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Abstract

epkml is a window oriented language for the design of electronic product cata-

logues. It is an instance of the Standard Generalized Markup Language (SGML).

In this paper we enhance the formal operational semantics of epkml to be able to

deal with concurrent processes. The semantics allows limited concurrency which

is modelled by interleaving. It allows to spawn concurrently multiple processes

and to control their behaviour in time. To do it, we have extended epkml by

some auxiliary expressions. A proper epkml expression, if needed, is translated

to such an auxiliary expression and formal semantics of such an expresion is

given. States, in this semantics, comprise the necessary information to control

the execution flow of an epkml program. Transitions between states are given by

rules that show how an epkml statement affects the state in which it is executed.

We build in constructs for specification of soft real-time requirements allowing

to specify time bounds of process execution and to specify periodical processes.

Introduction

epkml is a language for the design of electronic products catalogues. It is an instance

of the Standard Generalized Markup Language (SGML, cf. [Gol94])), based on the

Hypertext Markup Language (HTML, cf. [Gra95]). The reader is referred to [KKM96]

for details.

In this paper we enhance the formal operational semantics [Plo91] of epkml proposed in

[KKM96]. The semantics provides a static binding for the variables and the procedures

(i.e. the layout elements), a block structure for the scopes of variables, and “call-by-

value” parameter handling. It takes care of possible interactions by the user and of the

time aspects the language offers. States comprise the necessary information to control

the execution flow of an epkml program, but as in the previous version, we abstract
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from the exact layout and database internals. The possible transitions between states

are given by rules that show how an epkml statement affects the state in which it is

executed. In contrary to the previous semantics, we allow limited concurrency, but

as in the previous version, we specify only the control flow of a program. An epkml

program is executed sequentially except of time-line. This construct allows to spawn

concurrently multiple processes and to control their behaviour in time. Concurrency

is modelled by interleaving (i.e. allowing nondeterministic execution of those steps

which can be interleaved). We build in constructs for specification of soft real-time

requirements allowing to specify time bounds of processes (or more generally time-line)

execution and to specify periodical processes. To achieve it, we have extended epkml by

some auxiliary expressions. A proper epkml expression, if needed, is translated to such

an auxiliary expression and then an operational semantics is given. Time constraints

are expressed using an auxiliary expression:

do { s } watching(c, t)

where s is a statement, c is a condition, and t is a time value. It allows to execute

statement s as long as condition c holds. The time value indicated when the execution

has been started and allows for ignoring older interrupts (i.e. those interrupts, which

has been raised before time t). Like in SDL [IT94] we assume, that the current system

time can be accessed by a now operator. We use also a

repeat { s }

expression, which allows to repeat execution of s arbitrary many times.

The paper is organized as follows. Section 1 presents formal background and the

basic definitions of our semantics. Section 2 presents basic principles of the semantics

concerning sequential control flow. The principles are illustrates with few examples.

In Section 3, we present semantics of the so-called time-lines and slices which allow for

concurrent control flow. We conclude with some remarks on the proposed semantics.

1 Formal Background

The set of all possible fully expanded epkml statements (the programs) is called S.

Any statement that does not contain free variables is a value of our semantics.

Some statements contain actions (e.g. <on-click> in <button>); we define a function

act : S ⇀ S

that returns the lexicographically first action for a given statement, whenever this is

possible. In general, we define functions with names as used in the syntax of epkml to
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yield that part of a statement that their syntactical counterpart surrounds, say

template : S → S

returns for a statement s the text contained in the first occurring pairs of <template>

and </template> in s, according to the block structure in the lexicographic ordering.

The set of all epkml variable names is called N .

We assume one global time. This global time can only be accessed by the predefined

operation now , which is supposed to return the current time value. We assume that

there is an unbounded universum of time variables contained in N representing timers.

