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Abstract—Advances in affective computing have been made
by combining information from different modalities, such as
audio, video, and physiological signals. However, increasing
the number of modalities also grows the dimensionality of the
associated feature vectors, leading to higher computational cost
and possibly lower prediction performance. In this regard, we
present an comparative study of feature reduction method-
ologies for continuous emotion recognition. We compare di-
mensionality reduction by principal component analysis, filter-
based feature selection using canonical correlation analysis,
and correlation-based feature selection, as well as wrapper-
based feature selection with sequential forward selection, and
competitive swarm optimisation. These approaches are eval-
uated on the AV+EC-2015 database using support vector
regression. Our results demonstrate that the wrapper-based ap-
proaches typically outperform the other methodologies, while
pruning a large number of irrelevant features.

1. Introduction

In view of the fundamental importance of showing and
recognising emotions in human-human interaction, automatic
emotion recognition opens up a multitude of intriguing op-
portunities, especially for human-computer interaction. Due
to its vast range of possible real-life applications, including,
for example, in education or gaming, [1], automatic emotion
recognition is attracting a growing number of researchers
from differing fields [2].

Since emotion is a continuous phenomenon, a natural
task in this domain is continuous emotion prediction based
on streams of information. Previous research has shown
that multiple modalities can significantly improve prediction
accuracy [3], [4], [5]. However, with each additional modality,
more features need to be considered when training a model,
which can quickly lead to issues with training time and the
‘curse of dimensionality’. Indeed, it has been shown that the
naive fusion approach of concatenating the features from all
modalities for training is a suboptimal approach [6].

Most current approaches reduce the effective dimension-
ality of the feature set, e. g. by fusing predictions on the
individual modalities [4], [6], quantising features [7], [8],

or dimensionality reduction techniques such as PCA [9].
Filter-based feature selection approaches are also commonly
used in the speech processing domain [2], [10]. Such
approaches typically employ statistical tests or measures,
such as information gain [11], the Kolmogorov-Smirnov
test [12], canonical correlation analysis [13], or the chi-
squared test [14].

However, to date, few emotion prediction approaches
employ wrapper-based feature selection. Heuristic wrapper
algorithms, such as stepwise forward selection [15], tend to
struggle with the exponential size of the feature set search
space for large real-world problems [16, Ch. 17]. Neverthe-
less, such algorithms have been employed successfully in
affective computing [17].

In this paper, we perform a comparative study of sev-
eral archetypal feature selection approaches for multimodal
continuous emotion prediction. In addition to these, we also
explore a recent evolutionary wrapper-based feature selection
approach, which is based on competitive swarm optimisation
(CSO) [18], [19]. This algorithm has previously been shown
to perform well in computational paralinguistics [20]. First,
a strong baseline is established on the 2015 Audio-Visual
Emotion recognition Challenge (AVEC 2015) corpus [3].
Then, we compare dimensionality reduction by principal
component analysis (PCA) [21], filter-based feature selec-
tion using canonical correlation analysis (CCA) [13], and
correlation-based feature subset selection (CFS) [22], as well
as wrapper-based feature selection with sequential forward
selection (SFS) [15], and competitive swarm optimisation.

The remainder of this paper is organised as follows. In
Section 2, we provide an overview of the selected feature
selection approaches. Section 3 outlines our experiments, and
discusses the results thereof. Finally, we draw conclusions,
and provide an outlook on future work in Section 4.

2. Feature Selection Approaches

The approaches investigated are arranged into three cate-
gories: 1) principal component analysis for dimensionality
reduction, 2) canonical correlation analysis and correlation-
based feature selection for filter-based feature selection,
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and 3) sequential forward selection and competitive swarm
optimisation for wrapper-based feature selection.

2.1. Principal Component Analysis

Principal component analysis (PCA) is a widely used
statistical procedure for dimensionality reduction. PCA
transforms a set of intercorrelated features into a possibly
smaller set of linearly uncorrelated features, called principal
components. This is achieved by applying an orthogonal
transformation to the original feature space, i. e. the principal
components are linear combinations of the original features.
Feature selection using PCA is commonly performed by
using only the first k principal components, which account
for a predefined fraction, e. g. 95 %, of variability in the
data [21]. As no label information is used, PCA is an entirely
unsupervised approach.

