
The epkml Language∗

Alexander Knapp, Nora Koch
Ludwig–Maximilians–Universität München

{knapp,kochn}@informatik.uni-muenchen.de
Luis Mandel †

Forschungsinstitut für Angewandte Software-Technologie (FAST)
mandel@fast.de

28th November 1996

Abstract

Electronic Product Catalogues (EPCs) have reached the market and are gradually dis-
placing traditional paper catalogues. EPCs usually comprise multimedia presentations, lots
of special effects, video, audio, and images, besides the products being presented, their
number ranging from a dozen to tens of thousands. For the specification of such catalogues,
the language epkml is presented. The language is html-like, provides primitives for the
construction of product families, integrates templates for the presentation of products of the
same family, and allows the definition of variables as well as the definition of macros. It
is window oriented, embeds SQL for database access, permits the connection with external
objects, and has network capability.

Keywords: Electronic Product Catalogues, Multimedia, Mark-Up Language.

Contents
Introduction 3

1 The EPK-fix Project 4
1.1 Electronic Product Catalogues . 4
1.2 The Aim of the Project . 4
1.3 The Architecture of the EPK-fix System . 5

2 Development of the epkml Language 6
2.1 Requirements Analysis . 6
2.2 The EPC framework . 8

3 The Syntax of epkml 20
3.1 Characteristics of the epkml Language . 20
3.2 Elements of the Language . 22
3.3 The Structure of an epkml Catalogue . 27

4 The Semantics of epkml 29
4.1 The Model . 29
4.2 The Rules . 31

5 Conclusions and Further Steps 34

Acknowledgments 35

References 35

A Example 37

B Document Type Definition 43

2

Introduction
With the expansion of the World Wide Web online services and the distribution of information
on CD-ROM, modern electronic support of advertising and sale of goods becomes a key factor
in the marketing strategy of many companies. The technologies used to develop and deliver
multimedia systems are still far from being easy and efficient and they show many weaknesses.

Due to the significant degree of difficulty in developing, producing and maintaining sophisticated
multimedia software, it is necessary to get the job done by large multi-disciplinary teams of pro-
grammers, designers, media-experts, and quality control specialists. The answer to this problem
lies partly in putting easy-to-use tools in the hands of a small team of software professionals and
marketing experts which together would:

• help to determine the requirements,

• reduce the time to design the product,

• increment the quality testing speed,

• reduce the costs of producing and updating multimedia systems,

• simplify the maintenance of the information.

Informations systems, which focus their attention in multimedia presentation of products or
services with functions that allow searching, selection, and ordering are called electronic product
catalogues (EPCs). In this paper we will concentrate our attention only on this sort of information
systems: EPCs on CD-ROM. All the same we are sure that most of our work will be useful for
other information systems.

We think that one main issue of the problem is a connecting basic formalism, EPCs are to be
developed in. epkml is a specification language for EPCs, that allows a declarative description
of them. It is part of the EPK-fix project, that aims to develop methods and tools to support
the whole life cycle of electronic product catalogues on CD-ROM. These tools will support the
requirement analysis, the design of the EPCs, the realization of special services and an extensive
automatic validation of the resulting catalogue. The project is carried out together with one
industrial partner and three universities.

The language epkml was defined as an instance of the Standard Generalized Markup Language
(sgml), based on Hypertext Markup Language (html) but enlarged with special features needed
for the description of EPCs. epkml is window oriented and allows dynamic generation of
layout elements. It includes templates, primitives for the control flow, variable and macro
definition, among other introduced elements. The definition of the specification language was
based on an object-oriented framework for EPCs, which describes the components of electronic
product catalogues and the interaction among them. The determination of all the relevant EPC’s
components was done during the requirement analysis phase.

3

The first chapter presents a brief description of electronic product catalogues and states the goal
of the EPK-fix project and describes the architecture of the system. The second chapter details the
epkml language development process including the requirements analysis and the construction
of the framework. Chapter three describes the characteristics and the syntax of the language
epkml. The semantics is defined in the fourth chapter and chapter five delineates conclusions
and further steps in the development and implementation. An example is given in the first
appendix and the complete Document Type Definition (DTD) of the language in the second.

1 The EPK-fix Project
EPK-fix is a project belonging to the software engineering promotion program of the German
Ministry of Education, Science, Research and Technology (BMBF). The task of this program is
the research and the test of new technologies for the production of application software. The
target of the EPK-fix project is to define a specification language and to develop a set of tools for
the easy and low-cost production of electronic product catalogues.

1.1 Electronic Product Catalogues
Electronic Product Catalogues are computer controlled information systems with an important
multimedia (especially visual) product presentation, navigation facilities and almost always
equipped with a shopping bag administration feature. They are an inexpensive alternative to
paper catalogues, but a high quality design is still related to enormous costs, because there are no
appropriate tools available.
EPC developing tools would be welcome in every company or institution that wants to present its
products and/or services. The catalogue design and development would be done by a teamwork
of marketing experts, graphic designers, and programmers. Marketing people usually belong to
the enterprise, the others may be independent catalogue developers.
In each case there are different groups or teams of people involved in the EPC business. First
of all there is the person or group who makes the decision to go into the market with such a
multimedia presentation for potential customers. We call them catalogue provider. They or their
marketing people describe their wishes to the catalogue developer, who may design and produce
it by himself or require the assistance of software experts. EPCs are designed to be used by
customers or users, who are interested in the products or services that are being offered in the
catalogue (we will call them users or end-users).

1.2 The Aim of the Project
The goal of the EPK-fix project, as already said, is the development of methods and a collection
of integrated tools for efficient specification, production, and validation of EPCs.
The project is part of a promotion program supported by the BMBF for software technology
development in economy, science and engineering. Software users cooperate with software
developers in each project, achieving better know-how transfer.

4

The EPK-fix project partners are:

• Mediatec Private Limited Company for Multimedia Solutions,

• Knowledge Acquisition Research Group of the Bavarian Center for Knowledge-Based
Systems (FORWISS),

• Programming Languages and Compilers Unit of the Department of Computer Science of
the Technical University Darmstadt,

• Programming and Software Technology Unit of the Institute of Computer Science of the
Ludwig-Maximilians-University Munich,

• Chair for Compiler Construction of the Institute for Software Technique I, Department of
Computer Science of the Dresden University of Technology.

The methodologies and specific tools support the complete life cycle of EPCs starting with the
catalogue providers requirements, continuing with the catalogue design up to the functional tests.
These tools must be easy to use, reduce the amount of EPC development time and permit a
low-cost production of catalogues. These conditions will be a prerequisite for the use of the
EPK-fix system especially in small and medium size organizations.

1.3 The Architecture of the EPK-fix System
The EPK-fix system components comprise a formal description language for electronic product
catalogues (epkml) and the following four tools: the RequirementsAnalysisASSIstant (RASSI),
the Specification ASSIstant (SASSI), the Generation ASSIstant (GASSI) and the Testing ASSIs-
tant (TASSI).

• epkml is a specification language that makes the description of the static and dynamic
aspects of the electronic product catalogue possible.

• RASSI supports the informal recording of information (text, images, video) that result at
the requirements analysis stage based on structured interviews. The catalogue provider
expresses his desires for the catalogue to be designed during these interviews.

• SASSI is responsible for the EPC design based on the results of the RASSI tool converting
them in a catalogue specification in epkml. Efficient and powerful editors that assist the
catalogue developer are part of this component.

• GASSI makes use of the EPC specification, that was generated by SASSI, and translates
the epkml description into a general programming language, implementing this way the
electronic product catalogue.

• TASSI realizes static tests on the catalogue description in epkml and a dynamic validation
on the EPC generated by GASSI, using for that purpose especially prepared test data.

5

2 Development of the epkml Language
In this section we describe the different steps we followed to develop the language. First of all an
exhaustive requirements analysis was made to determine the general characteristics of catalogues
and the features needed in the design of EPCs. A brief outline of our “Catalogues on CD-ROM:
State of the Art” [KM96] is given. We developed a framework for the EPC components; this
object-oriented view served as a careful description of the EPC elements and their attributes and
led us to the next and final step: the definition of the specification language epkml. (See chapter
3 and chapter 4.)

2.1 Requirements Analysis
The analysis of the EPCs existing on the market demonstrates that they go much further than
paper catalogues with cross references. They offer services like search features, demos to show
end-users how to use the catalogue, enquiries through telephone communication and fax, or online
ordering. Additionally, developers need features that allow an easy and low-cost production of
standard catalogues but that are on the other hand, flexible enough to design more sophisticated
ones. Maintenance and proof of correctness are also important subjects to be considered.

We observed that working with an electronic product catalogue can be divided into five different
steps:

• Installation.
In this initial step the access component of the EPC is installed onto the computer, config-
uring it to match multimedia hardware.

• Presentation.
The user is presented with publicity messages about the company and its offerings and
perhaps a demo of navigation facilities through the catalogue. During this phase the
potential customer is a passive user, who is shown how the catalogue works other than in
the next steps where he interacts with it.

• Search.
Here the end-user enters the selecting criteria according to which the EPC then locates the
matching entries.

• Selection.
Alternating with the previous step the desired products are marked, thus creating the order
list.

• Order. The list created is formatted and forwarded to the service provider or product
vendor.

6

• good implementability,

• good validability,

• easiness to be learned.

As another conclusion of our analysis we grouped the EPC functional requirements to be consid-
ered in the design of the specification language, as follows:

• Static requirements.
These mean the existence of layout elements in the language, such as window, frame,
button, check-box, pull-down menu, slider, text, paragraph, heading, listing etc.

• Dynamic requirements.
This group includes every interactive situation, such as starting or stopping an animation or
a video, navigating by clicking on buttons, scrolling in a browser, selecting help functions,
sending an order, etc.

