Case Studies with CafeOBJ*

Alexander Knapp

Ludwig-Maximilians-Universitat Miinchen
knapp@informatik.uni-muenchen.de

Abstract

We describe two case studies involving the algebraic specification lan-
guage CafeOBJ. The first case study uses CafeOBJ as a tool in formally
based object-oriented software engineering. We explain the derivation pro-
cess of a formal specification from informal but annotated object models
and interaction diagrams by means of Jacobson’s “Recycling Machine”
example. On the specification side, we explore CafeOBJ’s rewriting logic
approach to object-orientation and discuss the implementation of a simple
technique to constrain the non-determinism of rule applications used by
our method. The second case study formalises a structural operational
semantics of the object-oriented multi-threaded programming language
Java in CafeOBJ. This case study provides a medium scale example of
algebraic specification language’s usage in rapid prototyping.

Introduction

CafeOBJ [8] is the product of a consequent further development of the execute-
able algebraic specification language OBJ3, the most prominent representative
of the OBJ family; for a brief history of OBJ and related languages see [10].
The superior new aspect of this language and system is its tightly integrated
support of both Goguen’s behavioural specification technique [9] and Meseguer’s
rewriting logic [14] which provide two different, complementary approaches to
object-orientation.

In this paper, we describe two case studies using CafeOBJ. We restrict our-
selves to CafeOBJ’s implementation of rewriting logic and leave a comparison
to behavioural specification to future work.

The first case study uses CafeOBJ as a tool in formally based object-oriented
software engineering. In [17], Wirsing and the author introduced the soft-
ware development method fOOSE that enhances Jacobson’s well-known infor-
mal object-oriented software development method OOSE [12] by formal anno-
tations thus providing a mathematical rigorous software development process.
Here, we exemplify this method by means of Jacobson’s running example, the
“Recycling Machine.” We use the Unified Modeling Language (UML, [3]) and
its stereotypes for OOSE in the modeling process and express (part of) our
formal annotations in UML’s Object Constraint Language. The specification

*This work has been partially supported by the CafeOBJ-project through the Information
Technology Promotion agency (IPA), Japan.

uses CafeOBJ’s implementation of rewriting logic for concurrency and object-
orientation.

The second case study formalises a structural operational semantics of the
object-oriented multi-threaded programming language Java described in [7].
CafeOBJ is used as a language for rapid prototyping. The specification for-
malising multi-threaded Java builds on two separate specifications: Sequential
Java is extended to the multi-threaded case by parameterisation. A second
specification formalises so-called event spaces, structures introduced in [7] to
coordinate the communication of the different threads and the main memory.

All specifications are available at

http://www.pst.informatik.uni-muenchen.de/personen/knapp/cafeobj.html

Tests have been performed on a PentiumPro 200 with 64 megabytes running
under Linux, kernel 2.0.30, using CafeOBJ version 1.4.035.

1 The Recycling Machine

Formal underpinnings of informal and diagrammatic modeling, analysis and
design techniques have become one of the major research topics in software en-
gineering. Three main approaches are discussed in the literature: On the one
hand, well-known diagrammatic notations and methods are provided with differ-
ent mathematically rigorous semantics; for example, Breu et. al. in [6] describe a
unified system model for UML, Bourdeau and Cheng in [5] discuss a translation
of the static diagrams used in Rumbaugh’s Object Modeling Technique (OMT,
[16]) to algebraic specifications. These foundational works mainly aim at check-
ing the consistency of different views during the software development process
and at allowing completeness tests even in the early phases of analysis and de-
sign. On the other hand, mathematically based development procedures are
visualised by diagrammatic representations, helping the software developer to
more easily grasp the specification’s contents [13]. These two overall approaches
focus either on purely informal or strongly mathematically oriented develope-
ment procedures. A third approach tries to combine the virtues of both, in
particular, it enhances the informal, diagrammatic techniques by formal, math-
ematical annotations during the development process, see for example Nakajima
and Futatsugi’s enrichment of OMT by their Generic Interaction Language for
Objects [15] or Achatz and Schulte’s combination of Fusion with Object-Z [1].

In [17], Wirsing and the author also proposed such a complementation of
Jacobson’s OOSE method by annotations of the object models and the interac-
tion diagrams in both the requirements and robustness analysis phase of OOSE’s
software development process. The resulting method, called fOOSE, provides
a semi-automatic translation of the enriched diagrams to rewriting logic based,
object-oriented concurrent algebraic specification languages such as Meseguer’s
Maude or, in particular, CafeOBJ. Additionally, an experimental translation to
Java is stated.

In the following, we give a rough overview of fOOSE and describe the trans-
lation steps of the requirements and robustness analysis phase to CafeOBJ in
more detail by means of Jacobson’s recycling machine example. For a more
detailed discussion of the theoretical basis, refinement issues, and translation to
Java in the design step we refer to [17].

1.1 Enhanced OOSE Development Process

The development process of OOSE consists of five phases: use case analysis,
robustness analysis, design, implementation and test [12] (see Figure 1).

O class ... D ok

O extends { O ok

-, J C D il

Use case Robustness Design Implementation Test
analysis analysis

Figure 1: Development phases of OOSE

The use case analysis serves to establish a requirement document which
describes the processes of the intended system in textual form. A use case is a
sequence of transactions performed by actors (outside the system) and objects
(of the system). During the robustness analysis the use cases are refined and the
objects are classified in three categories: interaction, control and entity objects.
Then in the design phase a system design is derived from the analysis objects
and the objects of the reuse library. The design is implemented during the
implementation phase and finally during test the implementation is tested with
respect to the use case description.

As in all semi-formal approaches one problem is that testing can be done
only at a very late stage of development; another problem is the fact that
many important requirement and design details can neither be expressed by
(the current) diagrams nor well described by informal text.

In the enhanced fOOSE method means are provided to overcome these defi-
ciencies without changing the basic method. The enhanced development process
consists of the same phases. The only difference is that the diagrams can op-
tionally be refined and annotated by formal text. Any annotated diagram is
semi-automatically translated into a formal CafeOBJ (or any other algebraic
specification language implementing rewriting logic) specification, i.e. the dia-
gram is automatically translated into an incomplete formal CafeOBJ specifica-
tion which then has to be completed by hand to a formal one.

Thus any fOOSE diagram is accompanied by a formal specification so that
every document has a formal meaning. In many cases the formal specification
generates proof obligations which give additional means for validation of the
current document. Further proof obligations are generated for the refinement
of descriptions, e.g. from analysis to design. These proof obligations can serve
as the basis for verification. Finally, since the executable specification language
CafeOBJ is used, early prototyping is possible during analysis and design.

In the sequel the following method will be used for constructing a formal
CafeOBJ specification (see Figure 2) from an informal description.

