
From Sequential to Multi-Threaded Java:
An Event-Based Operational Semantics

Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing

Ludwig-M aximilians-Universit ~it Miinchen
{cenciare, knapp, reus, wirsing}@inf ormatik, uni-muenchen, de

Abstract A structural operational semantics of a non trivial sublan-
guage of Java is presented. This language includes dynamic creation of
objects, blocks, and synchronization of threads. First we introduce a
simple operational description of the sequential part of the language,
where the memory is treated as an Mgebra with suitably axiomatized
operations. Then, the interaction between threads via a shared memory
is described in terms of structures, called "event spaces," whose well-
formedness conditions formalize directly the rules given in the Java lan-
guage specification. Event spaces are included in the operational judge-
ments to develop the semantics of the full multi-threaded sublanguage,
which is shown to extend the one for sequential Java conservatively. The
result allows sequential programs to be reasoned about in a simplified
computational framework without loss of generality.

1 I n t r o d u c t i o n

Java is an object-oriented programming language which offers a simple and
tightly integrated support for concurrent programming. A concurrent program
consists of multiple tasks that are or behave as if they were executed all at the
same time. In Java tasks are implemented using threads (short for "threads of
execution"), which are sequences of instructions tha t run independently within
the encompassing program. Informal descriptions of this model can be found in
several books (see e.g. [1], [4]). A precise description is given in the Java language
specification [3].

This paper presents a formal semantics of a non-trivial sublanguage of Java
which includes dynamic creation of objects, blocks, and synchronization of
threads. The semantics is given in the style of Plotkin 's structural operational
semantics (SOS) [7]. This technique has been used e.g. for the semantics of SML
[6] and earlier for ADA [5].

The thread model, and in part icular the interaction between threads via
shared memory, is described here in terms of structures called event spaces.
These correspond roughly to configurations in Winskel's event structures [8],
which are used for denotational semantics of concurrent languages. By using
similar s t ructures in operational semantics, a technique which is new, to our
knowledge, we obtain an abstract "declarative" description of the Java thread

76

model which is an exact formal counterpart of the informal language description
[3] and which leaves maximal freedom for different implementations.

We present the semantics in two steps: First we introduce a simple opera-
tional description of the sequential part of the language, where the memory is
treated as an algebra with suitably axiomatized operations. Then the thread
model is developed and shown to be a conservative extension of sequential Java.
For reasons of space we consider in this paper only the following subset of the
Java language: access to local variables and instance variables, assignment, class
instance creation, blocks, local variable declaration, threads and synchronization.
We cut out, among other things, class declaration, method call and exceptions.
However, what we include (whose BNF is given in Appendix A) is enough to
describe the thread model in full generality.

Closely related work is the formal semantics of a sublanguage of Java in
[2]. This paper focuses on the Java type system and develops an operational
semantics for a sequential sublanguage of Java only. Therefore our semantics of
threads is complementary.

The paper is organized as follows: In Section 2 the semantics of single-
threaded (sequential) Java programs is given. Section 3 introduces the notion
of event space and sets the rules for a correct interaction between main mem-
ory and threads. Section 4 describes the refinement of single-threaded Java to
multi-threaded Java. The paper concludes with some remarks and future devel-
opments.

2 S e q u e n t i a l J a v a

The operational semantics of sequential Java is quite conventional. We give an
overview by means of an example.

class Point {
int x, y;

Point() { }
}

class Sample {
public static void main(String[] argv) {

Point p = new Point();

p.x = I; p.y = 2;
p.x = p.y;

}

The sample program consists of two class declarations of P o i n t and Sample.
The class P o i n t has two attributes x and y, the coordinates of a point, and
provides only the s tandard constructor P o i n t () that is called upon creation of
a new instance (object) of class Po in t . The second class Sample has a single
method m a i n (S t r i n g [] a rgv) (and a hidden standard constructor).

77

Programs start and end with the execution of the main () method, which must
be defined in some (and only one) class. In our example this method creates a new
instance of class P o i n t by executing the expression new P o i n t (); a reference to
this object is assigned to the local variable p. Our program proceeds by assigning
1 and 2 to the coordinates of the object referenced by p, and then by setting the
value of the x coordinate to the value of y.

Since the scope of local variables is determined by the block structure of
the program, we keep them in a stack which grows and shrinks upon entering
and exiting blocks. On the other hand, objects are permanent entities which
survive the blocks in which they are created; therefore the collection of their
instance variables (containing the values of their attributes) is kept in a separate
structure: the store. Intuitively, stores can be thought of as mapping left-values
(addresses of instance variables) to right-values (the primitive data of Java).
Later on we shall see how different threads interact through the store. A formal
description of stacks, stores and the configurations of th e operational semantics
is given below.