1.1 The State Model

The semantics works on states, elements of a set Σ that are six-tuples consisting of a

theme structure graph (from a set Γ), an environment (from E), a database instance

(from ∆), the laid out elements (from Λ), a memory store (from M), and set of signals

(from Π):

Σ = Γ×E ×∆× Λ×M ×Π.

A memory store out of M is a set of locations C, where a pair of an epkml statement

and an environment can be saved.

M = C ⇀ S × E

An operation

new :M → C

returns a new location for a given memory state, not in the domain of this memory

state. The operations

stm : C → S and env : C → E

return for a location the statement and the environment contained, respectively.

An environment is a list (a stack) of partial mappings from the variable names N to

locations,

E = (N ⇀ C)∗

written as ε = [e1, . . . , en|ε′] (where e1, . . . , en are partial mappings and ε′ another
environment). The application of such an environment (seen as a partial function) to a
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variable name n, written ε(n), yields the value of the first (the uppermost) applicable

mapping in the list for this variable. An environment may be extended by a function

+ : E ×N × C → E

It adds another pair of name and location to the first partial mapping of the envi-

ronment; the name must not be in the domain of this first mapping. We write this

operation as e + {n 7→ l}. A value of an already defined variable may be changed by
the function

+← : E ×N × C → E.

For a given (ε, n, l) with ε = [e1, . . . , ek] it searches the first component ei in ε such

that n ∈ dom ei and sets the value of n to l. We write ε +←{n 7→ l} for this operation.
The set of theme structure graphs Γ comprises all lists of trees that are describable in

epkml, the vertices of which are marked with a name, an epkml statement (the contents

of <theme> without the sub-themes), an environment, and a boolean value to mark a

theme as the current or not. This set Γ is a subset of

Γ0 = (N × (S × E)×B+ (N × (S ×E)×B)× Γ0)
∗

Here, a (more general) theme structure graph is a list of either single nodes or father

nodes with a theme structure graph as their son. In the second case it looks as follows:

[(n1, (s1, ε1), b1, γ1), . . . , (nk, (sk, εk), bk, γk)] .

In the sequel, we will only use those graphs in Γ0 in which all names are distinct and

where at most one theme is marked as current; the set of such graphs will be called Γ.

On these graphs, the function

pos : Γ×N → Γ

returns for a given graph and a name a new graph, with the boolean mark set only for

the theme with the given name. The function

nxt : Γ→ N

returns the name of the vertex with the next theme, it is the right sibling of the node

marked as current (or the current node itself if it has no right sibling.) The partial

function

bld : Γ×N × (S × E)× Γ∗ ⇀ Γ
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constructs for a given graph, node information, and a list of graphs, a new one that

extends the first graph by a tree out of the node information as the father node and

the list of graphs as its son nodes. For example, we have

bld((n1, (s1, ε),⊤), n, (s, ε), [(n2, (s2, ε),⊥), (n3, (s3, ε),⊥)]) =

[(n1, (s1, ε),⊤), (n, (s, ε),⊥, [(n2, (s2, ε),⊥), (n3, (s3, ε),⊥)])]

As for variable names, the function

env : Γ→ E

returns for a theme structure graph the environment of the node that is marked as

current.

The set of database instances ∆ contains lists of tuples according to the relevant

database schemes. We do not model these schemes. We assume the required SQL

statements as given.

The elements of the layout Λ are sets of locations the contents of which is supposed to

be visible on the screen.

L = ℘(C)

Interaction and synchronization is modeled using the set Π which contains all available

signals which are supposed to trigger transitions. Every signal has a time stamp and

a name of an epkml element it was arised for. We set

Π =
⋃

t,n

(℘({ clicked(t, n), end (t, n),

play(t, n), stop(t, n), pause(t, n), rewind (t, n), forward (t, n)}))

These signals inform the system that a certain action has taken place for a certain

layout element at a certain time (cf. Section 3.1).

1.2 The Rules

We only present rules for so-called normalized epkml programs. These are syntactically

correct statements in which every attribute assignment status=open is substituted by

status=closed and an <open> statement, after the owning statement. For example,

we replace

<frame name=f>

f

</frame>
by

<frame name=f

status=closed>

f

</frame>

<open name=f>
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Obviously, this is no restriction of the possible epkml programs.