For any given informal description two diagrams are constructed: an object
model with attributes and invariants, and an enhanced interaction diagram. The
object model is used for describing the states of the objects and the (inheritance)

class ...
extends ... {
<<invariant>)
A customer module ... {
Object model class ... { Java
implementation
}
}
Theorem ...
Informal Formal
description specification
<<where>>
Interaction Validation of
diagram proof obligations,
prototyping

Figure 2: Construction and use of formal specifications

relationships, the interaction diagram describes the (data) flow of the messages
the objects exchange. The object model directly translates to a specification; the
interaction diagram yields an incomplete specification. The translation of both
diagrams yields (after completion) a CafeOBJ specification together with some
proof obligations. Moreover, refinement provides the information for tracing
the relationship between use case descriptions and the corresponding design and
implementation code, the induced proof obligations are the basis for verifying
the correctness of designs and implementations.

1.2 Requirements Analysis

Use case. The informal description of the recycling machine consists of three
use cases. One of them is the use case “returning items” which can be described
in a slightly simplified form as follows (see also [12]):

“A customer returns several items (such as cans or bottles) to
the recycling machine. Descriptions of these items are stored and
the daily total of the returned items of all customers is increased.
The customer gets a receipt for all items he has returned before.
The receipt contains a list of the returned items as well as the total
return sum.”

Object model and interaction diagram. We develop a first abstract rep-
resentation of this use case with the help of an object diagram that describes
the objects of the problem together with their attributes and interrelationships,
and of an interaction diagram that describes the flow of exchanged messages.

return(cl : CList)

current print(l : IList, s : Yen)
RecyclingMachine IList
<<invariant>>
self.current = <<where>> | = desclist(cl) and
self.total->subSequence(0, self.current->size) s = amount(l)

Figure 3: Object model and interaction diagram of the Recycling Machine

Additionally we extend the object model by invariants and refine the interaction
diagrams with conditions on the messages.

To do this we model the use case as an interactive system consisting of an
object of class RecyclingMachine (Figure 3 on the left). This class represents
the recycling machine and has two attributes storing the daily total and the
current list of items. For simplicity of presentation both attributes are consid-
ered as lists of items. The interaction diagram (Figure 3 on the right) shows
(abstractly) the interaction between the customer (represented by the system
border) and the recycling machine (the system). The customer sends a return
message containing a list of returned concrete items. The machine prints a re-
ceipt with the list of (descriptions of) the returned items as well as the total
return sum in Yen. To distinguish between the concrete items and their de-
scriptions in the machine we call the sort of lists of concrete items CList and
the other IList.

The following invariant is appropriate for RecyclingMachine: All items of
current have also to be in total. This invariant is easily expressed in the
Object Constraint Language (OCL) of UML, but any other formal language
that can be translated to CafeOBJ would do. We attach it to the object model.

In the same way we extend the interaction diagram in order to express
semantic relationships of the message parameters. We specify not only the
parameter sorts of messages, but introduce formal parameter names and state
the relationships between the formal parameters in an additional “where clause”.
In our example, we add a formula requiring that the item list in parameter 1 and
the amount s of the print message are a list of descriptions of the concrete items
in parameter cl of message return and the sum of the prices in 1, respectively.
For this purpose, we introduce two abstract functions desclist and amount
that have to be implemented later on.

Construction of a formal specification. Next we show how one can con-
struct semi-automatically a formal specification of the use case from the dia-
grams. The object model generates the class declarations and invariants; by
a combination of the object model with the interaction diagram one can con-
struct automatically a set of (incomplete) rewrite rules which after completion

(by hand) define the dynamic behaviour of the use case. These rewrite rules
work on multisets of objects and messages, the so-called ACZ-Configurations
of CafeOBJ. Changes of configurations by rewrite rules form the computational
model of the specification.

The first step is to provide functional specifications for all sorts, data types,
and functions used in the diagrams. This has to be done by hand. The spec-
ifications may be constructed reusing predefined modules from a specification
library such as NAT and LIST or designing a completely new specification.

The following specification of items is new. It introduces two sorts CItem
and Item denoting the “concrete” items of the user and the descriptions of these
items. The operation desc yields the description of a concrete item whereas the
operation price computes the price whose value will be given in Yen.

module ITEM {
imports {
protecting (YEN)
}

signature {
[Item CItem]

op price : Item -> Yen
op desc : CItem -> Item
}
}

The specification of item lists is obtained by instantiating a list module
(which we assume to be provided in a library) twice, once with concrete items for
elements and once with items; in both cases we rename the sort List. Moreover,
we need two more operations mentioned in the “where clause” of the interaction
diagram: amount (1) calculates the sum of the prices of the elements of 1 and
desclist(cl) converts any “concrete” list cl into a list of descriptions.

module ITEMLIST {
import {

protecting (YEN)

protecting (ITEM)

protecting (LIST[ITEM { sort Elt -> CItem }] *
{ sort List -> CList })

protecting (LIST[ITEM { sort Elt -> Item }] *
{ sort List -> IList })

signature {
op desclist : CList -> IList
op amount : IList -> Yen

}

axioms {
var c : CItem
vars cl cl’ : CList
var i : Item
vars il il’ : IList

eq desclist((nil):CList) = (nil):IList
eq desclist(c) = desc(c)
cq desclist(cl, cl’) = desclist(cl), desclist(cl’)
if (cl =/= (nil):CList) and (cl’ =/= (nil):CList)
eq amount ((nil) :IList) = 0 .
eq amount (i) = price(i)
cq amount(il, il’) = amount(il) + amount(il’)
if (il =/= (nil):IList) and (il’ =/= (nil):IList)

As a second step we automatically construct class descriptions from the
object models and interaction diagrams:

e Every object model and every interaction diagram induces a set of class
declarations:

— Each object name C with attributes aq, ..., an of types s1,...,s, of

3 3

the diagram represents a class declaration. Such a class additionally
has attributes of sort ObjectId for each object a class instance sends
a message to in any interaction diagram.

classC {ay; : s1 ... ap : S, 07 : ObjectId ... }

— Each inheritance relation from D to C corresponds to an extension
of the class declaration of D by a subclass declaration

classD[C ... 1{ ...}

e The interaction diagram induces a set of message declarations:

Each message m(vy : s1,...,v, : $,) from one object to another object
induces the message declaration

opm : ObjectIds; ... s, ObjectId -> Message

The first argument of m indicates the sender object, the last argument
the destination. Messages that involve only one object, i.e. messages to or
from the system border, are treated analogously.

For the recycling machine we get:
class RecyclingMachine {

total : IList
current : IList

op return : CList ObjectId -> Message
op print : ObjectId IList Yen -> Message

e Both diagrams generate the skeleton of a rule:

For any message m(...v; : s;...) from Ey to C of the interaction dia-
gram, let

classC [...1{ ...a; : s;... }
class Eg [...19{ ...b; :s,... }

be the corresponding class declarations, my (... wg; : sgj...) for 1 <k <
n, be the outgoing messages from C to class Ej of the same activity below
m before another message is received by C (if any) and II the “where
clause” of the diagram. Then we obtain the following skeleton of a rewrite

rule:
crl [m]l m(og, ..., vj, ..., O)
<o:C | ...a;=w; ... > =>

<o:C | ...a;=7...>

m](O, cey ’LU]]', ceey O])

Mp (0, .oy Wi, ..y On)d

if IT and I1I7 .
where oy, ..., 0, are object identifiers (for the classes Ey,...,E,). This
schema has to be adapted for messages that come from or go to the system
border.