• Data requirements.
These are primarily products, companies, and customer information, help text or help
windows, navigation sequences, orders, and multilingual text for the pages. All this
multimedia information has to be stored in files or databases.

To document the requirements of the languageepkml in detail,we have choose an object-oriented
approach, that is the development of an application framework using techniques as described in
[Dav90], [Pfl91], and [RBP+91].

2.2 The EPC framework
An EPC framework is a set of cooperating classes that make up a reusable design for an EPC
specification language.
The following steps were performed in constructing our framework: identification of abstract and
concrete classes, definition of attributes, identification of associations and aggregations between
objects, choice of methods that reflect their behaviour, organization and simplification of the
model using inheritance, iteration to refine the framework, grouping classes into components or
modules. This steps are suggested by [RBP+91] for the Object Modeling Technique (OMT). A
good overview on object-oriented methods can be found in [Bal95].
The resulting interacting components, observed in every EPC are: structure, layout, direction,
product database, and services.
The selection of the word direction needs a few more words: the choice follows the idea of
directing a film. The contemplation of a catalogue can be compared to the action of seeing a
movie. The viewer of the movie has no chance to modify the sequence of the scenes while the
catalogue user develops his own screenplay making use of the navigation facilities. This concept
is supported by authoring tools like Director from Macromedia [Mac95].

8

• The structure is the skeleton of the catalogue; it comprises a graph or hierarchy of themes
and pages and the navigation between them to guide the user through the catalogue.

• The layout is the static description of frames, windows and their contents.

• The direction describes the dynamic aspect. We can distinguish between macro-direction
for the navigation through the catalogue and micro-direction for the activities within a
frame or window.

• The product database component supports all the information about offers, in such a way
that it can easily be searched, exchanged, and maintained.

• The services add some comfort to the EPC allowing for example the administration of
orders, the user registration, the access to help functions, online communications, and the
catalogue navigation.

It is beyond the scope of this paper to describe all classes of the EPC framework, in every section
only a brief description of some relevant classes and their variables and methods are given. A
detailed description can be found in the report of the EPK-fix project [KKMW96]. For the
graphical representation we have chosen the OMT notation. Examples of part of the components
are given.
We use a java-like syntax to describe each class of the framework, its instance variables, and
the methods which define its behaviour. For more details about java see [GM95], [vHSS96],
[Fla96], [AG96]. In the next sections names of classes, attributes and methods belonging to the
framework are printed in typewriter font.

2.2.1 The Catalogue Structure

A catalogue consists of a set of themes, databases, a configuration, and the direction, that acts as
interface between them. A theme is nothing else than a view of the database grouping products
under some aspects. Different theme hierarchies conform different views of the same database
which are not restricted to conform a partition of it, i.e., a given product can appear in two
different hierarchies. Themes additionally build a navigation structure to allow the jump from
one theme to another.
The catalogue’s structure is organized in Themes and they again may structured in Themes and
Themes may be contain one or more pages, we called them VirtualPages. The aggregation
relation of these classes can be seen in figure 2. Both are classes that inherit from the abstract
class Structure, which has only a grouping function and for that reason is not included in
figure 2. The abstract classes Layout, Direction, and Database mentioned in the figure
2 together with classes that inherit from them are described in the following sections.
The class Catalogue has a method start(), which calls the initialization process of Con-
figuration, starts the first process and the first theme. Configuration is responsible
for the installation process. The method start() of Theme starts the first process and the
first virtual page and the method start() of VirtualPage awakes the first process and the
drawing of the layout elements of the first page.

9

Catalogue

Theme Direction

VirtualPage

Layout

1+

1+

1+

Database

Figure 2: The catalogue structure

class Catalogue extends Object
{
private String name;
private String version;
private String author;
private String copyright;
private List<Theme> contents;
private List<Database> data;
private List<Thread> direction;
private Configuration configuration;
public Catalogue(String name, String version,

String author, String copyright,
List<Theme> contents, List<Database> data,
List<Direction> direction);

public start();
}

10

class Theme extends Structure
{
private String name;
private List<Theme> subthemes;
private List<VirtualPage> pages;
private List<Thread> direction;
public Theme(String name, List<Theme> subthemes,

List<VirtualPage> pages, List<Thread> direction);
public start();

}

class VirtualPage extends Structure
{
private String name;
private List<Layout> layout;
private List<Thread> direction;
public VirtualPage(String name, List<Layout> layout,

List<Thread> direction);
public start();

}

2.2.2 Layout

Layout elements are grouped into other layout elements and these can again be grouped into
frames and so on. The inheritance diagram of most of the layout classes is shown in figure 3.
Each frame has a border (padding) defined as the distance from the content to the frame and
which is considered part of the object. The elements are placed in relative form, or if coordinates
are given, the position will be absolute. Other important attributes that inherit every layout
object from the Layout class are layer, size, margin, visible, and display. Margin
is the distance to the surrounding objects, which differs from padding because it does not belong
to the object. If visible is false the object will not be seen, but it has already an assigned
position. The method draw is responsible for the representation of the object on the screen.

abstract class Layout extends Object
{
private Boolean visible;
private Integer layer;
private Position position;
private Extension size;
private Padding padding;
private Padding margin;
private UserMode usermode;
private Display display;
. . .

public draw();
}

11

Layout

Multimedia

Image

Itemize

Keyboard
Handler

Mouse
HandlerPlayer

Listing

Enumerate

Handler

VideoRecorder

FlowBox

Frame

Window

CheckBox

SlideShow

Text

Video

PopUpMenu

Tab.Entry
Tab.Row

Tabular

Browser
Button

Input

Paragraph

Heading

Scrollable
Frame

Figure 3: Diagram of some layout components

Many classes inherit from class Layout, redefining the method draw if necessary and adding
specific variables. We will mention here only those we think are the most significant.
Class Frame serves to group layout elements allowing the definition of a background. Variables
alignment and distribute are set to arrange elements in a different manner in the frame.
The class ScrollableFrame adds an horizontal and a vertical slider to the frame and methods
to handle them. Windows are frames with the capability to be moved within the screen, to change
their size, to be reduced to an icon, and to be closed with the variables moveable, sizeable,

12

iconizable, and closeable respectively.

class Window extends ScrollableFrame
{
private Layout title;
private Image icon;
private Button iconizable;
private Button closeable;
private Button sizeable;
private Boolean moveable;
private Extension minsize;
private Extension maxsize;
public Window(List<Layout> contents, Layout title, Image icon,

Button iconizable, Button closeable,
Button sizeable, Boolean moveable,
Extension minsize, Extension maxsize,
Slider horizontalslider, Slider verticalslider);

. . .

public moveWindow();
public resizeWindow();
public fullSizeWindow();
public iconizeWindow();
public hideWindow();

}

The class FlowBox allows text flow horizontally around layout elements.
For objects of the class Text the usual features are offered: selection of a font, fontsize, style and
colour for them. The text itself is stored in source, which together with the method change-
Language makes it possible to support multilingual catalogues. Classes Paragraph and
Headings inherit from class Text. Paragraph includes attribute indent for indentation
and baselineSkip for the separation between lines. Heading has a leftMargin and a
number to be added to the text and a style for the same.
Classes for the definition of lists and tables are also part of the layout component of the frame-
work. Classes Listing, Enumerate, and Itemize are lists, which differ only in the
symbols that precede the text. The class Tabular together with the classes TabularRow and
TabularEntry permit the creation of tables.
Multimedia elements are described in the classes Video, Image, and SlideShow, which are
subclasses from the abstract class Multimedia.
Very important layout elements are buttons, because they are indispensable by laying out the
navigation through the EPC. A Button can be not clickable. Methods enable and disable
allow the status to be changed.

class Button extends GroupLayout, MouseHandler
{
private List<Layout> contentsdisabled;
private List<Layout> contentsnotclicked;
private List<Layout> contentsclicked;
private Integer default;
public Button(List<Layout> contentsdisabled,

13

List<Layout> contentsnotclicked,
List<Layout> contentsclicked,
Integer default);

. . .

public enable();
public disable();

}

Three different contents for the Button can be defined with contentsclicked, con-
tentsnotclicked, and contentsdisabled.
The class GroupLayout is not represented in figure 3 for simplicity reasons, grouping is the
only purpose of this abstract class. Other interactive classes that inherit from class Layout
are the well-known: Browser, PopUpMenu, CheckBox, RadioButton, Slider, and
PullDownMenu (the last three are not included in figure 3, they can be drawn below checkbox).
They inherit as well from the class MouseHandler.

2.2.3 Direction

The dynamic direction is defined separately from the static layout. This separation is got over by
the use of multiple inheritance.
Independent and parallel threads communicate through events and are synchronized with clocks
are the basic direction objects. There are two conditions for the implementation of this direction
model: the existence of a background process, the event manager, and a system clock with the
necessary precision.
From the abstract class Direction the classes Clock, Event, and Thread inherit the
variables usermodus, and limit (see figure 4). The first specifies the users permissions and
the second provides boundaries for the number of active processes, events, and clocks.

abstract class Direction extends Object
{
private UserMode usermode;
private Integer limit;
public setUserMode(UserMode usermode);
public UserMode getUserMode();
public setLimit(Integer limit);
public Integer getLimit();

}

With the help of Clock events can be synchronized over the time. Timer and Period-
icalTimer have additionally alarm and periodical alarm functionality respectively. Pro-
cesses are informed through events of any change in the actual state. An abstract class
Event resumes the characteristics of the different type of events. These are FocusEv-
ent, ClockEvent,MouseEvent, ActionEvent, KeyboardEvent, and Interac-
tionEvent. Some of these classes have subclasses that describe accurately what happens
when the mouse or keyboard key is up or down or the effect of selecting an object with the mouse.

