
Type-Checking AHEAD∗

Axel Rauschmayer, Alexander Knapp, Martin Wirsing
Institut für Informatik

Ludwig-Maximilians-Universität München
{rauschma,knapp,abel,wirsing}@informatik.uni-muenchen.de

November 16, 2003

Abstract

Ubiquitous computing increases the pressure on the software industry to produce ever more and
error-free code. As an answer, generative programming increases the level of abstraction in software
development by describing problems in high-level domain-specific languages and translating these to
executable code. AHEAD (Algebraic Hierarchical Equations for Application Design) is a framework
for generative programming that achieves additional productivity gains by recognizing that in many
areas, we need a family of programs that are very similar. It avoids duplication of work by generating
programs out of a common base of features that can be freely composed. Our contribution is Graft,
a calculus that gives a formal foundation to AHEAD and provides several mechanisms for making
sure that feature combinations are legal and that features in themselves are consistent.

1 Introduction

As manufacturers turn almost every household device into a computer, they increase the pressure on the
software industry to produce ever more robust and bug-free code. Generative programming [Czarnecki
and Eisenecker, 2000] meets the challenge by raising the level of abstraction and translates higher-level
domain-specific languages [van Deursen et al., 2000] (DSLs) into lower-level implementation languages.
AHEAD [Batory et al., 2003ab] is a framework for generative programming that solves several problems
in this area: As a typical software system comprises a mixture of artifacts (written in human language,
programming languages, domain-specific languages etc.), AHEAD manages the synthesis of all of them.
It keeps the artifacts in a tree (which, in the current incarnation of AHEAD is defined by a file system
directory). This approach has the advantage of easily scaling from small to large software systems.
AHEAD realizes additional productivity gains by observing that there are often families of programs to
be created that are very similar. Traditionally, a lot of work is being duplicated here (see the variability
problem in software product line engineering [Jaring and Bosch, 2002]). AHEAD generates a member
of a program family by composing it from a set of features.

The subject of this work is First-Order Graft (short: Graft), a calculus that provides a theoretical
foundation for the current incarnation of AHEAD1. The clear and formal definition of what an AHEAD
feature is allows us to perform a variety of analyses. We can perform intra-checks for features: Is a feature
internally consistent (e.g., do I add the same node twice?), does it fulfill internal semantic constraints,
are existential dependencies between nodes fulfilled? In addition to just checking these conditions,
Graft can also be used as a diagnostic tool: If a condition can still be fulfilled externally, it shows
up in an inferred interface of a feature. This interface permits inter-checks between features: Does a
given combination of features make sense? As before, we check semantic properties, consistency and
dependencies. One interesting aspect of Graft is that the language used for composition is separate
from the language used for defining artifacts. This is a necessity if we are to formalize AHEAD’s support
for multiple kinds of artifacts.

∗Supported by Deutsche Forschungsgemeinschaft (DFG) project WI 841/6-1 “InOpSys”
1Note that at the very core, AHEAD is based on a theoretical model that is more generic than Graft (namely, nested

functions and constants). But this does not currently show in practical applications which are completely describable in
Graft and easier to analyze that way.

1

class Converter {
void celsiusToFahrenheit(int c) {
present("Fahrenheit", ((c * 9) / 5) + 32);

}
void fahrenheitToCelsius(int f) {
present("Celsius", ((f - 32) * 5) / 9);

}
void present(String label, int value) {
System.out.println(label + ": " + value);

} }

Figure 1: The source code of the monolithic version of the converter program. Method
celsiusToFahrenheit takes an integer argument specifying a temperature in degrees Fahrenheit, con-
verts it to degrees Celsius and presents the result on Standard Out using method present. Method
fahrenheitToCelsius performs the same conversation in the opposite direction.

Converter

celsiusTo
Fahrenheit

fahrenheit
ToCelsius

present

Converter

celsiusTo
Fahrenheit

fahrenheit
ToCelsius

Converter

present

Figure 2: The tree of the monolithic version of converter (left) has been split into two features, base
(middle) and presentstdout (right).

The next sections are structured as follows: In Sect. 2, we give a short introduction to AHEAD.
Sect. 3 presents design rules, the current approach to type checking used in AHEAD. AHEAD data
structures and design rules can be encoded in Graft, as shown in Sect. 4. With this foundation, Graft
allows us to perform several analyses (Sect. 5). In Sect. 6 we sketch correctness proofs of some properties
of Graft. We end by mentioning related work (Sect. 7) and by drawing conclusions about present and
future work (Sect. 8).