Note that this rule schema introduces new variables on the right hand side
of the rule, which is not allowed in CafeOBJ. In the actual implementation
these new variables have to be substituted suitably by expressions from II
or 17 (by this substitution I may vanish).

The rule skeleton expresses that if the object o receives the message m it
sends the messages my,...,m,. The question marks ? on the right hand side
of the rule indicate that the resulting state of o is not expressed in the diagram.
Therefore the new values of the attributes have to be added by hand. Similarly,
IT?7 states that the condition is perhaps under-specified.

For example, the diagrams of Figure 3 induce the following skeleton:

crl [return]:
return(cl, rm)
< rm : RecyclingMachine | (total = t), (current = c) > =>
< rm : RecyclingMachine | (total = ?), (curremnt = ?7) >
print(rm, desclist(l), amount(desclist(1l), (nil):IList))
if I17 .

To get the complete rule one has to fill the question marks with the appro-
priate values (t, desclist(cl)) and desclist(cl).

The third step of the specification construction process consists of translating
the control strategy given by the interaction diagrams, that is the prescribed
order of message flow. For this translation we use the intermediate language of
process expressions [2] with message names as atomic processes. We provide a
general scheme to constrain the applicability of rewrite rules by a given process
expression.

This separation of logic and control yields an easy way to examine different
views of interaction diagrams. In Jacobson’s original interpretation every mes-
sage generates a response. As suggested by the asynchronous arrows of UML we

used in our interaction diagrams, we prefer to state return messages explicitly.
Both views are easily expressed as processes.
The abstract syntax of processes we use is given by:

Ax=/]d0]m
P:=A|P;P|P+P|P|P|P*

An atomic process is a message name m (occuring in an interaction diagram),
or a constant / denoting successful termination, or a constant ¢ for deadlock.
A composite process may be an atomic process, sequential composition, non-
deterministic choice, parallel composition of processes, or a repeat statement.
We adopt the usual precedence conventions on process expressions.
Processes are assumed to satisfy the following laws (borrowed from process
algebra, see [2]).

Vip=p, piV=p, dip=9,

p1; (p2;p3) = (P1;p2);p3,

d+p=np,

p1+ p2 = p2 + 1, p1 + (p2 +p3) = (P +p2) +ps3,
(p1 +p2) ; p3 = P13 3 + D2 ;s ps,

Vip=p dllp=4,

p1llp2 = pa || p1, pil (p2 |l p3) = (01 || p2) |l p3,

(P +p2) I3 = (p1 I p3) + (2 || p3),

(ma sp) || (m2 1 p2) = ma 5 (p1 || (ma;p2)) +ma s ((ma ;1) || p2)

P =m:p)+V

Note that the last equation for parallel composition induces an interleaving
approach to concurrency: either m; or ms has to be executed first.

We say that a run of a specification satisfies a process expression if, roughly
speaking, the sequence of consumed messages is a trace of the process expression.
Informally this means that a rewrite rule consuming a message m may only be
applied if m is accepted by the process expression. For example, an application
of the rewrite rule return is only allowed for a given process expression if this
process accepts the message return which is consumed by the rule return. For
the details of the technically more involved precise definition see [17].

Interaction diagrams are easily translated to process expressions as follows:

e The interaction diagram defines a control strategy which is based on the
assumption that the objects of the diagram are controlled by (sequential)
processes which are composed in parallel:

For each object the incoming messages are sequentially composed from
top to bottom; if a message block is part of a loop, the translated block is
surrounded by a repeat statement. These object behaviours are composed
in parallel.

The control strategy interprets the vertical axis as time: the messages have
to occur at one object in the defined order. The different objects may act in

parallel, controlled by this protocol. The emergence of new messages is left to
the object.

In the recycling machine example, the interaction diagram defines the fol-
lowing (trivial) control strategy

return

Constraints by a process expression can be implemented in CafeOBJ by a
specification of processes with two functions on processes hd : P — p((A) and
tl : A x P — P that compute the accepted atomic processes for an arbitrary
process expression and its behaviour after an atomic process has been executed,
respectively.

module PROCESS[A :: ACTION] {
protecting (SET[A { sort Elt -> Action }] *
{ sort Set -> Set<Action> })

signature {
[Action < Process]

op terminate : -> Action
op deadlock : -> Actiomn
op _;_ : Process Process -> Process
op _*_ : Process Process -> Process
op _Il_ : Process Process -> Process

op _* : Process -> Process
op hd : Process -> Set<Action>
op tl : Action Process -> Process

axioms {
eq hd(terminate) = terminate
eq hd(deadlock) = empty .
eq hd(a:Action) = a .
cq hd(pl:Process ; p2:Process) = hd(pl)
if (not (terminate in hd(p1)))
cq hd(pl:Process ; p2:Process) = (hd(pl) - terminate) hd(p2)
if (terminate in hd(p1))
eq hd(pl:Process + p2:Process) = hd(pl) hd(p2)
cq hd(pl:Process || p2:Process) = (hd(pl) hd(p2)) - terminate
if (hd(pl) =/= empty) and (hd(p2) =/= empty) and
(not ((terminate in hd(pl)) and (terminate in hd(p2))))
cq hd(pl:Process || p2:Process) = hd(pl) hd(p2)
if (terminate in hd(pl)) and (terminate in hd(p2))
cq hd(pl:Process || p2:Process) = empty
if (hd(p1l) == empty) or (hd(p2) == empty)
eq hd(p:Process *) = hd(p) terminate .
}

This specification of processes is used by a module CONTROL that provides a
class Control. This class has an attribute process that holds the actual process

10

expression a run of a specification must satisfy. Since we can not use message
names themselves as atomic processes we use strings instead.

module CONTROL {
imports {
protecting (ACZ-CONFIGURATION)
protecting (PROCESS[STRING { sort Action -> String 1}])
}

signature {
class Control {
process : Process

}
op control : -> Process
}
}

Each rewrite rule of the specification to be governed by a process expression
is translated as follows: A rule

crl [r] m o => ¢ if Il

is replaced by

crl [r] m o < cntrl : Control | process = p > =>
tl(m, Q) >

¢ < cntrl : Control | process
if m in hd(p) and II

For the recycling machine, the full specification of the use case “return items”
reads as follows:

module RM {
imports {
protecting (CONTROL)
protecting (ITEMLIST)
}

signature {
class RecyclingMachine {
total : IList
current : IList

op return : CList ObjectId -> Message
op print : ObjectId IList Yen -> Message
}

axioms {
var p : Process
vars cntrl rm : ObjectId
var cl : CList
vars t ¢ : IList
var s : Yen

11

crl [return]:

return(cl, rm)

< cntrl : Control | process = p >

< rm : RecyclingMachine | (total = t), (curremt = c) > =>
< cntrl : Control | process = tl("return", p) >
< rm : RecyclingMachine | (total = t, desclist(cl)),

(current = desclist(cl)) >
print (rm, desclist(cl), amount(desclist(cl), (nil):IList))

if ("return" in hd(p))

eq control = "return"
}
}

A sample run. We test the specification with a start configuration where the
user returns three bottles.

module RM1 {
imports {
protecting (RM)

