In this regard, our entry to the

2017 DCASE 2017 Acoustic Scene Classification challenge has

demonstrated the feasibility of using a recurrent sequence to se-

quence autoencoder for the unsupervised feature representation. A

major advantage of our approach is that it is able to learn a fixed

length representation from variable length audio signals while tak-

ing account of their time-dependent nature. A fused combination

of features learnt from our system was able to achieve an accuracy

of 88.0 % on the challenge development data, an improvement of

17.65 percentage points over the official baseline.

In future work, we will be testing our system over a wide range

of different acoustic classification tasks. We also want to collect

further data from social multimedia using our purpose built soft-

ware [25] to train the autoencoder with more real life audio record-

ings. Finally we plan to investigate the potential of Generative Ad-

versarial Networks for acoustic based deep representation learning.
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