2 AHEAD

AHEAD stores a software system as a tree and breaks its monolithic structure into features, modules
implementing one specific functionality. Features can then be flexibly composed to generate a whole
family of programs. We’ll demonstrate that process with a small example. The program in Fig. 1,
consisting of a single class, converts temperatures from degrees Celsius to Fahrenheit and vice versa.
Fig. 2 (left) shows this code represented as a tree.

Now suppose we want to provide two alternate ways of presenting the result of the conversion: One
version of the program should output the value on standard out, another one should display a Swing
dialog as a graphical interface. These kinds of requirements are what led to programming with features
and this is therefore a good example of how it can be put to use. The first step is to break up the
monolithic program into two separate features called base and presentstdout. The two resulting trees
are shown in Fig. 2. To get back the original monolithic version, all we need to do is to add feature
presentstdout to the initial feature base. Informally, the algorithm for composition is as follows: We
merge nodes with the same name and add nodes whose name does not yet appear in the original tree.
This process starts at the root node and recursively proceeds to all of its descendants. The root node
can either be viewed as nameless or we look at the names as being attached to the edges instead of the
nodes. This prevents the root node from being a special case in the algorithm. With this preparation,
we can introduce the new feature presentswing for Swing-based presentation. Fig. 3 shows the source

2

class Converter {
void celsiusToFahrenheit(int c, int f) {
present("Fahrenheit", ((c * 9) / 5) + 32);

}
void fahrenheitToCelsius(int f, int c) {
present("Celsius", ((f - 32) * 5) / 9);

} }

(a) Feature base

refines class Converter {
void present(String label, int value) {
System.out.println(label + ": " + value);

} }

(b) Feature presentstdout

refines class Converter {
void present(String label, int value) {
javax.swing.JOptionPane.showMessageDialog(null,

label + ": " + value);
} }

(c) Feature presentswing

Figure 3: The final version of the converter program has three features: Feature base is the foundation
of the programs, features presentstdout and presentswing provide alternate ways of presenting the
result of a conversion. The modifier refines in front of class is AHEAD’s way of indicating that we
add to an existing class.

Converter

celsiusTo
Fahrenheit

fahrenheit
ToCelsius

doc
Converter

present

doc

Figure 4: Features base and presentstdout, with one more kind of artifact in addition to Java source:
documentation, residing in a node separate to the source code branches.

code of the whole software system.
As a final comment, note that in the following, we are only looking at AHEAD software that contains

Java source code. But all our considerations apply just as well to any other artifact kind. Fig. 4 shows
how we could add documentation to our system: Adding a branch for documentation and providing
AHEAD with the means to compose documentation node would enable us to automatically generate
documentation for either the swing or the standard out version of the program. Note that our name-
based algorithm automatically does the right thing and that a composed tree contains one composed
documentation node by the name “doc”.

3

3 Design Rule Checking

Even with only three features, like in our example, there are already many possible combinations, es-
pecially as we always compose a sequence of features. This means that order matters and there are
AHEAD systems in use where the ability to add the same feature several times is very useful. How can
we prevent combinations that don’t make sense? This is where AHEAD uses design rules. Abstractly,
a feature has a set of design rules associated with it. A design rule expresses the demand of the feature
that its environment meet certain criteria and/or specifies the feature’s contribution to the environment.
“Environment” means the predecessors and successors in the feature sequence. Accordingly, design rule
checking propagates properties and checks in two directions: From the first feature to the last and vice
versa. This is similar to propagating inherited and synthesized properties up and down a parse tree in
attribute grammars. One typical design rule is that feature g demands that another feature f has been
previously introduced. This can be encoded as a boolean2 property gIsThere: g sets the property to
true, f performs the check gIsThere = true and this property is propagated first-to-last. The same pat-
tern can be used for ensuring the existence of any kind of resource, be it a class, a method or something
that is completely abstract. It is up to the programmer to give adequate names to properties and to
set and check them correctly. This universality is a useful complement to purely syntactic checks. For
more details on design rules refer to [Batory and Geraci, 1997] and the documentation delivered with
the AHEAD distribution [Batory et al.].

4 Graft: Trees and Design Rules

In this chapter, we introduce Graft and show how we represent AHEAD trees and design in it. The
next chapter shows what kind of analyses are possible with the new representation.

4.1 Representing AHEAD trees in Graft

AHEAD has a slightly asymmetric view of composition: Composing means starting with a base feature
and “applying” features as increments to it. If, for example, we start with base feature b and add
the increments f and g to it, we write g(f(b)). AHEAD alternatively uses the traditional, functional,
composition operator ‘◦’ to express composition. The example becomes g◦f(b) and is evaluated from right
to left. In Graft, we prefer diagrammatic composition with ‘;’ and write (b)f ; g which is evaluated from
left to right. We first show how Graft encodes increments and then get to representing base features.