3

signature {
op retl : -> CItem
op ret2 : -> CItem

op ret3 : -> Cltem

op bottle : -> Item

axioms {
eq price(bottle) = 100
eq desc(retl) = bottle
eq desc(ret2) = bottle
eq desc(ret3) = bottle

select RM1

exec makeControl(Cntrl, (process = control)) .
exec makeRecyclingMachine(Rm, (total = nil), (current = nil))

exec < Cntrl > < Rm > return(retl, ret2, ret3, (nil):CList, Rm)
CafeOBJ answers

-- execute in RM1 : < Cntrl > < Rm > return(retl , ret2 , ret3 ,
nil,Rm)
< Cntrl : Control | (process = terminate) > < Rm : RecyclingMachine
| (total = bottle , bottle , bottle , current = bottle , bottle
, bottle) > print(Rm,bottle , bottle , bottle,300) : ACZ-Configuration
(0.010 sec for parse, 113 rewrites(0.230 sec), 424 match attempts)

12

1.3 Robustness Analysis

Use case. The use case “return items” is refined in two aspects: instead
of returning a list of items the customer returns the items one by one; the
machine itself is decomposed into several objects. Accordingly, the informal
description consists of a refinement of the use case description of Section 1.2
and a description of the objects of the machine:

“A recycling machine receives returning items (such as cans or
bottles) from a customer. Descriptions of these items and the daily
total of the returned items of all customers are stored in the machine.
If the customer presses the start button he can return the items one
by one. If the customer presses the receipt button he gets a receipt
for all items he has returned before. The receipt contains a list of
the returned items as well as the total return sum.”

The second phase of OOSE, called “robustness analysis”, deals with such a
refinement.

Object model. Objects are classified in three categories: interface, control
and entity objects. Interface objects build the interface between the actors (the
system border) and the system, the entity objects represent the (storable) data
used by the system and the control objects are responsible for the exchange of
information between the interface and the entity objects.

o= O

State

CustomerPanel Receiver

list

amount A price

Yen

. Y
Current Depositltem en

<<invariant>>

self.amount = amount(self.list)

IList

DayTotal Bottle Meter

Figure 4: Object model of the robustness analysis for the Recycling Machine
The recycling machine consists of five objects (sorts): the interface object

CustomerPanel, a control object Receiver and the entity objects Current,
DayTotal and DepositItem. CustomerPanel and Receiver communicate the

13

data concerning the returned items, the Receiver uses Current and DayTotal
for storing and computing the list of current items and the daily total.
DepositItem stands for all kinds of returned items, in particular for the class
of bottles which is modeled as its heir (see Figure 4).

The objects have the following attributes: the CustomerPanel has a state
attribute to record whether the start button was pressed; the Receiver has
no attributes; DepositItem has a name and a price, Bottle has additionally
a height and a width; the class Current has a list (of DepositItem) and an
amount as attributes, DayTotal a list of deposit items.

The attributes of Current satisfy the invariant that the amount is the sum
of the prices of the items of the list.

Interaction diagram. From the informal description one can derive three
kinds of messages which are sent from the system border (i.e. from the customer)
to the CustomerPanel: a start message, a return message for returning one
concrete item and a receipt message for requiring a receipt. Each of these
messages begins a new activity of the customer panel. On the other hand, the
customer panel sends a print message to the system border.

The start message concerns only the CustomerPanel. After receipt of the
return message the customer panel sends a message, say new(i), with the
description i of the concrete item to the receiver. Then the receiver forwards
this information to Current and DayTotal by two messages, called add and conc
respectively; the end of such a return process is to be acknowledged by a message
ack. In the third activity the CustomerPanel sends a printreceipt request to
the Receiver which in turn sends a standard get message to Current. After
getting the answer the Receiver forwards the answer to the CustomerPanel
(by a message called send) which prints the result (see Figure 5).

The “where clause” of the diagram shows that the description i of a returned
item ci is not changed and that the amount of the print message is compatible
with the prices of the returned items.

Construction of a Formal Specification. We add a functional specification
for the states of the customer panel.

module STATE {
signature {
[State 1]

ops on, off, wait : -> State
}
}

The refined diagram generates automatically six class and twelve message
declarations according to our method in Section 1.2, e.g.

class Receiver {
customerpanel : ObjectId
current : ObjectId
daytotal : ObjectId

}

14

start

_— | [|return(ci : Cltem)

new(i : Item)
add(k : Item)

conc(j : Item)

|

|

|

ack : :

L | |
L | |

| | | |

—L | | |

receipt | | |
printreceipt : :

get |

send(l1 : IList, :

; 1L sl : Yen) I
Prlnt(ISZZ.'Itlesrtl,) to(l : IList, |
) s: Yen) :

|

|

|

I

<<where>> 1= desc(ci) and j =1iand k =1 and
amount(l) =s and 11 =1and 12 =11 and sl =s and s2 = sl

Figure 5: Interaction diagram of the robustness analysis for the Recycling Ma-
chine

op start : ObjectId -> Message
op return : ObjectId ObjectId -> Message
op new : ObjectId ObjectId ObjectId -> Message

In order to define the rule skeletons for the interaction diagram of the recy-
cling machine we use the attributes defined in the object model (see Figure 4).
We obtain the following skeletons for e.g. the start, return and new message:

crl [start] start(cp)
< cp : CustomerPanel | state = a > =>
< cp: CustomerPanel | state = 7 >
if II7
crl [return] return(ci, cp)
< cp : CustomerPanel | state = a > =>
< cp : CustomerPanel | state = ?
new(cp, i, rc)
if i = desc(ci) and II?
[new] new(cp, i, rc)
< rc : Receiver > =>
< rc : Receiver >
conc(rc, i, cur)

15

add(rc, i, dt)
if II7

The behaviour of the interaction diagram is represented by the following
strategy:

start ; (return)* ; ack ; receipt ; send
|| (new)* ; printreceipt;to
I (conc)” : get
| (add)”

To get the full rules one has to add the state changes and the necessary
preconditions. We require preconditions only for the behaviour of the customer
panel: pressing the start button should actually start the machine only if it is
in state off, returning an item and requiring a receipt should be possible only
if the machine is on. By filling in values also for the other question marks we
obtain the following rules:

rl [start]: start(cp)
< cp : CustomerPanel | (state = off) > =>

< cp : CustomerPanel | (state = on) >
rl [return]: return(ci, cp)
< cp : CustomerPanel | (state = on) > =>
< cp : CustomerPanel | (state = on) >

new(cp, desc(< ci : CItem >), rc)
rl [new]: new(cp, i, rc)
< rc : Receiver | (current = cur), (daytotal = dt) > =>
< rc : Receiver | (current = cur), (daytotal = dt) >
conc(rc, i, cur)
add(rc, i, dt)

A sample run. The whole specification with integrated process control can
now be tested. We give a run for the returning of three bottles.