Stores. We use a semantic domain Store for abstract stores, a domain Obj for
abstract objects and two domains LVal and RVal for left and right-values. Since
references to objects can be assigned to variables in Java, we stipulate that
Obj C RVal. Stores are axiomatized below by means of the following semantic
functions:

n e w c : Store -+ Obj • Store

upd : LVal • RVal • Store -~ Store

lval : Obj • Ident i f ier • Store--~ LVal
rval : LVal • Store ~ RVal

this : Store--~ Obj

where functions in the family new are indexed by class types C E Class Type.
As we do not deal with class declarations here, we assume that a function n e w c
"knows" how to initialize the instance variables of a newly created object of
class C. In particular, we assume that initial values are returned by a family of
partial functions

i n i t c : I den t i f i e r -~ RVal

whose domain is the set of attributes of C.
In our example the evaluation of ne~ P o i n t () produces the object op of

newpoint(#) = (%, #') where # is the current store. A new store #~ is also pro-
duced with two new left-values lp.x and Ip.y suitably initialized.

The function upd updates a store. The function Ival finds in the store the
location pointed by expressions like p. x, where the evaluation of p yields an
object in in Obj. In particular, as shown by the axioms below, l va l (o , i , t t) is
defined for those i E Ident i f ier that are attributes of the class of o. The function

78

rval gets the right-value associated in a store with a given left-value, and this
gets the object whose code is being currently executed.

In the following, object are ranged over by the metavariable o, left values by
l, right values by v and stores by #. All these can be variously decorated. We
write tt[1 ~ v] and #(1) for upd(l, v, #) and rval(l, #) respectively.

Abstract stores are axiomatized by using a unary predicate I (written in
postfix notation) and a binary predicate __ (in infix notation). The meaning of
e l is that e is defined, i.e. it denotes a value, while el ~ e2 means that if el is
defined, then so is e2 and they denote the same value. By el ~- e2 we mean that
both el _ e2 and e2 -4 el hold, and by el = e2 we mean that both el ~ e2 and
el $ hold. We write T the negation of 1- The axioms for abst ract stores are listed
in Table 1.

,(1) ~ , ' (0
lval(o, i, p)J"

I �9 f initc(i) "~ tt (lval(o,z,#))

(. e ~ c (,) = (o, ~'))
(. e ~ c (.) = (o, ~'))
(n e ~ c (.) = (o, ~'))

, [t ~ v](1) =
#[l ' ~ v](/) ~ #(1) (l # l')

#[l' ~+ v'][l ~-+ v] = #[1 ~-+ v][l' ~-~ v'] (1 # l')
#[l ~+ #(/)] _ #

Table 1. Axiomatization of abstract stores

Environment stacks. Environments are pairs (I , p) where I C Identifier is a
source of identifiers and p is a part ial function from I to right values:

Env = ~ i C i d e n t i f i e r I ~ RVal .

Intuitively, I contains the local variables of a block. By abuse of notation, we
write p for an environment (I , p) and indicate with src(p) its source I . As usual,
p[i ~-+ v](j) = v if i = j and p[i ~ v](j) ~_ p(j) otherwise.

Let S-Stack be the domain of stacks of environments, ranged over by the
metavariable a. The empty environment and the empty stack are writ ten re-
spectively P0 and cro. The operat ion push : Env • S-Stack --+ S-Stack is the
usual one on stacks. All other stack operations we use are recursively defined in
Table 2.

In our example, the bindings of the block in ma in () yield the stack
push(po[p ~-~ op], a~).

Terms. The operational semantics of single-threaded Java works on a set S- Term
of single-threaded abstract terms. We let the metavariable t range over S-Term.
To each syntactic category of Java we associate a homonymous category of ab-
stract terms. The well-typed terms of Java are mapped to abs t rac t terms of
corresponding category by a translat ion (_)~ which we leave implicit when no

79

[push(p[i ~ v], ~')
o[~ = v] = [undef ined

[push(p[i ~ v], o ')
o[~ ~ v] = ~push(p ,o ' [i . v])

|

(undefined

f p(i) if a = push(p,a') and i E sre(p)
cr(i) = "'~o- (i) if a = push(p, a') and i r sre(p)

(undefined otherwise.

Tab le 2. Operations on stacks

if a = push(p, a') and i G src(p)
otherwise;

if cr = push(p, cr') and i E src(p)
if o = push(p, ~') and i r src(p)
otherwise;

confusion arises. Abs t rac t blocks are terms of the form { t }p where the environ-
ment p contains the local variables of the block. In our example, we have

{ P o i n t p = new P o i n t () ; p . x = 1; p . y = 2; p . x = p . y } ~

{ P o i n t p = new P o i n t () ; p.x = 1; p.y = 2; p.x = p.y; }p0[p~un] -

Configurations and Rules. We call configurations elements of the domain
S-Term x S-Stack x Store. We let ~/ range over this domain. The operat ional
semantics is the b inary relation ~ on configurat ions inductively defined by the
rules tha t follow. Related pairs of configurat ions are wri t ten ~1 ~ ~/2 and are
called operational judgements.

In the rule schemes (Tables 3-5) , the metavariables (variously decorated)
range as follows: i E Identifier, k E Identifier U LVal, e E Expression, T E Type,
d E VariableDeclarator, D E VariableDeclarator +, s E BlockStatement, S E
BlockStatement* and q E Block (see Appendix A).

We unders tand s ta tements , a m o n g which local variable declarations, as com-
putat ions over the one-element domain {*}. Then, consistently with the type of
the relation ---~, we write S ,a l , # l ~ a2,P2 for S , r -+ *,cr2,p2.