We have already seen that applying an increment f to a base b is like taking b as a starting point and
then looping over every node in f : If the node (which is identified by its path name) is already present in
b, we combine it with the existing node (a process that is called refinement in AHEAD). Otherwise, this
node is a new addition to b. We have thus encountered two operations that can be performed on a tree:
refining and adding. But two more operations are typically used when manipulating trees: moving and
deleting. In order to be able to freely use and combine any of these four operations, Graft represents
AHEAD increments as a sequence of commands, each one performing an addition, a delete, a move or
a refinement. The node to operate on is given as a path of node names, the commands add and refine
additionally get an argument containing the node (or rather, its data) that is to be added to the original
tree. The last argument of every command is of course the tree that is to be modified. Let’s look at the
add command. It is written as

add p [code] a {d} t

This command contains one additional construct: We want to express that certain nodes in an AHEAD
tree depend on others: If node x depends on node y, node y has to exist whenever node x exists. The
above pattern is to be read as: At the location denoted by path p, add the node given by code (which
depends on another node whose path is d) to the tree t.

To build sequences of commands, we take a set of them, instantiate every argument except the tree
argument and thus get a set of functions mapping trees to trees (this technique is called currying).
Now simple function composition with ‘;’ allows us to combine this set sequentially into one composite

2Here, we only look at boolean properties, while integer values can also be used in design rule checking. Support for
these necessitates only a slight generalization of the mechanisms we’ll present.

4

add Converter [class Converter];
add Converter.celsiusToFahrenheit a {Converter.present}

[void celsiusToFahrenheit(...) {...}];
add Converter.fahrenheitToCelsius a {Converter.present}

[void fahrenheitToCelsius(...) {...}]

(a) Feature base

add Converter.present [void present(...) {...}]

(b) Feature presentstdout. It is not necessary to specify that class Converter is being refined, add handles this
correctly.

add Converter.present [void present(...) {...}]

(c) Feature presentswing.

Figure 5: Our running example encoded in Graft.

function that again maps trees to trees. This makes it obvious that composing increments in Graft
means composing blocks of code.

How about base features then? We would need other commands that create trees instead of just
adding to them. But Graft avoids that by viewing even base features as increments of empty trees.
Accordingly, compositions always implicitly start with the empty tree. We have therefore eliminated the
asymmetry between base features and increments and, in our analyses, can always talk about Graft
programs without the need to ever refer to trees. In Fig. 5 we use command sequences to “implement”
the example AHEAD system from Fig. 3 in Graft.

4.2 Representing Design Rules in Graft

Integrating design rule checking in Graft means that we need to emulate the following aspects of design
rules: first-to-last properties, first-to-last checks, last-to-first properties and last-to-first checks.

The first concept we introduce is that of a state, a set of bindings assigning values to properties. If
a property does not appear at the right side of any of these bindings, we say that its value is undefined.
Graft programs are evaluated first-to-last so that we can implement the first kind of checks by providing
commands to change and check the state. Note that, for the time being, we only support equality in
checks.

set p = v Assigns value v to property p
checknow p = v Checks that property p has value v

The main justification for last-to-first checks is to make sure certain properties (such as the existence of
a resource) hold after everything has been composed, i. e, at the end of a Graft program. We therefore
achieve a major simplification3 of Graft evaluation by reusing the first-to-last state for last-to-first and
only add one new command:

checkfinal p = v Checks that, at the end of the program, prop-
erty p has value v

This means that in order to perform the final checks, we first completely evaluate the Graft program
and then perform the checks against the final “version” of the state. Design rules also have a single
modifier for declaring that a feature only appear once in a sequence. We emulate this construct by
first checking whether a property is defined and then setting it to true. To perform this check with an
equation, we allow the symbol ‘⊥’ denoting “undefined” to appear on the right side:

3This simplification implies that Graft is not a superset of design rules any more, but in usual practical applications,
this is not an issue.

5

checknow baseIsThere = ⊥;
set baseIsThere = true;
checkfinal presentIsThere = true;

(a) Design rules for feature base.

checknow presentIsThere = ⊥;
set presentIsThere = true;
checknow baseIsThere = true;

(b) Features presentstdout and presentswing have the same design rules.

Figure 6: Design rules for the converter program expressed in Graft: Feature base has the following
two demands: It must be single, i. e., it can only appear once. Additionally, one of its successors has
to be a presentation feature, i. e., such a feature must be finally present. Similarly, only one of the
presentation features is allowed and each one needs base to be a predecessor.

checknow p = ⊥ Checks that property p is undefined

With these preparations, we can give some example design rules expressed in Graft (Fig. 6).