2.2. Canonical Correlation Analysis

Canonical correlation analysis is a statistical method
related to PCA, which can also be used for feature selec-
tion [13]. Whereas PCA transforms the feature space so
as to optimally model variance in a single data set, CCA
defines linear transformations which maximise the mutual
correlation between two vector spaces representing the same
underlying semantic phenomenon. CCA can be formulated
as a generalised eigenproblem, in which larger eigenvalues
correspond to projection vectors which capture increasingly
more correlation between the vector spaces [13]. Therefore,
feature selection can be performed by using only the first k
projection vectors associated with the largest eigenvalues.

Following [13], we use a CCA based regression scheme,
where one vector space represents the training data, and the
other vector space represents the target values. Therefore,
CCA finds a linear projection of the training data which max-
imises the correlation with the target values, thus facilitating
prediction. This approach has previously been shown to be
suitable for emotion and depression recognition systems [13],
[23].

2.3. Correlation-based Selection

Correlation-based feature selection is based on the central
hypothesis that a good feature subset contains features which
are highly correlated with the target value, but uncorrelated
with each other [22]. CFS defines an evaluation function
for feature subsets, which prefers feature subsets that simul-
taneously have high predictive ability, i. e. correlation with
the target value, and low redundancy, i. e. inter-correlation
between features.

Since evaluating all possible feature subsets is infeasible
due to the exponential size of the feature set search space,
CFS needs to be coupled with a suitable heuristic search
algorithm. In this paper, we explore sequential forward
selection and sequential backward elimination, both of which
have been shown to perform well with CFS [22].

2.4. Sequential Forward Selection

Sequential forward selection is one of the first heuristic
search algorithms that has been used for wrapper-based
feature selection [15]. Due to its simplicity, and often
high efficiency, it remains a highly popular approach in a
multitude of fields, including emotion prediction [24]. Feature
selection with SFS begins with the empty feature set, and
iteratively adds features which yield the highest increase in
prediction performance for the feature set. When no further
improvement can be achieved by a single feature addition, the
algorithm terminates. Even though numerous improvements
of the basic SFS wrapper algorithm have been devised [24],
we found that even in its most basic form, SFS can produce
highly competitive results on the AVEC 2015 database.

Sequential backward elimination (SBE) is closely related
to SFS, but starts with the full feature set and iteratively
removes single features. SBE commonly produces much
larger final feature sets, and requires substantially more com-
putation time than SFS and is not considered for investigation
in this paper.

2.5. Competitive Swarm Optimisation

Competitive swarm optimisation [18], [19] is an adap-
tation of the canonical particle swarm optimisation algo-
rithm [25] for large-scale optimisation. Similar to other
evolutionary feature selection algorithms, a set of candidate
feature vectors, called particles, is maintained. Each particle
has a velocity, and is allowed to move through the feature
set search space over several time steps, or generations.
Particles are assigned a fitness value, which describes the
prediction performance of the feature set they represent. At
each time step, particles move a small distance according
to their velocity. Furthermore, they are accelerated towards
solutions with the currently highest fitness values. Over time,
the particle swarm converges toward an optimal solution.

CSO has been developed specifically for large-scale
optimisation problems such as high-dimensional feature
selection [18], [19], which is a common problem in speech
processing [10].

2.6. Early Stopping

Wrapper algorithms, as their optimisation procedure is
guided by the prediction performance of the feature sets, as
prone to overfitting during optimisation [15]. We therefore
test an early stopping mechanism based on a separate
validation set, which has previously been shown to be a
reasonable technique to combat this effect [26].

In each SFS iteration and, respectively, CSO generation,
the best feature set found is evaluated on a separate validation
set, which consists of entirely unseen data. If no performance
improvement has been observed on the validation set for a
certain number of iterations, feature selection is terminated
and the feature set with the best performance on the validation
set is returned. In particular, given performance scores on
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the validation set vi for iterations i ∈ N, feature selection is
stopped in generation

istop := min{i ∈ N | ∀j ≤ max{20, 2i} : vj ≤ vi}. (1)

That is, optimisation stops if the best performance on the
validation set so far has been observed in iteration i, and
no improvement is achieved until iteration 2i.A minimum
of 20 iterations is evaluated to allow the feature selection
algorithms to ‘warm up’.