To take into account side effects of the interactive elements, we think of their variable

changes as being permanent (the memory of their location is changed, too); we only

partially state the necessary memory manipulations.

Every rule transforms a pair of an epkml statement and a state either merely to a state,

saying that the statement has been fully executed, for example

〈s, (γ, ε, δ, λ, µ, π)〉 =⇒ (γ ′, ε′, δ′, λ′, µ′, π′) ,

or again to a pair of a statement and a state, for example

〈s, (γ, ε, δ, λ, µ, π)〉 =⇒ 〈s′, (γ ′, ε′, δ′, λ′, µ′, π′)〉 .

We introduce an empty statement ∅ not part of the epkml syntax which is treated as
a syntactical neutral element.

1.3 Auxiliary Statements

We extend the epkml language (and therefore the set S) by some auxiliary elements.

These elements will be used to model interaction and concurrency. First,

do { p } watching(c, t)

means, that the epkml statement p will be executed as long as condition c holds. The

time-value t indicates when the execution of this statement was started.

〈p, (γ, ε, δ, λ, µ, π)〉 =⇒ 〈p′, (γ ′, ε′, δ′, λ′, µ′, π′)〉

〈do { p } watching(c, t), (γ, ε, δ, λ, µ, π)〉 =⇒

〈do { p′ } watching(c, t), (γ ′, ε′, δ′, λ′, µ′, π′)〉

if c holds in (γ, ε, δ, λ, µ, π)

If c does not hold in a state, then this command is aborted:

〈do { p } watching(c, t), (γ, ε, δ, λ, µ, π)〉 =⇒ (γ, ε, δ, λ, µ, π)

if c does not hold in (γ, ε, δ, λ, µ, π)

If no statements are to be executed, the command aborts, too:

〈do { ∅ } watching(c, t), (γ, ε, δ, λ, µ, π)〉 =⇒ (γ, ε, δ, λ, µ, π)

The second auxiliary construct is

repeat { p }
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which allows to execute statement p an arbitrary number of times:

〈repeat { p }, (γ, ε, δ, λ, µ, π)〉 =⇒ 〈p repeat { p }, (γ, ε, δ, λ, µ, π)〉

To break the loop one needs to use sentences of the form: do { repeat { p } }
watching(c, t), because otherwise process p would be executed forever. Again, if no

statements are to be repeated, the loop aborts:

〈repeat { ∅ }, (γ, ε, δ, λ, µ, π)〉 =⇒ (γ, ε, δ, λ, µ, π)

In order to describe the idle process, we add the statement skip with semantics

〈skip, (γ, ε, δ, λ, µ, π)〉 =⇒ (γ, ε, δ, λ, µ, π)

We also introduce two auxiliary expressions push and pop that open and close a new

binding scope. The push expression carries the new environment of the scope, the pop

expression carries the old environment to be restored. Note that we lift semantical

information to the syntax.

〈push(ε′), (γ, ε, δ, λ, µ, π)〉 =⇒ (γ, [∅|ε′], δ, λ, µ, π)

〈pop(ε′), (γ, ε, δ, λ, µ, π)〉 =⇒ (γ, ε′, δ, λ, µ, π)

2 Sequential epkml

The sequential composition of statements is reflected by the usual structural rule.

〈s1, (γ, ε, δ, λ, µ, π)〉 =⇒ 〈s′1, (γ
′, ε′, δ′, λ′, µ′, π′)〉

〈s1 s2, (γ, ε, δ, λ, µ, π)〉 =⇒ 〈s′1 s2, (γ
′, ε′, δ′, λ′, µ′, π′)〉

2.1 Variables

The variables are dealt with conventionally: A variable name declaration adds a new

location to the environment, and stores the appropriate contents into this location.