5 Graft: Checking

We have already mentioned that we want to perform two kinds of checks: Checks internal to a feature
(intra-checking) and checks between features (inter-checking). What kind of intra-checks do we need?
It would be nice to have the semantic constraints provided by design rules at a local level, too. So
we’ll start with these (in a way, we already have). To keep book of our analysis, we store properties
and their values as a set of bindings called State. And we store final checks in a set Final. Next are
dependencies. By expressing that if one node is present another one must be present as well, we can,
among other things, verify that a Java program is well typed after a modification. Otherwise, we might
accidently remove a method that is invoked by another one and the program would not compile any
more. Dependencies are handled similarly to final checks, we only demand that a node that we ask for
be introduced “somewhere”. If we view a dependency as a link between a source and a target node,
we need to take care of a few special cases: The link disappears if the source is deleted and it must be
updated if either source or target are moved. We therefore extend Final to also include dependent checks
that remember the source of their existence. The last intra-check concerns the internal consistency of
our Graft program: Before an operation can be executed, certain conditions have to be fulfilled. For
example, before we can add a new node, we have to make sure that it isn’t already there. The wrong
sequence of commands can therefore lead to a feature that is internally inconsistent. As we shall see
later, the presence of nodes can also be stored in State and the consistency (or executability) conditions
encoded as checks on State. We also include consistency checks that make sure that we always produce
well-formed trees.

It turns out that the result of our analysis provides a perfect description of a feature’s interface:
The declaration of what a feature exports is obviously to be found in State. Demands on subsequent
features are all those checks in Final that have not yet been fulfilled. If we look closer, we notice that
non-final checks that don’t have a definite answer in State (because there is no binding of the property
being checked, yet) are actually requirements for previous features. Therefore, we collect them in a set
Pre which is the third component of the feature interface. It is interesting to note that for none of these
analyses, we needed the actual node data. That suggests to provide a skeletal Graft program, stripped
of the source code, as public information about a feature. One can then check dependencies, design
rules and consistency before actually performing the composition; the Graft skeleton acts as a type
system. Unfortunately, the feature interface on its own, while it can be used for checking for all other
conflicts, is not sufficient for answering all questions about dependencies: an interface does not tell if a
node a feature depends on can be provided by a predecessor or if it is deleted inside and thus can only

6

be added by a successor. In the future, we might classify these two kinds of dependencies differently in
the interface.

5.1 Semantics of Checking

The result of analyzing a Graft program G is a constraint store that contains pre-constraints Pre that
must be fulfilled before executing G and final constraints Final that must be fulfilled at the end of any
sequence of commands that contains G. During the computation, constraints are always checked against
a current state State that is thus also part of the store.

The analysis comprises the following steps:

1. Translate the Graft program G to a sequence S of commands in an intermediate constraint store
language (CSL) which manipulates the constraint store.

2. Apply S to the empty constraint store.

3. Within the resulting store, the state is used to erase final constraints that are already fulfilled.
This leads to the result of the analysis, a “normalized” constraint store. Due to space constraints,
we do not give the details of this step here.

Note that each one of the steps mentioned above is a partial operation. Inability to perform any one
of them can be seen as a “compilation error”, i. e., the type check has failed.

5.2 Constraint Store Language

We give an overview of concepts relevant to CSL.
Paths: A path p is a sequence of node names separated by the dot operator ‘.’ (which can also be used

for concatenation). Large capital variable names such as X stand for single components. For example,
r.X is a path that starts with the sequence r of node names and has X as the last path component.

Constraint store: A constraint store is a triple (Pre,State,Final) where

• Pre is the set of pre-constraints. These are conditions on properties that must be fulfilled prior
to executing the program under analysis. A pre-constraint can be viewed as a guard which, if it
holds, guarantees correct termination of the program. Pre is encoded as a set of equations, pairs
written as (p = b) where p is a property name and b is a boolean value (either true or false).

• State stores the current state, the values of the properties. If a property is set, it appears as a
pair (p = b) ∈ State. Undefined properties do not appear on the left side of a pair in State. We
sometimes use State as a total function that returns a properties value if it is set and the special
symbol ⊥, otherwise.

• Final is the set of post-constraints that are checked against the final “version” of State. Here we
find conditions that must hold after the termination of a Graft program, such as “make sure that
resource x has been added”. Final generally contains dependent checks, an extension of the pair
construct in Pre. These are encoded as a triple (p = v depby q) that means that the check p = v
depends on the presence of property q. If the check does not depend on any node, we write it as
(p = v depby ⊥).

