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Abstract  A structural operational semantics of a non trivial sublan- 
guage of Java is presented. This language includes dynamic creation of 
objects, blocks, and synchronization of threads. First we introduce a 
simple operational description of the sequential part of the language, 
where the memory is treated as an Mgebra with suitably axiomatized 
operations. Then, the interaction between threads via a shared memory 
is described in terms of structures, called "event spaces," whose well- 
formedness conditions formalize directly the rules given in the Java lan- 
guage specification. Event spaces are included in the operational judge- 
ments to develop the semantics of the full multi-threaded sublanguage, 
which is shown to extend the one for sequential Java conservatively. The 
result allows sequential programs to be reasoned about in a simplified 
computational framework without loss of generality. 

1 I n t r o d u c t i o n  

Java is an object-oriented programming language which offers a simple and 
tightly integrated support  for concurrent programming.  A concurrent program 
consists of multiple tasks that  are or behave as if they were executed all at the 
same time. In Java  tasks are implemented using threads (short for "threads of 
execution"),  which are sequences of instructions tha t  run independently within 
the encompassing program. Informal descriptions of this model can be found in 
several books (see e.g. [1], [4]). A precise description is given in the Java language 
specification [3]. 

This paper  presents a formal semantics of a non-trivial sublanguage of Java  
which includes dynamic creation of objects,  blocks, and synchronization of 
threads. The  semantics is given in the style of Plotkin 's  structural  operational  
semantics (SOS) [7]. This technique has been used e.g. for the semantics of SML 
[6] and earlier for ADA [5]. 

The  thread model, and in part icular  the interaction between threads via 
shared memory,  is described here in terms of structures called event spaces. 
These correspond roughly to configurations in Winskel's event structures [8], 
which are used for denotational semantics of concurrent languages. By using 
similar s t ructures  in operational semantics, a technique which is new, to our 
knowledge, we obtain an abstract  "declarative" description of the Java thread 
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model which is an exact formal counterpart  of the informal language description 
[3] and which leaves maximal freedom for different implementations. 

We present the semantics in two steps: First we introduce a simple opera- 
tional description of the sequential part of the language, where the memory is 
treated as an algebra with suitably axiomatized operations. Then the  thread 
model is developed and shown to be a conservative extension of sequential Java. 
For reasons of space we consider in this paper only the following subset of the 
Java language: access to local variables and instance variables, assignment, class 
instance creation, blocks, local variable declaration, threads and synchronization. 
We cut out, among other things, class declaration, method call and exceptions. 
However, what we include (whose BNF is given in Appendix A) is enough to 
describe the thread model in full generality. 

Closely related work is the formal semantics of a sublanguage of Java in 
[2]. This paper focuses on the Java type system and develops an operational 
semantics for a sequential sublanguage of Java only. Therefore our semantics of 
threads is complementary. 

The paper is organized as follows: In Section 2 the semantics of single- 
threaded (sequential) Java programs is given. Section 3 introduces the notion 
of event space and sets the rules for a correct interaction between main mem- 
ory and threads. Section 4 describes the refinement of single-threaded Java to 
multi-threaded Java. The paper concludes with some remarks and future devel- 
opments. 

2 S e q u e n t i a l  J a v a  

The operational semantics of sequential Java is quite conventional. We give an 
overview by means of an example. 

class Point { 
int x, y; 

Point() { } 
} 

class Sample { 
public static void main(String[] argv) { 

Point p = new Point(); 

p.x = I; p.y = 2; 
p.x = p.y; 

} 

The sample program consists of two class declarations of P o i n t  and Sample. 
The class P o i n t  has two attributes x and y, the coordinates of a point, and 
provides only the s tandard constructor P o i n t ( )  that  is called upon creation of 
a new instance (object) of class Po in t .  The second class Sample has a single 
method m a i n ( S t r i n g [ ]  a rgv)  (and a hidden standard constructor).  
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Programs start  and end with the execution of the main () method, which must 
be defined in some (and only one) class. In our example this method creates a new 
instance of class P o i n t  by executing the expression new P o i n t  (); a reference to 
this object is assigned to the local variable p. Our program proceeds by assigning 
1 and 2 to the coordinates of the object referenced by p, and then by setting the 
value of the x coordinate to the value of y. 

Since the scope of local variables is determined by the block structure of 
the program, we keep them in a stack which grows and shrinks upon entering 
and exiting blocks. On the other hand, objects are permanent entities which 
survive the blocks in which they are created; therefore the collection of their 
instance variables (containing the values of their attributes) is kept in a separate 
structure: the store. Intuitively, stores can be thought of as mapping left-values 
(addresses of instance variables) to right-values (the primitive data  of Java). 
Later on we shall see how different threads interact through the store. A formal 
description of stacks, stores and the configurations of th e operational semantics 
is given below. 

Stores. We use a semantic domain Store for abstract stores, a domain Obj for 
abstract objects and two domains LVal and RVal  for left and right-values. Since 
references to objects can be assigned to variables in Java, we stipulate that 
Obj C RVal. Stores are axiomatized below by means of the following semantic 
functions: 

n e w c  : Store -+ Obj • Store 

upd : LVal • RVal  • Store -~ Store 

lval : Obj • Ident i f ier  • Store--~ LVal 
rval : LVal • Store ~ RVal  

this : Store--~ Obj 

where functions in the family new are indexed by class types C E Class Type. 
As we do not deal with class declarations here, we assume that  a function n e w c  
"knows" how to initialize the instance variables of a newly created object of 
class C. In particular, we assume that  initial values are returned by a family of 
partial functions 

i n i t c  : I den t i f i e r -~  RVal  

whose domain is the set of attributes of C. 
In our example the evaluation of ne~ P o i n t ( )  produces the object op of 

newpoint(#) = (%, #')  where # is the current store. A new store #~ is also pro- 
duced with two new left-values lp.x and Ip.y suitably initialized. 