Stacks and stores are omi t ted when not relevant; tha t is, we may write:

tl --+ t2 t l , S r 1 , ~ l --~ t2 ,sr2,~2
for

t3 --+ t4 t 3 ,O- l , p l -* t4 ,a2 ,#2

The full set of rules can be found in Table 3 for expressions, Table 4 for local
variable declarations, and Table 5 for s ta tements .

For our example, a detailed run of (par t of) the block in m a i n () can be found
in Figure 1. The annota t ions to the arrows indicate the rules applied. The object
op, the locations lp.x and lp.y, and the stores # and # ' are defined as before.

3 E v e n t S p a c e s

The execution of a Java p rogram comprises m a n y threads of computa t ion running
in parallel. Threads exchange informat ion by opera t ing on values and objects re-
siding in a shared main memory. As explained in the Java language specification

80

[assignl]

[assign3]

[unopl]

[accessl]

[this]

[new]

f iat]

el --+ e2 [assign2] el -+ e2
el = e - + e2 = e k = e l ~ k ~ e 2

l = v, # -+ v, #[l ~+ v] [assign4] i = v, o" --+ v, a[i ~-+ v]

e, -+ e2 [unop2] op(v), It -+ op(v) , It
op(e~) ~ ov(e~)

el -~ e2 [access2] o . i , It -+ lval(o, i, It), It
el . i -+ e2 . i

t h i s ,It --+ t h i s (I t) , I t [pth] (e), It --+ e ,p

new C () , It --> n e w t (#) [val] l , It --+ ~(l), #

i , a --+ a(i) , a

T a b l e 3. Expressions

el --+ e2 [decl2] [decll] i = el --+ i = e2
dl -+ d2

[declseql] dl D -+ d2 D [deelseq2]

D1 ---> D2
[locvardecll] T D1 -+ r D2 [locvardecl2]

i = v , o w o [i = v]

d, 0"1 -'+ 0"2

dD, a1-~D, a2
D, al -~ a2

~- D , a l --+(72

T a b l e 4. Local variable declarations

[3], each t h r e a d also has a p r iva te w o r k i n g m e m o r y in which i t keeps i ts own
work ing copy of var iab les t h a t i t mus t use or assign. As the t h r e a d executes a
p r o g r a m , i t o p e r a t e s on these work ing copies. T h e m a i n m e m o r y con ta ins t he
m a s t e r copy of each var iable . T h e r e a re rules a b o u t when a t h r e a d is p e r m i t t e d
or requ i red to t r ans fe r the con ten t s of i ts work ing copy of a var iab le in to the
m a s t e r copy or vice versa. Moreover , t h e r e a re rules which regu la te the l ock -
i n g and u n l o c k i n g of ob jec t s , by m e a n s of which t h r e a d s synchronize wi th each
o ther . These rules a re given in [3, C h a p t e r 17] a n d formal ized in this sec t ion
as "wel t - formedness" condi t ions for s t r u c t u r e s cal led e v e n t spaces . In the nex t
sect ion event spaces are i n c l u d e d in the conf igura t ions of m u l t i - t h r e a d e d J ava to
cons t r a in the app l i cab i l i t y of ce r t a in o p e r a t i o n a l rules.

[statseql] sl -+ s2 [statseq2]
8 1 S -'-~ S2 S

[expstatl] el --+ e2 [expstat2]
e l ; ---+ e2 ;

[skip] ; , a -+ a [block1]

[block2] S l , p U s h (p l , a l) -+ S 2 , p u s h (p ~ , c r 2)

s, #1 -+ #2
s S, tzt -+ S,/z2

e; , t t l -+#2

{ } p , o" --)- o"

T a b l e 5. Sta tements

81

{ Point p = new Point(); p.x = 1; p.y = 2; p.x = p.y; }p~nun],aO, #

statseql, expstat l , ~ locvardecll, decll, new] [block2,

{ Point p = op; p.x = 1; p,y = 2; p.x = p.y; }p~+,unl ,aO, #'

[block2, statseq2, expstat2, ~ locvardecl2, decl2]

{ p.x---- 1; p . y = 2 ; p . x = p . y ; }p~[p~%l,a~,#'

statseql, expstat l , ~ access1, [block2, var]

{ op.x = 1; p.y = 2; p.x -= p.y; }p0[p~+%],crO,#'

[block2, statseql, expstat l , ~ assignl, access2]

{ 1p.~ ---= 1; p.y = 2; p.x = p.y; } p 0 ~ %] , a o , # '

statseq2, expstat2, [block2, assign3]

{ p.y = 2; p.x =p .y ; }pr ~-+ 1]

F i g u r e 1. Sample run of Sample .main()

In accord with [3], the t e rms Use, Assign, Load, Store, Read, Write, Lock,
and Unlock are used here to name act ions which descr ibe the act ivi ty of the
memories dur ing the execut ion of a J ava p rogram. Use and Assign denote the
above ment ioned act ions on the pr ivate working memory . Read and Load are
used for a loosely coupled copying of d a t a f rom the ma in m e m o r y to a working
memory and dual ly Store and Write are used for copying d a t a f rom a working
m e m o r y to the ma in memory .

