

76

model which is an exact formal counterpart of the informal language description
[3] and which leaves maximal freedom for different implementations.

We present the semantics in two steps: First we introduce a simple opera-
tional description of the sequential part of the language, where the memory is
treated as an algebra with suitably axiomatized operations. Then the thread
model is developed and shown to be a conservative extension of sequential Java.
For reasons of space we consider in this paper only the following subset of the
Java language: access to local variables and instance variables, assignment, class
instance creation, blocks, local variable declaration, threads and synchronization.
We cut out, among other things, class declaration, method call and exceptions.
However, what we include (whose BNF is given in Appendix A) is enough to
describe the thread model in full generality.

Closely related work is the formal semantics of a sublanguage of Java in
[2]. This paper focuses on the Java type system and develops an operational
semantics for a sequential sublanguage of Java only. Therefore our semantics of
threads is complementary.

The paper is organized as follows: In Section 2 the semantics of single-
threaded (sequential) Java programs is given. Section 3 introduces the notion
of event space and sets the rules for a correct interaction between main mem-
ory and threads. Section 4 describes the refinement of single-threaded Java to
multi-threaded Java. The paper concludes with some remarks and future devel-
opments.

2 Sequential Java

The operational semantics of sequential Java is quite conventional. We give an
overview by means of an example.

class Point {
int x, y;

Point() { }
}

class Sample {
public static void main(String[] argv) {
Point p = new Point();

p-x =1; p.y = 2;
p.x = p.y;
}
}

The sample program consists of two class declarations of Point and Sample.
The class Point has two attributes x and y, the coordinates of a point, and
provides only the standard constructor Point () that is called upon creation of
a new instance (object) of class Point. The second class Sample has a single
method main(String[] argv) (and a hidden standard constructor).

78

rval gets the right-value associated in a store with a given left-value, and this
gets the object whose code is being currently executed.

In the following, object are ranged over by the metavariable o, left values by
l, right values by v and stores by u. All these can be variously decorated. We
write p[l — o] and p(l) for upd(l,v, p) and rval(l, p) respectively.

Abstract stores are axiomatized by using a unary predicate | (written in
postfix notation) and a binary predicate < (in infix notation). The meaning of
el is that e is defined, i.e. it denotes a value, while e; < e> means that if e; is
defined, then so is e; and they denote the same value. By e; ~ e; we mean that
both e; < e and e; < e; hold, and by e; = e; we mean that both e; < es and
e1| hold. We write 7 the negation of |. The axioms for abstract stores are listed
in Table 1.

p() 2 4'(1) (newe (u) = (0, 1))
lval(o, i, p)t (newc(p) = (o, 1))
inito (i) <y (lval(o,i,4")) (newc(n) = (o,4))
pll = o)) =v
pll’ = o)) = p() ((#£10)
pll = L e 0] = plt = 0]
pll =o'l vl = pll sl =] @ #)
pll = p(D)] 2 p

Table 1. Axiomatization of abstract stores

Environment stacks. Environments are pairs (I, p) where I C Identifier is a
source of identifiers and p is a partial function from I to right values:

Env = Z\:Igldentiﬁer‘l — RVal .

Intuitively, I contains the local variables of a block. By abuse of notation, we
write p for an environment (I, p) and indicate with src(p) its source I. As usual,
pli— v](7) =wvifi = j and p[i — v](j) =~ p(j) otherwise.

Let S-Stack be the domain of stacks of environments, ranged over by the
metavariable 0. The empty environment and the empty stack are written re-
spectively pg and op. The operation push : Env x S-Stack — §-Stack is the
usual one on stacks. All other stack operations we use are recursively defined in
Table 2.

In our example, the bindings of the block in main() yield the stack

push(po[p +— op), o).

Terms. The operational semantics of single-threaded Java works on a set S-Term
of single-threaded abstract terms. We let the metavariable t range over S-Term.
To each syntactic category of Java we associate a homonymous category of ab-
stract terms. The well-typed terms of Java are mapped to abstract terms of
corresponding category by a translation (_)°, which we leave implicit when no

79

ofi = v] push(pli — v],0’) if o = push(p,o’) and i € src(p)

1= =
undefined otherwise;

push(pli — v),0’) if ¢ = push(p,0’) and i € src(p)

oli > v] = < push(p,d’'[i = v]) if o = push(p,o’) and i ¢ src(p)

undefined otherwise;
o(i) if 0 = push(p,c’) and i € sre(p)
o(t) = ¢ o' (3) if o = push(p,o’) and i ¢ src(p)

undefined otherwise.