3. Experiments and Results

We first establish a baseline on the AVEC 2015 database
with a machine learning system based on support vector
regression (SVR). Feature selection and dimensionality re-
duction is then performed using the approaches presented
above, and evaluated using the same machine learning setup.

3.1. Database

For the purposes of this paper, we choose the 2015 Audio-
Visual Emotion recognition Challenge (AVEC 2015) corpus
to evaluate the different approaches [3], which is based on
the RECOLA database [27]. The challenge corpus contains
data from 27 subjects in the RECOLA database, which has
been evenly distributed over training, development, and test
partitions (9 subjects each). The corpus contains a variety
of features representing acoustic, visual, and physiological
modalities. It provides the 102-dimensional extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) [28], a 84-
dimensional set of facial based appearance visual features,
and a 316-dimensional set of facial based geometric visual
features. Furthermore, it contains two sets of physiological
features, namely a 54-dimensional set of electrocardiogram
(ECG) features and a 62-dimensional set of electro-dermal
activity (EDA) features.

Note that, similar to Huang et al. [6], we observed the
noticeable errors when using the EDA features from one
test set participant, we therefore decided to exclude EDA
features entirely from our investigation, i. e. the full feature
set has a total of 556 features.

3.2. Machine Learning System

We investigate both feature-level (early) fusion, and
decision-level (late) fusion in our machine learning setup.
In both cases, the selected features are extracted from the
training data and standardised as a start.

For feature-level fusion, a single support vector regression
machine (SVR) with a linear kernel is then trained on this
data. For decision-level fusion, a separate linear SVR is
trained on the selected features from each modality. The
individual predictions are then fused using a linear regression
model. We use one frame out of every twenty for training,
in order to reduce computation time.

As in [6], we perform annotation delay compensation, in
order to account for the delay between a human annotator’s

observations and their decisions. We realign the features
with the ground truth by dropping the first D frames from
the ground truth, and replicating the last frame D times.
The optimal delay value D is determined separately per
affective dimension, and fusion method. Initially, this results
in predictions that are shifted backwards in time by D frames
relative to the raw ground truth. Therefore, we replicate the
first frame of the predictions D times, and drop the last D
frames.

We also apply a post-processing chain similar to that
presented in [29]. First, to eliminate high-frequency noise,
a median filter with width W is applied to the predictions.
Then, the predictions on the training data are centred and
scaled to have the same mean and standard deviation as the
training gold standard. This transformation is then applied
to the validation data.

Finally, the concordance correlation coefficient (CCC)

ρc =
2ρσxσy

σ2
x + σ2

y + (μx − μy)2
(2)

between the processed SVR output and the validation data
ground truth labels is computed. In the case of wrapper-
based feature selection, this value is returned to the feature
selection component as the fitness of the supplied feature
vector. Note that training and validation data referred to in
this section do not necessarily correspond to training and
test partitions of the database. For example, feature selection
is performed using the training partition as training data, and
the development partition as validation data.

3.3. Experimental Settings

The feature selection approaches and the machine learn-
ing system have been implemented in Java 1.8, using the
WEKA machine learning library (version 3.8.1) [30]. The
SVR classifiers are trained using the LibLINEAR library us-
ing the L2-regularised L2-loss dual solver with unit bias [31].
While implementing our experiments, we identified serious
performance leaks in the LibLINEAR wrapper contained in
WEKA (due to instance conversion), and the Java port of
LibLINEAR (due to sparse data representation). Thus, we
implemented our own LibLINEAR wrapper, and adapted the
Java port of LibLINEAR to use a dense data representation.
The actual LibLINEAR algorithms have remained entirely
unchanged.

3.3.1. Baseline. First, we establish a baseline for further
reference, by optimising the temporal shift D, the SVR
complexity C, and the post-processing filter width W on the
development partition. The temporal shift is evaluated for
0 ≤ D ≤ 200 in increments of 10 (0 s to 8 s in increments of
0.4 s), the cost parameter for C ∈ [1 ·10−6; 5 ·10−1], and the
post-processing filter width for 0 ≤ W ≤ 200 in increments
of 25 (0 s to 8 s in increments of 1 s). For late fusion, the
same parameter values are used for each modality, in order
to reduce the complexity of our model. We exhaustively
evaluated all combinations of these parameters for both
affective dimensions and fusion models, the results of which
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Figure 1: Prediction CCC for different delay values (a), postprocessing filter widths (b), and SVR complexity values (c). For
each optimisation parameter, the respective graph shows the maximum prediction CCC on the development partition among
all combinations of the remaining two parameters.