14

Direction

Clock

PeriodicalTimer

Timer

Audio

TimedThread

Animation

Demo

Handler

MouseHandler

KeyboardHandler

FocusHandler

Transition

ClockHandler

Event

Navigation
Manager

Thread

MouseEvent

ActionEvent

KeyboardEvent

InteractionEvent

ClockEvent

FocusEvent

Player

Figure 4: Some classes from the component direction

abstract class Event extends Direction
{
private Time stamp;
public setStamp(Time stamp);
public Time getStamp();

15

public Boolean signal();
public Boolean asignal();

}

For the class Thread there is defined a variable priority and a list of instances of subclasses
of Event which is interested in that kind of processes. If an event matches the interest of a
thread, the method handler of the process is called and an event of lower priority may be
interrupted.

class Thread extends Direction
{
private Integer priority;
private PriorityList<Event> interests;
public Thread();
public Thread(Integer priority, PriorityList<Event> interests);
public Boolean start();
public Boolean stop();
public run();
public Boolean suspend();
public Boolean resume();
public Boolean kill();
public Boolean yield();
public Boolean join(Time wait);
public Boolean handler(Event event);
public setPriority(Integer Priority);
public Integer getPriority();
public setInterests(PriorityList<Event> interests);
public PriorityList<Event> getInterests();

}

We defined three subclasses for Thread, there are Handler, NavigationManager, and
TimedThread, a brief description is given below. MouseHandler, FocusHandler,
ClockHandler, and KeyboardHandler are subclasses of the class Handler and they
allow through multiple inheritance the easy connection of the layout with the direction. For
example, the specification of the class KeyboardHandler is as follows:

class KeyboardHandler extends Handler
{
public onKeyDown(KeyboardEvent event);
public onKeyUp(KeyboardEvent event);

}

The class NavigationManager is defined to control the catalogue navigation. Therefore it
includes a stack of virtual pages and a variable actual to register the visited and the actual
page. Pages can be incorporated in a bookmarks list. The methods back, next, bookmark,
and unbookmark have been defined to administrate these lists of pages.

class NavigationManager extends Thread
{
private List<VirtualPage> stack;
private VirtualPage actual;

16

private List<VirtualPage> bookmarks;
public NavigationManager();
public VirtualPage back();
public VirtualPage next();
public register(VirtualPage obj);
public skip();
public bookmark(VirtualPage obj);
public unbookmark(VirtualPage obj);
public List<VirtualPage> getHistory();
public List<VirtualPage> getBookmarks();

}

To model uniform synchorized events the class TimeThread is provided with a clock. To
control different interactive multimedia elements the following classes are available: Audio,
Animation, Demo, and Transition. Their general behaviour is summarized in the class
Player, that inherits from TimedThread.

abstract class Player extends TimedThread
{
private List<Marker> markers;
public play();
public halt();
public reverse();
public forward(Time time);
public rewind(Time time);
public goto(Marker marker);
public setMarkers(List<Marker> markers);
public List<Marker> getMarkers();

}

2.2.4 Database

Information about the products, the orders, the company, and about the EPC structure must be
stored to allow the catalogue construction, visualization, and navigation. (No graphic represen-
tation is included here.)
The abstract class Database describes their general properties and the class DbObject the
properties of the database entries. At the moment we restricted us to relational databases. The
catalogue provider will normally own a product database, which in most of the cases will be
reorganized by the developer to obtain an adequate product hierarchy, independent from the
layout and the navigation.
Products can be grouped in product groups and these again in groups. To describe these hierarchies
the classes Product and ProductGroup are provided. Each product is characterized only by
a number, a name, a list of properties, a description, and a price. Every property
that depends on the nature of the product can be defined separately and has a name and a
contents.

17

Class Order is defined to allow the storage of products that the end-user marks or selects to be
part of the shopping bag and then decided to order. Products that had already been ordered in
previous catalogue sessions by the same user can also be located.

class Order extends DbObject
{
private String number;
private User user;
private Date date;
private Product product;
private Integer quantity;
private Boolean marked;
public Order(Date date, User user, Product product,

Integer quantity, Boolean marked);
public Order(String number, User user, Product product,

Integer quantity, Boolean marked);
. . .

}

Class Help offers pages and keywords to assist the end-user. The methods show and hide
permit the visualization or the hiding of help pages related to a keyword.
Methods of the class Company will manage the information for the general presentation of the
company and maybe the presentation of the catalogue itself, showing facilities and advantages.
To make navigation possible information about every virtual page that has been visited will be
stored with the assistance of a class Dialogue. Catalogue personalization is achieved by class
User, which has variables and methods to register and retrieve all data that identify the end-user.

2.2.5 Services

This group of classes adds some comfort and is a great help for the catalogue developer, who
can incorporate these special catalogue features without additional effort. We designed standard
forms for situations that require user input. Their description can be found in the following classes:
RegistrationForm which is a template for the input fields, with it the end-user can achieve
the catalogue personalization, SearchForm for special queries to the database, HelpForm for
assistance by the catalogue use, and QuestionForm if the provider is interested in the users
feedback. (See figure 5.)
The shopping bag functionality is supported by the class ShoppingBag, which allows to add
products to the list, delete products, change the quantity to order, and compute and store the total
amount of the selected products.

class SearchForm extends Window, KeyboardHandler
{
private PopUpMenu index;
private Browser show;
private OKButton ok;
private Backbutton back;
private Helpbutton help;
public SearchForm(List<Layout> contents, PopUpMenu index,

18

Browser show, OKButton ok,
BackButton back, HelpButton help);

}

class ShoppingBag extends Window
{
private MultipleBrowser orders;
private Text total;
private OKButton ok;
private CancelButton cancel;

Table of Contents

Presentation

ShoppingBag

Window

QuestionForm

HelpForm

SearchForm

RegistrationForm

Mouse
Handler

Keyboard
Handler

Handler

HelpButton

CancelButton

OrderButton

ResetButton

OKButton

Button

DemoButton

BackButton

Layout

Figure 5: Services

19

private HelpButton help;
private OrderButton order;
public OrdersBag(Window window, MultipleBrowser orders,

Text total, OKButton ok, CancelButton cancel,
OrderButton order, HelpButton help);

public sum();
}

Usually an EPC begins with a company presentation and follows with an index with references
to different sections. For the company overview we provide a special class Presentation,
which include the possibility of a demo. For the index we designed a TableOfContents. It is
a class that comprises a list of themebuttons, a list of themes, and three "special" buttons:
demo, help, and exit. With the last the user can leave the catalogue.
Services are also supported by special buttons like BackButton, DemoButton, OKButton,
ResetButton, OrderButton, CancelButton, and HelpButton.

3 The Syntax of epkml
The specification language epkml is result of the exhaustive requirements analysis made and is
based on the framework described in the previous chapter.
EPCs on CD-ROM have similarities with hypertext documents distributed on the World Wide
Web (WWW), in what concern the layout and the navigation. Web pages are described with
HyperText Markup Language (html), an instance of the Standard Generalized Markup Language
(sgml). For more details on sgml and html see [Gol94] [vH94]) [Gra95].
On account of the advantages of a standard, epkml is defined as an instance of sgml. Even
though in epkml most of the html layout elements can be found, it has been enlarged with
important additional capabilities incorporating ideas from java, framemaker, TEX, and au-
thoring tools.
In the first section of this chapter we enumerate the features that characterize the language which
we present in this report. The second section outlines the most important elements of the language
with subsections for layout, structure, control, database, and services. In the last section we give
an overview of the elements defined for the catalogue structure description, there are header,
externals, styles, definitions, and main.

3.1 Characteristics of the epkml Language
The basic features of this language are the following:

• epkml is html like.
epkml is an instance of sgml. This decision gives us two advantages: it is a standard
(ISO 8879). A public domain software, i.e. sgmls can be used to parse every Document
Type Definition (DTD). Everybody who knows rudiments of html will not find it difficult
to learn.

20

• epkml admits the hierarchical organization of catalogues themes.
An EPC can be seen as a front-end of a database. The products are organized in hierarchies.
For the construction of this “class hierarchy” we have built–in facilities in the language.
Using these facilities tree hierarchies —called themes— can be defined and for each theme
the developer has the possibility to define the products belonging to the theme and the
presentation of these products. This is possible using the templates mentioned below.

• epkml integrates templates.
Usually it is desirable to have the same presentation for all the products belonging to the
same family. For example, for an EPC for fashion, the catalogue developer may want to
give a blue logo to all the products of winter fashion. Such a presentation is defined using
a template which may include generic variables for the products to be displayed.

• epkml offers special services.
EPCs have some commonalities. Usually anEPCprovides the possibility to order a product,
it has a help function, a demo, a quit button, etc. Such features are included in epkml as
built-in functions.

• epkml allows variable definition.
The language offers the possibility to define variables. That is, in an EPC one can define
new variables which later can be used either as entities for reuse of code or as an attribute
of a tag.

• epkml includes macro definition and expansion.
The variable mechanism is not enough for name abstraction, so that the facility to define
macros has been added to the language. Macros are stated to allow parameters of two
different types: attribute and elements.

• epkml has primitives for control flow.
Some control flow primitives are present in the language. In principle any layout element
(i.e. window, frame, paragraph, text, etc.) can be opened or closed by the use of tags. Some
active elements like radio-buttons, browsers, buttons, sliders, etc. react to external inputs
such as mouse clicking. For these objects we have defined special tags. Control elements
that are specified under the scope of such a tag will be executed only when the respective
layout element is clicked, focused, etc.

• epkml is window oriented.
In contrast to others “screen oriented” languages we have developed a window oriented
language with the full functionality of windows, i.e. overlapping, iconization , etc.

• epkml embeds SQL-statements.

21

We assume that the products of the EPCs are organized in a relational database. For such
a database we use SQL as standard query language. A tag is provided for database queries
and general access.

• epkml allows connection to external languages.
A connection to the external world is provided via applets as it is in html. Applets allow
the specification of parameters. This is especially suitable for connection with external
objects and the operating system.