Checks

ε check: There is one special property, the so-called ε property that has the empty name. Any check
on this property (“ε checks”) always and immediately succeeds. See the definition of add below for an
example where an ε check can occur.

Residuating check: The question mark operation checks that a binding in the state have a certain
value. This operation can only be performed if the check does not contradict a binding in the state. If
there is no corresponding binding then we keep the check as a Pre constraint (the check residuates).

?p = b (Pre,State,Final) =

 (Pre,State,Final) if State(p) = b
(Pre ∪ {(p = b)},State,Final)

if State(p) = ⊥

7

Final check: The same check as above can be performed “finally”, i. e., we have to add it to the final
constraints. The condition means that Final must not become inconsistent by the addition.

final?p = b depby q (Pre,State,Final) =
(Pre,State,Final ∪ {(p = b depby q)})

if 6 ∃x 6= b, r.(p = x depby r) ∈ Final

Immediate check: Then there is one last variety of check, the non-residuating “now” check. It allows
one to find out if a property has a value yet. In order to do that, we introduce the symbol ⊥ to denote
“undefined” and can check for undefinedness with the usual equality operator.

now?p = v (Pre,State,Final) = (Pre,State,Final)
if State(p) = v

Destructive Commands

Change state: The exclamation mark operation changes the state in an imperative manner. No incon-
sistencies can arise, because we overwrite existing bindings.

!p = b′ (Pre,State,Final) =

(Pre, (State \ {(p = b)}) ∪ {(p = b′)},Final)

if b′ 6= b where b = State(p)
(Pre,State,Final)

if b′ = State(p)

Deletion in Final: As final constraints sometimes depend on a node p (are “attached” to it), we have to
provide an operation that deletes these constraints when p is deleted.

final−p (Pre,State,Final) = (Pre,State, {(r = b depby s) ∈ Final | s 6= p})

Renaming: The following operation provides the means to rename a binding. To maintain consistency,
we also have to change references to it in the final constraints.

rename p → q (Pre,State,Final) = (Pre, {(m(r) = b) | (r = b) ∈ State},
{(m(r) = b depby m(s))

| (r = b depby s) ∈ Final})

where m(r) =
{

q if r = p
r otherwise

Child Defaults

So far, we’ve made sure that add always produces well-formed trees. But we cannot make the same
guarantee for delete, because we don’t have yet the means to express the condition “if we delete a node,
it must not have descendants”. Child defaults are properties whose last path component is a wildcard.
They allow us to make universally quantified assertions and checks about nodes. For example, when we
delete a node p we have to check that all children are missing ?p.∗ = false and potentially remember that
as a constraint in Pre. Note that more specific assertions override the default (example: we first add a
node p which guarantees that there are no children and then add one child p.X. Now the child default
is still p.∗ = false, but in addition, we have the assertion p.X = true). We see that inside a Graft
program, child defaults are used by add and delete in a complementary fashion: add asserts that the new
node has no children, delete requires its argument to be a leaf.

Here is how we can extend the constraint store to support child defaults:

• Pre has a new kind of entry (p.∗ = b).

• State also contains child defaults (p.∗ = b). Additionally, we redefine the use of State as a function:

• Final is unchanged, we only support child defaults for pre-checks.

State(p.X) =

 b if (p.X = b) ∈ State
c if (6 ∃(p.X = b) ∈ State) ∧ (p.∗ = c) ∈ State
⊥ otherwise

8

Operations are extended as follows:

• New residuating check: ?p.∗ = b:

?p.∗ = b(Pre,State,Final) =

(Pre,State,Final)

if ∀X.State(p.X) = b
(Pre ∪ {(p.∗ = b)},State,Final)

if ∀X.State(p.X) ∈ {b,⊥}

• Change state: already works correctly for !p = b in all instances: if the set command really
provides new information, it either overrides an existing binding or complements a default with
more specific information. Otherwise, it leaves State untouched. A new variant of the exclamation
mark operation can set defaults: !p.∗ = b clears all settings for children of p.

• Rename: Rename must now change the names of the defaults, too. We omit the details.

5.3 Translating from Graft to the Constraint Store Language

Jadd r.X a {d}K = ?r = true; ?r.X = false; !r.X = true; !r.X.∗ = false
final?d = true depby r.X

Adding a node named X whose parent has the path r means that we check that the parent
exists and that the node itself does not exist. Then we log that r.X now exists, has no
children and that a check for the existence of d depends on it. If the node to be added has
no father, r is empty and ascertaining its existence is an ε check that always succeeds (see
above).

Jrefine p a {d}K = ?p = true
final?d = true depby p

Refinement is similar to adding, but has less side effects. It merges a new node with an
existing one.