Table 2. Operations on stacks

confusion arises. Abstract blocks are terms of the form { ¢}, where the environ-
ment p contains the local variables of the biock. In our example, we have

{ Point p = new Point(); p.x = 1; p.y = 2; p.x = p.y }°=
{ Point p = new Point(); px=1; p.y = 2; P-X=D.Y; }py[prsnutl] -

Configurations and Rules. We call configurations elements of the domain
S-Term x S-Stack x Store. We let v range over this domain. The operational
semantics is the binary relation — on configurations inductively defined by the
rules that follow. Related pairs of configurations are written 3 — 2 and are
called operational judgements.

In the rule schemes (Tables 3-5), the metavariables (variously decorated)
range as follows: i € Identifier, k € Identifier U LVal, e € Expression, T € Type,
d € VariableDeclarator, D € VariableDeclarator™, s € BlockStatement, S €
BlockStatement” and g € Block (see Appendix A).

We understand statements, among which local variable declarations, as com-
putations over the one-element domain {+}. Then, consistently with the type of
the relation —, we write 8,01, u3 — o9, us for s,01, 1 — *, 02, 2.

Stacks and stores are omitted when not relevant; that is, we may write:

1 — 12 t1,01, 41 — 12,002, 2
t3 — 1y t3,01, 1 — ta,02, 2

The full set of rules can be found in Table 3 for expressions, Table 4 for local
variable declarations, and Table 5 for statements.

For our example, a detailed run of (part of) the block in main() can be found
in Figure 1. The annotations to the arrows indicate the rules applied. The object
0p, the locations I, x and I, y, and the stores 4 and ' are defined as before.

3 Event Spaces

The execution of a Java program comprises many threads of computation running
in parallel. Threads exchange information by operating on values and objects re-
siding in a shared main memory. As explained in the Java language specification

80

[assignl] &~ —2T°% [assign?] — b %2
e1—=e—ey=e k=e1 > k=es
[assign3] ! =wv,p — v,p[l = v] [assignd] i = v,0 = v, o[t > 1]
ey} — €2
1 L S S
[unopl1] (e > op(e) funop2] op(v), 4 — op(v), p
e} —> ez . .
1 _— 2] o. lval
[accessl] o iT e [access2] 0.1, p — lal(o,i, p), 1
[this] this, p — this(p), p [pth] (€)= e, p
[new] new C (),p — newc(p) [vall Lip— pl), p
[var] 1,0 > 0(i),0
Table 3. Expressions
[decl1] 1& [decl2] 1=v,0 = ot = v}
1=€1 > 1=¢€2
dy = d2 d, o1 —+ 02
[declseql] D54, D [declseq?] dD.o1 = D.os
[locvardecll] D: = Ds [locvardecl2] D,o1 = o2

7Dy =71 D> 7 D,01 > 02

Table 4. Local variable declarations

[3], each thread also has a private working memory in which it keeps its own
working copy of variables that it must use or assign. As the thread executes a
program, it operates on these working copies. The main memory contains the
master copy of each variable. There are rules about when a thread is permitted
or required to transfer the contents of its working copy of a variable into the
master copy or vice versa. Moreover, there are rules which regulate the lock-
ing and unlocking of objects, by means of which threads synchronize with each
other. These rules are given in [3, Chapter 17] and formalized in this section
as “well-formedness” conditions for structures called event spaces. In the next
section event spaces are included in the configurations of multi-threaded Java to
constrain the applicability of certain operational rules.