〈<var name=n value=v> </var>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε+ {n 7→ new(µ)}, δ, λ, µ + {new(µ) 7→ (v , ε)}, π)

〈<var name=n> s </var>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε+ {n 7→ new(µ)}, δ, λ, µ + {new(µ) 7→ (s, ε)}, π)
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Similarily, a declared variable can be manipulated by <set>;

〈<set name=n value=v> </set>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε, δ, λ, µ +← {ε(n) 7→ (v , ε)}, π)

〈<set name=n> s </set>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε, δ, λ, µ +← {ε(n) 7→ (s, ε)}, π)

In the same way attributes of tags may be changed (which also affects the main mem-

ory).

The contents of a variable may be treated as a statement with its own environment:

〈$n$, (γ, ε, δ, λ, µ, π)〉 =⇒

〈push(env(ε(n))) stm(ε(n)) pop(ε), (γ, [env(ε(n))|ε], δ, λ, µ, π)〉

2.2 Layout

Closed layout elements (i.e. status=closed) are treated much the same as variables.

Here layout may have the values window, frame, button and so on.

〈<layout name=n status=closed> s </layout>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε+ {n 7→ new(µ)}, δ, λ,

µ+ {new(µ) 7→ (<layout name=n status=closed> s </layout>, ε)}, π)

2.3 Database

The semantics of the database tag relies on an appropriate semantics of the correspond-

ing SQL statements. A semantics of such a statement s, relative to the semantics of a

database instance δ, is denoted by [[s]]SQL(δ). Below, we specify only how it influences

control flow.

〈<sql result=r> SELECT s </sql>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε, δ, λ, µ+ {r 7→ [[SELECT s]]sql(δ)}, π)

〈<sql> INSERT s </sql>, (γ, ε, δ, λ, µ, π)〉 =⇒ (γ, ε, [[INSERT s]]sql(δ), λ, µ, π)

〈<sql> DELETE s </sql>, (γ, ε, δ, λ, µ, π)〉 =⇒ (γ, ε, [[DELETE s]]sql(δ), λ, µ, π)
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2.4 Themes

The theme structure graph is built up from bottom to top taking into account the

scope of the theme names.

〈(<theme name=ni> si </theme>, (γ, ε, δ, λ, µi−1)〉 ⇒ (γi, εi, δ, λ, µi, π))1≤i≤k
〈<theme name=n> s
(<theme name=ni> si </theme>)1≤i≤k

</theme>, (γ, ε, δ, λ, µ, π)〉 =⇒
(bld(γ,n, (s, θ), (γi)1≤i≤k), ε + {n 7→ new(µk)}, δ, λ,
µ+ {new(µk) 7→ (s, ε)}, π)

,

where θ is the partial function mapping all theme names of the theme structure graph

to their corresponding locations stacked upon ε, and µ0 = µ. Note that every theme

structure subgraph carries its own relevant environment information such that the

environment changes in the antecedens of the rule need not be taken into account.

Example. The epkml statement

<theme name=father>

f

<theme name=son-1>

s1
</theme>

<theme name=son-2>

s2
</theme>

</theme>

yields the following theme structure graph in the empty environment by using the bld

function three times:

[(father, (f , θ),⊥), [(son-1, (s1, θ),⊥), (son-2, (s2, θ),⊥)]]

where θ = {father 7→ l1, son-1 7→ l2, son-2 7→ l3} for locations l1 = new(∅), l2 =
new({father 7→ l1}, and l3 = new({father 7→ l1, son-1 7→ l2} from C.

Note that we used big step semantics here, since <theme> statements do not contribute

to execution but provide environmental information.
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2.5 Control

The conditionals are dealt with conventionally:

〈<empty which=n> s </empty>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈s, (γ, ε, δ, λ, µ, π)〉, if ε(n) = ∅

〈<empty which=n> s </empty>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε, δ, λ, µ, π), if ε(n) 6= ∅

The <non-empty> statement is handled dually.