TABLE 1: Optimal values for delay D, post-processing
filter width W , and SVR complexity C, determined through
evaluation on the development partition. Values for delay and
filter width are reported in seconds. We use the prediction
CCC without any feature selection on the development
and test partitions as a baseline for the feature selection
algorithms.

CCC
dim. fusion D W C devel test

arousal
early 3.6 2.0 2 · 10−3 0.742 0.688
late 3.6 2.0 1 · 10−3 0.738 0.675

valence
early 1.6 3.0 2 · 10−3 0.564 0.539
late 3.2 3.0 1 · 10−2 0.522 0.537

are shown in Table 1. Furthermore, Figure 1 displays the
prediction CCC on the development partition in relation to
the parameter values.

3.3.2. Wrapper-based Feature Selection. Subsequently,
we perform wrapper-based feature selection with sequen-
tial forward selection, and competitive swarm optimisation.
During feature selection, models are trained on the training
partition, and evaluated on the development partition. For
both approaches, we then select the configurations that
perform best on the development partition for evaluation
on the test partition. Since wrapper algorithms are inherently
susceptible to overfitting [15], we also investigate early
stopping for SFS and CSO as outlined above (cf. Section 2.6).
Three out of the nine development subjects are used as a
validation set, and feature selection is terminated if criterion
(1) is met.

Although Cheng and Jin report that the performance
of CSO does not depend on a large swarm size [18]. We
therefore, evaluate CSO on the development partition with
different numbers of generations, and particle swarm sizes (cf.
Table 2). In order to eliminate one optimisation dimension,
we have limited the total number of particle evaluations,
i. e. the product of generations and swarm size, to 40 000.
illustrates that this choice is sufficiently large, since no large
improvements in prediction performance on the development
partition are observed as the number of particle evaluations
approaches 40 000.

TABLE 2: Prediction performance on the development
partition after feature selection with CSO, for different swarm
sizes nP , number of generations nG, and with or without
early stopping. In all cases, the number of total particle
evaluations is limited to at most nG · nP = 40 000. When
using early stopping, we report results at the generation
in which CSO was terminated. Without early stopping, we
report results at the end of CSO, i. e. when reaching the
maximum number of particle evaluations.

arousal valence
early stopping nP nG early late early late

yes 100 400 0.812 0.769 0.591 0.554
200 200 0.783 0.774 0.601 0.576
300 133 0.775 0.785 0.589 0.556
400 100 0.833 0.784 0.597 0.563

no 100 400 0.859 0.843 0.713 0.675
200 200 0.862 0.844 0.713 0.666
300 133 0.855 0.833 0.711 0.645
400 100 0.853 0.823 0.689 0.627

3.3.3. PCA and Filter-based Feature Selection. Further-
more, we evaluate dimensionality reduction using PCA,
and filter-based feature selection using canonical correlation
analysis. We use WEKA to compute the PCA transformation
separately for each modality on the training partition, and
apply it to the development and test partitions. The trans-
formed features are then ranked by their variance, i. e. by
the amount of variability in the original data they represent.
Since PCA transforms instances to a different feature space,
delay, post-processing filter width, and SVR complexity have
been re-optimised on the development partition (cf. Table 4).

For CCA, we use a Matlab implementation of the CCA
feature selection algorithm presented in [13] to rank the
features of each modality on the training partition. We then
evaluate system performance on the development partition
when using the best k features according to PCA, respectively
CCA. The optimal k on the development partition is then
used to evaluate PCA, respectively CCA, on the test partition
(cf. Table 4).

Finally, we evaluate correlation-based feature selection,
using WEKA to perform both sequential forward selection
and backward elimination with the CFS attribute evaluator
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TABLE 3: Development and test partition scores of the configurations that perform best on the development partition for
each feature selection approach. Performance is measured in terms of concordance correlation coefficient between the
post-processed predictions and the ground truth labels. Additionally, the overall percentage of selected features sF is reported.
We do not show sF for PCA, since the PCA features are different from the original features, and they can not be compared
easily.