The function upd updates a store. The function Ival finds in the store the 
location pointed by expressions like p. x, where the evaluation of p yields an 
object in in Obj. In particular, as shown by the axioms below, l va l (o , i , t t )  is 
defined for those i E Ident i f ier  that  are attributes of the class of o. The function 



78 

rval gets the right-value associated in a store with a given left-value, and this 
gets the object whose code is being currently executed. 

In the following, object  are ranged over by the metavariable o, left values by 
l, right values by v and stores by #. All these can be variously decorated. We 
write tt[1 ~ v] and #(1) for upd(l, v, #) and rval(l, #) respectively. 

Abstract  stores are axiomatized by using a unary predicate I (written in 
postfix notation) and a binary predicate __ (in infix notation).  The  meaning of 
e l  is that  e is defined, i.e. it denotes a value, while el ~ e2 means that  if el is 
defined, then so is e2 and they denote the same value. By el ~- e2 we mean that  
both el _ e2 and e2 -4 el hold, and by el = e2 we mean that  both el ~ e2 and 
el $ hold. We write T the negation of 1- The axioms for abst ract  stores are listed 
in Table 1. 

,(1) ~ , ' (0 
lval(o, i, p)J" 

I �9 f initc(i) "~ tt (lval(o,z,# )) 

( . e ~ c ( , )  = (o, ~')) 
( . e ~ c ( . )  = (o, ~')) 
( n e ~ c ( . )  = (o, ~')) 

, [ t  ~ v](1) = 
#[l '  ~ v](/) ~ #(1) (l # l') 

#[l' ~+ v'][l ~-+ v] = #[1 ~-+ v][l' ~-~ v'] (1 # l') 
#[l ~+ #(/)] _ # 

Table  1. Axiomatization of abstract stores 

Environment  stacks. Environments  are pairs ( I , p )  where I C Identifier is a 
source of identifiers and p is a part ial  function from I to right values: 

Env = ~ i C i d e n t i f i e r  I ~ RVal .  

Intuitively, I contains the local variables of a block. By abuse of notation, we 
write p for an environment (I ,  p) and indicate with src(p) its source I .  As usual, 
p[i ~-+ v](j) = v if i = j and p[i ~ v](j)  ~_ p(j)  otherwise. 

Let S-Stack be the domain of stacks of environments,  ranged over by the 
metavariable a. The empty  environment and the empty  stack are writ ten re- 
spectively P0 and cro. The  operat ion push : Env • S-Stack --+ S-Stack is the 
usual one on stacks. All other stack operations we use are recursively defined in 
Table 2. 

In our example, the bindings of the block in ma in ( )  yield the stack 
push(po[ p ~-~ op], a~). 

Terms. The operational  semantics of single-threaded Java  works on a set S- Term 
of single-threaded abstract terms. We let the metavariable t range over S-Term. 
To each syntactic category of Java  we associate a homonymous category of ab- 
stract  terms. The well-typed terms of Java  are mapped  to abs t rac t  terms of 
corresponding category by a translat ion (_)~ which we leave implicit when no 
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[push(p[ i  ~ v], ~') 
o[~ = v] = [undef ined  

[push(p[ i  ~ v], o ' )  
o[~ ~ v] = ~push(p ,o ' [ i  . v]) 

| 

( undefined 

f p(i) if a = push(p,a') and i E sre(p) 
cr(i) = "'~o- (i) if a = push(p, a') and i r sre(p) 

( undefined otherwise. 

Tab le  2. Operations on stacks 

if a = push(p, a') and i G src(p) 
otherwise; 

if cr = push(p, cr') and i E src(p) 
if o = push(p, ~') and i r src(p) 
otherwise; 

confusion arises. Abs t rac t  blocks are terms of  the form { t }p where the environ- 
ment p contains the local variables of the block. In our  example, we have 

{ P o i n t  p = new P o i n t ( ) ;  p . x  = 1; p . y  = 2; p . x  = p . y  } ~  

{ P o i n t  p = new P o i n t ( ) ;  p.x = 1; p.y = 2; p.x = p.y; }p0[p~un] - 

Configurations and Rules. We call configurations elements of the domain 
S-Term x S-Stack x Store. We let ~/ range over this domain.  The  operat ional  
semantics is the b inary  relation ~ on configurat ions inductively defined by the 
rules tha t  follow. Related pairs of configurat ions are wri t ten ~1 ~ ~/2 and are 
called operational judgements. 

In the rule schemes (Tables 3-5) ,  the metavariables (variously decorated)  
range as follows: i E Identifier, k E Identifier U LVal, e E Expression, T E Type, 
d E VariableDeclarator, D E VariableDeclarator +, s E BlockStatement, S E 
BlockStatement* and q E Block (see Appendix  A). 

We unders tand  s ta tements ,  a m o n g  which local variable declarations,  as com- 
putat ions  over the one-element domain  {*}. Then,  consistently with the type  of 
the relation ---~, we write S ,a l , # l  ~ a2,P2 for S , r  -+ *,cr2,p2. 