〈<non-empty which=n> s </non-empty>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈s, (γ, ε, δ, λ, µ, π)〉, if ε(n) 6= ∅

〈<non-empty which=n> s </non-empty>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε, δ, λ, µ, π), if ε(n) = ∅

The semantics of the <open> statement must discern between themes and non-themes.

In order to open non-themes, the attributes of the <open> statement have to be eval-

uated first.

〈<attribute name=n value=v> </attribute>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε +←{n 7→ new(µ)}, δ, λ, µ + {new(µ) 7→ (v , ε)}, π)

〈<element name=n> s </element>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε +←{n 7→ new(µ)}, δ, λ, µ + {new(µ) 7→ (s, ε)}, π)

The exectution of an <open>–statement for a layout element recursively performs an

<open> for all layout elements that are contained inside. This recursion is treated syn-

tactically by adding such <open> statements in the same way as normalized epkml

programs were introduced; we denote the corresponding manipulation function by

open : S → S.

(〈<attribute name=ai value=vi> </attribute>, (γ, ε, δ, λ, µi−1, π)〉 =⇒
(γ, εi, δ, λ, µi, π))1≤i≤m

(〈<element name=ei> si </element>, (γ, ε, δ, λ, µm+i−1, π)〉 =⇒
(γ, εm+i, δ, λ, µm+i, π))1≤i≤n

〈<open name=n>
<attribute name=ai value=vi>1≤i≤m
<element name=ei> si </element>1≤i≤n

</open>, (γ, ε, δ, λ, µ, π)〉 =⇒
〈push([{(ai 7→ εi(ai))1≤i≤m, (ei 7→ εm+i−1(ei))1≤i≤n}| env(ε(n))])
s

pop(ε), (γ ′, ε, δ′, λ ∪ {ε(n)}, µm+n + {ε(n).status 7→ opened}, π)〉
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if n is not a theme and where stm(ε(n)) = <layout> s ′ </layout>, and s = open(s′).

Example. The epkml statement

<frame name=f

attribs="a"

status=closed>

f

</frame>

<open name=f>

<attribute name=a value=15>

</open>

yields the following transitions and environment changes starting from an empty en-

vironment ε0, an empty layout, an arbitrary database δ, an empty memory µ0, and

arbitrary signals π: First the frame is stored in the environment, that is

ε1 = [{f 7→ l1}]

µ1 = {l1 7→ (<frame name=f attribs="a" status=closed> f </frame>, ∅)}

for a new location l1 ∈ C. Next the attribute inside the <open> statement is evaluated
leading to

ε2 = [{a 7→ l2, f 7→ l1}]

µ2 = µ1 + {l2 7→ (15, ε1)}

for a new location l2 ∈ C. Consequently, the statements open(f) of the frame have to
be evaluated in

(γ, [∅|[{a 7→ l2}|ε1]], δ, {l1}, µ2 + {ε(n).status 7→ opened}, π),

the layout is updated, and the status of f is set to opened.

Closing a layout element removes its layout representation.

〈<close name=n> </close>, (γ, ε, δ, λ, µ, π)〉 =⇒ (γ, ε, δ, λ \ {ε(n)}, µ, π)

For themes, <open> has to be treated specially:

〈<open name=n> </open>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈presenentation(stm(ε(n))),

(pos(γ, n), env(n), δ, λ, µ+ {ε(n).status 7→ opened}, π)〉 if n is a theme
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The navigational commands <next>, <previous>, etc. make use of the theme graph.

〈<next theme> </next>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈stm(ε(nxt(γ))), (pos(γ,nxt(γ)), env(ε(nxt(γ))), δ, λ, µ, π)〉

The other navigation commands are evaluated alike.

2.6 Interaction

The user may interact with the program via buttons, the keyboard, etc. The program

awaits signals from interactions with the <wait> tag. It can wait indefinitly long or

until certain conditions are fulfilled. Indefinite waiting is treated as follows:

〈<wait> </wait>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S value=now> </var>

do { repeat { skip } } watching(⊤, S), (γ, ε, δ, λ, µ, π)〉

for a new time variable S

If the statment <wait end-of=t> is to be executed, then a new time variable S is chosen

and set with value now . The system is supposed to examine whether S + t < now .