[statseq1] ﬁ [statseq2] ;;—:5_11_;_%
[expstat1] f;—z—z—; [expstat2] %
[skip) ;,0-0 [block] {},,0 0
[block2] S1, push(p1,01) — S, push(ps, 02)

{S1}or,01 = {S2}py,02

Table 5. Statements

81

{ Point p =new Point(); px =1; p.y = 2; p.X = P.Y; }pplprnurr], 08
block2, statseql, expstatl, locvardecll, decll, new
Y q k) p

{ Point p = 0p; pX=1; P.y = 2; PX =P.¥; }pplpsnui], 00, 4’
[block2, statseq2, expstat2, l locvardecl2, decl2]

{Px=1py=2; pX=D.Y; }pylpsop)s 70 1’

[block2, statseql, expstatl, 1 accessl, var]

{opx=1; py=2; px=p.y; }Pm[p.,_,op],cr@,u'

[block2, statseql, expstatl, l assignl, access2]

{ =1 py=2; px=p.y; }pq)[pHopLU@’“,
[block?2, statseq2, expstat2, l assign3]

{ Py =2 px=P.¥; }oplpmrop)r 00, i [lp.x = 1]

\

Figure 1. Sample run of Sample.main()

In accord with [3], the terms Use, Assign, Load, Store, Read, Write, Lock,
and Unlock are used here to name actions which describe the activity of the
memories during the execution of a Java program. Use and Assign denote the
above mentioned actions on the private working memory. Read and Load are
used for a loosely coupled copying of data from the main memory to a working
memory and dually Store and Write are used for copying data from a working
memory to the main memory.

For instance, a rule about the interaction of locks and variables [3, 17.6,
p. 407] states for a thread 8, a variable V and a lock L:

“Between an assign action by [0] on V and subsequent unlock action by
[0] on L, a store action by [f] on V must intervene; moreover, the write action
corresponding to that store must precede the unlock action, as seen by the
main memory. (Less formally: if a thread is to perform an unlock action on
any lock, it must first copy all assigned values in its working memory back
out to main memory.)”

We briefly recapitulate those rules by means of the example “Possible Swap”
of [3, 17.10] where two threads 6; and #; running in parallel want to manipulate
the coordinates of the same point object o, referenced in both threads by the
local variable p. The thread #; wants to do p.x = p.y, while 82 wants to do
p-y = p.x. These manipulations are to run under mutual exclusion; in Java
this is obtained by a synchronization on a shared object:

(01, synchronized{(p) {p.x=p.y; })|(f2, synchronized(p){p.y=p.x; })

In order to enter the critical (synchronized) region both threads must perform
a Lock action on op; by the rules of the Java language specification a Lock action

82

of one thread on an object prevents any other thread to perform a Lock action on
the same object. We assume that 0, is first. Now, §; may proceed to obtain the y
coordinate of the object referenced by p. By the rules for locks the value of p. y,
which resides in the main memory, must be loaded first in 8,’s working memory.
The language specification requires that such a Load action be preceded by a
corresponding Read action of the main memory. Once this protocol is completed
the requested value can be used by 8, with a Use action and assigned to the
working copy of p.x with an Assign action.

Putting the new value of p.x back in the main memory reverses the chain of
responsibilities: the working memory of 6; issues this value to the main memory
by a Store action; then the main memory writes the value to the master copy
of p.x by a Write action. This chain is again enforced by the Unlock action
that ends the critical region. Now, 8, may proceed to achieve the lock on o,
and so forth; the complete series of actions is depicted in Figure 2. Note that
the omission of the synchronization would considerably liberalize the order of
execution of the actions. Especially, a non-synchronized thread is not forced to
write the contents of its working memory back to the main memory.

(Lock, 6 k0 op)
loy) (Read z)

(Load, (Load, 02,1y x)
(Use,;l,lp_y) (Use,gz,lp.x)
(Assign{Ol,lP,x) (ASSignly92,lp~y)
(Store,l91 (Store,tz,lp ¥)

(Write, 01, Lp.5) (Write, 02, 1p.y)
(Unlock, 61, 0p) (Unlock, 03, 0p)

Figure 2. Event space of example “Possible Swap”

We proceed to formalize this behaviour. Let the metavariable A stand for a
generic action name. Moreover, let B range over the set of thread actions and C
over the set of memory actions, that is:

B € {Use, Assign, Load, Store, Lock, Unlock} ,
C € {Read, Write, Lock, Unlock} .