Stacks and stores are omi t ted  when not relevant; tha t  is, we may  write: 

tl --+ t2 t l , S r 1 , ~ l  --~ t2 ,sr2,~2 
for 

t3 --+ t4 t 3 ,O- l , p l  -*  t4 ,a2 ,#2  

The  full set of rules can be found in Table 3 for expressions, Table 4 for local 
variable declarations,  and Table 5 for s ta tements .  

For our  example,  a detailed run of (par t  of) the block in m a i n ( )  can be found 
in Figure 1. The  annota t ions  to  the arrows indicate the rules applied. The  object  
op, the locations lp.x and lp.y, and the  stores # and # '  are defined as before. 

3 E v e n t  S p a c e s  

The execution of  a Java  p rogram comprises m a n y  threads of computa t ion  running 
in parallel. Threads  exchange informat ion  by opera t ing  on values and objects  re- 
siding in a shared main memory. As explained in the Java  language specification 



80 

[assignl] 

[assign3] 

[unopl] 

[accessl] 

[this] 

[new] 

f iat]  

el --+ e2 [assign2] el -+ e2 
el = e - +  e2 = e  k = e l  ~ k ~ e 2  

l = v, # -+ v, #[l ~+ v] [assign4] i = v,  o" --+ v,  a[i  ~-+ v] 

e, -+  e2 [unop2] op(v), It -+ op(v) ,  It 
op(e~) ~ ov(e~) 

el  -~  e2 [access2] o . i ,  It -+  lval(o,  i, It), It 
el  . i -+ e2 . i 

t h i s  ,It --+ t h i s ( I t ) , I t  [pth] (e), It --+ e ,p  

new C ( ) ,  It --> n e w t  (#) [val] l ,  It --+ ~(l), # 

i ,  a --+ a( i ) ,  a 

T a b l e  3. Expressions 

el --+ e2 [decl2] [decll] i = el --+ i = e2 
dl -+ d2 

[declseql] dl D -+ d2 D [deelseq2] 

D1 ---> D2 
[locvardecll] T D1 -+ r D2 [locvardecl2] 

i = v ,  o w o [ i  = v]  

d, 0"1 -'+ 0"2 

dD, a1-~D, a2 
D, al -~ a2 

~- D , a l  --+(72 

T a b l e  4. Local variable declarations 

[3], each t h r e a d  also has  a p r iva te  w o r k i n g  m e m o r y  in which i t  keeps i ts  own 
work ing  copy  of var iab les  t h a t  i t  mus t  use or  assign.  As  the  t h r e a d  executes  a 
p r o g r a m ,  i t  o p e r a t e s  on these  work ing  copies.  T h e  m a i n  m e m o r y  con ta ins  t he  
m a s t e r  copy  of each var iable .  T h e r e  a re  rules  a b o u t  when a t h r e a d  is p e r m i t t e d  
or  requ i red  to  t r ans fe r  the  con ten t s  of  i ts  work ing  copy of a var iab le  in to  the  
m a s t e r  copy  or vice versa.  Moreover ,  t h e r e  a re  rules  which regu la te  the  l ock -  
i n g  and  u n l o c k i n g  of ob jec t s ,  by  m e a n s  of  which t h r e a d s  synchronize  wi th  each  
o ther .  These  rules  a re  given in [3, C h a p t e r  17] a n d  formal ized  in this  sec t ion  
as "wel t - formedness"  condi t ions  for s t r u c t u r e s  cal led e v e n t  spaces .  In  the  nex t  
sect ion event  spaces  are  i n c l u d e d  in the  conf igura t ions  of  m u l t i - t h r e a d e d  J ava  to  
cons t r a in  the  app l i cab i l i t y  of ce r t a in  o p e r a t i o n a l  rules.  

[statseql] sl -+ s2 [statseq2] 
8 1 S  -'-~ S2 S 

[expstatl] el --+ e2 [expstat2] 
e l ;  ---+ e2 ; 

[skip] ; , a  -+ a [block1] 

[block2] S l , p U s h ( p l , a l )  -+ S 2 , p u s h ( p ~ , c r 2 )  

s, #1 -+ #2 
s S, tzt -+ S,/z2 

e; , t t l  -+#2  

{ } p ,  o" --)- o" 

T a b l e  5. Sta tements  
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{ Point p = new Point(); p.x = 1; p.y = 2; p.x = p.y; }p~nun],aO, # 

statseql,  expstat l ,  ~ locvardecll, decll, new] [block2, 

{ Point  p = op; p.x = 1; p,y = 2; p.x = p.y; }p~+,unl ,aO,  #' 

[block2, statseq2, expstat2, ~ locvardecl2, decl2] 

{ p.x---- 1; p . y = 2 ;  p . x = p . y ;  }p~[p~%l,a~,#' 

statseql,  expstat l ,  ~ access1, [block2, var] 

{ op.x = 1; p.y = 2; p.x -= p.y; }p0[p~+%],crO,#' 

[block2, statseql,  expstat l ,  ~ assignl, access2] 

{ 1p.~ ---= 1; p.y = 2; p.x = p.y; } p 0 ~ % ] , a o , # '  

statseq2, expstat2, [block2, assign3] 

{ p.y = 2; p.x =p .y ;  }pr ~-+ 1] 

F i g u r e  1. Sample run of Sample .main() 

In accord  with  [3], the  t e rms  Use, Assign, Load, Store, Read, Write, Lock, 
and Unlock are used here to name  act ions which descr ibe the act ivi ty  of the 
memories  dur ing the  execut ion of a J ava  p rogram.  Use and Assign denote  the  
above ment ioned  act ions  on the pr ivate  working memory .  Read and Load are 
used for a loosely coupled copying of d a t a  f rom the ma in  m e m o r y  to a working 
memory  and dual ly  Store and Write are used for copying d a t a  f rom a working 
m e m o r y  to  the  ma in  memory .  