exec makeCustomerPanel(Cp, (state = off), (receiver = Rc))
exec makeReceiver(Rc, (customerpanel = Cp), (current = Cur),
(daytotal = Dt))
exec makeCurrent(Cur, (list = nil), (amount = 0),
(receiver = Rc), (customerpanel = Cp))
exec makeDayTotal (Dt, (list = nil))
exec makeItem(Bottle, (price = 100))
exec makeCItem(Retl, (desc = Bottle))
exec makeCItem(Ret2, (desc Bottle))
exec makeCItem(Ret3, (desc = Bottle))

exec makeControl(Cntrl,

(process = ("start" ; (("return" ; "ack") * ;
("receipt" ; "send")))
[l ((("new") * ; ("printreceipt" ; "to"))

|| ((("COIIC") * ; "get")
[1 ("add" %)))))

exec < Cntrl > < Cp > < Rc > < Cur > < Dt >
return(Ret3, Cp) return(Ret2, Cp) return(Retl, Cp) start(Cp)

16

exec < Cntrl > < Cp > < Rc > < Cur > < Dt >
receipt (Cp)

CafeOBJ answers:

-- execute in RM : < Cntrl > < Cp > < Rc > < Cur > < Dt > return(
Ret3,Cp) return(Ret2,Cp) return(Retl,Cp) start(Cp)

< Rc : Receiver | (current = Cur , daytotal = Dt , customerpanel

Cp) > < Cur : Current | (list = Bottle , Bottle , Bottle , amount

300 , customerpanel = Cp , receiver = Rc) > < Dt : DayTotal |

(list = Bottle , Bottle , Bottle) > < Cntrl : Control | (process

= ((("return" ; "ack") *) ; ("receipt" ; "send")) || ((("new" *
) ; ("printreceipt" ; "to")) || ((("conc" #*) ; "get") || ("add"
*)))) > < Cp : CustomerPanel | (state = on , receiver = Rc) >

ACZ-Configuration
(23.350 sec for parse, 418988 rewrites(374.290 sec),
3343231 match attempts)

—--— execute in RM : < Cntrl > < Cp > < Rc > < Cur > < Dt > receipt(
Cp)

< Dt : DayTotal | (list = Bottle , Bottle , Bottle) > < Cur : Current

| (list = nil , amount = O , receiver = Rc , customerpanel = Cp)

> < Rc : Receiver | (customerpanel = Cp , current = Cur , daytotal

= Dt) > < Cntrl : Control | (process = "add" *) > < Cp : CustomerPanel

| (state = off , receiver = Rc) > print(Cp,1,300) : ACZ-Configuration
(1.430 sec for parse, 40301 rewrites(51.250 sec), 311025 match attempts)

Another interpretation of interaction diagrams. Because of our separa-
tion of logic and control we can switch between different interpretations of the
control flow of messages given by the interaction diagrams. The following is an
alternative view: The vertical axis is interpreted causally: A message m to an
object o is called the reason of all messages emerged by o between the reception
of m and the reception of any other message after (below) m. A message must
occur before any other message it is the reason for.
For the recycling machine this yields the following process expression:

start
(return;new; (add || conc) ; ack)*
receipt ; printreceipt;get;to;send

In CafeOBJ we get the following behaviour:

exec makeControl(Cntrl, (process = "start" ;
((("return" ; ("new" ;
(("add" || "conc") ; "ack"))) *) ;
("receipt" ; ("printreceipt"

("get" i ("tO" i "send")))))))

-- execute in RM : < Cntrl > < Cp > < Rc > < Cur > < Dt > receipt(
Cp)
< Dt : DayTotal | (list = Bottle , Bottle , Bottle) > < Cur : Current
| (list = nil , amount = O , receiver = Rc , customerpanel = Cp)
> < Rc : Receiver | (customerpanel = Cp , current = Cur , daytotal
= Dt) > < Cntrl : Control | (process = terminate) > < Cp : CustomerPanel

17

| (state = off , receiver = Rc) > print(Cp,1,300) : ACZ-Configuration
(1.420 sec for parse, 533 rewrites(6.670 sec), 3305 match attempts)

Specification metrics. The result for the recycling machine example are
two specifications with about 100 lines in four modules and 200 lines in five
modules, respectively. An additional library containing PROCESS and CONTROL
comprises about 150 lines in five modules. The parsing time for the specification
of the requirements analysis is about four seconds, for the specification of the
robustness analysis about seven seconds.

2 Formalising Java Semantics

Java offers simple and tightly integrated support for concurrent programming.
A concurrent program consists of multiple tasks that are or behave as if they
were executed all at the same time. In Java tasks are implemented using threads,
which are sequences of instructions that run independently within the encom-
passing program.

A structural operational semantics of a non-trivial sublanguage of Java in-
cluding threads and their synchronisation was given in [7]. The interaction
between threads via shared memory is described in terms of structures called
event spaces. These provide an abstract, declarative description of the Java
thread model which is an exact formal counterpart of the informal language
description [11, Chapter 17]. The semantics is presented in two steps: First a
simple operational description of the sequential part of Java is introduced. Then
the thread model is developed.

In this section we are formalising this semantics in CafeOBJ following the
structure of the original presentation in [7].

The following part of the concrete Java syntax is covered by the semantics:

Block := { BlockStatement™ }
BlockStatement ::= LocalVariableDeclaration | Statement
LocalVariableDeclaration ::= Type VariableDeclarator®
VariableDeclarator ::= Identifier = FExpression
Statement ::= ; | Block | ExpressionStatement;
| synchronized(Ezpression) Block
EzxpressionStatement = Assignment | new Class Type ()
Assignment = LeftHandSide = AssignmentExpression
LeftHandSide ::= Name | FieldAccess
Name == Identifier | Name . Identifier
FieldAccess ::= Primary . Identifier
AssignmentExpression = Assignment | UnaryExpression
UnaryEzpression == UnaryOperator UnaryFEzpression
| Primary | Name
Primary ::= Literal | this | FieldAccess
| (Expression) | new ClassType ()
Ezxpression := AssignmentExpression

18

2.1 Sequential Java

We first briefly summarise the semantic domains used in the operational seman-
tics of sequential Java and their formalisation. Then we introduce the abstract
syntax for Java terms. Finally, the operational rules and their translation to
CafeOBJ are presented. We illustrate some terminology and our approach by
means of the following Java program:

class Point {
int x, y;
Point() { }
}

class Main {
public static void main(String[]l argv) {
Point p = new Point();
p.x = 1; p.y=2;
p.x = p.y;
}
}

Semantic domains. Objects, for example an instance of class Point, are
kept in the main memory. This store can be thought of as mapping addresses
of instance variables (left-values, from a semantic domain LVal), e.g. of instance
variable p.x) of objects (from a semantic domain Obj, e.g. referenced by p) to
values or object references (right-values, from a semantic domain RVal, e.g. 2).
A semantic domain Store is assumed equiped with five semantic functions: upd :
LValx RValx Store — Store updates a given store; upd(l, v, u) is written u[l — v].
The function lval : Obj x Identifier x Store — LVal retrieves the left-value of
an instance variable (such as of p.x). Analogously, rval : LVal x Store = RVal
retrieves the right-value of a left-value (for example 2 for p.y); rval(l,) is
written u(l). New objects are allocated by newe : Store — Obj x Store. This
family of functions is indexed by class types C' € ClassType. For a given store
i, newc(u) yields an object o and a store p' such that u' extends p where
i (lval(o,i,pu")) is defined for any identifier ¢ ranging over all instance variables
of the class C.