84

Threads start with an empty working memory and new variables are created
only in main memory and not initially in any thread’s working memory (3, 17.3]:

(Use,0,1) = (Assign,8,1) < (Use,0,1) or (Load,8,1) < (Use,8,1) (5)
(Store,8,1) = (Assign, 9,1) < (Store, 8,1) (6)

A Store action transmits the contents of the thread’s working copy of a variable
to main memory (3, 17.1]:

(Assign,8,1,v), < (Store,8,1,v') = o

v =1 or (Assign,8,1,v), < (Assign,0,1),, < (Store,8,1,v")
Each Load or Write action is uniquely paired respectively with a matching Read
or Store action that precedes it [3, 17.2, 17.3]:
(Load,8,1),, = (Read,8,1), < (Load,8,1), (8)

(Write,0,1),, = (Store,8,1), < (Write,8,1), (9)

The actions on the master copy of any given variable on behalf of a thread are

performed by the main memory in exactly the order that the thread requested
[3, 17.3]:

(Store,8,1)m < (Load,8,1), = (Write,0,1),, < (Read,8,1), (10)

A thread is not permitted to unlock a lock it does not own. Only one thread at
a time is permitted to lay claim to a lock, and moreover a thread may acquire
the same lock multiple times and does not relinquish ownership of it until a
matching number of unlock actions have been performed [3, 17.5]:

(Unlock,8,0), = (Lock,8,0), < (Unlock,8,0), (11)
(Lock,8,0),, < (Lock,8',0) and 8 # ' = (Unlock,0,0), < (Lock,8',0) (12)

If a thread is to perform an unlock action on any lock, it must first copy all
assigned values in its working memory back out to main memory [3, 17.6] (this
rule formalizes the quotation above):

(Assign, 8,1) < (Unlock,0) =
(Assign, 8,1) < (Store,8,1),, < (Write,8,1),, < (Unlock,0)

(13)

A lock action acts as if it flushes all variables from the thread’s working memory;
before use they must be assigned or loaded from main memory [3, 17.6]:

(Lock,8) < (Use,0,1) =
(Lock,8) < (Assign,0,1) < (Use,8,1) or (14)
(Lock,8) < (Read, 8,1),, < (Load,6,1), < (Use,8,l)
(Lock,8) < (Store,8,1) = (Lock,0) < (Assign,8,1) < (Store,8,1) (15)

86

of computation. Event spaces are included in the configurations to record such
historical information.

We first state the necessary extensions for the notions of terms, stacks, and
configurations from the single-threaded to the multi-threaded case. Then we give
the operational rules for multi-threaded Java and illustrate their use with the
“Possible Swap” example. Finally we show that the multi-threaded semantics
conservatively extends the semantics of Section 2.

Multi-threaded terms, stacks, and configurations. A multi-threaded Java config-
uration may include multiple S-terms, one for each running thread. An abstract
term T of multi-threaded Java is a set of pairs (6,¢), where 8 € Thread_id,
t € S-Term and no distinct elements of T bear the same thread identifier.
The set of abstract terms of multi-threaded Java is called M-Term. M-terms
{(81,t1),(02,t2),...} are written as lists (61,¢1) | (62,%2) | ... and pairs (0,1)
are written ¢ when @ is irrelevant.

Each thread of execution of a Java program has its own stack. We call
M-Stack the domain of multi-threaded stacks, ranged over by o. More precisely,
M-Stack = Thread_id — S-Stack. Given o € M-Stack, the multi-threaded stacks
push(8,p,0), olf,i — v] and ¢[8,i = v] map ¢ to (') when 8 # ¢, and
otherwise map 6 respectively to push(p,o(8)), o(8)[¢ — v] and o(8)[i = v].

The configurations of multi-threaded Java are 4-tuples (7,7, o, 1) consisting
of an M-term T, an event space 7 an M-stack o and a store pu.

Multi-threaded rules. The operational rules make use of the following notation.
We write store,(6,1) for the oldest unwritten value of I stored by § in 5. More
formally: let an event (Store,8,0), in i be called unwritten if (Write,8,1),, is
undefined in 7; then, store,(0,1) = v if there exists an unwritten (Store,8,l,v),
such that for any unwritten (Store, 8,1),, we have n < m; if no such Store event
exists, store,(#,1) is undefined. Similarly, we write rval, (8,1) for the latest value
of [assigned or loaded (obtained by the corresponding Read) by 8 in 7.