For instance, a rule abou t the in terac t ion of locks and variables [3, 17.6,
p. 407] s ta tes for a t h read 8, a var iable V and a lock L:

"Between an assign action by [0] on V and subsequent unlock action by
[0] on L, a store action by [0] on V must intervene; moreover, the write action
corresponding to tha t store must precede the unlock action, as seen by the
main memory. (Less formally: if a thread is to perform an unlock action on
any lock, it must first copy all assigned values in its working memory back
out to main memory.)"

We briefly recap i tu la te those rules by means of the example "Possible Swap"
of [3, 17.10] where two th reads 81 and 02 running in paral lel want to man ipu la t e
the coord ina tes of the s ame point object %, referenced in bo th th reads by the
local var iable p. T h e th read 81 wants to do p . x = p . y , while ~2 wants to do
p . y = p . x . These man ipu la t ions are to run under mutua l exclusion; in J ava
this is ob ta ined by a synchronization on a shared object :

(81, synchronized(p) {p.x=p.y; })I(82, synchronized(p) {p.y=p.x; })

In order to enter the crit ical (s y n c h r o n i z e d) region bo th th reads must per form
a Lock act ion on %; by the rules of the J ava l anguage specification a Lock act ion

82

of one thread on an object prevents any other thread to perform a Lock action on
the same object. We assume tha t 01 is first. Now, 01 may proceed to obtain the y
coordinate of the object referenced by p. By the rules for locks the value of p. y,
which resides in the main memory, must be loaded first in 01's working memory.
The language specification requires that such a Load action be preceded by a
corresponding Read action of the main memory. Once this protocol is completed
the requested value can be used by 01 with a Use action and assigned to the
working copy of p. x with an Assign action.

Put t ing the new value of p . x back in the main memory reverses the chain of
responsibilities: the working memory of 01 issues this value to the main memory
by a Store action; then the main memory writes the value to the master copy
of p. x by a Write action. This chain is again enforced by the Unlock action
that ends the critical region. Now, 02 may proceed to achieve the lock on %,
and so forth; the complete series of actions is depicted in Figure 2. Note that
the omission of the synchronization would considerably liberalize the order of
execution of the actions. Especially, a non-synchronized thread is not forced to
write the contents of its working memory back to the main memory.

(Lock, 01, Op)

(Read, 01, lv.y)

(Load, O1,/p.y)

(Use, 01, li~.y)

(Assign, 01, Iv.x)

(Store, 01, Ip.x)

(Write, 01, Iv.x)

(Unlock, 01, %)

(Lock, 02, %)

(Read, 02, lv.~)

(Load, 02, lv.x)

(Use, 02,1p.x)

(Assign, 02, lp. y)

(Store, 02, lv.y)

(Write, 02, Ip.y)

(Unlock, 02, %)

Figure 2. Event space of example "Possible Swap"

We proceed to formalize this behaviour. Let the metavariable A stand for a
generic action name. Moreover, let B range over the set of thread actions and C
over the set of memory actions, that is:

B ~ { Use, Assign, Load, Store, Lock, Unlock} ,
C E {Read, Write, Lock, Unlock} .

83

Let Thread_id be a set of thread identifiers. An action is either a 4-tuple of
the form (A,8,1, v) where A C {Assign, Store, Read}, 8 E Thread_id, l E LVal
and v E RVal, or a triple (A,8, I), where 8 and l are as above and A C
{ Use, Load, Write}, or a triple (A, 8, o), where A e {Lock, Unlock} and o E Obj.
A triple (A, 8, x) is read "8 performs an A action on x," for x a location or an
object, while (A, 8, l, v) is read "(A, tg, l) with value v."

Events are instances of actions, which we think of as happening at different
times during execution. We use the same tuple notat ion for actions and their
instances (the context clarifies which one is meant) and let lower case letters
stand for either. Sometimes we omit components of an action or event: we may
write (Read, l) for (Read, 8, l, v) when 8 and v are not relevant.

An event space is a poset of events (thought of as occurring in the given
order) in which every chain can be enumerated monotonically with respect to
the ari thmetical ordering 0 < 1 < 2 < . . . of natural numbers, and which satisfies
the conditions (1-15) below. These conditions, which formalize directly the rules
of [3, Chapter 17], are expressed by clauses of the form:

Va C 7-(~5 =~ ((351 E ~ .~1) or (352 E ~?-~P2) or . . . (3b,~ C 77. ~,~)))

where a and b~ are lists of events, ~7 is an event space and Va C 7. ~ means that
holds for all tuples of events in ~ matching the elements of a (and similarly

for 3bi E ~.~P~). Such s ta tements are abbreviated by adopting the following
conventions: quantification over a is left implicit when all events in a appear
in r quantification over b~ is left implicit when all events in b~ appear in ~i.
Moreover, a rule of the form Ya E 7. (true ~ . . .) is written a ==~ (. . .) . We
include some short, informal explanation of the rules and refer to [3] for more
detail.

The actions performed by any one thread are totally ordered, and so are the
actions performed by the main memory for any one variable [3, 17.2, 17.5].