For instance,  a rule abou t  the in terac t ion  of locks and variables [3, 17.6, 
p. 407] s ta tes  for a t h read  8, a var iable  V and a lock L: 

"Between an assign action by [0] on V and subsequent unlock action by 
[0] on L, a store action by [0] on V must intervene; moreover, the write action 
corresponding to tha t  store must precede the unlock action, as seen by the 
main memory. (Less formally: if a thread is to perform an unlock action on 
any lock, it must first copy all assigned values in its working memory back 
out to main memory.)" 

We briefly recap i tu la te  those rules by means  of the  example  "Possible Swap" 
of [3, 17.10] where  two th reads  81 and 02 running  in paral lel  want  to  man ipu la t e  
the coord ina tes  of  the  s ame  point  object  %,  referenced in bo th  th reads  by the 
local var iable  p. T h e  th read  81 wants  to  do p . x  = p . y ,  while ~2 wants  to do 
p . y  = p . x .  These  man ipu la t ions  are to run under  mutua l  exclusion; in J ava  
this is ob ta ined  by a synchronization on a shared  object :  

(81, synchronized(p) {p.x=p.y; })I(82, synchronized(p) {p.y=p.x; }) 

In order  to  enter  the  crit ical ( s y n c h r o n i z e d )  region bo th  th reads  must  per form 
a Lock act ion on %; by  the  rules of the J ava  l anguage  specification a Lock act ion 
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of one thread on an object prevents any other thread to perform a Lock action on 
the same object.  We assume tha t  01 is first. Now, 01 may  proceed to obtain the y 
coordinate of the object  referenced by p. By the rules for locks the value of p. y, 
which resides in the main memory,  must be loaded first in 01's working memory.  
The language specification requires that  such a Load action be preceded by a 
corresponding Read action of the main memory. Once this protocol is completed 
the requested value can be used by 01 with a Use action and assigned to the 
working copy of p.  x with an Assign action. 

Put t ing  the new value of p .  x back in the main memory  reverses the chain of 
responsibilities: the working memory  of 01 issues this value to the main memory  
by a Store action; then the main memory  writes the value to the master  copy 
of p. x by a Write action. This chain is again enforced by the Unlock action 
that  ends the critical region. Now, 02 may proceed to achieve the lock on %, 
and so forth; the complete series of actions is depicted in Figure 2. Note that  
the omission of the synchronization would considerably liberalize the order of 
execution of the actions. Especially, a non-synchronized thread is not forced to 
write the contents of its working memory  back to the main memory.  

(Lock, 01, Op) 

(Read, 01, lv.y) 

(Load, O1,/p.y) 

( Use, 01, li~.y ) 

(Assign, 01, Iv.x) 

(Store, 01, Ip.x) 

( Write, 01, Iv.x) 

( Unlock, 01, %) 

(Lock, 02, %) 

(Read, 02, lv.~ ) 

(Load, 02, lv.x) 

( Use, 02,1p.x) 

(Assign, 02, lp. y ) 

(Store, 02, lv.y) 

( Write, 02, Ip.y) 

( Unlock, 02, %) 

Figure  2. Event space of example "Possible Swap" 

We proceed to formalize this behaviour. Let the metavariable A stand for a 
generic action name. Moreover, let B range over the set of thread actions and C 
over the set of memory  actions, that  is: 

B ~ { Use, Assign, Load, Store, Lock, Unlock} , 
C E {Read, Write, Lock, Unlock} . 
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Let Thread_id be a set of thread identifiers. An action is either a 4-tuple of 
the form (A,8,1, v) where A C {Assign, Store, Read}, 8 E Thread_id, l E LVal 
and v E RVal, or a triple (A,8, I), where 8 and l are as above and A C 
{ Use, Load, Write}, or a triple (A, 8, o), where A e {Lock, Unlock} and o E Obj. 
A triple (A, 8, x) is read "8 performs an A action on x," for x a location or an 
object, while (A, 8, l, v) is read "(A, tg, l) with value v." 

Events are instances of actions, which we think of as happening at different 
times during execution. We use the same tuple notat ion for actions and their 
instances (the context clarifies which one is meant)  and let lower case letters 
stand for either. Sometimes we omit components  of an action or event: we may 
write (Read, l) for (Read, 8, l, v) when 8 and v are not relevant. 