Arousal Valence

early fusion late fusion early fusion late fusion
model sF devel test sF devel test sF devel test sF devel test

baseline – 0.742 0.688 – 0.738 0.675 – 0.564 0.539 – 0.522 0.537
PCA – 0.737 0.674 – 0.742 0.674 – 0.531 0.427 – 0.486 0.471
CCA 80.0 0.751 0.689 95.5 0.748 0.670 89.9 0.570 0.536 94.2 0.538 0.534
CFS (forward) 6.8 0.607 0.643 6.8 0.576 0.597 10.8 0.382 0.395 10.8 0.384 0.406
CFS (backward) 33.1 0.694 0.651 33.1 0.621 0.583 17.4 0.410 0.474 17.4 0.415 0.384
CSO 53.6 0.862 0.692 53.2 0.844 0.676 66.0 0.713 0.512 67.6 0.675 0.503
CSO (early stopping) 49.8 0.833 0.690 51.8 0.785 0.682 79.3 0.601 0.510 88.1 0.576 0.537
SFS 16.0 0.874 0.714 22.5 0.870 0.710 23.6 0.756 0.483 17.1 0.745 0.496
SFS (early stopping) 2.5 0.834 0.709 3.6 0.840 0.705 18.2 0.681 0.467 5.6 0.679 0.489

TABLE 4: Results of optimising the number of selected
features k on the development partition for PCA and CCA.
Since PCA transforms instances to a different feature space,
delay D, post-processing filter width W , and SVR complex-
ity C have also been optimised on the development partition
prior to optimising k.

arousal valence
model parameter early late early late

PCA D 3.6 4.0 2.0 2.0
W 2.0 2.0 3.0 1.0
C 5 · 10−3 1 · 10−1 1 · 10−2 1 · 10−6

k 170 169 171 172

CCA k 445 531 500 524

on the training partition. The resulting feature subset is then
used for evaluation on the development, and test partitions.
We have also investigated CFS in conjunction with best-
first search, but observed no substantial improvements in
performance at the cost of higher computation time.

3.4. Results

The results of parameter optimisation on the development
partition for both affective dimensions and fusion models are
given in Table 1. For arousal, early fusion results achieved a
prediction CCC of 0.742 on the development partition, and
0.688 on the test partition. Likewise, early fusion outperforms
late fusion for valence, resulting in a prediction CCC of 0.564
on the development partition, and 0.539 on the test partition.
The largest difference between early and late fusion can be
observed for valence on the development partition, where the
early fusion prediction CCC exceeds late fusion by 0.042.
Apart from that, early and late fusion actually perform rather
similar, with the difference in CCC ranging from 0.002 for
valence on the test partition to 0.013 for arousal on the test
partition.

The strongest development partition scores, and the cor-
responding test set scores for each feature selection approach

are displayed in Table 3. Wrapper-based feature selection
yields consistently good results for arousal prediction, where
all investigated wrapper approaches are able to improve the
prediction CCC over the baseline. Scores on the development
partition range from 0.785 for CSO with early stopping and
late fusion to 0.874 with SFS and early fusion, equivalent to
an improvement between 0.047 and 0.132 over the baseline.
On the test partition, we observe scores between 0.676 for
CSO with late fusion, and 0.714 for SFS with early fusion,
constituting improvements between 0.001 and 0.026 over
the baseline.

PCA, and the filter-based approaches attain lower perfor-
mance on arousal prediction. On the development partition,
performance sometimes even decreases in comparison to the
baseline, with scores between 0.576 for forward CFS with
late fusion, and 0.751 for CCA with early fusion. Thus, the
prediction CCC decreases by as much as 0.162. Only CCA
with both late and early fusion, and PCA with late fusion are
able to outperform the baseline on the development partition,
by up to 0.009. On the test partition, scores range from
0.583 for backward CFS with late fusion to 0.689 for CCA
with early fusion. In fact, the latter configuration is the only
one able to outperform the baseline, with an improvement
of 0.001. The remaining approaches all fall short of the
baseline, decreasing prediction CCC from 0.001 for PCA
with late fusion to 0.092 for backward CFS with late fusion.