(B,8) , (B' ,8) ~ (B,8) <_ (B',8) or (B',8) <_ (B,8) (1)
(c, x), (c' , x) (c, x) < (c', x) or (c', < (c, x) (2)

Hence, the occurrences of any action (A,8, x) are totally ordered in an event
space. The term (A, 8, x),~ denotes the n- th occurrence of (A,8, x) in a given
space, if such an event exists, and is undefined otherwise. When two indices m
and n are applied in a rule to instances of the same action, it is meant that
?T;, ~ Tt.

A Store action by 8 on 1 must intervene between an Assign by 8 of l and a
subsequent Load by 8 of I. Less formally, a thread is not permit ted to lose its
most recent assign [3, 17.3]:

(Assign, O, l) <_ (Load, O, l) ~ (Assign, O, l) < (Store, O, l) <_ (Load, 8, l) (3)

A thread is not permit ted to write da ta from its working memory back to main
memory for no reason [3, 17.3]:

(Store, 8, l)m (_ (Store, 8, l)~
(4) (Store, 8, l)m <_ (Assign, 8, l) <_ (Store, 8, l)n

84

Threads start with an empty working memory and new variables are created
only in main memory and not initially in any thread's working memory [3, 17.3]:

(Use,O,l) =~ (Assign,O,1) < (Use,O, 1) or (Load,g,I) < (Use,O,l) (5)
(Store, O, l) ~ (Assign, O, l) < (Store, O, l) (6)

A Store action transmits the contents of the thread's working copy of a variable
to main memory [3, 17.1]:

(Assign,O,l,v)n < (Store,O,l,v')
v = v' or (Assign, O, l, v)n <_ (Assign, O, l),~ <_ (Store, O, l, v') (7)

Each Load or Write action is uniquely paired respectively with a matching Read
or Store action that precedes it [3, 17.2, 17.3]:

(Load, O, l)n =:> (Read, O, 1)~ ~. (Load, O, l)~ (8)
(Write, e, (Store, e, <_ (Write, e, (9)

The actions on the master copy of any given variable on behalf of a thread are
performed by the main memory in exactly the order that the thread requested
[3, 17.3]:

(Store, O, l)m <_ (Load, O, 1)= ~ (Write, O, l)m < (Read, O, l)n (10)

A thread is not permitted to unlock a lock it does not own. Only one thread at
a time is permitted to lay claim to a lock, and moreover a thread may acquire
the same lock multiple times and does not relinquish ownership of it until a
matching number of unlock actions have been performed [3, 17.5]:

(Unlock,O,o)~ ~ (Lock,O,o)~ < (Unlock,O,o),~ (11)
(Lock, O, o)~ <_ (Lock, 0', o) and 0 r 0' ~ (Unlock, O, o)~ <_ (Lock, 0 ~, o) (12)

If a thread is to perform an unlock action on any lock, it must first copy all
assigned values in its working memory back out to main memory [3, 17.6] (this
rule formalizes the quotation above):

(Assign, O, I) <_ (Unlock, O) (13) (Assign, O, l) <_ (Store, O, 1)n <_ (Write, O, 1)~ < (Unlock, O)

A lock action acts as if it flushes all variables from the thread's working memory;
before use they must be assigned or loaded from main memory [3, 17.6]:

(Lock, O) <_ (Use, O, l) =v
(Lock, O) <_ (Assign, O, l) <_ (Use, O, l) or (14)
(Lock, O) < (Read, O, 1),~ < (Load, O, l)~ < (Use, O, l)

(Lock, O) < (Store, O, l) ::v (Lock, O) < (Assign, O, l) <_ (Store, O, l) (15)

85

Discussion. Each of the above rules corresponds to one rule in [3]. Conversely,
any rule in [3] which we have not included above can be derived in our axioma-
tization. In particular,

(Load, 0, l) < (Store, 8, l) ~ (Load, O, l) < (Assign, 0, l) < (Store, 8, l) (*)

of [3, 17.3] holds in any event space. In fact, by (6) there must be some Assign
action before the Store; moreover, one of such Assign must intervene in between
the Load and the Store, because otherwise, from (1) and (3), there would be a
chain (Store, 8, l) < (Load, 8, l) < (Store, 8, l) with no Assign in between, which
contradicts (4). Similarly, the following rule of [3, 17.3] derives from (8) and (9):

V(Load, 8, l)n, (Store, 0, l)m, (Write, O, l)r,~ E ~?.
(Load, 8, 1)n < (Store, 8, l)m =:~ (Read, 8, l)n < (Write, 8, l)m

The clauses (6) and (15) simplify the corresponding rules of [3, 17.3, 17.6] which
include a condition (Load, 8, l) < (Store, 8, l) to the right of the implication. This
would be redundant because of (.) .

Note tha t the language specification requires any Read action to be completed
by a corresponding Load and similarly for Store and Write. We do not t ranslate
such rules into well-formedness conditions for event spaces because the lat ter
must capture incomplete program executions.

Usage in operational semantics. Event spaces serve two purposes: On the one
hand they provide all the information to reconstruct the current working mera-
ories of all threads (which in fact do not appear in the configurations). On the
other hand event spaces record the "historical" information on the computa-
tion which constrain the execution of certain actions according to the language
specification, and hence the applicability of certain operational rules.