An event space is a poset of events (thought of as occurring in the given 
order) in which every chain can be enumerated monotonically with respect to 
the ari thmetical  ordering 0 < 1 < 2 < . . .  of natural  numbers, and which satisfies 
the conditions (1-15) below. These conditions, which formalize directly the rules 
of [3, Chapter  17], are expressed by clauses of the form: 

Va C 7-(~5 =~ ((351 E ~ .~1)  or (352 E ~?-~P2) or . . .  (3b,~ C 77. ~,~))) 

where a and b~ are lists of events, ~7 is an event space and Va C 7.  ~ means that  
holds for all tuples of events in ~ matching the elements of a (and similarly 

for 3bi E ~.~P~). Such s ta tements  are abbreviated by adopting the following 
conventions: quantification over a is left implicit when all events in a appear  
in r quantification over b~ is left implicit when all events in b~ appear  in ~i. 
Moreover, a rule of the form Ya E 7. (true ~ . . . )  is written a ==~ ( . . . ) .  We 
include some short, informal explanation of the rules and refer to [3] for more 
detail. 

The actions performed by any one thread are totally ordered, and so are the 
actions performed by the main memory  for any one variable [3, 17.2, 17.5]. 

(B,8) , (B' ,8)  ~ (B,8) <_ (B',8) or (B',8) <_ (B,8) (1) 
(c, x), (c' ,  x) (c, x) < (c', x) or (c',  < (c, x) (2) 

Hence, the occurrences of any action (A,8, x) are totally ordered in an event 
space. The  term (A, 8, x),~ denotes the n- th  occurrence of (A,8, x) in a given 
space, if such an event exists, and is undefined otherwise. When two indices m 
and n are applied in a rule to instances of the same action, it is meant  that  
?T;, ~ Tt. 

A Store action by 8 on 1 must intervene between an Assign by 8 of l and a 
subsequent Load by 8 of I. Less formally, a thread is not permit ted to lose its 
most recent assign [3, 17.3]: 

(Assign, O, l) <_ (Load, O, l) ~ (Assign, O, l) < (Store, O, l) <_ (Load, 8, l) (3) 

A thread is not permit ted to write da ta  from its working memory  back to main 
memory for no reason [3, 17.3]: 

(Store, 8, l)m (_ (Store, 8, l)~ 
(4) (Store, 8, l)m <_ (Assign, 8, l) <_ (Store, 8, l)n 
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Threads start  with an empty working memory and new variables are created 
only in main memory and not initially in any thread's  working memory [3, 17.3]: 

(Use,O,l) =~ (Assign,O,1) < (Use,O, 1) or (Load,g,I) < ( Use,O,l) (5) 
(Store, O, l) ~ (Assign, O, l) < (Store, O, l) (6) 

A Store action transmits the contents of the thread's  working copy of a variable 
to main memory [3, 17.1]: 

(Assign,O,l,v)n < (Store,O,l,v') 
v = v' or (Assign, O, l, v)n <_ (Assign, O, l),~ <_ (Store, O, l, v') (7) 

Each Load or Write action is uniquely paired respectively with a matching Read 
or Store action that  precedes it [3, 17.2, 17.3]: 

(Load, O, l)n =:> (Read, O, 1)~ ~. (Load, O, l)~ (8) 
( Write, e, (Store, e, <_ ( Write, e, (9) 

The actions on the master copy of any given variable on behalf of a thread are 
performed by the main memory in exactly the order that  the thread requested 
[3, 17.3]: 

(Store, O, l)m <_ (Load, O, 1)= ~ ( Write, O, l)m < (Read, O, l)n (10) 

A thread is not permitted to unlock a lock it does not own. Only one thread at 
a time is permitted to lay claim to a lock, and moreover a thread may acquire 
the same lock multiple times and does not relinquish ownership of it until a 
matching number of unlock actions have been performed [3, 17.5]: 

( Unlock,O,o)~ ~ (Lock,O,o)~ < ( Unlock,O,o),~ (11) 
(Lock, O, o)~ <_ (Lock, 0', o) and 0 r 0' ~ (Unlock, O, o)~ <_ (Lock, 0 ~, o) (12) 

If a thread is to perform an unlock action on any lock, it must first copy all 
assigned values in its working memory back out to main memory [3, 17.6] (this 
rule formalizes the quotation above): 

(Assign, O, I) <_ ( Unlock, O) (13) (Assign, O, l) <_ (Store, O, 1)n <_ ( Write, O, 1)~ < ( Unlock, O) 

A lock action acts as if it flushes all variables from the thread's working memory; 
before use they must be assigned or loaded from main memory [3, 17.6]: 

(Lock, O) <_ ( Use, O, l) =v 
(Lock, O) <_ (Assign, O, l) <_ ( Use, O, l) or (14) 
(Lock, O) < (Read, O, 1),~ < (Load, O, l)~ < ( Use, O, l) 

(Lock, O) < (Store, O, l) ::v (Lock, O) < (Assign, O, l) <_ (Store, O, l) (15) 
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Discussion. Each of the above rules corresponds to one rule in [3]. Conversely, 
any rule in [3] which we have not included above can be derived in our axioma- 
tization. In particular,  

(Load, 0, l) < (Store, 8, l) ~ (Load, O, l) < (Assign, 0, l) < (Store, 8, l) (*) 

of [3, 17.3] holds in any event space. In fact, by (6) there must be some Assign 
action before the Store; moreover, one of such Assign must intervene in between 
the Load and the Store, because otherwise, from (1) and (3), there would be a 
chain (Store, 8, l) < (Load, 8, l) < (Store, 8, l) with no Assign in between, which 
contradicts (4). Similarly, the following rule of [3, 17.3] derives from (8) and (9): 

V(Load, 8, l)n, (Store, 0, l)m, ( Write, O, l)r,~ E ~?. 
(Load, 8, 1)n < (Store, 8, l)m =:~ (Read, 8, l)n < ( Write, 8, l)m 

The clauses (6) and (15) simplify the corresponding rules of [3, 17.3, 17.6] which 
include a condition (Load, 8, l) < (Store, 8, l) to the right of the implication. This 
would be redundant  because of ( .) .  