The store is straightforwardly formalised in module STORE. Note that, since
the semantics does not deal with class declarations, classes (in our example
Point and Main) have to be coded in the specification by hand.

module* DECLARATIONS {
signature {
[Bool Int < Literal,
ObjectId < 0bj,
Literal 0Obj < RVal,
Ident, ClassType < Type]

op void : -> RVal
op null : -> Obj

class Main {

}

19

class Point {
x : Int
y : Int

}

}

module* STORE {
imports {
protecting (DECLARATIONS)

}

signature {
[Lval, Store]

op new : ClassType Store —> Pair<0bj;Store>

op upd : LVal RVal Store -> Store

op lval : Obj Ident Store -> LVal

op rval : LVal Store -> RVal

op init : Obj Set<Ident> -> O0bj { strat: (1 2 0) }

op _[_I->_]1 : Store LVal RVal -> Store
op __ : Store LVal -> RVal

The local variables of a block are kept in a stack of environments. Stacks
of the domain S-Stack are ranged over by o, environements of the domain FEnv
are ranged over by p. We omit the straightforward definitions for these domains
and their formalisation.

Abstract Syntax. The operational semantics works on a set S-Term of ab-
stract terms. Let the metavariable ¢ range over S-Term. To each syntactic
category of Java a homonymous category of abstract terms is associated. The
well-typed terms of Java are mapped to abstract terms of corresponding category
by a translation (_)°, which is left implicit when no confusion arises. Abstract
blocks are terms of the form {#} ,) where the source I of the environment
(I, p) contains the local variables of the block.

In our formalisation in CafeOBJ, the abstract syntax for the the block of
the main () method of the example above looks as follows:

{ (((Point (p =’ (mew Point ()))) ;)
((p . x) =1) 5) (((p . y) =2)3;)
((p . x) (p - y)) ;) nil)))) } - (undefined [p |-> null 1)

The different syntactical categories are modeled by sorts and subsorting. For
example, the grammar rule

LeftHandSide ::= Name | FieldAccess

20

is modeled by the sort declaration

[Name FieldAccess < Name“"FieldAccess < LeftHandSide] .

The symbol =’ is the operator for variable declarations. The operator
undefined represents the empty environment. A block {...}, is written
{ ... }"p. We use an explicit terminator nil for lists of block statements.

Operational judgements. The configurations of sequential Java are triples
(t,0, p) consisting of an S-term ¢, an S-stack o, and a store u. The operational
semantics is the binary relation — on configurations inductively defined by the
rules in Tables 1-3. In the rule schemes, the metavariables range as follows:
1 € Identifier, k € IdentifierU LVal, | € LVal, 0o € Obj, e € Expression, v € RVal,
s € Statement, b € BlockStatement, B € BlockStatement™, q € Block, and
t € S-Term. Stacks and stores are omitted when they are not relevant.
Configurations can be represented directly in CafeOBJ:

make S-TERM (ABSTRACTSYNTAX * sort AbstractSyntax -> S-Term)

module! S-CONFIGURATION {
imports {
protecting (TRIPLE(S-TERM { sort Elt -> S-Term 1},
S-STACK { sort Elt -> S-Stack 1},
STORE { sort Elt -> Store }) *
{ sort Triple<X;Y;Z> -> Conf })

signature {
[Conf]

For the formalisation of the rules, observe that the language specification
requires sequential Java to be a deterministic language, i.e. for each config-
uration there is at most one legal successor configuration. We can therefore
operationalise the semantics by introducing a successor function that calculates
the immediate or the n-th successor of a given configuration.

op step : Conf -> Conf
op step : Conf Nat -> Conf
3

There is a minor obstacle in directly formalising the rules with such a step
function. Suppose we had a rule like

var ss : S-Stack

var mm : Store

vars h hl : LeftHandSide

vars ae ael : AssignmentExpression

eq [assignil]:
step(<< (hl = ae), ss, mm >>) =

assignment-left(step(<< (h1), ss, mm >>), ae)

eq assignment-left(<< h, ss, mm >>, ae) = << (h = ae), ss, mm >> .

21

€1 — €2

[assign2] [——
[assignd] i=wv,0 — v,0i —]
[unop?2] op(v) — op(v)
[access2] 0.0, — lval(o,i,u), p
[pth] () — e

[val] Ly — p(l), p

Table 1. Expressions

assignl G e
[assig
€L = €e—* €3 =€
assign3 l=v,up—v,pull » v
g [[
€| —> €y
unopl
mmeptl e — op(e)
[accessl] Ao
€1.1—>€3.1
[this] this — o (this)
[new] new C (), — newc(u)
var 1,0 —0(i),0
[var] ; (i),
[decl1] &
1 =€ —>1=¢€y
d] — dg
lIseql -
[declseql] iD= dD
Dy —D
[locvardecll] ! 2

’TD]—>’TD2

decl2 i=v,0 —0li =0
[:
d. gy —» 09
declseq?2 ’
[eetsed] dD,(Tl—>D,O'2
D.(7'1 — 09
[locvardecl2] 3

T D,o01 — 09

Table 2. Local variable declarations

S1 —*> S9

tat 1 _
[statseql] 55 5,5
€1; —> €2
[kip] oo
[block2]

S, [—> [l

statseq?2 _

[} s S: uy — S: H2
€ 11— U2

[block1] {},,0—0

S1, push(pr,01) — Sa, push(pz, 02)

{S1}o, 01 — {S2}p,, 00

Table 3. Statements

22

where assignment-leftis used to put the result of the evaluation in the premise
of the rule back into the context. Due to this context, the result of step(<<
(h1), ss, mm >>) has again to be in LeftHandSide which must be ensured by
an additional condition.

We decided to analyse the left-hand sides of the rules’ conclusions in more
detail and to separate those subsorts the rules can safely apply to. For example,
[assign1] should only apply if e; is neither in Ident nor in LVal. We avoid the
introduction of new sorts like in a declaration

Ident"LVal LeftHandSide-Ident-LVal < LeftHandSide

(where LeftHandSide-Ident-LVal would represent left-hand sides of assign-
ments that are not identifiers nor left-values). Instead, we define membership
predicates like for example

pred is-ident”lval : AbstractSyntax
var k : Ident"LVal
eq is-ident”lval(k) = true .

The reduction of is-ident~1lval(t) == trueforat : AbstractSyntax
yields true if and only if t : Ident~LVal. With such predicates the rules can
be formalised straightforwardly:

axioms {
var ss : S-Stack
var mm : Store
var i : Ident

var 1 : LVal
var k : Ident“LVal
var v : RVal

vars h hl : LeftHandSide
vars ae ael : AssignmentExpression

ceq [assigni]:
step(<< (hl = ae), ss, mm >>) =
assignment-left(step(<< (h1l), ss, mm >>), ae)
if not (is-lefthandsidenf(hl) == true)
ceq [assign2]:
step(<< (k = ael), ss, mm >>) =
assignment-right (step(<< (ael), ss, mm >>), k)
if not (is-assignmentexpressionnf(ael) == true)
eq [assign3]:
step(<< (L = v), ss, mm >) =< (v), ss, mm [1 |[->v] > .
eq [assign4]:
step(<< (i

v), ss, mm >>) =<< (v), ss [i |[-> v], mm > .

eq assignment-left(<< h, ss, mm >>, ae) = << (h = ae), ss, mm >> .
eq assignment-right(<< ae, ss, mm >>, h) = << (h = ae), ss, mm >> .

eq is-lefthandsidenf (h) = is-ident~lval(h) == true .
eq is-assignmentexpressionnf(ae) = is-rval(ae) == true .