• epkml has dynamic generation of layout elements.
The result of a query to the database can be cast to be the contents of a browser or the
contents of an itemized list. It is possible to do this “on the fly” in epkml.

• epkml provides network capability.
The SQL-statements are in fact requests sent to a database server. This database could
be local, in the simplest case or refers to an external server. The locality of a request is
transparent to the user.

3.2 Elements of the Language
The language epkml, as already said, is defined as an instance of sgml. That means that the
language uses mark-up tags. They are written <name-of-the-tag> for the opening tag and
</name-of-the-tag> for the closing tag, thus separating a block. For some tags the closing
tag is defined as optional.
For the full grammar in form of a DTD (document type definition) and some information on
sgml see Appendix B. In the sequel, some familiarity with html is assumed [Gra95].

3.2.1 Layout Elements

The layout features of epkml are a superset of those of html. Thus different text fonts and
styles are provided, paragraphs (<p>), <image>, <frame>, etc. may be used. Also the known
interactive elements such as <browser>, <checkbox>, <input>, and so on, are available.
According to the framework,we added <window> (thusmakingepkmlwindoworiented instead
of screen oriented), <flowbox> for images inside texts, and some other miscellanea such as
<pulldown-menu> or <button>. Additionally, the time-dependent elements <video>,
<slide-show>, and <audio> were introduced.
Any layout element may now be positioned absolutely by means of attributes xpos and ypos.
They may also be provided with some margin and padding, giving extra space surrounding the
element. If no positioning information is given, for these elements the layout takes place as in
html.

22

<frame name=hello
xpos=10pt
ypos=20pt>

<p>Hello world!
<button name=quit>
<p>Quit
<on-click>
<exit>

</button>
</frame>

The interactive layout elements were enriched by specifyable methods, e.g. <on-click> for
<button> that are invoked if an interaction takes place. The details are described in section
3.2.3.

3.2.2 Structure

The theme hierarchy is the heart of the language. <theme> implements theme and virtu-
alPage of the framework.
Each <theme> includes its <extension>: an SQL statement declaring the products it covers,
<page>: a form to be filled with actual product contents, <exceptions>: products of the
extension to be treated specially with their own <page>, and perhaps some sub-themes.
Pages are some predefined templates for structured data presentation. Its gaps can be filled “on
the fly” with values obtained via SQL-statements.
The exceptions may be used on the one hand for showing products that do not fit the norm
syntactically or, on the other hand, for rendering products that shall attract more attention than
the other ones, e.g. those that are on sale.

<theme name = general>
<extension result = general-result>
<sql>
...

</sql>
</extension>
<page name = general-template>
...

<exceptions>
<sql>
...

</sql>
<page name = exception-template>
...

<theme name = sub-general>
...

</theme>

Through the theme hierarchies a forest structure is build up in which navigation takes place by
the special commands <next>, <previous>, <up>, <down>, and <back> (implementing

23

the NavigationManager). These instructions branch to the next or previous theme in a given
hierarchy, to the one below or above, or back in the history of visited themes, respectively.

3.2.3 Control

Besides the new layout elements, the database access feature, and the theme hierarchies, we
added control elements to the language epkml.

Variables. First of all, variables were introduced. They are written as $name$. Their values
may be modified by the <set> tag. Variables can contain both element and attribute contents,
but they must be used consistently.

<var name = months value = 12>
<var name = pic>

</var>
<set name = pic>

</set>

There are some predefined variables for special uses. These variables are $title$, $au-
thor$,$date$,$last-modified$,$curdate$,$curtime$,$dimension-unit$,
and $time-unit$.

Macros. To achieve more convenient programming, there is a <macro> tag to abbreviate some
often used constructs.

<macro name = dummy
attribs = "a"
elems = "e">

<p>e</p>

</macro>

The attribute attribs is used to specify the list of parameters which will be passed. They are
used as sgml attributes whereas the attribute elems has the same target but for sgml elements.
It is not allowed to use a parameter which has been defined to be an attribute as an element and
vice versa.
Macros are expanded using the <expand> tag.

<expand name=dummy>
<attribute name=a value=12>
<element name=e>
Hello world!

</element>
</expand>

24

Control Flow. The control of the flow of a catalogue is sequential from top to bottom, but it
may be modified by the use of special tags.
Conditional branching may be achieved with the <empty> and <non-empty> tags on the
basis of the result of a database query.
For unconditional branching there are several possibilities: First, structurally, there may be a
change between themes by the use of <next>, <previous>, etc., already mentioned. Second,
any layout element and any theme may be called directly via an <open> statement provided
with a name: the element called is shown and its statements are executed. Conversely, elements
may be closed with <close>, but this has no effect on the control flow.
For a finite number of repetitions there has been defined <foreach>, which cause the sequence
of tags between the opening-tag and the matching end to be executed for each database entry
value indicated by <in>.
Last but not least, the user may affect the control flow. Whenever he interacts with the catalogue
by e.g. clicking a button, the statements that are declared inside the actionmethod of the interactive
element (i.e. <on-click> in case of <button> and similarily for browsers, sliders, etc.) are
executed. Those interactions are registered when the catalogue is in a waiting state by executing
the <wait> statement. It can wait indefinitely or until a certain condition (an alarm, the end of
a video, etc.) is fulfilled.

<button style=sport-style>

<on-click>
<close name=sport-presentation>

</on-click>
</button>

Besides the standard mode of control flow there is a special demo mode during which the principal
features and facilities of the catalogue may be shown automatically. Actions under the scope of
the tag <demo> are executed in sequence, but without the possibility of user interactions. For
the simulation of these interactions the <click> tag is supplied.

<demo name=general-demo>
<set name=time-unit value=sec>
<open name=winter-theme>
<click name=help>
<wait end-of=5>
<close name=help-window>
<open name=pres-video format=mov>
<wait end-of=pres-video>
<next theme>
<wait end-of=5>
<exit demo>

</demo>

External Functionality. The tag <applet> permits to call external functions in the same
way as in the newest versions of html. The specification of parameters in applets allows among
other possibilities the connection with external objects and the operating system.

25

3.2.4 Database

Database access is reached via the <sql> tag. Statements under the scope of this tag must be
written in standard SQL, see [MS93]. The result of a SELECT statement of SQL is bound to the
name specified via the attribute result.

<sql result=trousers>
SELECT *
FROM fashion
WHERE kind=trousers

</sql>

When an SQL-statement is executed the result can be cast to be options of a browser by the use of
the <make-options> tag or to be items of an itemized list by the use of the <make-items>
tag. An example of the use of the tag sql is given in Appendix A.

3.2.5 Services

Services are the standard functionalities provided for a catalogue. To serve to that purposeepkml
includes the following tags:

• <table-of-contents>: allows the definition of an introduction window or page as
an index of the different alternatives of the EPC (company’s presentation, demo, tutorial,
different views of the product database, ordering). It corresponds to the class with the same
name in the framework presented in section 2.2.

• <registration-form>: permits the personalization of the catalogue. Data entered
in this form will appear in the order form.

• <search-form>: with this tag it is possible to define which kind of search will done
onto the database every time the end-user fills in this form with the adequate keywords.

• <shopping-bag>: is a template for the products list that has been selected as “product
to buy”, supposed to allow update functions as modification of the quantity to order or to
eliminate any product of the list.

• <shopping-list>: serves to administrate the list of products selected all together at
the begining and to be visited during navigation.

• <order>: defined to send a buy order to the provider. This function has different
semantics depending on the hardware configuration. An order can be sent by internet, by
e-mail, by dialing a telephone number by modem, by fax, or can be printed. When the
catalogue is installed the semantics of this tag is decided.

• <question-form>: to be filled in by the end-user to provide some feedback to the
catalogue provider about the success of the catalogue or to criticize it.

26

3.3 The Structure of an epkml Catalogue
As is shown in the example listed below, an epkml catalogue is divided into five sections. We
give a brief explanation of each of them.

<epkml>
<header
title = "The Shortest EPKML Catalogue"
author = "Me"
date = "03/10/96"
last-modified = "03/10/96">

<externals>
<styles>
<definitions>
<main>
<exit>

</epkml>

3.3.1 Header

The first section is the <header>, which only comprises documentation about the catalogue.
Under this tag the attributes title, author, date and last-modified are mandatory
and they generate values for the variables $title$, $author$, $date$, and $last-
modified$.

3.3.2 Externals

The <externals> section is planned primarily to declare objects, that are external to the
language. Such is the case of the relational database scheme, declared for consistency checks
purpose. Then every SQL-statement can be checked against the scheme of the database in order
to detect unknown tables or columns.
The SQL-statements can also be seen as requests to a database server. These requests may be
local or remote to the database. Using the attribute <path> of the <scheme> tag, the developer
can specify an URL which is the path to the (local/remote) database. (The implementation
of this feature has not yet been done. Such requests/answers can be implemented using a
new MIME-type or using a database proxy server. I.e. an answer to such request will have a
Content-Type:application/sql to be interpreted by the epkml-browser.)
<class> is another allowed tag in <externals>. It is used to declarate new tags allowed
in the epkml-language. In the example given below a new tag called <my-window-with-
logo>whose only attribute is logo is declared. Thus new objects of the class <my-window-
with-logo> are created. It is also possible to indicate via the attribute methods of the
<my-window-with-logo> tag to which methods they must respond.

<externals>
<scheme name = my-database>
<table name = "prod-desc"

columns = "code price desc">

27

</scheme>
<class name = my-window-with-logo

slots = "logo"
methods = "redraw iconize">

</externals>

3.3.3 Styles

A style is a collection of stylesheets and a stylesheet is a set of defaults for differents tags collected
under a name. epkml allows the declaration of styles for layout elements via the <style> and
<stylesheet> tags. Every attribute of a layout element can be set to a given stylesheet.
A stylesheet can extend or inherit fromother stylesheets and they can be reused by the specification
of the attribute extend of the <stylesheet> tag. Multiple inheritance of stylesheets is
allowed and name clashes are solved from left to right in the extend list or by using the
<default> tag.