Note tha t  the language specification requires any Read action to be completed 
by a corresponding Load and similarly for Store and Write. We do not t ranslate  
such rules into well-formedness conditions for event spaces because the lat ter  
must capture  incomplete program executions. 

Usage in operational semantics. Event spaces serve two purposes: On the one 
hand they provide all the information to reconstruct  the current working mera- 
ories of all threads (which in fact do not appear  in the configurations). On the 
other hand event spaces record the "historical" information on the computa-  
tion which constrain the execution of certain actions according to the language 
specification, and hence the applicability of certain operational rules. 

A new event a = (A, 8, x) is adjoined to an event space ~ by extending the 
execution order as follows: if A is a thread action, then b < a for all instances 
b of (B, 8) in ~; if a is a main memory  action, then c _< a for all instances c of 
(C, x) in ~?. Moreover, if A is Load then c <__ a for all instances c of (Read, 8, l) in 
~, and if A is Write then c < a for all instances c of (Store, 8, l) in ~?. The te rm 
~?| denotes the space thus obtained, provided it obeys the above rules, and it is 
otherwise undefined. For example, by (5), the te rm ~ G ( Use, 0, l) is defined only 
if a suitable (Assign, 8, l) or (Load, 8, l) occurs in ~?. If ~ is an event space and 
a = (al ,  as, �9 .. an) is a sequence of events, we write ~?Ga for y |  |174 �9 -Oan.  

4 M u l t i - T h r e a d e d  J a v a  

Stores assume in multi- threaded Java  a more active role than they have in se- 
quential Java  because of the way the main memory  interacts with the working 
memories: a "silent" computat ional  step changing the store may occur with- 
out the direct intervention of a thread 's  execution engine. Changes to the store 
are subject to the previous occurrence of certain events which affect the s tate  
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of computation. Event spaces are included in the configurations to record such 
historical information. 

We first state the necessary extensions for the notions of terms, stacks, and 
configurations from the single-threaded to the multi-threaded case. Then we give 
the operational rules for multi-threaded Java and illustrate their use with the 
"Possible Swap" example. Finally we show that  the multi-threaded semantics 
conservatively extends the semantics of Section 2. 

Multi-threaded terms, stacks, and configurations. A multi-threaded Java config- 
uration may include multiple S-terms, one for each running thread. An abstract 
term T of multi-threaded Java is a set of pairs (8, t), where 8 E Thread_id, 
t E S-Term and no distinct elements of T bear the same thread identifier. 
The set of abstract terms of multi-threaded Java is called M-Term. M-terms 
{(~1, t l ) , (~2, t2) , . . . }  are written as lists (~1,tl) I (~2,t2) [ . . .  and pairs (8, t) 
are written t when 0 is irrelevant. 

Each thread of execution of a Java program has its own stack. We call 
M-Stack the domain of multi-threaded stacks, ranged over by 0. More precisely, 
M-Stack = Thread_id ~ S-Stack. Given o E M-Stack, the multi-threaded stacks 
push(~,p,o),  a[O,i ~-* v] and o[0, i = v] map 8' to a(8')  when t~ r 8', and 
otherwise map 8 respectively to push(p, 0(8)), o(8)[i ~-+ v] and a(8)[i = v]. 

The configurations of multi-threaded Java are 4-tuples (T, 7, 0, #) consisting 
of an M-term T, an event space 7/an M-stack a and a store #. 

Multi-threaded rules. The operational rules make use of the following notation. 
We write storev(0, l) for the oldest unwritten value of 1 stored by 8 in ~/. More 
formally: let an event (Store, 8, l)n in ~/ be called unwritten if (Write,8,  l)n is 
undefined in 71; then, store~(8, l) = v if there exists an unwritten (Store, 8, l, v)~ 
such that  for any unwritten (Store, 8, l),~ we have n < m; if no such Store event 
exists, store~(8, l) is undefined. Similarly, we write rval~(8, l) for the latest value 
of 1 assigned or loaded (obtained by the corresponding Read) by 8 in 7. 

The operational semantics for multi-threaded Java is given in Table 6. There 
is a "primed" version Ix'] for of each rule Ix] of Section 2; Ix'] is omitted if it 
reads as Ix] by the notational conventions. 

Properly speaking, those of Table 6 are rule schemes whose instances are 
obtained by replacing the metavariables with suitable semantic objects. This 
point is crucial for a correct understanding of the rules [assign3', val', lock, 
unlock, read, load, store, write]. Indeed, suitably instances of such schemes can 
be found only if the operation • is defined for the given arguments, that  is 
if the action being performed complies with the requirements of the language 
specification. By [assign3'] and [val'] Assign and Use actions are only added 
to an event space, when dictated by execution of the current thread [3, 17.3]. 
The rules [read, load, store, write] are applied spontaneously. The [store] rule 
"guesses" the value of the last Assign: axiom (7) ensures that  the guess is right. 

