
EPK-fix: Methods and Tools for Engineering
Electronic Product Catalogues*

A. Knapp, N. Koch, M. Wirsing (LMU Miinchen)
J. Duckeck, R. Lutze (mediatec GmbH, Niirnberg)

H. Fritzsche, D. Timm (TU Dresden)
P. Closhen, M. Frisch, H.-J. Hoffmann (TH Darmstadt)

B. Gaede, J. Schneeberger, H. Stoyan, A. Turk (FORWISS Erlangen)

Abstract An electronic product catalogue (EPC) is a computer con-
trolled information system with multimedia product presentations and
navigation facilities. The paper presents the results of the EPK-fix
project for the systematic construction of EPCs. These include a soft-
ware engineering process model, a high level specification language for
EPCs, and an integrated set of tools supporting the entire EPC de-
velopment process. The EPK-fix process model supports the classical
development phases: requirements analysis, specification and design, im-
plementation, and test. In each of the phases emphasis is put on the
particular multimedia aspects, human machine interaction, production
of prototypes, and the quality of the produced documents.

I n t r o d u c t i o n

Electronic Product Catalogues (EPCs) 1 are computer controlled information
systems with important multimedia (especially visual) product presentations
and navigation facilities. They are almost always equipped with a shopping bag
administration feature.

EPCs are an inexpensive alternative to paper catalogues, but a high quality
design is still related to elevated costs, because there are no appropriate pro-
duction tools available. There are catalogue providers introducing a multimedia
presentation to the market, catalogue developers designing and producing EPCs
with the assistance of software and multimedia experts, testers, and users or
end-users.

State of the art technologies to produce EPCs are still far from being easy
to use and efficient and they show serious weaknesses. New methodologies and
specific tools for EPCs are needed. They must support the complete life cycle
of EPCs starting with the analysis of the catalogue providers requirements,
continuing with the catalogue design up to the functional tests. These tools have

* This work was supported by the BMBF project EPK-fix (F5rderkennzeichen 01 IS
250). Corresponding author: N. Koch, Institut ffir Informatik, Ludwig-Maximilians-
Universit~t Mfinchen, Oettingenstrafie 67, D-80538 Miinchen, kochn~informatik.
uni-muenchen, de

1 German: EPKe (Elektronische Produktkataloge)

200

to be easy to use, reduce the amount of E P C development time, and permit a
low-cost production of catalogues. These are neccessary prerequisites for the
acceptance of a new system, especially in small and medium size organizations.

We present the results of the EPK-fix project for the systematic construction
of EPCs . Methods have been developed and a collection of integrated tools
(RASSI, SASSI, GASSI , TASSI) has been designed for efficient specification,
production, and validation of EPCs . The requirement analysis is carried out
with the help of structured interviews which are guided and recorded using the
first tool. The result of this analysis is the base for an E P C design written in
the specification language EPKML. EPKML is a high level HTML-like language
that is particularly designed to support the description of EPCs . The second
tool supports the specification construction with a set of specialized editors. The
third tool automatically generates different catalogue versions in Java from the
EPKML specification. Finally, the test assistant helps to ensure the quality of
the produced catalogues. It provides static and dynamic test strategies as well
as strong support for manual testing of media objects.

The first section of this paper outlines the state of the art of EPCs , the
development process, and the resulting architecture of the EPK-fix system. Sec-
tions two to six describe the specification language and the tools respectively. In
the last section some conclusions are delineated.

1 Developing EPCs with EPK-f ix

The analysis of about 40 E P C s [6] has demonstrated that they go far beyond pa-
per catalogues with cross references. They offer services like search features, de-
mos to show how to use the catalogue, games, query language, enquiries through
telephone communication and fax, or on-line ordering. The constituents we iden-
tified in each E P C are: structure, layout, direction, database, and services.

- The structure is the skeleton of the catalogue; it comprises a graph or hier-
archy of themes and pages.

- The layout is the static description of pages and their contents.
- The direction describes the dynamic facilities for pages and themes that

allow for user interaction and the navigation through the catalogue.
- The database component provides all the information about offers, in such a

way that it can easily be searched, exchanged, and maintained.
- The services add comfort to the E P C allowing i.e. administration of orders,

user registration, access to help functions, online communications.