<styles>
<stylesheet name = catalogue-style>
<default>
<p lftmrg = 1cm>

</default>
</stylesheet>
<stylesheet name = my-catalogue-style

extends = catalogue-style>
<default extends = other-catalogue-style>
<p baselineskip = 12pt>

</default>
</stylesheet>

</styles>

3.3.4 Definitions

Global specifications are done with the <definitions> tag. It was originally thought for
global definitions of variables, macros and frames, but later it was extended to allow global
definitions of any layout element. Definitions made under these tag can be used everywhere
and may be be redefined under the scope of another tag. Then the rules of lexical scope will be
applied.
An example of the employment of the <definitions> tag is shown in Appendix A.

3.3.5 Main

The <main> part of an EPC is composed by the sequence of instructions to be executed when
the EPC is loaded. Basically under <main> the developer specifies the presentation of the whole
catalogue, help facilities, navigation solutions through the structure and an exit option.

28

4 The Semantics of epkml
In what followswe give a short overviewof a formal structural operational semantics (cf. [NN92])
of the language epkml. We describe a model of states that reflects the necessary information
to control the execution flow of an epkml-program, but which abstracts from the exact layout
and database internals. The possible transitions between these states are given by rules that show
how an epkml-statement affects the state in which it is executed. Some of these rules may be
annotated by external events thus extending conventional structural operational semantics.
The semantics provides a static binding for the variables and the procedures (i.e. the layout
elements), a block structure for the scopes of variables, and “call-by-value” parameter handling.
It takes care of possible interactions by the user and of the time aspects the language offers.

4.1 The Model
The set of all possible epkml-statements (the programs) is called S. Any statement that does
not contain free variables is a value of our semantics.
Some statements contain actions (e.g. <on-click> in <button>); we define a function

act : S →֒ S
that returns this action for a given statement, whenever this is possible. In general, we define
functions with names as used in the syntax of epkml to yield that part of a statement that their
syntactical counterpart surrounds, say

template : S → S
returns for a statement s the text contained in the first occurring pairs of <template> and
</template> in s, according to the block-structure in the lexicographic ordering.
The set of all epkml-variable names is called N .
The semantics works on states, elements of a set Σ that are quintuples of a theme structure graph
(from a set G), an environment (from E), a database instance (from D), the laid out elements
(from L), and a memory store (fromM):

Σ = G×E ×D × L×M.
The memory store M is a set of locations C, where a pair of an epkml-statement and an
environment can be saved.

M = C →֒ S × E
This is due to the static binding. An operation

new :M → C
returns a new location for a given memory state, not in the domain of this memory state. The
operations

stm : C → S and env : C → E

29

return for a location the statement and the environment contained, respectively.
An environment is a list (a stack) of partial mappings from the variable names N to locations,

E = (N →֒ C)∗

written as [e1, . . . , en|ε] (where e1, . . . , en are partial mappings and ε another environment).. This
is due to the block structure and the static binding as well. The application of an environment (seen
as a partial function) to a variable name yields the value of the first (the uppermost) applicable
mapping in the list for this variable. An environment may be extended by

∪ : E ×N × C → E
which manipulates the first mapping of the list or a value of an already defined variable may be
changed by a recursive search in the stack:

∪̈ : E ×N × C → E.
The set of theme structure graphs G comprises all lists of trees that are describable in epkml,
the vertices of which are marked with a name, an epkml-statement (the contents of <theme>
without the sub-themes), an environment, and a boolean value to mark a theme as the current or
not.

G = (N × (S × E)×B+ (N × (S × E)×B)×G)∗

On these graphs,
pos : G×N → G

returns for a given graph and a name a new graph, with the boolean mark set only for the theme
with the given name,

nxt : G→ N
returns the name of the vertex with the next theme.The function

bld : G×N × (S ×E)×G∗ → G
constructs for a given graph, a mark, and a list of graphs, a new one that extends the first graph
by a tree out of the mark and the list of graphs. As for variable names,

env : G→ E
returns for a theme structure graph the environment of the vertex that is marked as current.
The set of database instancesD contains lists of tuples according to the relevant database schemes.
We do not model these schemes. We assume the required SQL-statements as being given.
Finally, the elements of the layout L are sets of locations the contents of which is supposed to be
visible on the screen.

L = ℘(C)

Besides these states, we model an external surrounding that supplies events (i.e. user interactions
and timings) to trigger state transitions. These events are denoted as conditions. For a user
interaction with an element l we write ι : l, for the expiration of a timer τ : t set to duration t,
and for the end of a process p (such as a video) η : p.

30

4.2 The Rules
We only state rules for so-called normalized epkml-programs. These are syntactically cor-
rect statements in which every attribute assignment status=open is substituted by sta-
tus=closed and an <open>-statement, after the owning statement. Obviously, this is no
restriction of the possible epkml-programs.
To take into account side effects of the interactive elements, we think of their variable changes
as being permanent (the memory of their location is changed, too); we only partially state the
necessary memory manipulations.
Every rule transforms a pair of an epkml-statement and a state either merely to a state, saying
that the statement has been fully executed, or again to a pair of a statement and a state. This
amounts to a small step semantics.
We do not provide a full semantics here. Only the control part is considered.

4.2.1 Syntactical Structure

The sequential composition is reflected by the usual structural rule.

(s, (γ, ε, δ, λ, µ)) =⇒ (γ′, ε′, δ′, λ′, µ′)

(<sql> INSERT s </sql>, (γ, ε, δ, λ, µ)) =⇒ (γ, ε, [[INSERT s]]sql(δ), λ, µ)

(<sql> DELETE s </sql>, (γ, ε, δ, λ, µ)) =⇒ (γ, ε, [[DELETE s]]sql(δ), λ, µ)

4.2.4 Themes

The theme structure graph is built up from bottom to top taking into account the scope of the
theme names.

((<theme name=ni> si </theme>, (γ, ε, δ, λ, µ))⇒ (γi, εi, δ, λ, µi))1≤i≤k

The conditionals are dealt with conventionally:

(<empty which=n> s </empty>, (γ, ε, δ, λ, µ)) =⇒
(s, (γ, ε, δ, λ, µ)), if ε(n) = ∅

(<empty which=n> s </empty>, (γ, ε, δ, λ, µ)) =⇒ (γ, ε, δ, λ, µ), if ε(n) 6= ∅

(<non-empty which=n> s </non-empty>, (γ, ε, δ, λ, µ)) =⇒
(s, (γ, ε, δ, λ, µ)), if ε(n) 6= ∅

(<non-empty which=n> s </non-empty>, (γ, ε, δ, λ, µ)) =⇒
(γ, ε, δ, λ, µ), if ε(n) = ∅

For an <open> statement its attributes are evaluated first, especially its status attribute will
be set to opened; we omit the details.

(<open name=n {ai 7→ (si, ε)}>, (γ, ε, δ, λ, µ)) =⇒
(stm(ε(n), (γ, [{ai 7→ new(µ)i}| env(ε(n))], δ, λ ∪ {ε(n)},

µ ∪ {new(µ)i 7→ (si, ε)}), if n is not a theme

(</open>, (γ, [α|ε], δ, λ, µ)) =⇒ (γ, ε, δ, λ, µ)

(<close name=n> </close>, (γ, ε, δ, λ, µ)) =⇒
(γ, ε, δ, λ \ {ε(n)}, µ ∪ {µ(ε(n)).status← closed})

For themes, <open> has to be treated specially:

(<open name=n> </open>, (γ, ε, δ, λ, µ)) =⇒
(presentation(stm(ε(n))), pos(γ, n), env(γ), δ, λ, µ)), if n is a theme

(<next theme> </next>, (γ, ε, δ, λ, µ)) =⇒
(stm(ε(nxt(γ))), pos(γ, nxt(γ), env(ε(nxt(γ))), δ, λ, µ))

The other navigation commands are evaluated alike.

33

When the user interacts with a layout element its action statement is executed in its own environ-
ment. Here the permanence of changes of the memory space (not those of the environment) is
important. Note that for these external stimuli a new transition symbol is used.

(act(stm(l)), (γ, [env(l)|ε], δ, λ, µ)) =⇒ (γ′, ε′, δ′, λ′, µ′)

<open name=m>
<par>
<open name=n>

<slice>
<par>
<close name=m>

<par>
<close name=n>

<slice end-of=1s>
<open name=o>

<slice end-of=5s>
<close name=o>

</time-line>

Product and information integration seems to be another desirable aim. The production of a
traditional paper catalogue out of an epkml–specification, e.g. by compiling the EPC to a word
processor, will play a major rôle in the future developments.

Acknowledgments
We wish to thank the EPK-fix developer groups of TH-Darmstadt, TU-Dresden and FORWISS-
Erlangen as well as the people of the Mediatec Company for their helpful comments on the
language. Also Earl Hood’s dtd2html- and MHonArc-scripts were a great help.

References
[AG96] Ken Arnold and James Gosling. The Java Programming Language. Addison–

Wesley, Mountain View, May 1996.

[Bal95] Heide Balzert. Methoden der objektorientierten Systemanalyse. BI–Wissenschafts-
verlag, Mannheim–Leipzig–Wien–Zürich, 1995.

[Bol94] Dietrich Boles. Das IMRA–modell. Diplomarbeit, Carl von Ossietzky Univerät
Oldenburg, September 1994.

[Bos95] Bosch. Wir bewegen Ihre Welt. Bosch–Pneumatik — Das Komplettprogramm
auf CD–ROM katalog nr. 15, May 1995. Made by telemedia interactive software
(Bertelsmann).

[Dav90] Alan M. Davis. Software Requirements. Prentice Hall, Englewood Cliffs, N. J.,
1990.