Jdelete pK = ?p = true; ?p.∗ = false; !p = false;
final−p

delete performs the usual checks and changes. Before deletion, we have to make sure that
all children (whose path is p.∗) are gone. Additionally, we need to delete dependencies that
have become obsolete by this operation.

Jmove p r.XK = ?p = true; ?p.∗ = false?r = true; ?r.X = false;
rename p → r.X

Moving is much like first deleting and then adding, but renaming the bindings obviates the
need for modifying State and Final. move has an application that is motivated by Bracha’s
Jigsaw [Bracha, 1992]: Refining a class is very similar to subclassing and move provides an
alternative to super() calls from Java that is conceptually much cleaner: If one ever wants
access to a method one overrides (refines), one just moves the old method out of the way and
calls it from the new one. move makes sure that existing references (dependencies) to the old
method are correctly updated.

Jset eK = !e
Jcheck eK = ?e
Jchecknow eK = now?e
Jcheckfinal eK = final?e depby ⊥

Setting and checking translates directly into constraint store language commands.

9

5.4 Example Analysis

How design rule checking works is fairly obvious given the above definitions, we therefore only give an
example of consistency and dependency checks. For illustration, we show ε checks (involving the property
whose name is the empty path) in the example when they first appear. Normally, they always succeed
immediately. We abbreviate property names inside the constraint store as follows: Converter becomes
C, celsiusToFahrenheit c2F, present p, fahrenheitToCelsius f2C. The first example computes the pre and
post-constraints of feature base from Fig. 5(a).

add Converter;
Pre = {ε = true,C = false}
State = {C = true,C.* = false}
Final = ∅

add Converter.celsiusToFahrenheit a {Converter.present};
Pre = {C = false,C.c2F = false}
State = {C = true,C.* = false,C.c2F = true,C.c2F.* = false}
Final = {C.p = true depby C.c2F}

add Converter.fahrenheitToCelsius a {Converter.present}
Pre = {C = false,C.c2F = false,C.f2C = false}
State = {C = true,C.* = false,C.c2F = true,C.c2F.* = false,

C.f2C = true,C.f2C.* = false}
Final = {C.p = true depby C.c2F,C.p = true depby C.f2C}

The last version of Final cannot be further reduced, all of these dependencies are open. Next, we want
an analysis to find out that the composition presentstdout; presentswing (see Fig. 5(b) and 5(c))
fails, because both features add the same method Converter.present.

add Converter.present;
Pre = {C = true,C.p = false}, State = {C.p = true,C.p.* = false}
Final = ∅

add Converter.present
Check ?Converter.present = false fails, as it disagrees with State

6 Theorems

In this chapter, we briefly sketch what theoretical properties of Graft programs and typings can be
proven and how. We first introduce a data structure for trees. It holds the tree data plus the state and
the final constraints that were created during its construction. Then we define how Graft operations
change this data structure (omitted here). Finally, we need to define type relations in order to make
meaningful assertions in our theorems:

• The type of a Graft program f is the constraint store that we have inferred for it: f : (Pre,State,Final)

• Given a tree t and a set Pre of pre-constraints, t has type Pre, written t : Pre, if every constraint
in Pre is fulfilled by the state data in t.

• If we view a State as a special case of pre-constraints, we can define a relation t : State just like in
the previous item.

The following theorem asserts that if a tree t fulfills the pre-constraints of a program f , applying f
to t will terminate and produce a tree whose type is the last state of f .

Theorem 1 (Subject Reduction) Given a tree t and a Graft program f : (Pre,State,Final). If
t : Pre then (t)f : State.

Intuitively, the next theorem says that for any Graft program f : (Pre, State, Final), Final correctly
describes what dependencies that were declared in f have not yet been fulfilled. The meta-function deps
extracts all dependencies that are declared in a program. Set difference C \ State between a set C of
constraints and a state is defined as removing all constraints from C that are fulfilled by State. The
subset relation C ⊂ D between sets of constraints has the obvious definition and ignores the source of a
constraint.

10

Theorem 2 (Correctness of Final) If f : (Pre,State,Final) then deps(f) \ State ⊂ Final.