For a concrete example, consider the "Possible Swap" program of Section 3. 
Assume that  a (~ l ,p )  = o ( 0 2 , p )  = Op for a stack ~r and that  #(1p.~) = 1 and 
#(lp.y) = 2 for a store #. Then any run of this program starting from an empty 
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[assign3'] 

[assign4'] 

[val'] 

[var'] 

[block2'] 

[synchrol] 

[synchro2] 

[lock] 

(0, l = v),  *l -+ (0, v),  ~ (9 (Ass ign,  O, l, v)  

(0, i = ~,), ~ ~ (0, ~,), ~,[0, i ~ v] 

(0,/), r / -4 (0, rvaI, 7 (0, l)),  ~ (9 ( Use, O, l) 

(0, i ) , a  -4  (O,a(O,i)),a 
(o, s~) ,  p~sh(o, ;~, o~) ~ (o, s~) ,  p~sh(o,  p~, o~) 

el ---} e2 
synchronized(el) q-+synchronized(e2) q 

q~ -+ q2 
synchronized(o) ql -+ synchronized(o) q2 

(0, ~), ~ ~ (0, o), , :  
(0, synchronized(e) q), r/1 -4 (0, synchronized(o) q), '72 (9 (Lock, O, o) 

[unlock] 

[read] 

[load] 

[store] 

[write] 

[par] 

(0, synchronized(o) { }p), ,  -4 .7 | ( Unlock, O, o) 

T, rh tt -+ T, *7 (9 ( Read, O, l, #(1) ), # 

T ,~  -4 T,~7 (9 (Load, O,l) 

T, 71 --~ T, .7 (9 (Store, O, l, v) 

T, *7, ~ -4 T, .7 (9 ( Writ~, O, l), .[l ~. store.,( O, O] 

tl  -+ t2 
tl [ T - +  t~ ]T  

Table  6. Multi-threaded Java 

event space, stack o-, and store # will eventually end up with p(Ip.x)  = #(lp.y) = 1 
or #(lp.x)  = #( lv .y  ) = 2. We detail a run where 01 is first in Figure 3. The event 
space of the end-configuration corresponds eventually to Figure 2, the final store 
is ~[4.x ~ 2][4.y ~ 21- 

Conservat iv i ty .  The operational  semantics of multi- threaded Java extends con- 
servatively the semantics given in Section 2 for the sequential part  of the lan- 
guage. This is shown by Theorem 1 below, which exhibits a bisimulation between 
the two semantics where bisimilar configurations feature identical abstract  terms. 
The significance of the theorem consists in showing that  sequential programs can 
be reasoned about  without loss of generality by using a simpler model of com- 
putation, free of working memories and forgetful of the past. 

Below, a simple (unindexed) arrow ~ stands for the sequential Java seman- 
tics of Section 2 and ---*= for its reflexive closure. We write --~e for the restriction 
of the mult i - threaded Java  semantics where the rules [read, load, store, write] 
involve actions of the thread 0 only. The read/ load extension "~0 of --~0 to the 
left is inductively defined as follows: /"1 "-*e /"2 when /"1 --~0 /"2 or F1 --*0 F[ 
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((81, synchronized(p){ p .x=p.y ;  }pa) [ (82, t), q},cr #) 

[lock,var'] 

((81, synchronized(op) { p.x : p.y; }p,) I (02, t), {(Lock,Ol,op)},a, it) 

[ . . . ,  I , . . ]  
((81, synchronized(o,) { 1,.x =/, .y;  }oz) I (82, t), {(Lock,Ol,%)},a,#) 

[read] 

((81, sy . .  (%) { Ip..=/p.y; }p0) [( 82, t), {.-. < (Read,Ol,lp.y,2)},a, tt) 
l [load] 

((81, sy .(%) {l, .~-=-/, .y; }o0) 1(82, t), {--._< (Load,Ol,lp.y)},a,,) 

[synchro2, block2, statseql, expstatl, ~ assign2, val'] 
w 

((01, sy , . . (op)  { z~.. = 2; },~) I (8~, t), {... ___ (v~,81,z~. , )} ,o , , )  

[synchro2, block2, statseq2, expstat2, 1 assign3'] 

((0~, sy . . . (%)  { }, ,)1 (02, t), {.--_< (Assign, Ol,lp.~,2)},a,~) 

I [store] 
((81, ~y. . .  (o,) { },o) I (o2, t ) ,{. . .  _< (Sto~,ol ,1, .x ,2)},~, ,)  

l [write] 

((01, sy . . . (o , )  { }po) [ (82, t),{..._< (Write,81,1p..)},cr,#[l,..~->2]) 

[unlock] 

((ol) I (o2, t ) ,{. . .  < (UnZock,Ol,op)},c~,,[t,.~ ~ 2]) 

Figure  3. Sample run of "Possible Swap" 

by a Read or a Load action and F~ "~e F2. The store/write completion J.o of 
--+0 is defined as follows: (~1,#1) 10 (~2,#2) when (~1,#1) --*$ (~2,#2) by Store 
and Write actions only, and there is no F such that  Q/2,/~2) --+0 r by such an 
action. We write Qh ,# l )  Se tt2 if there is an ~/2 such that  (~l , t t l )  $0 (~2,tt2). It 
is easy to verify that  F ~0 /'1 and F ~0 /"2 imply FI = F2. (Note that  we use 
the same conventions as for the s ta tement  of the rules, i.e. w e  omit irrelevant 
configuration components.)  