[Fla96] David Flanagan. Java in a Nutshell. O’Really & Associates, February 1996.

[GM95] James Gosling and Henry McGilton. The Java Language Environment: A White
Paper. Sun Microsystems, Mountain View, October 1995.

35

[Gol94] Charles Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1994.

[Gra95] Ian S. Graham. HTML Sourcebook. John Wiley & Sons, New York–etc., 1995.

[KKMW96] Alexander Knapp, Nora Koch, Luis Mandel, and Martin Wirsing. Die Sprache
EPKML. Interner Bericht 1:96, LMU München, March 1996.

[KM96] Nora Koch and Luis Mandel. Catalogues on CD-ROM: The State of the Art. to
appear, Ludwig–Maximilians–Universität München, 1996.

[Mac95] Macromedia. Macromedia Showcase CD 4.0. CD-ROM, 1995. Made with Macro-
media.

[Mer95] Mercedes-Benz AG. Die neuen E–Klasse Limousinen von Mercedes–Benz auf
CD–ROM, 1995. Made with Macromedia.

[Mic95] Microsoft Corporation. Microsoft technet, Technical Information Network. CD-
ROM, May 1995. Vol 3, Issue 5.

[MS93] Jim Melton and Alan R. Simon. Understanding the new SQL. Morgan Kaufmann,
San Mateo, California, 1993.

[NN92] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications. John
Wiley & Sons, Chichester, 1992.

[OTT95] OTTO. Shopping Interactive. CD-ROM, 1995. Made by Feldmann.

[Pfl91] Shari Lawrence Pfleeger. SoftwareEngineering. Macmillan, NewYork, 2nd edition,
1991.

[Que95] Quelle Schickedanz AG & Co. Easy Shopping per CD–ROM, 1995. Made with
Macromedia.

[RB95] Steven A. Rogers and Mark A. Breland. Hypermedia Authoring - An Experiment,
January 1995.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object–Oriented Moodelling and Design. Prentice Hall, Engle-
wood Cliffs, N. J., 1991.

[RS] RS Components GmbH. RS: Der Katalog. Das Original (september 95 – februar
96). CD-ROM. Made with Virtual Page.

[Spr95] Springer Verlag. Springer in Print 95/96. CD-ROM, 1995. Made with Adobe
Acrobat.

[vH94] Arthur van Herwijnen. Practical SGML. Kluwer Academic, Boston–Dordrecht–
London, 1994.

36

[vHSS96] Arthur van Hoff, Sami Shaio, and Orca Starbuck. Hooked on Java. Addison–
Wesley, Reading, Massachusetts, 1996.

A Example
In this section we present an example of the specification of an EPC. The functionality of the
catalogue is graphically given by the figures 6 and 7.
It is a very simple EPC, which begins with a window of the form table-of-contents, from this
window the end-user can choose between the following actions: navigate to the company’s
presentation or to the product selection, access to the help window, or exit the catalogue. The
presentation is the most trivial one, because it only includes a video. The selection window gives
a list of all the products available. If one product is clicked, a product window will be opened
with an image and a brief description of the product. The “buy” button of this page allows to add
the product in the shopping bag, which can be seen in a browser including name, description,
quantity, and price. Notice that every window includes the possibility to return to the previous
page with the “back” button. The help window is not graphically represented and the object
identifications (oid)s are not included in the example, although they are required according to the
DTD document because they will be automatically set by the SASSI tool.

<!DOCTYPE EPKML SYSTEM "epkml.dtd">
<!-- Example Catalogue -->
<epkml>
<header

title = Example Catalogue
author = The LMU Software Corporation Ltd.
date = 25/2/96
last-modified = 29/2/96>

<externals>
<styles>
<stylesheet name = example-catalogue-style

extends = catalogue-style>
<default>
<window>

<button name = help-button

align = "bottom right">

<on-click>

<open name = help-window>
</on-click>

</button>
</window>

</default>
</stylesheet>

37

LOGO EXAMPLE COMPANY

The very best Catalogue of the
Example company.

Presentation

Selection

Exit Help

LOGO EXAMPLE COMPANY

back

VIDEO

Help

EXAMPLE COMPANY

Prod_1

Prod_3
Prod_2

Prod_4
Prod_5
Prod_6

Prod_2

LOGO

back Help

Figure 6: Example catalogue part I

38

LOGO EXAMPLE COMPANY

back BUY Help

Photo

Product description
Product description
Product description
Product description
Product description

LOGO EXAMPLE COMPANY

back Order Help

Name

Name

Name

Name

Name

Description

Description

Description

Description

Description

Description

Quantity

Quantity

Quantity

Quantity

Quantity

Price

Price

Price

Price

PriceName Description Quantity PriceDescription Quantity Price

Figure 7: Example catalogue part II

39

</styles>
<definitions>
<window name = main style = example-catalogue-style>
<p align = left baselineskip = 10pt>
The very best catalogue of the Example Company

</p>
<button name = selectbutton

align = center>

<on-click>

<close name = main>
<open name = select>

</on-click>
</button>
<button name = presentationbutton

align = center>
<img src = presentation.gif
<on-click>

<close name = main>
<open name = presentation>

</on-click>
</button>
<button name = exitbutton

align = "bottom left">
<img src = exit.gif
<on-click>

<close name = main>
</on-click>

</button>
</window>

</definitions>
<include file = help.epk>
<include file = presentation.epk>
<include file = select.epk>
<include file = product.epk>
<include file = buy.epk>
<main>
<open name = main>

</main>
</epkml>
<!-- Help File -->
<window name = help-window style = example-catalogue-style>
<p>
This is a help window
This is a help window
This is a help window
This is a help window
This is a help window

This is a help window

</p>
<button name = back align = "bottom left">

<on-click>

<close name = help-window>

40

</on-click>
</button>

</window>
<!-- Presentation File -->
<window name = presentation

style = example-catalogue-style>
<video name = pres

src = "/videos/summer-video.mov"
format = mov
status = closed>

<stop-button>
<frame name = video invisible>
</frame>
<on-click>

<close name = pres>
</on-click>

</video>
<button name = back align = "bottom left">

<on-click>

<close name = presentation>
<open name = main>

</on-click>
</button>
<open name = pres>
<on-end-of name= pres>

<close name = presentation>
<open name = main>

</on-end-of>
</window>
<!-- Select File -->
<theme name = general>
<extension result = general-result>
<sql>
SELECT name price description photo
FROM products description
WHERE products.code = description.code

</sql>
</extension>
<page name = all-products>
<window name = select style = example-catalogue-style>
<browser name = dynamic-browser>
<make-options from = general-result>

<p>
$general-result.name$

</p>
<on-selected>

<close name = select>
<open name = prod-desc>

</on-selected>
</make-options>

</browser>
<button name = back align = "bottom left">

41

<on-click>
<close name = select>
<open name = main>

</on-click>
</button>

</window>
</page>
<exceptions>
<sql>
SELECT name price description photo
FROM products description
WHERE products.code = description.code and

price < 100
</sql>
<page name = products-on-sale>
<window name = on-sale style = example-catalogue-style>
<p>

Products ON-SALE!

</p>
<browser name = dynamic-browser>

<make-options from = general-result>
<p>
$general-result.name$

</p>
<on-selected>

<close name = select>
<open name = prod-desc>

</on-selected>
</make-options>

</browser>
<button name = back align = "bottom left">

<on-click>
<close name = select>
<open name = main>

</on-click>
</button>

</window>
</page>

</exceptions>
</theme>
<!--Product File-->
<window name = prod-desc

style = example-catalogue-style
attribs = "photo"
elems = "desc">

<p>
$desc$

</p>
<button name = back align = "bottom left">

<on-click>
<close name = prod-desc>

42

<open name = general>
</on-click>

</button>
<button name = buy align = "bottom middle">

<on-click>
<close name = prod-desc>
<sql>
INSERT INTO shopping-bag
VALUES

$general-result[$dynamic-browser.selected$].name
$general-result[$dynamic-browser.selected$].price

</sql>
<open name = buy>

</on-click>
</button>

</window>
<!--Buy File-->

<window name = buy style = example-catalogue-style>
<multiple-browser name = shopping-bag-browser>
<make-options from = shopping-bag>

<p>
$general-result.name$

</p>
</make-options>

</multiple-browser>
<button name = order align = "bottom middle">

<on-click>

<close name = buy>
<open name = order>

</on-click>
</button>
<button name = back align = "bottom left">

<on-click>

<close name = buy>
<open name = general>

</on-click>
</button>

</window>

B Document Type Definition
The Standard Generalization Markup Language (sgml) is the the ISO standard for document
description. It is designed to enable text interchange and is used mainly in the publishing field.
sgml documents have a rigorously described structure separating content from logical structure.
Every sgml document has three parts, two formal parts: the sgml declaration and the Document
Type Definition, called DTD, and the third part is the document instance.

43

The sgml declaration usually is common to all documents in an sgml installation and gives
the details on how sgml will be applied to the document, defining which character set will be
choosen or which characters should be used as delimiters. Examples of sgml declarations can
be found in [vH94], [Gol94].
The DTD is written in sgml and defines the structure of the document. The instance contains the
data and the mark up. An example for a document instance corresponding to the DTD defined in
this appendix is shown in Appendix A.
In a DTD we can distinguish elements, attributes and entities. An element is marked up with
symbols called start-tag and end-tag and it has associated a name called general identifier (GI).
To define an sgml element its content, its attribute list, and the mark-up minimization rules
must be given. The attribute list related to an element specifies further information and can be
compared to the specification of parameters. Entities are used as a short form for text strings, to
code special characters, to include external files, or as variables in the DTD.
The two books already mentioned [vH94] [Gol94] describe the complete sgml.