A new event a = (A, 8, x) is adjoined to an event space ~ by extending the
execution order as follows: if A is a thread action, then b < a for all instances
b of (B, 8) in ~; if a is a main memory action, then c _< a for all instances c of
(C, x) in ~?. Moreover, if A is Load then c <__ a for all instances c of (Read, 8, l) in
~, and if A is Write then c < a for all instances c of (Store, 8, l) in ~?. The te rm
~?| denotes the space thus obtained, provided it obeys the above rules, and it is
otherwise undefined. For example, by (5), the te rm ~ G (Use, 0, l) is defined only
if a suitable (Assign, 8, l) or (Load, 8, l) occurs in ~?. If ~ is an event space and
a = (al , as, �9 .. an) is a sequence of events, we write ~?Ga for y | |174 �9 -Oan.

4 M u l t i - T h r e a d e d J a v a

Stores assume in multi- threaded Java a more active role than they have in se-
quential Java because of the way the main memory interacts with the working
memories: a "silent" computat ional step changing the store may occur with-
out the direct intervention of a thread 's execution engine. Changes to the store
are subject to the previous occurrence of certain events which affect the s tate

86

of computation. Event spaces are included in the configurations to record such
historical information.

We first state the necessary extensions for the notions of terms, stacks, and
configurations from the single-threaded to the multi-threaded case. Then we give
the operational rules for multi-threaded Java and illustrate their use with the
"Possible Swap" example. Finally we show that the multi-threaded semantics
conservatively extends the semantics of Section 2.

Multi-threaded terms, stacks, and configurations. A multi-threaded Java config-
uration may include multiple S-terms, one for each running thread. An abstract
term T of multi-threaded Java is a set of pairs (8, t), where 8 E Thread_id,
t E S-Term and no distinct elements of T bear the same thread identifier.
The set of abstract terms of multi-threaded Java is called M-Term. M-terms
{(~1, t l) , (~2, t2) , . . . } are written as lists (~1,tl) I (~2,t2) [. . . and pairs (8, t)
are written t when 0 is irrelevant.

Each thread of execution of a Java program has its own stack. We call
M-Stack the domain of multi-threaded stacks, ranged over by 0. More precisely,
M-Stack = Thread_id ~ S-Stack. Given o E M-Stack, the multi-threaded stacks
push(~,p,o), a[O,i ~-* v] and o[0, i = v] map 8' to a(8') when t~ r 8', and
otherwise map 8 respectively to push(p, 0(8)), o(8)[i ~-+ v] and a(8)[i = v].

The configurations of multi-threaded Java are 4-tuples (T, 7, 0, #) consisting
of an M-term T, an event space 7/an M-stack a and a store #.

Multi-threaded rules. The operational rules make use of the following notation.
We write storev(0, l) for the oldest unwritten value of 1 stored by 8 in ~/. More
formally: let an event (Store, 8, l)n in ~/ be called unwritten if (Write,8, l)n is
undefined in 71; then, store~(8, l) = v if there exists an unwritten (Store, 8, l, v)~
such that for any unwritten (Store, 8, l),~ we have n < m; if no such Store event
exists, store~(8, l) is undefined. Similarly, we write rval~(8, l) for the latest value
of 1 assigned or loaded (obtained by the corresponding Read) by 8 in 7.

The operational semantics for multi-threaded Java is given in Table 6. There
is a "primed" version Ix'] for of each rule Ix] of Section 2; Ix'] is omitted if it
reads as Ix] by the notational conventions.

Properly speaking, those of Table 6 are rule schemes whose instances are
obtained by replacing the metavariables with suitable semantic objects. This
point is crucial for a correct understanding of the rules [assign3', val', lock,
unlock, read, load, store, write]. Indeed, suitably instances of such schemes can
be found only if the operation • is defined for the given arguments, that is
if the action being performed complies with the requirements of the language
specification. By [assign3'] and [val'] Assign and Use actions are only added
to an event space, when dictated by execution of the current thread [3, 17.3].
The rules [read, load, store, write] are applied spontaneously. The [store] rule
"guesses" the value of the last Assign: axiom (7) ensures that the guess is right.

For a concrete example, consider the "Possible Swap" program of Section 3.
Assume that a (~ l ,p) = o (0 2 , p) = Op for a stack ~r and that #(1p.~) = 1 and
#(lp.y) = 2 for a store #. Then any run of this program starting from an empty

87

[assign3']

[assign4']

[val']

[var']

[block2']

[synchrol]

[synchro2]

[lock]

(0, l = v), *l -+ (0, v), ~ (9 (Ass ign, O, l, v)

(0, i = ~,), ~ ~ (0, ~,), ~,[0, i ~ v]

(0,/), r / -4 (0, rvaI, 7 (0, l)), ~ (9 (Use, O, l)

(0, i) , a -4 (O,a(O,i)),a
(o, s~) , p~sh(o, ;~, o~) ~ (o, s~) , p~sh(o, p~, o~)

el ---} e2
synchronized(el) q-+synchronized(e2) q

q~ -+ q2
synchronized(o) ql -+ synchronized(o) q2

(0, ~), ~ ~ (0, o), , :
(0, synchronized(e) q), r/1 -4 (0, synchronized(o) q), '72 (9 (Lock, O, o)