We observed that working with these E P C s can mainly be divided into installa-
tion, presentation, search, selection, and order steps. Depending on their relative
impor tance , we distinguish between the following catalogue types: Presentation,
Search, and Order catalogues; see [6].

T h e D e v e l o p m e n t M o d e l . The development process for E P C s requires an
informal preanalysis followed by the phases: requirements analysis, design, im-
plementation, and test. For each theme a tool has been developed considering the

201

above mentioned aspects structure, layout, direction, database, and services. Us-
ing a formal specification based on a specification language it is possible to take
into account the application requirements and to avoid inconsistencies among
the different tools. Characteristics of the EPK-fix development process are the
emphasis put on the multimedia aspects, the human-machine interaction, the
production of prototypes, and the quality of the produced documents. The re-
sulting process is a kind of spiral model [2] that leads to the final EPC through
successive revisions and refinements.
Requirements Analysis. Human dialogue is central to the analysis process in engi-
neering. The fundamental analysis activity is to carry out structured interviews.
This interviewing process is divided into three major steps [8]: preparation, inter-
view, and edition. During preparation a questionnaire is assembled considering
all aspects (see Section 1) of an EPC. The selection of the questions is guided
by predefined generic checklists. The interview is a complete (audio-)recording
of the conversation between the EPC developer and the catalogue provider. Ar-
bitrary multimedia information are attached to the corresponding questions and
answers of the interview. Finally, the edition constructs the resulting analysis
document from written (transcribed) notes and acoustic data.
Design. The informal catMogue description recorded in the analysis document
provides the basis for the design of an EPC. The catalogue developer carries
out his work with the help of appropiate editors which generate automatically
a formal specification of the catalogue. Work starts with the analysis document
specifying all the aspects and details of the intended catalogue. The developer
supplies the structure and the layout of example EPC pages (or templates).
Integrated Software Generation. A general advantage of our approach is the
speedup given to the otherwise time consuming and error-prone implementa-
tion phase. A generation assistant produces a prototypical EPC version with
additional interfaces to communicate with the other development tools. These
interfaces provide capture and replay facilities that can, for instance, be used
to present a catalogue prototype to the developer in exactly that state which is
refered to by a given analysis document. For testing purpose, catalogue elements
can be addressed by their unique identifier (provided by the design tool). Event
handling of the user interactions is done by a separate module allowing to treat
simulated user input generated by the test assistant in exactly the same way as
real end-user input.
Testing. Quality assurance is a central point of our development process. We aim
at complete not only sample testing. In the generated EPCs the large number
of media-objects are tested automatically via rules. Dynamic tests are used to
ensure correctness of time-dependent multimedia processes. Manual validation
of the layout is supported by test agents. The test reports are fed back to the
other development steps.

The Arch i t ec tu re of the EPK-f ix Sys tem. The EPK-fix system components
rely on the formal description language EPKML. It integrates the following four
tools: RASSI, SASSI, GASSI, and TASSI.

202

- EPKML is a specification language that makes the description of the static
and dynamic aspects of EPCs possible.

- T h e Requirements analysis ASSistant (RASSI) supports the informal
recording of information (text, sound, images, video) that results at the
requirements analysis stage based on structured interviews.

- The Specification ASSistant (SASSI) is responsible for EPC design based
on the results of the RASSI tool and generates an EPKML specification. The
catalogue developer is assisted by efficient and powerful editors.

- The Generation ASSistant (GASSI) translates the EPKML description spec-
ifying the EPC into a general programming language (e.g. Java).

- The Testing ASSistant (TASSI) performs static tests on the catalogue de-
scription in EPKML and a dynamic validation on the EPC generated by
GASSI, using test data especially prepared for that purpose.

2 T h e S p e c i f i c a t i o n L a n g u a g e

The design of the EPKML language was guided by basic aims like easiness of
learning and extensibility as well as more EPC-specific considerations like the
integration of database features or navigational support. EPCs on CD-ROM and
on the World Wide Web (WWW) create an alternative channel to traditional
paper catalogues for product sale and service offer. Since these catalogues may
coexist it was our goal to develop a declarative language that allows an easy
common specification.