Let the binary relation "~e between configurations of the sequential and multi- 
threaded Java semantics be defined as follows: 

( t , a l , P l )  ~o (T,v,  a2,#2) iff T = (0, t) and aa = a2(O) and (W,/~2) le #1 - 
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T h e o r e m  1. For any configurations ~/ and I', if V "~ F then: 

(i) for all F ~, if F -+o F ~ then there exists ~ such that ~ --+= ~ and ~/~ "~o F~ ; 
(ii) for all 7', if V --~ ~' then there exists F ~ such that F~,~o F' and V ~ ~o F'.  

Proof. By induction on the length of derivation of the operational judgements.  
The interesting cases involve the silent memory  actions. We detail only some 
particularily involved cases for each direction. 

(i) [val'] Let l ,~ ,#  --+o v,~ 0 (Use,O, 1),p, with v = rval~(8,1), and let 
(/,#1) ~o ( l ,~,#) .  It must be (~,#) ~o #1. By rule (5), either an event 
( Assign, 8,1, v) is the most recent assignment to l by 0 in ~, or events 
(Read, O,l,v) < (Load,O,l) occur in ~ and no assignment afterwards. In ei- 
ther cases (~?,#) $0 #1 imply #1(/) = v. Hence, 1,#1 ~ v ,# l  by [val]. Now, 
the s tore /wri te  completion of ~? and ~ O (Use) is the same and we thus have 
(~ | ( Use, O,/), #) ~ it1. Therefore, (v, #1 ) "~o (v, ~ | ( Use, O, l), #) as required. 

[store, write] Let (T ,# I )  --~e F by a Store or a Write action, and let (t ,#2) He 
(T, it1). It  must be (T, Pl)  J.o #~- I f / "  ~o #3 then, composing transitions, we have 
(T ,# I )  10 #3 and hence #2 = #3. Therefore (t ,#2) "~o F as required after an 
identity --+= transition. 

(ii) [assignl] Let (el = e , # l )  H0 (el = e,~,#2).  We have immediately 
(el, #1) ~0 (el,  ~?, P2). Let el = e, I-t1 - ~  e 2  ---- e, #3 by a derivation whose last step 
involves the rule [assign1]. It  must be e l , # l  -~ e2,#3 by a shorter derivation. 
Hence, by inductive hypothesis, el, ?7, it2 "-~0 e2, ~l, #4 and (e2, #3) ~o (e2, ~1, P4) 

.--+* where, by definition, the read/ load extension can be split into e l ,~ ,p2  e 
e1,~2,#2 by a possibly empty sequence of silent Read and Load actions, and 
el,?~2,~t2 --~0 e2,~l,~t4 - It follows that  el = e,~?,#2 -+0 el = e,~12,#2 by the 
same sequence of silent actions and el = e, ~2, #2 --+o e2 = e, ~1,#4 by [assignl], 
that  is el = e, ~, #2 "~0 e2 = e, ~1, #4. Moreover, since (e2, #3) He (e2, ~1, #4), 
we have (e2 = e, #3) ~o (e2 = e, ~h, #4) as required. 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In this paper  we have presented a structural  operational semantics of the con- 
currency model of Java and we have shown how it relates to sequential Java. Our 
semantics covers a substantial  par t  of the dynamic behaviour of the language. 
Most notably method calls, exceptions, and type information (class, interface 
and method declarations) are missing. We plan to investigate those parts  in a 
further study. Method calls can easily be included in our semantics by the usual 
SOS techniques. The inclusion of exceptions is slightly more complicated; it re- 
quires the definition of evaluation contexts in order to keep the number  of rules 
small. Concerning type information, we expect that  one can easily combine our 
semantics with the type system developed in [2]. 

We have also not covered the full concurrency model of Java. Especially 
wait sets and notification as described in [3, 17.14] have to be added. There  
are some more detailed rules for variables declared v o l a t i l e  and for the non- 
atomic t rea tement  of doub le  and long  variables; these are easily incorporated. 
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F u r t h e r m o r e ,  we are  s t u d y i n g  the  f lexibi l i ty  of  our  a p p r o a c h  by  means  of an  
ex tens ion  to  t he  so-cMled "prescient"  s tore  ac t ions  [3, 17.8]. These  ac t ions  "al low 
op t imiz ing  J ava  compi le r s  to  pe r fo rm ce r t a in  k inds  of  code  r e a r r a n g e m e n t s  t h a t  
p reserve  t h e  s eman t i c s  of p r o p e r l y  synchron ized  p r o g r a m s  [ . . .  ]." 
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A Syntax 

Block 
BloekStatement 

Local VariableDeclaration 
VariableDeclarator 

Statement 

ExpressionStatement 
Assignment 

LeftHandSide 
Name 

FieldAceess 
A ssignmentExpression 

UnaryExpression 

Primary 

Expression 

::~- { BlockStatement* } 
::= LoealVariableDeclaration t Statement 
::= Type VariableDeclarator + 
::= Identifier = Expression 
::= ; I Block I ExpressionStatement ; 

I synchron ized  ( Expression ) Block 
::= Assignment I new ClassType ( ) 
: :~ LeftHandSide = AssignmentExpression 
::= Name I FieldAccess 
::= Identifier I Name .  Identifier 
: : :  Primary .  Identifier 
::= Assignment I UnaryExpression 
::-- UnaryOperator UnaryExpression 

I Primaryl  Name 
: := Literal I t h i s  I FieldAecess 

I ( Expression ) I new Class Type ( ) 
::= AssignmentExpression 