On the development partition, the wrapper-based ap-
proaches also perform well for valence prediction. The
prediction CCC ranges from 0.576 for CSO with early
stopping and late fusion to 0.756 for SFS with early fusion.
That is, we achieve improvements between 0.054 and 0.192
over the baseline. However, no approach is able to beat the
baseline on the test partition, with performance ranging from
0.467 for SFS with early stopping and early fusion to 0.537
for CSO with early stopping and late fusion. The former
score equals a performance decrease of 0.070, whereas the
latter matches the baseline for late fusion (but falls short of
the early fusion baseline by 0.002).

Finally, PCA and the filter-based approaches once again
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perform worse than the wrapper-based approaches. The
prediction CCC on the development partition ranges between
0.382 for forward CFS with early fusion, and 0.570 for
CCA with early fusion. Only CCA is able to outperform
the baseline on the development partition, by up to 0.016.
The remaining approaches decrease performance by up to
0.182. No approach was able to improve on the test partition
baseline, where scores range between 0.384 for backward
CFS with late fusion and 0.536 for CCA with early fusion,
i. e. performance decreases between 0.003 and 0.153 in
comparison to the baseline.

3.5. Discussion

First of all, we observe that we have established strong
baselines for both arousal and valence. On arousal, we
achieve test set scores that are comparable to the winner of
the AVEC 2015 challenge [32], despite using a less complex
SVR approach instead of a deep recurrent neural network. On
valence, on the other hand, our test set scores are substantially
lower than those reported in [32], initially suggesting weaker
performance. However, this is due to the fact that we do
not use features representing electro-dermal activity in our
investigation, which have been shown to be important for
valence prediction [4].

3.5.1. Arousal. Sequential forward selection is clearly supe-
rior to the remaining feature selection approaches for arousal
prediction, achieving the best scores on both the development
and the test partition, with just 16 % of the original feature
set (cf. Table 3). Furthermore, when combined with early
stopping, comparably high performance is attained with
only 2.5 % of the original features. This result impressively
demonstrates the number of features in the database which are
redundant or irrelevant for predicting arousal. In particular, as
shown in Figure 2, about half of the features selected by SFS
with early stopping are audio features. This constitutes a very
high emphasis on acoustic information, since audio features
comprise only 18 % of the original feature set. A similarly
high focus on acoustic information for arousal prediction
has been observed in related literature [3], [4]

Competitive swarm optimisation achieves minor improve-
ments on the test partition while selecting roughly half of
the features from each modality. Initially, these results are
surprising insofar as CSO carries out a much more intensive
search than SFS, yet selects larger feature subsets with worse
performance on the test partition. Still, the performance on
the development partition is rather similar for CSO and SFS,
indicating that they have just selected equally feasible optima.
As CSO is guided purely by performance on the development
partition, it is not biased toward selecting small feature sets
like SFS. Therefore, we suspect that local optima with fewer
features have smaller basins of attraction than those with
more features, for which reason we can speculate that CSO
eventually converges at a local optimum representing a larger
feature set.

Correlation-based feature selection, notwithstanding its
consistent selection of small feature sets, achieved inferior

performance compared to the other approaches. This shows
that the score which CFS assigns to feature sets does not
accurately reflect their quality for arousal prediction. For
instance, we found that the 14 features selected by SFS
with early fusion and early stopping are both not maximally
correlated with the ground truth labels, and not minimally
correlated with each other. Therefore, this feature subset
would be suboptimal according to CFS.

Although PCA is unable to outperform the baseline, it still
achieves comparable performance on both the development
and test partitions with substantially fewer features, since
the dimensionality of the feature space is reduced from 556
to 173. The best scores on the development partition are
achieved when using almost all PCA features, but fewer
than 100 features could be used without notable impacts
on performance. Therefore, we still consider PCA a viable
option for dimensionality reduction in this setting.

Finally, CCA results in very large feature sets compared
to the remaining approaches, without substantial improve-
ments over the baseline. The prediction performance on the
development partition rises steadily as more features are
included, until around 350 features are selected. Even this
smaller feature set would still contain more features than any
feature set selected by the other approaches. Furthermore,
CCA selects fewer audio features than features from other
modalities (cf. Figure 2), which is inconsistent with previous
findings on the importance of audio features for arousal
prediction [3], [4].