[unlock]

[read]

[load]

[store]

[write]

[par]

(0, synchronized(o) { }p), , -4 .7 | (Unlock, O, o)

T, rh tt -+ T, *7 (9 (Read, O, l, #(1)), #

T ,~ -4 T,~7 (9 (Load, O,l)

T, 71 --~ T, .7 (9 (Store, O, l, v)

T, *7, ~ -4 T, .7 (9 (Writ~, O, l), .[l ~. store.,(O, O]

tl -+ t2
tl [T - + t~]T

Table 6. Multi-threaded Java

event space, stack o-, and store # will eventually end up with p(Ip.x) = #(lp.y) = 1
or #(lp.x) = #(lv .y) = 2. We detail a run where 01 is first in Figure 3. The event
space of the end-configuration corresponds eventually to Figure 2, the final store
is ~[4.x ~ 2][4.y ~ 21-

Conservat iv i ty . The operational semantics of multi- threaded Java extends con-
servatively the semantics given in Section 2 for the sequential part of the lan-
guage. This is shown by Theorem 1 below, which exhibits a bisimulation between
the two semantics where bisimilar configurations feature identical abstract terms.
The significance of the theorem consists in showing that sequential programs can
be reasoned about without loss of generality by using a simpler model of com-
putation, free of working memories and forgetful of the past.

Below, a simple (unindexed) arrow ~ stands for the sequential Java seman-
tics of Section 2 and ---*= for its reflexive closure. We write --~e for the restriction
of the mult i - threaded Java semantics where the rules [read, load, store, write]
involve actions of the thread 0 only. The read/ load extension "~0 of --~0 to the
left is inductively defined as follows: /"1 "-*e /"2 when /"1 --~0 /"2 or F1 --*0 F[

88

((81, synchronized(p){ p .x=p.y ; }pa) [(82, t), q},cr #)

[lock,var']

((81, synchronized(op) { p.x : p.y; }p,) I (02, t), {(Lock,Ol,op)},a, it)

[. . . , I , . .]
((81, synchronized(o,) { 1,.x =/, .y; }oz) I (82, t), {(Lock,Ol,%)},a,#)

[read]

((81, sy . . (%) { Ip..=/p.y; }p0) [(82, t), {.-. < (Read,Ol,lp.y,2)},a, tt)
l [load]

((81, sy .(%) {l, .~-=-/, .y; }o0) 1(82, t), {--._< (Load,Ol,lp.y)},a,,)

[synchro2, block2, statseql, expstatl, ~ assign2, val']
w

((01, sy , . . (op) { z~.. = 2; },~) I (8~, t), {... ___ (v~,81,z~. ,)} ,o , ,)

[synchro2, block2, statseq2, expstat2, 1 assign3']

((0~, sy . . . (%) { }, ,)1 (02, t), {.--_< (Assign, Ol,lp.~,2)},a,~)

I [store]
((81, ~y. . . (o,) { },o) I (o2, t) ,{. . . _< (Sto~,ol ,1, .x ,2)},~, ,)

l [write]

((01, sy . . . (o ,) { }po) [(82, t),{..._< (Write,81,1p..)},cr,#[l,..~->2])

[unlock]

((ol) I (o2, t) ,{. . . < (UnZock,Ol,op)},c~,,[t,.~ ~ 2])

Figure 3. Sample run of "Possible Swap"

by a Read or a Load action and F~ "~e F2. The store/write completion J.o of
--+0 is defined as follows: (~1,#1) 10 (~2,#2) when (~1,#1) --*$ (~2,#2) by Store
and Write actions only, and there is no F such that Q/2,/~2) --+0 r by such an
action. We write Qh ,# l) Se tt2 if there is an ~/2 such that (~l , t t l) $0 (~2,tt2). It
is easy to verify that F ~0 /'1 and F ~0 /"2 imply FI = F2. (Note that we use
the same conventions as for the s ta tement of the rules, i.e. w e omit irrelevant
configuration components.)

Let the binary relation "~e between configurations of the sequential and multi-
threaded Java semantics be defined as follows:

(t , a l , P l) ~o (T,v, a2,#2) iff T = (0, t) and aa = a2(O) and (W,/~2) le #1 -

89

T h e o r e m 1. For any configurations ~/ and I', if V "~ F then:

(i) for all F ~, if F -+o F ~ then there exists ~ such that ~ --+= ~ and ~/~ "~o F~ ;
(ii) for all 7', if V --~ ~' then there exists F ~ such that F~,~o F' and V ~ ~o F'.

Proof. By induction on the length of derivation of the operational judgements.
The interesting cases involve the silent memory actions. We detail only some
particularily involved cases for each direction.

(i) [val'] Let l ,~ ,# --+o v,~ 0 (Use,O, 1),p, with v = rval~(8,1), and let
(/,#1) ~o (l ,~,#) . It must be (~,#) ~o #1. By rule (5), either an event
(Assign, 8,1, v) is the most recent assignment to l by 0 in ~, or events
(Read, O,l,v) < (Load,O,l) occur in ~ and no assignment afterwards. In ei-
ther cases (~?,#) $0 #1 imply #1(/) = v. Hence, 1,#1 ~ v ,# l by [val]. Now,
the s tore /wri te completion of ~? and ~ O (Use) is the same and we thus have
(~ | (Use, O,/), #) ~ it1. Therefore, (v, #1) "~o (v, ~ | (Use, O, l), #) as required.