EPKML is HTML-like. It is defined as an instance of SGML (ISO-stan-
dard 8879, [4]). The Standard Query Language (SQL) is integrated into the lan-
guage for easy access to relational databases. EPKML has primitives for naviga-
tion flow and allows connection to external languages via applets like in HTML.
The language integrates a conceptual view of EPCs, this means a structured,
annotated, multimedia, and highly automatic front-end to a database (see Sec-
tion 1). We restrict ourselves in this paper to only a few aspects of the syntax
and pragmatics of the language EPKML that distinguish it from other mark-up
languages. A detailed description including a formal structural operational se-
mantics is presented in [5]. Appendix A shows one page of the tourist catalogue
example and its EPKML specification. Below we describe some characteristics of
the language and reference the lines of the specification.
Structure. Products are organized in hierarchies, so-called themes (<theme>, 0i).
The developer defines the products belonging to these themes (<extension>, 02)
and the presentation of these products (<template>, 07). These templates are
to be filled with actual product data obtained from the database. Whenever a
special layout is desired, it is possible to define <exceptions> for those products
with their own <template>. A hierarchical structure is achieved via the definition
of sub-themes for a <theme>. It is also used to generate automatic navigation
facilities supported by the command tags <next>, <previous>, <up>, <down>,
and <back>, which branch to the next or previous theme in a given hierarchy, to
the first one below or above, or back in the history of visited themes, respectively.

203

<question-form>, <shopping-bag>, <shopping-list>, <order>. In the exam-
ple a <registration-form> (44) is mentioned, that permits the personalization
of the catalogue. A <shopping-bag> is a template for a list of products that
have been selected as "products to buy". For more details see [5].
Audio-Visual Elements. The visual (layout) features of EPKML are a superset
of those of HTML. Introducing e.g. <window> (08) we make EPKML window
oriented instead of screen oriented. It is worthwhile to mention <flowbox> that
distributes layout elements surrounding e.g. an image or text. Multimedia is
integrated by adding the time-dependent elements <video> (15), <slide-show>,
and <audio>. All these elements may be customized in advance using <style>s
(08) by defining <s ty leshee t> for them.
Interaction. A large part of EPKML is concerned with interactive elements, like
<button> (28, 41) or <pulldown-menu>. Interactive elements are provided with
a specifiable method, e.g. <on-cl ick> (30, 43) for <button> or <on-option> for
<browser>. For the navigation through the theme structure, there are precus-
tomized elements with standard behaviour like <prev• (38), and
<next-button> (40). Of course, this behaviour can be changed or extended.
Database. Database access is achieved via the <sql> tag (03, 20). Text within
the scope of this tag must be written in standard SQL.

3 T h e R e q u i r e m e n t s A n a l y s i s A s s i s t a n t

The Requirements Analysis Assistant (RASSI) is a software tool that supports
the task of interviewing. It contains five integrated submodules, that serve to ma-
nipulate and convert the basic object types checklists, questionnaires, interviews,
documents, and protocols. Checklists enumerate all important aspects that have
to be addressed during EPC design and development. Interviews with the cata-
logue provider are performed on the basis of quetionnaires resulting in protocols.
The following are the RASSI submodules: The checklist editor manipulates new
or predefined generic checklists. The questionnaire editor is used to assemble
a questionnaire from a checklist by formulating questions and adding explana-
tory documents. The interview assistant performs a complete audio recording
of the interview, allows for synchronously written notes, and links arbitrary
multimedia material. The protocol editor supports revisiting and combining mu-
tiple interviews. FinMly, the presentation assistant generates an analysis docu-
ment. RASSI is well-integrated into the EPK-fix toolbox: the chosen format of
the analysis document (HTML) ensures immediate document exchange via the
WWW enabling distributed workgroups to interact efficiently.