The operational semantics for multi-threaded Java is given in Table 6. There
is a “primed” version [x’] for of each rule [x] of Section 2; [x"] is omitted if it
reads as [x] by the notational conventions.

Properly speaking, those of Table 6 are rule schemes whose instances are
obtained by replacing the metavariables with suitable semantic objects. This
point is crucial for a correct understanding of the rules [assign3’, val’, lock,
unlock, read, load, store, write]. Indeed, suitably instances of such schemes can
be found only if the operation & is defined for the given arguments, that is
if the action being performed complies with the requirements of the language
specification. By [assign3’] and [val’] Assign and Use actions are only added
to an event space, when dictated by execution of the current thread [3, 17.3].
The rules [read, load, store, write] are applied spontaneously. The [store] rule
“guesses” the value of the last Assign: axiom (7) ensures that the guess is right.

For a concrete example, consider the “Possible Swap” program of Section 3.
Assume that o(6,,p) = o(62,p) = o, for a stack o and that p(l,) = 1 and
w(lp.y) = 2 for a store p. Then any run of this program starting from an empty

87

[assign3’] 0,1 =v),7— (0,v),n® (Assign, 6, v)

[assignd’) 0,1 =v),0 = (8,v),0[6,i — v]

[val’) (8,1),n — (8, rval,, (6,1)),n & (Use, 8,1)

[var’] (0,3),0 = (6,0(0,1)),0

[block2’] (97 Sl)v PUSh(gu P1, Ul) — (01 SZ)! pu'Sh’(07 P2, 02)

(97 {Sl}Pl)7 o1 — (97 {SZ}PQ)v o2

[synchrol] - L -
synchronized(e;) ¢ — synchronized(es) g

[synchro2] - 91 = g2 -
synchronized(o) g1 — synchronized(o) g2

[lOCk] (97 C), m ~= (97 0)7 n2

(0, synchronized(e) q),m — (0, synchronized(o) q),n2 @ (Lock, 8, 0)

[unlock] (6, synchronized(o) { },),n — 1 ® (Unlock, 8,0)

[read] T,n,u— T,n® (Read, 6,1, p(1)), 1

{load] T,n—T,n® (Load,0,l)

[store] T,m— T,n® (Store, 0,1,v)

[write] T,n,p— T,n& (Write,0,1), ull — store,(6,1))

[ar} t1 — ta

P ty IT — ta I T

Table 6. Multi-threaded Java

event space, stack o, and store p will eventually end up with p(l,.x) = p(lp.y) =1
or u(lp.x) = u(ly.y) = 2. We detail a run where 6 is first in Figure 3. The event
space of the end-configuration corresponds eventually to Figure 2, the final store
is pllp.x = 2|[lp.y > 2.

Conservativity. The operational semantics of multi-threaded Java extends con-
servatively the semantics given in Section 2 for the sequential part of the lan-
guage. This is shown by Theorem 1 below, which exhibits a bisimulation between
the two semantics where bisimilar configurations feature identical abstract terms.
The significance of the theorem consists in showing that sequential programs can
be reasoned about without loss of generality by using a simpler model of com-
putation, free of working memories and forgetful of the past.

Below, a simple (unindexed) arrow — stands for the sequential Java seman-
tics of Section 2 and —~ for its reflexive closure. We write —4 for the restriction
of the multi-threaded Java semantics where the rules [read, load, store, write]
involve actions of the thread # only. The read/load extension ~»¢ of —¢ to the
left is inductively defined as follows: I ~»g Iy when I3 —g I3 or 17 —y I

88

((81, synchronized(p) { p-x =p.y; }py) | (02, t), 0,0,p)
l [lock,var']
({61, synchronized(op) { p.x = p.¥; }ry) | (62, 1), {(Lock,61,05)},0,)
[])
(81, synchronized(op) { lp.x = lp.y; o) | (62, £), {(Lock,61,0)}, 0, 1)

[read]

((61’ sy..- (OP) { ll’~x = lP'Y; }Pw) I (02, t)7 { . S (Read,olylP-Yv‘?)}7U> 1“‘)