23

The main block of our running example can now be executed:

let test = << ({ (((Point (p =’ (mew Point ()))) ;)
((p . x) =1) 3)
p -y 2) ;)
(((p - x) = (p - y)) ;) nil))))
} ° (undefined [p |-> null 1)),
empty, empty >> .

exec step(test, 15)
CafeOBJ answers

-- execute in S-CONFIGURATION : step(<< ({ (((Point (p =’ new Point
())) 5) (p . x) =1) ;) ((p . y) =2) ;) (((p . x) =(
P - y)) ;) nil)))) } ° (undefined [p |-> null 1)) , empty ,
empty >>,15)

<< * , empty , point-0 >> : Conf

(0.000 sec for parse, 973 rewrites(0.140 sec), 2539 match attempts)

The program has created a new instance point-0 of class Point. We may
inspect it with red < point-0 >:

-- reduce in S-CONFIGURATION : < point-0 >
< point-0 : Point | (x = 2 , y = 2) > : Point
(0.230 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)

2.2 Event Spaces

The execution of a non-idealised, non-sequential Java program comprises many
threads of computation running in parallel. Threads exchange information by
operating on values and objects residing in a shared main memory. As explained
in the Java language specification [11], each thread also has a private working
memory in which it keeps its own working copy of variables that it must use
or assign. As the thread executes a program, it operates on these working
copies. The main memory contains the master copy of each variable. There are
rules about when a thread is permitted or required to transfer the contents of
its working copy of a variable into the master copy or vice versa. Moreover,
there are rules which regulate the locking and unlocking of objects, by means
of which threads synchronise with each other. These rules are given in [11,
Chapter 17] and have been formalised in [7] as “well-formedness” conditions for
structures called event spaces. Event spaces are included in the configurations of
multi-threaded Java to constrain the applicability of certain operational rules.
Additionally, they are used to model the working memories of all threads. We
summarise the definition of event spaces and simultaneously formalise them in
a CafeOBJ specification.

Actions and events. In accord with [11], the terms Use, Assign, Load, Store,
Read, Write, Lock, and Unlock are used to name actions which describe the
activity of the memories during the execution of a Java program. Use and
Assign denote the above mentioned actions of the private working memory.
Read and Load are used for a loosely coupled copying of data from the main

24

memory to a working memory and dually Store and Write are used for copying
data from a working memory to the main memory.

Let Thread_id be a set of thread identifiers. An action is either a 4-tuple
of the form (A,6,l,v) where A € {Assign, Store, Read}, 8 € Thread_id, | €
LVal and v € RVal, or a triple (A,0,1), where 6 and | are as above and A €
{Use, Load, Write}, or a triple (4,6, 0), where A € {Lock, Unlock} and o € Obj.

Events are instances of actions, which can be thought of as happening at
different times during execution. The same tuple notation for actions and their
instances is used.

In CafeOBJ, events are most easily modeled as elements of Object; only
their object identifiers will be kept in the formalised event spaces.

module! ACTION {
imports {
protecting (THREAD)
protecting (STORE)
3

signature {
[Actions,
LVal Obj < LocObjs]

class Action {
action : Actions
thread : ThreadId

class ASR-Action [Action] {
location : LVal
value : RVal

class ULW-Action [Action] {
location : LVal

1
class ON-Action [Action] {
object : 0Obj
}
ops read load use write store assign lock unlock : -> Actions

op event : Actions ThreadId LVal -> ObjectId
op event : Actions ThreadId LVal RVal -> ObjectId
op event : Actions Threadld Obj -> ObjectId

axioms {
var a : Actions
var t : ThreadId
var 1 : LVal
var v : RVal
var o : 0Obj

25

cq event(a, t, 1, v) = oid(makeASR-Action(action = a, thread = t,
location = 1, value = v))
if (a == assign) or (a == store) or (a == read)
cq event(a, t, 1) = oid(makeULW-Action(action = a, thread = t,
location = 1))
if (a == use) or (a == load) or (a == write) .
cq event(a, t, o) = oid(makeON-Action(action = a, thread = t,
object = 0))
if (a == lock) or (a == unlock)

An event space is a poset of events (thought of as occurring in the given
order) in which every chain can be enumerated monotonically with respect to
the arithmetical ordering 0 < 1 < 2 < ... of natural numbers, and which
satisfies the conditions (17.2.1-17.6.2°) of Table 4. These conditions, which
formalise directly the rules of [11, Chapter 17], are expressed by clauses of the
form:

Vien. (®= (3 €n.¥)V @b en. V) V... (3b, €7.7,)))

where @ and gz are lists of events, 17 is an event space and Vad € n.® means that
® holds for all tuples of events in 7 matching the elements of @ (and similarly
for b en.v).

Such statements are abbreviated by adopting the following conventions:
quantification over d is left implicit when all events in @ appear in ®; quan-
tification over I;, is left implicit when all events in l_;l appear in ¥;. More-
over, a rule of the form Vd@ € n.(true = ...) is written @ = (...). Fur-
thermore, B ranges over the set of thread actions and C over the set of
memory actions, that is: B € {Use, Assign, Load, Store, Lock, Unlock}, C €
{Read, Write, Lock, Unlock}. Components of an action or event may be omit-
ted: e.g. (Read,l) is written for (Read,d,l,v) when 6 and v are not relevant.
The term (A, 8, x), denotes the n-th occurrence of (4,6, z) in a given space, if
such an event exists, and is undefined otherwise.

The origin of each rule from [11, Chapter 17] is included; for more details
refer to [11] and [7]. For instance, rule (17.2.1) says that actions performed by
any thread are totally ordered and (17.2.2) that so are the actions performed
by the main memory for any variable or object. Similarly, rules (17.6.2) and
(17.6.2°) say that a lock action acts as if it flushes all variables from the thread’s
working memory, i.e. before use they must be assigned or loaded from main
memory.