The Tourist Catalogue Example (Figure A) illustrates the development steps
of EPCs throughout this paper. For information elicitation in the system analy-
sis phase, a questionnaire has been created starting from a predefined checklist.
As shown in Figure 1 the questionnaire contains the topic "Screen elements for
city pages" which is part of the main topic "Layout and micro-direction". The
initial checklist mentioned the topic "product pages" which is now replaced by
"city pages". The topic "Grouping, placement, and attachment" was discussed

204

Figure 1. Main window of the interview assistant in RASSI

with the catalogue provider asking four specific questions. Explanations and
multimedia annotations can be attached without any restriction. After the in-
terview, the essential information from lower-level topics is summarized. The
result of the final analysis document (HTML) can be viewed with any standard
WWW browser.

4 T h e S p e c i f i c a t i o n A s s i s t a n t

The Specification Assistant supports the transformation of an informal descrip-
tion of an EPC to a formal specification. A qualified developer uses SASSI's
set of powerful editors to compose an EPC according to the information gained
by the requirements analysis. SASSI is based on an intuitive graphical user in-
terface, it is implemented in Smalltalk, and its architecture is based upon the
design evolution presented in the DIADES user interface builder [3].

Main features of the SASSI component are to support a complete specifica-
tion of the analysis information, to protocol which analysis objects led to which
specification objects, to make sensible assumptions where analysis information
is incomplete, to provide version information in order to make recovery possible,
and to generate syntactically and static-semantically correct EPKML output.
These features are supported by an object-oriented class library of specification
object classes which reflects the EPKML elements. When specifying an EPC the
user simply composes a hierarchy of specification objects similar to an abstract
syntax tree which can then be used to generate EPKML output.

SASSI can handle all catalogue aspects (described in Section 1) with the
following editors: structure editor, layout editor, also responsible for specifying
direction and integrating services, and database editor, where database access
can be formulated using SQL statements. The SASSI application starts with
the structure editor window showing a view of the predefined initializing cat-
alogue structure, which is subsequently refined according to the example. On

205

double-clicking a structural node the layout editor opens a window displaying
the representation part of the node. Layout elements can be placed according
to the RASSI analysis of customer needs, making up the look of the catalogue
pages. Entries, e.g., information describing the various products, images or even
animations, will be taken mainly from the customer product database and have
to be referenced properly using the SQL editor. The conception of the layout edi-
tor is similar to DTP layout applications. In combination with the structure and
the SQL editor the EPK-fix approach goes beyond ordinary DTP applications.

Figure 2. The SASSI user interface

To reference the requirements analysis input there exists an additional win-
dow in which analysis units coming from RASSI are displayed. Combined with
a third window transcribing the generated EPKML specification, this results in a
three-window approach (see Figure 2) similar to [9] and the split-screen approach
used in Oberon [7]. Working in either of the two editor windows, the user simply
has to highlight the paragraph in the RASSI window corresponding to the work
he actually performs, and all objects created will reference the identificator of
this unique analysis information unit.

5 T h e G e n e r a t i o n A s s i s t a n t

The purpose of GASSI is to generate catalogues based on their formal specifica-
tion. Targetted output platforms include a paper version (i.e. I_4TEX), an HTML
version and an EPC implemented in Java. Within the scope of this paper, we
will concentrate on the presentation of the latter's generation.

The generation of EPCs relies on a library of extensible generic classes (that
are reusable, and reliable due to their automated testing by TASSI) providing
EPC-specific components ranging from simple layout elements up to modules

206

that perform services (e.g. online-help ordering-facilities). The generation of soft-
ware implementing a formally specified multimedia system is done by analogy
with compiler phases [1] as follows:

Parsing comprises lexical and syntactical analysis of a given specification. An
EPKML conform document defines a tree structure of EPKML elements that can
be parsed by a standard SGML parser yielding a more easily processable text
output. GASSI calls the parser nsgmls and uses its output for further processing.

An Intermediate Representation of syntactically correct specifications allows
for semantic analysis and optimization. The internal representation of a speci-
fication consists of specification objects, that are nodes of a tree reflecting the
specifications structure. Each node contains an SGML element allowing to access
the attributes of this element which had been set in the specification.