[store, write] Let (T ,# I) --~e F by a Store or a Write action, and let (t ,#2) He
(T, it1). It must be (T, Pl) J.o #~- I f / " ~o #3 then, composing transitions, we have
(T ,# I) 10 #3 and hence #2 = #3. Therefore (t ,#2) "~o F as required after an
identity --+= transition.

(ii) [assignl] Let (el = e , # l) H0 (el = e,~,#2). We have immediately
(el, #1) ~0 (el, ~?, P2). Let el = e, I-t1 - ~ e 2 ---- e, #3 by a derivation whose last step
involves the rule [assign1]. It must be e l , # l -~ e2,#3 by a shorter derivation.
Hence, by inductive hypothesis, el, ?7, it2 "-~0 e2, ~l, #4 and (e2, #3) ~o (e2, ~1, P4)

.--+* where, by definition, the read/ load extension can be split into e l ,~ ,p2 e
e1,~2,#2 by a possibly empty sequence of silent Read and Load actions, and
el,?~2,~t2 --~0 e2,~l,~t4 - It follows that el = e,~?,#2 -+0 el = e,~12,#2 by the
same sequence of silent actions and el = e, ~2, #2 --+o e2 = e, ~1,#4 by [assignl],
that is el = e, ~, #2 "~0 e2 = e, ~1, #4. Moreover, since (e2, #3) He (e2, ~1, #4),
we have (e2 = e, #3) ~o (e2 = e, ~h, #4) as required.

5 C o n c l u s i o n s a n d F u t u r e W o r k

In this paper we have presented a structural operational semantics of the con-
currency model of Java and we have shown how it relates to sequential Java. Our
semantics covers a substantial par t of the dynamic behaviour of the language.
Most notably method calls, exceptions, and type information (class, interface
and method declarations) are missing. We plan to investigate those parts in a
further study. Method calls can easily be included in our semantics by the usual
SOS techniques. The inclusion of exceptions is slightly more complicated; it re-
quires the definition of evaluation contexts in order to keep the number of rules
small. Concerning type information, we expect that one can easily combine our
semantics with the type system developed in [2].

We have also not covered the full concurrency model of Java. Especially
wait sets and notification as described in [3, 17.14] have to be added. There
are some more detailed rules for variables declared v o l a t i l e and for the non-
atomic t rea tement of doub le and long variables; these are easily incorporated.

90

F u r t h e r m o r e , we are s t u d y i n g the f lexibi l i ty of our a p p r o a c h by means of an
ex tens ion to t he so-cMled "prescient" s tore ac t ions [3, 17.8]. These ac t ions "al low
op t imiz ing J ava compi le r s to pe r fo rm ce r t a in k inds of code r e a r r a n g e m e n t s t h a t
p reserve t h e s eman t i c s of p r o p e r l y synchron ized p r o g r a m s [. . .]."

References

1. Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley,
Reading, Mass., 1996.

2. Sophia Drossopoulou and Susan Eisenbach. Java is Type Safe - - Probably. In
Mehmet Aksit, editor, Proc. I1 th Europ. Conf. Object-Oriented Programming, vol-
ume 1241 of Lect. Notes Comp. Sei., pages 389-418, Berlin, 1997. Springer.

3. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-
Wesley, Reading, Mass., 1996.

4. Doug Lea. Concurrent Programming in Java. Addison-Wesley, Reading, Mass.,
1997.

5. Wei Li. An Operat ional Semantics of Multi tasking and Exception Handling in Ada.
In Proe. AdaTEC Conf. Ada, pages 138-151, New York, 1982. ACM SIGAda.

6. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, Cambridge, Mass., 1997.

7. Gordon D. Plotkin. Structural Operational Semantics (Lecture notes). Technical
Report DAIMI FN-19, Aarhus University, 1981 (repr. 1991).

8. Glynn Winskel. An Introduction to Event Structures. In Jacobus W. de Bakker,
editor, Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, volume 354 of Lect. Notes Comp. Sci., Berlin, 1988. Springer.

A Syntax

Block
BloekStatement

Local VariableDeclaration
VariableDeclarator

Statement

ExpressionStatement
Assignment

LeftHandSide
Name

FieldAceess
A ssignmentExpression

UnaryExpression

Primary

Expression

::~- { BlockStatement* }
::= LoealVariableDeclaration t Statement
::= Type VariableDeclarator +
::= Identifier = Expression
::= ; I Block I ExpressionStatement ;

I synchron ized (Expression) Block
::= Assignment I new ClassType ()
: :~ LeftHandSide = AssignmentExpression
::= Name I FieldAccess
::= Identifier I Name . Identifier
: : : Primary . Identifier
::= Assignment I UnaryExpression
::-- UnaryOperator UnaryExpression

I Primaryl Name
: := Literal I t h i s I FieldAecess

I (Expression) I new Class Type ()
::= AssignmentExpression