<!-- Document Type Definition for the EPKML -->
<!-- 04.12.1996 -->
<!ELEMENT epkml - - (header, externals, styles, definitions, main)

+(include | expand | variant)>
<!-- Some definitions -->
<!ENTITY % IDENT "CDATA ’’">
<!ENTITY % IDENTS "CDATA ’’">
<!ENTITY % REF "NAME">
<!ENTITY % BOOL "NUMBER 0">
<!ENTITY % ALIGN "CDATA ’’">
<!ENTITY % DIMEN "NUTOKEN 0">
<!ENTITY % TIME "NUTOKEN 0">
<!ENTITY % COLOR "NMTOKEN ’black’">
<!ENTITY % SHAPE "CDATA">
<!ENTITY % SOURCE "CDATA ’./’">
<!ENTITY % HEADING "NUMBER 1">
<!ENTITY % oid "oid CDATA #REQUIRED">
<!ENTITY % attributes "name %IDENT;

style %IDENTS;
invisible (invisible) #IMPLIED
layer NUMBER 0
xpos %DIMEN;
ypos %DIMEN;
width %DIMEN;
height %DIMEN;
lftpad %DIMEN;
rgtpad %DIMEN;
toppad %DIMEN;
botpad %DIMEN;
lftmrg %DIMEN;
rgtmrg %DIMEN;
topmrg %DIMEN;
botmrg %DIMEN; ">

<!ENTITY % properties "properties CDATA ’’
status (opened | closed | suspended) opened
attribs %IDENTS;

44

elems %IDENTS; ">
<!ENTITY % halign "(left | center | right | justify | decimal) left" >
<!ENTITY % valign "(top | middle | bottom | baseline) baseline">
<!ENTITY % img-format "format CDATA ’rgb’">
<!ENTITY % audio-format "format CDATA ’au’">
<!ENTITY % video-format "format CDATA ’avi’">
<!ENTITY % slide-format "format CDATA ’avi’">
<!ENTITY % end-of "end-of CDATA ’’">
<!ENTITY % font "font CDATA ’helvetica’">
<!ENTITY % fontstyle "fontstyle CDATA ’normal’ ">
<!ENTITY % def-lang "’german’">
<!ENTITY % def-background "’grey’">
<!ENTITY % def-bulletstyle "’*’">
<!ENTITY % def-enumstyle "’arabic’">
<!ENTITY % begin-number "1">
<!ENTITY % def-maxlength "1">
<!ENTITY % def-colspec "’right’">
<!ENTITY % def-numofpics "1">
<!ENTITY % def-picpersec "16">
<!ENTITY % void "’’">
<!ENTITY % defaults "display CDATA ’640x480’

units CDATA ’pixel’
user-mode NAME ’client’">

<!ENTITY % ISOlat1 PUBLIC
"ISO 8879-1986//ENTITIES Added Latin 1//EN//HTML"
"added-iso-latin-1.dtd">

%ISOlat1;

<!-- Inclusion of files and macros -->
<!ELEMENT include - O EMPTY>
<!ATTLIST include
%oid;
file CDATA #REQUIRED>

<!ELEMENT expand - O (attribute | element)*>
<!ATTLIST expand
%oid;
name CDATA #REQUIRED>

<!ELEMENT variant - - (and | or | element | variant)*>
<!ATTLIST variant
%oid;
name CDATA %void
object CDATA #REQUIRED
attribute CDATA %void
value CDATA %void>

<!ENTITY % operator "and | or">
<!ELEMENT (%operator;) - O (and | or | element)*>
<!ATTLIST (%operator;)
%oid;
name CDATA %void
object CDATA %void
attribute CDATA %void

45

value CDATA %void>
<!ELEMENT attribute - O EMPTY>
<!ATTLIST attribute
%oid;
name CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT element - O (#PCDATA)>
<!ATTLIST element
%oid;
name CDATA #REQUIRED>

<!-- Declaration of layout elements -->
<!ENTITY % flow "p | heading |

listing | itemize | enumerate |
tabular | img | video | slide-show |
flowbox | frame">

<!ENTITY % interactive "button | next-button | previous-button |
back-button | hyperlink | input | scribble |
pop-up | browser | multiple-browser |
radio-button | checkbox | pull-down |
vertical-slider | horizontal-slider">

<!ENTITY % toplevel "window | demo |
registration-form | question-form |
search-form | shopping-bag | shopping-list |
table-of-contents">

<!-- Declaration of actions -->
<!ENTITY % open "open">
<!ENTITY % close "suspend | close">
<!ENTITY % database "sql">
<!ENTITY % navigation "next | previous | up | down | back |

additional | exit">
<!ENTITY % action "%open; | %close; | %database; | %navigation; |

audio | applet | set | wait | empty | non-empty |
foreach | order | time-line | on-end-of">

<!-- Declaration of contents of elements -->
<!ENTITY % contents "%flow; | %interactive; | %toplevel; | %action;">
<!-- Actions -->
<!ELEMENT (%open;) - O (attribute | element)*>
<!ATTLIST (%open;)
%oid;
name CDATA #REQUIRED>

<!ELEMENT (%close;) - O EMPTY>
<!ATTLIST (%close;)
%oid;
name CDATA #REQUIRED>

<!ELEMENT (%database;) - O (#PCDATA)>
<!ATTLIST (%database;)
%oid;
result %IDENT; >
<!ELEMENT (%navigation;) - O EMPTY>

46

<!ATTLIST (previous | next)
%oid;
theme (theme) #IMPLIED
circular (circular) #IMPLIED>

<!ATTLIST back
%oid;
hierarchical (hierarchical) #IMPLIED>

<!ATTLIST exit
%oid;
demo (demo) #IMPLIED>

<!ELEMENT applet - - (param)*>
<!ATTLIST applet
%oid;
%attributes;
%properties;
function CDATA #REQUIRED
result %IDENT; >

<!ELEMENT param - O EMPTY>
<!ATTLIST param
%oid;
name CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT set - O ANY>
<!ATTLIST set
%oid;
name CDATA #REQUIRED
value CDATA %void;>

<!ELEMENT wait - O EMPTY>
<!ATTLIST wait
%oid;
%end-of;>

<!ELEMENT (empty | non-empty) - O (%contents;)*>
<!ATTLIST empty
%oid;
which CDATA #REQUIRED>

<!ELEMENT foreach - O (%contents;)+>
<!ATTLIST foreach
%oid;
in CDATA #REQUIRED>

<!ELEMENT order - O EMPTY>
<!ATTLIST order
%oid;
orders CDATA %void;>

<!ELEMENT time-line - - (slice)+>
<!ATTLIST time-line
%oid;
%end-of;
periodical (periodical) #IMPLIED
slice %TIME; >

<!ELEMENT slice - O ((%contents;)+ | (par)+)>
<!ATTLIST slice
%end-of;
periodical (periodical) #IMPLIED>

47

<!ELEMENT par - O (%contents;)*>
<!ELEMENT on-end-of - - (%action;)*>
<!ATTLIST on-end-of
%oid;
name CDATA #REQUIRED>

<!-- Text elements -->
<!ENTITY % fonts "u | b | s | i | tt | big | small">
<!ENTITY % phrases "em | strong">
<!ENTITY % positionings "sub | sup">
<!ENTITY % specials "br">
<!ENTITY % misc "q | lang">
<!ENTITY % text "#PCDATA | %fonts; | font | %positionings; | %phrases; |

%specials; | %misc;">
<!ENTITY % fontprops "%font;

fontsize %DIMEN;
%fontstyle;
fontcolor %COLOR; ">

<!ELEMENT (%fonts; | %phrases;) - - (%flow;)+>
<!ATTLIST (%fonts; | %phrases;)
%oid;
%properties;>

<!ELEMENT (%positionings;) - - (%flow;)+>
<!ATTLIST (%positionings;)
%oid;
%properties;
distance %DIMEN; >

<!ELEMENT br - O EMPTY>
<!ATTLIST br
%oid;
%properties;>

<!ELEMENT q - O (%flow; | %text;)+>
<!ATTLIST q
%oid;
%properties;>

<!ELEMENT lang - O (%flow; | %text;)+>
<!ATTLIST lang
%oid;
%properties;
name NAME %def-lang;>

<!ELEMENT font - O (%flow; | %text;)+>
<!ATTLIST font
%oid;
%properties;
%fontprops;>

<!ELEMENT p - O (%interactive; | %flow; | %text;)*>
<!ATTLIST p
%oid;
%attributes;
%properties;
%fontprops;
baselineskip %DIMEN;

48

indent %DIMEN;
align %halign;>

<!ELEMENT heading - - (%interactive; | %flow; | %text;)*>
<!ATTLIST heading
%oid;
%attributes;
%properties;
%fontprops;
number %HEADING;
baselineskip %DIMEN;
leftmargin %DIMEN;
align %halign;>

<!ENTITY % listprops "leftmargin %DIMEN;
itemsep %DIMEN;
align %halign;">

<!ELEMENT listing - - ((term?, item) | make-items)*>
<!ATTLIST listing
%oid;
%attributes;
%properties;
%listprops;>

<!ELEMENT itemize - - (term?, (item | make-items)*)>
<!ATTLIST itemize
%oid;
%attributes;
%properties;
%listprops;
bulletstyle CDATA %def-bulletstyle>

<!ELEMENT enumerate - - (item | make-items)*>
<!ATTLIST enumerate
%oid;
%attributes;
%properties;
%listprops;
enumstyle CDATA %def-enumstyle
number CDATA %begin-number;>

<!ELEMENT term - O (%flow;)+>
<!ATTLIST term
%oid;
%attributes;
%properties;>

<!ELEMENT item - O (%flow;)+>
<!ATTLIST item
%oid;
%attributes;
%properties;>

<!ELEMENT make-items - O (%flow;)+>
<!ATTLIST make-items
from CDATA #REQUIRED>

<!ELEMENT tabular - - (row)*>
<!ATTLIST tabular
%oid;
%attributes;
%properties;
colspec CDATA %def-colspec;