The objects are specific to the EPKML element they represent by providing
specialized methods to generate code implementing the desired layout and be-
haviour for this element. These methods encapsulate implementation details like
different classes of the library an EPKML element is mapped to depending on
its content. Besides, methods for restructuring the tree are available.

Sourcecode Generation is done according to the syntax of the output format
and the results of the specific optimization. The basis of the code generation is
a class library realizing common features of E P C s which are used for a specific
implementation either by direct instantiation or by subclassing and instantia-
tion of the new subclass. Specification objects have access to a mapping table
defining which library class has to be used for the elements implementation. For
these classes miscellaneous Java-syntax-conform expressions can be retrieved or
composed, e.g. unique Java identifiers; constructor calls; variable declarations or
templates for subclasses.

The structure of the specification that implies a default structure for the E P C
by the nesting of <themes> and therein contained instances for <templates>
is used to build a module realizing the navigational primitives (e.g. <next> or
<up>). For that purpose, a method returns the concatenation of Java instructions
that sequentially build a corresponding tree. In the example specification (Ap-
pendix A), there is only one <theme> (01) visible. The <template> (07) defines
a common layout for the instances to create from the database entries, which are
returned by the SQL statement (04-05) within this theme's <extens ion> (02).
The default navigation enables the user to switch from one instance to another
using either the <next -but ton> (40) or the <p rev ious -bu t ton> (38).

Compilation is finally accomplished by existing tools that are integrated in
the GASSI system via facilities for their invocation on all generated files in the
target directory and input/output redirection.

6 T h e T e s t A s s i s t a n t

TASSI serves the analytical quality assurance within the EPK-flx development
process. With TASSI all those quality features are examined, which can not
constructively be ensured by the other EPK-fix tools. TASSI especially inspects

207

the features that are important for an E P C user, i.e. functionality, robustness
and usability of the catalogue.

TASSI should enable a tester to systematically and mostly automatically
scrutinize static and dynamic aspects of an E P C without the help of other
tools. A strong support for manual tests is given. TASSI includes the follow-
ing features: fully graphical user interface, declarative specification of general
and catalogue-specific automatic tests via rules, automatic execution of static
tests of all media-objects, support of dynamic tests by a test agent (automatic
navigation of the E P C to untested objects, automatic execution of static tests
of dynamic objects), error classification via browser, context-sensitive specifica-
tion and requirements presentation, capture and replay of manual test input,
complete test state administration, and automatic test document generation.

In more detail, firstly the EPKML instance is fed into an automatic static
analysis which aims at a rule-based static test of each EPKML element and each
used database object. To determine most used database objects and at least one
used set of attr ibutes and elements of most EPKML elements a dynamic model
of the EPK~CIL instance is automatically generated. This model only excludes
outcomes of applets and text inputs.

In the Tourist Catalogue Example all database objects of the shown page,
i.e. one video reference (15), one image reference (12), eight texts (11, 29), and
seven link (31) destinations, are determined. The type of a database object is ob-
tainable from the surrounding EPKML element at its usage point. Type-specific
tests are carried out on all atomic EPKML elements, e.g. if "To other cities" (39)
is spelled correctly or if $ c i t i e s . v ideoS (15) references an AVI video. Top-level
grouping EPKML elements, i.e. pages and windows (08), are examined for group
errors each time the container contents changes, i.e. in the example anytime a
new city page is entered. Group errors are those errors which only occur if some
elements are used simultaneously. In the example for instance it could be ver-
ified, that the text colours are in adequate contrast to the background colours
or that not too many different fonts are used on the page. Each error found is
recorded. Each tested EPKML element and database object is marked.

In a second phase the actual E P C is dynamically tested. The aim is to test the
execution of each branch of the EPKML instance, to inspect manually all media-
objects and to validate automatically media-objects and elements that have not
been recognized in the static analysis. The E P C is navigated to untested parts
by a test agent. A tester essentially only acknowledges the end of manual testing
of a set of elements, enters errors into a form and requests the navigation to
the next element set. In the case of text input and applet calls, the tester is
responsible for choosing sensible input for systematic testing.