〈<wait end-of=t> </wait>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S value=now> </var>

do { repeat { skip } }watching(now < S + t, S), (γ, ε, δ, λ, µ, π)〉,

for a new time variable S

If a <wait> statement has its attribute end-of set to a name, execution is delayed

until the end signal for this name occurs in the global signal set. All interrupts which

occured before execution of <wait> has been started, will be ignored. It is expressed

by the condition end(t, n) ∈ π → t < S, S).

〈<wait end=of=n>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S value=now> </var>

do { repeat { skip } } watching(end(t, n) ∈ π → t < S, S),

(γ, ε, δ, λ, µ, π)〉, for a new time variable S

When the user interacts with a layout element this layout element’s action statement

is executed in its own environment. Here the permanence of changes of the memory

space (not those of the environment) is important. The system is supposed to react on
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the earliest actual signal.

〈do { s } watching(c, S), (γ, ε, δ, λ, µ, π ⊎ {clicked(t, n)})〉 =⇒

〈push(env(ε(n))) act(stm(ε(n))) pop(ε)

<set name=S value=now> </var>

do { repeat { skip } } watching(c, S), (γ, ε, γ, δ, λ, µ)〉

if t is minimal such that S < t and clicked(t, n) ∈ π

Note that only signals are taken into account that were send after we started waiting.

Also note that after the interaction starting time for the new waiting loop is updated.

3 Concurrency in epkml

In general, epkml allows only limited concurrency. An execution of an epkml pro-

gram is sequential, only processes spawned by <time-line> or <video>, <audio> and

<slide-show> can be executed concurrently. These concurrent processes may be syn-

chronized via time constraints and interrupting signals.

We model concurrency by interleaving and nondeterminism. A process will simply be

an epkml statement. Our model of communication is asynchronous.

3.1 Time-Lines

Time-lines (<time-line>) organize execution into periods or slices (<slice>). Slices

are the biggest units allowing to spawn multiple processes executing concurrently. The

<par> tags inside a <slice> allow for execution of processes contained in their scopes

in parallel. Consecutive slices are executed one after another but not concurrently.

A time-line can be bounded in duration by the optional attribute end-of. It can be

executed only once or periodically. In the second case the attribute periodical is set.

We translate these different time-lines to auxiliary expressions as follows.

If a time-line is scheduled to be executed till the end of process n we get the rule:

〈<time-line end-of=n> s </time-line>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S value=now> </var>

do { s repeat { skip } } watching(end(t, n) ∈ π→ t < S, S),

(γ, ε, δ, λ, µ, π)〉, for a new time variable S

We assume that time-lines will be executed until their breaking condition C holds.

They cannot be aborted after their statements have been finished. This is specified by

repeat { skip }.
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If in addition the time-line is periodical then we get rule:

〈<time-line end-of=n periodical> s </time-line>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S> </var>

repeat {

<set name=S value=now> </var>

do { s repeat { skip } } watching(end(t, n) ∈ π → t < S, S) },

(γ, ε, δ, λ, µ, π)〉, for a new time variable S

Time-line execution can also be restricted by explicitly giving a time-bound:

〈<time-line end-of=t> s </time-line>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S value=now> </var>

do { s repeat { skip } } watching(now < S + t, S), (γ, ε, δ, λ, µ, π)〉

for a new time variable S

Similarily for the case that a time-line is additionally periodical:

〈<time-line end-of=t periodical> s </time-line>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈</var> <var name=S> </var>

repeat {

<set name=S value=now> </var>

do { s repeat { skip } } watching(now < S + t, S) }, (γ, ε, δ, λ, µ, π)〉

for a new time variable S

The case when the attribute slice constraining the overall duration of the slices inside

the time-line is set can be treated analogously.