7 Related Work

A Framework for the Detection and Resolution of Aspect Interactions (DRAI): [Douence et al., 2002]
take an approach to formalizing Aspect-Oriented Programming (AOP, [Kiczales, 2001]) that is similar in
structure to how we formalized AHEAD: They first present a formal model for AOP and then perform
analyses on programs that have either been directly expressed in that model or translated to it. But
this is where the similarities end: DRAI models the dynamic execution of a program. Behavior that
is to be added to the base program is kept separate from it, as a set of aspects. These are expressed
in a special programming language as condition-action rules plus the means for expressing sequential
composition, choice and recursion. Execution of the base program is observed by a monitor and drives
the parallel evaluation of the aspects: Whenever the currently active condition in an aspect matches
the present state of the base program, the action associated with it is executed. That is, the action is
woven into the behavior of the base program. Analysis is only concerned with making sure that only
one of the simultaneously active rules is applicable at a time, leading to deterministic execution, no
matter how many aspects are present. In contrast, Graft formalizes a static approach to composition
that focuses on scalability and support for many artifact kinds (some of whom cannot be executed). At
a fundamental level, though, detection and resolution of conflicts is similar: Both DRAI and Graft
search for operations that contradict each other and provide the means for manually eliminating the
contradiction. Additionally, Graft’s properties and checks permit enforcement of semantic constraints
and dependencies that often cannot be inferred from the syntax and complement conflict prevention.

A Calculus of Module Systems (CMS): There are many module calculi out there, CMS is one of the
most recent and general. It has been inspired by work from Bracha [Bracha, 1992] and Leroy [Leroy,
2000]. CMS is based on the observation of two commonalities between many module calculi: First, the
language for manipulating modules including the inter-module namespace (the module language) and
the actual implementation language (or core language) should be separate. Second, modules should
correspond to compilation units and operators to extra-linguistic tools like a linker. These goals and
the static view of modules are similar to Graft. Checking in CMS depends on a module interface that
describes imports and exports. These correspond to Graft’s consistency constraints and dependencies
on the one hand and to the State construct on the other hand, which are more flexible. Resolving
dependencies in CMS resembles how it is done in Graft: A sum operator combines two modules, a
freeze operator performs the actual dependency resolution. There are also marked differences: The focus
of CMS is theoretic, it is able to encode the Abadi-Cardelli object calculus [Abadi and Cardelli, 1996]
and lambda calculus; Graft grew out of the desire to perform checking for AHEAD. The CMS way of
composition is algebraic, Graft’s ideas lean towards tree transformation and better suit the needs of
generative programming (for example, CMS can only perform selection of sub-components on concrete
modules, i. e. modules where all input components have been resolved). Finally, CMS is targeted at
programming languages, while Graft needs to support many artifact kinds. CMS does not have an
equivalent to design rules, either.

Evolution Contracts: Evolution contracts [Mens and D’Hondt, 2000] provide a formal foundation
for automated software evolution, especially for applying and propagating changes to software systems.
A central focus is on detecting evolution conflicts where either a change violates consistency rules or
aggregated changes are incompatible. In order to support the various kinds of artifacts that arise at
different steps of a software development process, evolution contracts are defined as an extension to the
UML meta-model. Changes are applied in a stepwise fashion through evolution contracts, rules containing
a provider clause that describes the nature of the element to be modified and a modifier clause specifying
what changes are to be made. The possible changes are classified as the contract types called Addition,
Removal, Connection and Disconnection. The function of the first two is obvious, the latter to add an
remove relationships between model elements. Evolution contracts (and the artifacts to be evolved) are
expressed in formalisms such as specialisation interfaces [Lamping, 1993], encoded as UML. As these
contain, among other things, information about interdependencies between methods, various complicated
conflict analyses can be performed. In order to scale up, evolution contracts employ techniques that are
similar to AHEAD’s (and are, in fact, general principles often used in computer science): Data is nested
using the UML Package mechanism. Contracts operate at different levels of nesting (i. e. abstraction)

11

and are grouped to sequences. Finally, it is possible to define new contracts using UML meta-modeling.
To summarize, evolution contracts are a very powerful formalism for supporting software evolution and
detecting conflicts while doing so. The comprehensiveness of this approach is impressive [Mens, 2001],
but its complexity can be daunting and evolution and analysis steps must often be defined and applied
by hand. Contrarily, Graft keeps things simple, custom semantic constraints are easily implemented
using design rule checks and the analysis is performed automatically. The focus of evolution contracts
on software evolution is also slightly different from Graft’s focus on generative programming.

Design Rule Checking: Design rule checking has already been treated in depth above. See [Batory
and Geraci, 1997] for additional background on it.

8 Conclusions and Future Research

Acknowledgements: We thank Don Batory for many helpful comments.
We have presented Graft, a calculus that provides a theoretical foundation for the generator frame-

work AHEAD. Our main contributions are: A clear and concise definition of the semantics of AHEAD,
automated analyses for intra- and inter-checking of features and automatic inference of an interface
describing what a feature needs and what it offers. In order to fulfill the requirements of real-world ap-
plications, our approach is also independent of the artifact language being used and has a delete operator
whose non-monotonicity was an added challenge for the analyses.