The test agent tries to carry out all tests of an element set before navigating
to the next one and also at tempts to follow intuitive navigation paths. In the
example, first the city page (07) is shown. After the execution of the video (i5)
the tester is asked to confirm the end of manual testing. Then clicking one of the
buttons which lead to untested parts is simulated. If there was no such material,

208

the quit but ton would be chosen. The tester can always steer the test agent to
places of her choice.

7 Conclusions and Further Steps

We support the whole life cycle of the development process of E P C s by de-
veloping an integrated package of tools for the production of electronic product
catalogues. These tools aim at the efficient production of low cost electronic prod-
uct catMogues. Through the features and services observed in current E P C s [6],
we identified the components and characteristics of the language EPKML and
the features of each assistant. The catalogue developer is assisted from the be-
ginning of the first interview by special editors and a presentation assistant.
During the catalogue design and generation phase the assistance is realized with
other editors and class libraries. Tests accompany the entire development process
including the final E P C .

In our approach, an E P C is the result of cooperating experts working at
various places on different aspects of the catalogue. In order to keep track of
the correct versions of the documents and programs produced so far, version
management is required. We are currently implementing a W W W based project
server, which allows to define and manage users and projects with appropriate
access capabilities. Furthermore, the server manages revisions of documents and
identifies official releases of software modules.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers--Principles, Techniques, and
Tools. World Student Series. Addison-Wesley, 12 edition, 1995.

2. B. Boehm. A spiral model of software development and enhancement. IEEE Com-
puter, 21(5):61-72, May 1988.

3. I. Dilli and H.-J. Hoffmann. DIADES II: A Multi-Agent User Interface Design
Approach with an Integrated Assessment Component. SIGCHI bulletin, ACM Press~
April 1991.

4. C. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1994.
5. A. Knapp, N. Koch, and L. Mandel. The Language EPKML. Technical report 9605,

LMU Mfinchen, November 1996.
6. N. Koch and L. Mandel. Catalogues on CD-ROM: The State of the Art. Technical

report 9610, Ludwig-Maximilians-Universits Mfinchen, December 1996.
7. M. Reiser. The Oberon System--User Guide and Programmer's Manual. Addison

Wesley, 1991.
8. A. Turk and H. Stoyan. Erfassung, Verarbeitung und Dokumentation natiirlich-

sprachlicher Aufierungen in der Anforderungsanalyse. In E. Ortner, B. Schienmann,
and H. Thoma, editors, Natiirlichspraehlicher Entwurf yon Informationssystemen,
pages 32-46. Universits Konstanz, May 1996.

9. A. Wasserman and P. Pitcher. A Graphical, Extensible Integrated Environment for
Software Development. ACM SIGPLAN Notices 22:1, 1987.

209

A E x a m p l e

In this section we present the EPKML specification of the tourist catalogue page.
Note, that some detailed layout information is omitted.

01 <theme name="general"> 29 $0ut.issueS
02 <extension result="cities"> 30 <on-click>
03 <sql> 31 <open name=
04 select name, vid, im g "$out. subtheme$">
05 from tourist 32 </on-click>
06 </sql> 33 </button>
07 <template name="city-page" > 34 </frame>
08 <window name=" city-window" 35 </make-items>

style ="bavaria''> 36 </itemize>
09 <set name=city value = 3? </frame>

"$cities. nameS"> 3B <previous-button>
10 <frame name="header"> 39 <p>To other cities
11 <p> $cit y$ 40 <next -butt on>
12 41 <button name="to-reg"
13 </frame> style="city">
14 <frame name="left-col"> 42 <img src=
15 <video src= "icons/reg. jpg">

"$cities .ridS"> 43 <on-click>
16 <stop-button> 44 <open name="reg-f orm">
17 </video> 45 </on-click>
18 </frame> 46 </button>
19 <frame name="right-col">

�9 �9 .

20 <sql result="out"> 59 </window>
21 select issue subtheme
22 from tourist 60 </template>
23 where theme ='$city$' 61 </extension>
24 </sql> 62 </theme>

63 <main>
25 <itemize>
26 <make-items from="out"> 64 <open name="general">
27 <frame> 65 </main>
28 <button>