In summary, there is no clear relation between the number
of selected features and the development partition score
(Pearson, ρ = 0.13), or the test partition score (Pearson, ρ =
0.07). We do not include PCA features in these calculations,
since they reside in a different feature space which can not
be compared to the original feature space easily.

3.5.2. Valence. No feature selection approach is able to
outperform the test partition baseline on valence prediction,
and only few approaches achieve at least comparable perfor-
mance. In particular, only CCA with early and late fusion,
as well as CSO with early stopping and late fusion perform
within 0.01 of the baseline, in terms of prediction CCC. All
of these approaches select large feature sets containing more
than 85 % of the original features. In fact, the number of
selected features is mostly uncorrelated with the development
partition score (Pearson, ρ = 0.17), but it is strongly related
to the test partition score (Pearson, ρ = 0.76). The latter
result indicates that small feature sets generally perform
worse than larger ones on the test partition.

Furthermore, while we observe a high correlation be-
tween the development and test partition scores for arousal
prediction (Pearson, ρ = 0.89), this relation is much weaker
for valence prediction (Pearson, ρ = 0.52). For example,
SFS results in substantially improved performance on the
development partition, but the test partition score actually
decreases. Similar outcomes can be observed for all wrapper-
based approaches. Since early stopping does not resolve this
problem, and SFS in particular selects very small feature
subsets, we are confident that this behaviour is not caused
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Figure 2: Percentage of selected features (y-axis) from the individual modalities (ECG: electrocardiogram, V.App: video
appearance, V.Geo: video geometric) for all feature selection approaches except PCA. The total number of features in each
modality is shown in parentheses after the x-axis label, and the number of selected features from the modalities is shown
above the individual bars. Furthermore, we indicate the performance of the respective approach relative to the baseline in
parentheses above the individual bars. The relative difference is expressed through four categories: approximately equal (≈)
if the difference is less than ±0.01, better (+) if it is more than +0.01, worse (−) if it is less than −0.01, and much worse
(−−) if it is less than −0.05.

by overfitting due to overly intensive search. Nevertheless,
we have not been able to identify a compelling reason why
we observe such behaviour.

Valence predictions is generally a harder task than arousal
prediction, which has been confirmed repeatedly in related
literature, where lower prediction accuracy for valence than
for arousal has been observed [3], [4], [6]. Our results
indicate that in addition to being a harder problem than
arousal prediction, valence prediction requires more features
as well. For valence, on the other hand, prediction perfor-
mance increases gradually as more features are included,
without any sudden jumps. Moreover, past research has
shown that visual information is more important than other
modalities for valence prediction [3], [4]. Thus, since the
majority of features in the AVEC 2015 database represent
visual information, a large fraction of features can be pruned
easily for arousal prediction, but not for valence prediction.

4. Conclusions

In this paper, we have performed an in-depth comparative
study on dimensionality reduction and feature selection
for multimodal continuous emotion prediction. For arousal
prediction, our results demonstrate three things: 1) wrapper-
based feature selection is highly effective, and clearly out-
performs filter-based feature selection and dimensionality
reduction; 2) the vast majority of features in the AVEC 2015
database is irrelevant or redundant for arousal prediction;
3) sequential forward selection, in particular, achieves per-
formance comparable to the current state-of-the art while

using just 2.5 % of the original feature set. For valence
prediction, we have found that feature selection is unable to
improve performance over our baseline, partly due to valence
prediction being more challenging than arousal prediction,
and thus requiring more features. We also plan to utilise
dimensionality reduction in our cross-modal representation
learning research [33], [34].

Based on the results presented in this paper, we suggest
several directions for future research on feature selection in
emotion recognition. First, evolutionary algorithms which
explicitly optimise the feature set size in addition to pre-
diction performance may improve over the competitive
swarm algorithm used in this paper. Second, as there is an
abundant supply of unlabelled audiovisual data, unsupervised
or semi-supervised feature selection methodologies are worth
investigating. Finally, concerning valence prediction, further
research is required to clarify our results, and to identify a
feature selection approach which yields high performance
on unseen data.
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