[load)
((017 Sy... (OP) { lP-x = lP-Y; }Po) l (92, t)’ { o S (Load7917lp~}’)}707 .U‘)
[synchro2, block2, statseql, expstatl, assign2, val’]

(01, sy...(op) { lpx =25 }pp) | (02, t), {--- < (Use,b1,1,.4)},0,0)

[synchro2, block2, statseq2, expstat2, assign3’]
(61, sy...(op) { }pg) | (B2, 1), {--- < (Assign,b1,05.2,2)},0, 1)
l [store]
(01, sy-..(op) { }og) | (B2,), { -~ < (Store,01,bp.x,2)}, 0, 1)
1 [write]
(81, 57+ (03) { Yoo) | (B2,), (- < (Write, 01, bp.0)}, 0, pllp.x > 2)
l [unlock]

((61) | (62, 1), {--- < (Unlock,1,0,)}, 0, plly.x > 2])

Figure 3. Sample run of “Possible Swap”

by a Read or a Load action and I ~»9 I3. The store/write completion o of
— is defined as follows: (91, 1) lo (12, #2) when (91, 1) —§ (92, p2) by Store
and Write actions only, and there is no I" such that (12, t2) —¢ I’ by such an
action. We write (g, 1) lo po if there is an 7o such that (n1, 41) lo (2, u2). It
is easy to verify that I |s It and I' {4 I3 imply I1 = I. (Note that we use
the same conventions as for the statement of the rules, i.e. we omit irrelevant

configuration components.)

Let the binary relation ~¢ between configurations of the sequential and multi-

threaded Java semantics be defined as follows:

{(to1, 1) ~o (T,m,00,p2) iff T =(0,t) and 0y = 02(6) and (1, p2) Lo p1 -

90

Furthermore, we are studying the flexibility of our approach by means of an
extension to the so-called “prescient” store actions [3, 17.8]. These actions “allow
optimizing Java compilers to perform certain kinds of code rearrangements that
preserve the semantics of properly synchronized programs [...].”

References

1. Ken Arnold and James Gosling. The Java Prograrmmming Language. Addison—-Wesley,
Reading, Mass., 1996.

2. Sophia Drossopoulou and Susan Eisenbach. Java is Type Safe — Probably. In
Mehmet Aksit, editor, Proc. 11" Europ. Conf. Object-Oriented Programming, vol-
ume 1241 of Lect. Notes Comp. Sci., pages 389-418, Berlin, 1997. Springer.

3. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison—
Wesley, Reading, Mass., 1996.

4. Doug Lea. Concurrent Programming in Java. Addison-Wesley, Reading, Mass.,
1997.

5. Wei Li. An Operational Semantics of Multitasking and Exception Handling in Ada.
In Proc. AdaTEC Conf. Ada, pages 138-151, New York, 1982. ACM SIGAda.

6. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, Cambridge, Mass., 1997.

7. Gordon D. Plotkin. Structural Operational Semantics (Lecture notes). Technical
Report DAIMI FN-19, Aarhus University, 1981 (repr. 1991).

8. Glynn Winskel. An Introduction to Event Structures. In Jacobus W. de Bakker,
editor, Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, volume 354 of Lect. Notes Comp. Sci., Berlin, 1988. Springer.

A Syntax

Block ::= { BlockStatement™ }
BlockStatement ::= LocalVariable Declaration | Statement
LocalVariable Declaration := Type VariableDeclarator™
VariableDeclarator ::= Identifier = Exzpression
Statement ::=; | Block | EzpressionStatement ;
| synchronized (Ezpression) Block
EzpressionStatement ::= Assignment | new ClassType ()
Assignment = LeftHandSide = AssignmentEzpresston
LeftHandSide ::= Name | FieldAccess
Name ::= Identifier | Name . Identifier
FieldAccess ::= Primary . Identifier
AssignmentEzpression ::= Assignment | UnaryEzpression
UnaryEzpression = UnaryOperator UnaryEzpression
| Primary | Name
Primary := Literal | this | FieldAccess
| (Bzpression) | new ClassType ()
Ezxpression ::= AssignmentExpression

i

i

i