Future research will enrich the Graft language with further features such as lambda abstraction,
the ability to reflect on the contents of a node, loops, conditionals etc. Dependencies are also just a
small first step in describing various relationships between and properties of artifacts. In this field there
are many ideas from other works that are applicable, among others: Behavioral interface specification
[Burdy et al., 2003], statechart diagrams [Prehofer, 2003], specialisation interfaces [Lamping, 1993] and
refinement calculus [Büchi and Sekerinski, 1997]. Typing is another issue: Is the current mechanism
enough or would we want more than just constraints for typing a Graft program? Tree types similar to
XML Schema [xml, 2001] would also probably be a useful addition. Easy and logical minor enhancements
include support for property types other than boolean and more checks than just equality (both things
are already present in design rule checking). Lastly, we have implemented a previous version of Graft
in Java and plan to update it to the status quo.

References

XML Schema Part 0: Primer. W3C Recommendation, May 2001. URL http://www.w3.org/TR/
xmlschema-0.

Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science. Springer,
1996.

Don Batory et al. Hompage of the AHEAD Tool Suite. URL http://www.cs.utexas.edu/users/
schwartz/ATS.html.

Don Batory and Bart J. Geraci. Composition Validation and Subjectivity in GenVoca Generators. IEEE
Trans. Software Engineering, 23(2):67–82, 1997.

Don Batory, Jack Sarvela, and Axel Rauschmayer. Scaling Step-Wise Refinement. In Proc. 25th IEEE
Int. Conf. Software Engineering (ICSE). IEEE, 2003a.

Don Batory, Jack Sarvela, and Axel Rauschmayer. Scaling Step-Wise Refinement. Submitted to journal
publication, 2003b.

Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance. PhD
thesis, Department of Comp. Sci., Univ. of Utah, 1992.

Martin Büchi and Emil Sekerinski. Formal Methods for Component Software: The Refinement Cal-
culus Perspective. In Proc. 2nd Workshop on Component-Oriented Programming (WCOP) held in
conjunction with ECOOP, Jyväskylä, June 1997.

12

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-0
http://www.cs.utexas.edu/users/schwartz/ATS.html
http://www.cs.utexas.edu/users/schwartz/ATS.html

Lilian Burdy et al. An overview of JML tools and applications. In Thomas Arts and Wan Fokkink, editors,
8th International Workshop on Formal Methods for Industrial Critical Systems (FMICS), volume 80
of Electronic Notes in Theoretical Computer Science, pages 73–89. Elsevier, June 2003.

Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods, Tools, and Applications.
Addison Wesley, 2000.

Rémi Douence, Pascal Fradet, and Mario Südholt. A Framework for the Detection and Resolution of
Aspect Interactions. In Don S. Batory, Charles Consel, and Walid Taha, editors, Proc. 1st Conf.
Generative Programming and Component Engineering (GPCE), volume 2487 of Lect. Notes Comp.
Sci., pages 173–188, 2002.

Michel Jaring and Jan Bosch. Representing Variability in Software Product Lines: A Case Study. In
Proc. 2nd International Conf. on Software Product Lines (SPLC), Lecture Notes in Computer Science,
pages 15–36. Springer, 2002.

Gregor Kiczales. Getting started with aspectj. Communications of the ACM, 44(10):59–65, October
2001.

John Lamping. Typing the Specialisation Interface. In Proc. 8th Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), volume 28 of ACM SIGPLAN Notices, pages 201–
214. ACM Press, 1993.

Xavier Leroy. A Modular Module System. Journal of Functional Programming, 10(3):269–303, May
2000.

Tom Mens. A Formal Foundation for Object-Oriented Software Evolution. In Proc. Int. Conf. Software
Maintenance (ICSM), pages 549–552. IEEE, 2001.

Tom Mens and Theo D’Hondt. Automating Support for Software Evolution in UML. Automated Software
Engineering, 7(1):39–59, 2000.

Christian Prehofer. Plug-and-Play Composition of Features and Feature Interactions with Statechart
Diagrams. 7th International Workshop on Feature Interactions in Telecommunications and Software
Systems, Ottawa, 2003.

Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages: An Annotated Bibliography.
ACM SIGPLAN Notices, 35(6):26–36, June 2000.

13

https://www.researchgate.net/publication/228797327

	Introduction
	AHEAD
	Design Rule Checking
	Graft: Trees and Design Rules
	Representing AHEAD trees in Graft
	Representing Design Rules in Graft

	Graft: Checking
	Semantics of Checking
	Constraint Store Language
	Translating from Graft to the Constraint Store Language
	Example Analysis

	Theorems
	Related Work
	Conclusions and Future Research