As in the case time-lines, a slice can be bounded in duration and/or be executed

periodically.

〈<slice end-of=n> s </slice>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S value=now> </var>

do { s repeat { skip } } watching(end(t, n) ∈ π → t < S, S),

(γ, ε, δ, λ, µ, π)〉 for a new time variable S
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〈<slice end-of=n periodical> s </slice>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S> </var>

repeat {

<set name=S value=now> </var>

do { s repeat { skip } } watching(end(t, n) ∈ π → t < S, S) },

(γ, ε, δ, λ, µ, π)〉 for a new time variable S

〈<slice end-of=t> s </slice>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S value=now> </var>

do { s repeat { skip } } watching(now < S + t, S),

(γ, ε, δ, λ, µ, π)〉 for a new time variable S

〈<slice end-of=t periodical> s </slice>, (γ, ε, δ, λ, µ, π)〉 =⇒

〈<var name=S> </var>

repeat {

<set name=S value=now> </var>

do { s repeat { skip } } watching(now < S + t, S) },

(γ, ε, δ, λ, µ, π)〉 for a new time variable S

The <par> tag within a slice allows to spawn multiple processes in parallel.

〈sj, (γ, ε, δ, λ, µ, π)〉 =⇒ 〈s
′
j, (γ

′, ε′, δ′, λ′, µ′, π′)〉

〈(<par> si </par>)1≤i≤k, (γ, ε, δ, λ, µ, π)〉 =⇒

〈(<par> si </par>)1≤i<j <par> s′j </par> (<par> si </par>)j<i≤k,

(γ ′, ε′, δ′, λ′, µ′, π′)〉

〈sj, (γ, ε, δ, λ, µ, π)〉 =⇒ (γ ′, ε′, δ′, λ′, µ′, π′)

〈(<par> si </par>)1≤i≤k, (γ, ε, δ, λ, µ, π)〉 =⇒

〈(<par> si </par>)1≤i≤k, i6=j, (γ ′, ε′, δ′, λ′, µ′, π′)〉

The first (second) rule describes the case when the jth component has something

(nothing) left to do.

3.2 Multimedia

The tags <video>, <slide-show> and <audio> spawn processes that are only visible

in the memory. We only detail <video> here, the other multimedia tags are treated

analogously.

15



We do not give a formal definition of the corresponding processes, but we assume that

if such a process, say n, comes to an end it inserts the corresponding end(t, n) signal

to the signal set.

A video may be declared in suspended mode (for t0 = now):

〈<video name=n status=suspended> s </video>, (γ, ε, δ, λ, µ, π)〉 =⇒

(γ, ε+ {n 7→ new(µ)}, δ, λ+ {new(µ)},

µ+ {new(µ) 7→ (<video name=n status=(t0, suspended)> s

</video>, ε)}, π)

In order to model the different status a video may be in, e.g. playing or stopped, we add

this status to the syntax. Additionally this status indicates when a video was started.

An epkml program is not to be able to observe these status; therefore an evaluation of

the attribute status of a video that actually has another value than opened, closed

or suspended yields the value opened. Now, videos may react to different signals; here

we only state the rule for play.

〈s, (γ, ε, δ, λ, µ+ {l 7→ <video name=n status=(t0, z)> s
′ </video>},

π ⊎ {play(t, n)})〉 =⇒

〈s, (γ, ε, δ, λ, µ+ {l 7→ <video name=n status=(now ,playing)> s ′

</video>}, π)〉

for t0 < t

Note that t0 is the time when the video n has been started.

Conclusions

We have proposed a formal semantics for epkml, which allows restricted concurrency.

This semantics is operational and may guide a possible implementation. As we men-

tioned, the semantics deals only with the control flow of a program execution. An

interesting thing would be to study how this semantics can be unified with a SQL

semantics and a semantics of the layout features. Another interesting thing would be

to design a denotational semantics for epkmland develop a proper notion of implemen-

tation.
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