49

align %halign;>
<!ELEMENT row - O (cell)*>
<!ATTLIST row
%attributes;
%properties;
line (line) #IMPLIED>

<!ELEMENT cell - O (%flow;)*>
<!ATTLIST cell
%attributes;
%properties;
colspan NUMBER 1
rowspan NUMBER 1
align %ALIGN; >

<!-- Images, Video, Audio and Effects -->
<!ELEMENT img - O EMPTY>
<!ATTLIST img
%oid;
%attributes;
%properties;
%img-format;
align %ALIGN;
src CDATA #REQUIRED>

<!ENTITY % cntrlbtns "play-button | stop-button | pause-button |
forward-button | rewind-button">

<!ELEMENT video - O (%cntrlbtns;)*>
<!ATTLIST video
%oid;
%attributes;
%properties;
%video-format;
numofpics NUMBER %def-numofpics;
picpersec NUMBER %def-picpersec;
align %ALIGN;
src CDATA #REQUIRED>

<!ELEMENT audio - O (%cntrlbtns;)*>
<!ATTLIST audio
%oid;
name %IDENT;
%properties;
%audio-format;
duration %TIME;
src CDATA #REQUIRED>

<!ELEMENT slide-show - O (%cntrlbtns;)*>
<!ATTLIST slide-show
%oid;
%attributes;
%properties;
%slide-format;
interval %TIME;
align %ALIGN;
src CDATA #REQUIRED>

<!ELEMENT demo - - (%action;)* +(click)>
<!ATTLIST demo
%oid;>

50

<!ELEMENT (%cntrlbtns;) - O (disabled?, clicked?, (%flow;)*,
on-click?)>

<!ATTLIST (%cntrlbtns;)
%oid;
%attributes;
%properties;
disabled (disabled) #IMPLIED>

<!ELEMENT click - O EMPTY>
<!ATTLIST click
name CDATA #REQUIRED>

<!-- Buttons and Hyperlinks -->
<!ELEMENT button - - (disabled?, clicked?, (%flow;)*, on-click?)>
<!ATTLIST button
%oid;
%attributes;
%properties;
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT (next-button | previous-button)
- - (disabled?, clicked?, (%flow;)*, on-click?)?>

<!ATTLIST (next-button | previous-button)
%oid;
%attributes;
%properties;
disabled (disabled) #IMPLIED
align %ALIGN;
circular (circular) #IMPLIED
theme (theme) #IMPLIED>

<!ELEMENT back-button - - (disabled?, clicked?, (%flow;)*, on-click?)?>
<!ATTLIST back-button
%oid;
%attributes;
%properties;
hierarchical (hierarchical) #IMPLIED
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT (disabled | clicked) - - (%flow;)+>
<!ELEMENT on-click - - (%action;)*>
<!ELEMENT hyperlink - - (%flow;)*>
<!ATTLIST hyperlink
%oid;
%attributes;
%properties;
ref CDATA #REQUIRED
disabled (disabled) #IMPLIED
align %ALIGN;>

<!-- Sliders -->
<!ENTITY % slider "vertical-slider | horizontal-slider">
<!ELEMENT (%slider;) - O (slider-previous?, slider-next?,

slider-box?, on-reposition?)>
<!ATTLIST (%slider;)
%oid;
%attributes;

51

%properties;
position NUMBER 0
step NUMBER 1
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT (slider-previous | slider-next | slider-box) O O (%flow;)*>
<!ELEMENT on-reposition - - (%action;)*>
<!-- Form Elements -->
<!ELEMENT input - O EMPTY>
<!ATTLIST input
%oid;
%attributes;
%properties;
maxlength NUMBER %def-maxlength;
disabled (disabled) #IMPLIED
value CDATA #REQUIRED
align %ALIGN;>

<!ELEMENT scribble - O EMPTY>
<!ATTLIST scribble
%oid;
%attributes;
%properties;
src %SOURCE;
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT browser - - (option | make-options)* +(on-no-option)>
<!ATTLIST browser
%oid;
%attributes;
%properties;
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT multiple-browser - - (browser-row | make-options)* +(on-no-option)>
<!ATTLIST multiple-browser
%oid;
%attributes;
%properties;
colspec CDATA %def-colspec;
align %ALIGN;>

<!ELEMENT browser-row - O (browser-cell, on-selected?, on-deselected?)*>
<!ATTLIST browser-row
%attributes;
%properties;
line (line) #IMPLIED
align %ALIGN;>

<!ELEMENT browser-cell - O (%flow;)*>
<!ATTLIST browser-cell
%attributes;
%properties;
input (input) #IMPLIED
colspan NUMBER 1
rowspan NUMBER 1
align %ALIGN;>

<!ELEMENT checkbox - - (option*)>

52

<!ATTLIST checkbox
%oid;
%attributes;
%properties;
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT radio-button - - (option*)>
<!ATTLIST radio-button
%oid;
%attributes;
%properties;
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT pop-up - - (option*) -(on-deselected)>
<!ATTLIST pop-up
%oid;
%attributes;
%properties;
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT pull-down - - ((menu-title)*)>
<!ATTLIST pull-down
%oid;
%attributes;
%properties;
align %ALIGN;>

<!ELEMENT menu-title - - (option)* -(on-deselected)>
<!ATTLIST menu-title
%attributes;
%properties;
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT option - O ((%flow;)+, on-selected?, on-deselected?)>
<!ATTLIST option
%attributes;
%properties;
selected (selected) #IMPLIED
disabled (disabled) #IMPLIED
align %ALIGN;>

<!ELEMENT make-options - O ((%flow;)+, on-selected?, on-deselected?)>
<!ATTLIST make-options
from CDATA #REQUIRED>

<!ELEMENT (on-selected | on-deselected | on-no-option) - - (%action;)*>
<!-- Boxing -->
<!ELEMENT flowbox - - (around?, (%flow; | %interactive; | %action;)*)>
<!ATTLIST flowbox
%oid;
%attributes;
%properties;
align %ALIGN;
distribute (distribute) #IMPLIED
background CDATA %def-background;>

<!ELEMENT around - - (%flow; | %interactive;)+>
<!ATTLIST around

53

align %ALIGN;>
<!-- Frames and Windows -->
<!ELEMENT frame - - (%flow; | %interactive; | %action;)*>
<!ATTLIST frame
%oid;
%attributes;
%properties;
align %ALIGN;
background CDATA %def-background;>

<!ELEMENT window - - (%flow; | %interactive; | %action;)*>
<!ATTLIST window
%oid;
%attributes;
%properties;
title CDATA %void;
iconized (iconized) #IMPLIED
background CDATA %def-background;>

<!-- Themes -->
<!ELEMENT theme - - (extension, page+, exceptions?, theme*)>
<!ATTLIST theme
%oid;
name CDATA #REQUIRED>

<!ELEMENT extension - - (sql)*>
<!ATTLIST extension
%oid;
result %IDENT;>

<!ELEMENT page - - (%flow; | window | %interactive; | %action; | page)*>
<!ATTLIST page
%oid;
name CDATA #REQUIRED>

<!ELEMENT exceptions - - (sql, page?)+>
<!ATTLIST exceptions
%oid;>

<!-- Services -->
<!ELEMENT table-of-contents - - (%flow; | %interactive; | %action;)*>
<!ATTLIST table-of-contents
%oid;
name %IDENT; >

<!ELEMENT registration-form - - (%flow; | %interactive; | %action;)*>
<!ATTLIST registration-form
%oid;
name %IDENT;
users %SOURCE;>

<!ELEMENT question-form - - (%flow; | %interactive; | %action;)*>
<!ATTLIST question-form
%oid;
name %IDENT;
users %SOURCE;>

<!ELEMENT search-form - - (%flow; | %interactive; | %action;)*>
<!ATTLIST search-form
%oid;

54

name %IDENT;
entries %SOURCE;>

<!ELEMENT (shopping-bag | shopping-list) - - (%flow; | %interactive; |
%action;)*>

<!ATTLIST (shopping-bag | shopping-list)
%oid;
name %IDENT;
orders %SOURCE;>

<!-- Header -->
<!ELEMENT header - O EMPTY>
<!ATTLIST header
title CDATA #REQUIRED
author CDATA #REQUIRED
date CDATA #REQUIRED
last-modified CDATA #REQUIRED>

<!-- Externals -->
<!ELEMENT externals - O (class | scheme)*>
<!ELEMENT class - O EMPTY>
<!ATTLIST class
%oid;
name CDATA #REQUIRED
slots CDATA %void;
methods CDATA %void;>

<!ELEMENT scheme - - (table)+>
<!ATTLIST scheme
%oid;
name CDATA #REQUIRED>

<!ELEMENT table - O EMPTY>
<!ATTLIST table
%oid;
name CDATA #REQUIRED
columns CDATA #REQUIRED>

<!-- Styles -->
<!ELEMENT styles - O (stylesheet)*>
<!ELEMENT stylesheet - - (default)*>
<!ATTLIST stylesheet
%oid;
name CDATA #REQUIRED
extends %IDENTS;>

<!ELEMENT default - O (%flow; | %interactive; | %toplevel;)>
<!ATTLIST default
%oid;
extends %IDENTS;>

<!-- Definitions -->
<!ELEMENT definitions - O (macro | audio | theme | %flow; |

%interactive; | %toplevel;)* +(var)>
<!ATTLIST definitions
%oid;>

<!ELEMENT var - O ANY>

55

<!ATTLIST var
%oid;
name CDATA #REQUIRED
value CDATA %void;>

<!ELEMENT macro - - ANY>
<!ATTLIST macro
%oid;
name CDATA #REQUIRED
attribs %IDENTS;
elems %IDENTS;>

<!-- The Main Element -->
<!ELEMENT main - O (var | %action;)+>
<!ATTLIST main
%oid;>

56