The formula scheme of the event space rules can be imitated in CafeOBJ
by parameterisation. The module RULE-BASE provides the parameter specifi-
cation with predicates all-pred representing ® and exists-pred representing
Uy,...,¥,. The type of these predicates depends on whether quantification
runs over event space elements, such as for example in (17.3.2), or over ordered
pairs in event spaces, such as for example in (17.3.4). These dependent types
could be avoided by specifying several different RULE-BASE and RULE modules.

module* RULE-BASE {

26

(B.6),(B.6) > (B.6) < (B".6) v (B'.6) < (B.9) (17.2.1)
(C.2),(C",2) = (C,z) < (C",2) v (C',2) < (Cx (17.2.2)
(Assign, 6, l) (Load,0,1) = (173.2)
(Assign,0,1) < (Store,0,1) < (Load,,1)
(Store,0,1)m (Storeﬁ,%)n = (17.3.3)
(Store,0,1), < (Assign,0,1) < (Store,0,1),
(Use,0,1) = (Assign,0,1) < (Use,0,1) V (Load,0,1) < (Use,0,1) (17.3.4)
(Store,0,1) = (Assign, 0,1) < (Store,8,1) (17.3.5)
(Assign,0,1,v), < (Store,0,l,v") = (17.1.5)
v=1v"V (Assign,0,1,v), < (Assign,d,1),, < (Store,8,1,v")
(Load,0,1), = (Read,8,1), < (Load,,l), (17.3.6)
(Write,0,1),, = (Store,0,1),, < (Write,0,1), (17.3.7)
(Store,8,1)m < (Load,8,1), = (Write,0,1),, < (Read,d,1), (17.3.8)
(Lock,8,0), < (Lock,@',(?) NO A0 = (175.1)
(Unlock,8,0), < (Lock,8',0)
(Unlock,8,0), = (Lock,8,0),, < (Unlock,8,0), (17.5.2)
(Assign,0,1) < (Unlock,0) = (17.6.1)
(Assign,0,1) < (Store,0,1), < (Write,0,1),, < (Unlock,8)
(Lock,0) < (Use,0,1) =
(Lock,0) < (Assign,8,1) < (Use,0,1) Vv (17.6.2)
(Lock,0) < (Read,0,1), < (Load,0,1), < (Use,6,1)
(Lock,0) < (Stor'e,ﬂ,l) = (17.6.2)
(Lock,0) < (Assign,8,1) < (Store,,1)
Table 4. Event space axioms
imports {
protecting (PARTIALORDER(ACTION sort Elt -> ObjectId) * { ... }

sort Elt ->
sort Set<X>
sort Elt —->
sort Set<X>

protecting (SET(TRIV) * {
protecting (SET(TRIV) * {
}

signature {
[AllRange ExistsRange]

op all-range :
op exists-range
pred all-pred :

pred exists-pred :

PartialOrder<ObjectId>

AllRange

-> Set<AllRange> })
ExistsRange

-> Set<ExistsRange> })

-> Set<AllRange>

: PartialOrder<ObjectId> -> Set<ExistsRange>
AllRange
PartialOrder<ObjectId> AllRange ExistsRange

27

module* RULE(X :: RULE-BASE) {
signature {
pred rule : PartialOrder<ObjectId>
pred rule : PartialOrder<ObjectId> Set<AllRange>

op

filter : Set<AllRange> -> Set<AllRange>

pred exists : PartialOrder<ObjectId> AllRange Set<ExistsRange>

axioms {
var po : PartialOrder<ObjectId>
var x : AllRange
var m : Set<AllRange>
var y : ExistsRange
var n : Set<ExistsRange>

€q

€q
€q

€q
€q

€q
€q

rule(po) = rule(po, filter(all-range(po)))

rule(po, empty) = true
rule(po, x m) = exists(po, x, exists-range(po)) and rule(po, m)

filter(empty) = empty .

filter(x m) = if all-pred(x)
then x filter (m)
else filter(m)
fi

exists(po, x, empty) = false
exists(po, x, y n) = exists-pred(po, x, y) or exists(po, x, n)

A separate module RULES provides all the necessary predicates. For rules
(17.3.2) and (17.3.4) these are

€q

eq

€q
€q

Rule 3
assign<load(<< a, 1 >>) = action(< a >) == assign and
action(< 1 >) == load and
thread(< a >) == thread(< 1 >) and
location(< a >) == location(< 1 >)
<store<(po, << x1, x2 >>, s) = action(< s >) == store and
thread(< s >) == thread(< x1 >) and
location(< s >) ==
location(< x1 >) and
(po . x1 <= s) and (po . s <= x2)
Rule 5
use(u) = (action(< u >) == use) and true
assign<-or-load<(po, x1, x2) = (action(< x2 >) == assign or

28

action(< x2 >) == load) and
thread(< x2 >) ==
thread(< x1 >) and
location(< x2 >) ==
location(< x1 >) and
(po . x1 <= x2)

Thus we get the formal counterpart to (17.3.2) and (17.3.4) by a fairly com-
plicated instantiation:

make RULE3 (RULE(RULES { sort AllRange -> Pair<ObjectId;ObjectId>,
sort ExistsRange -> ObjectId,
sort Set<AllRange> ->
Set<Pair<ObjectId;0bjectId>>,
sort Set<ExistsRange> -> Set<ObjectId>,
op all-range -> relation,
op exists-range -> underlying,
op all-pred -> assign<load,
op exists—pred -> <store<

1))

make RULE5 (RULE(RULES { var x : AllRange,
sort AllRange -> ObjectId,
sort ExistsRange -> ObjectId,
sort Set<AllRange> -> Set<0ObjectId>,
sort Set<ExistsRange> -> Set<ObjectId>,
op all-range -> underlying,
op exists-range -> underlying,
op all-pred(x) -> use(x),
op exists-pred -> assign<-or-load<

1))

The module EVENTSPACE imports all the instantiated rule schemes. It checks
for a given poset of object identifiers whether it fulfills all event space rules
through function eventspace.

module! EVENTSPACE {
imports {
protecting (RULE1l * { op rule -> rulel, ... })

protecting (RULE15 * { op rule -> rulelb5, ... })
}

signature {

[PartialOrderErr<ObjectId> < EventSpaceErr < EventSpace,
PartialOrderNull<ObjectId> < EventSpaceNull < EventSpace(K,
EventSpaceOK < PartialOrder0K<ObjectId>,

EventSpaceOK < EventSpace,
EventSpace < PartialOrder<ObjectId>,
ObjectId Pair<ObjectId;0bjectId> < EventSpace]

op eventspace : PartialOrder<ObjectId> -> EventSpace

29

Event space extensions. An event space 17 may also be extended by a new
event a = (A, 6, z) as follows: if A is a thread action, then b < a for all instances
b of (B,#) in n; if a is a main memory action, then ¢ < a for all instances ¢ of
(C,z) in . Moreover, if A is Load then ¢ < a for all instances ¢ of (Read, 6, x)
in 1, and if A is Write then ¢ < a for all instances ¢ of (Store, 0, x) in 1. The
term 71 & a denotes the space thus obtained, provided it obeys the above rules,
and it is otherwise undefined.

This behaviour is formalised by a function +<. We omit its straightforward
but lengthy definition.

op _+<_ : EventSpace ObjectId -> EventSpace

2.3 Multi-Threaded Java

Stores assume in multi-threaded Java a more active role than they have in
sequential Java because of the way the main memory interacts with the working
memories: a “silent” computational step changing the store may occur without
the direct intervention of a thread’s execution engine. Changes to the store are
subject to the previous occurrence of certain events which affect the state of
computation. Event spaces are included in the configurations to record such
historical information.

We first state the necessary extensions for the notions of terms, stacks, and
configurations from the single-threaded to the multi-threaded case. We include
a brief overview of their formalisation. Then we give the operational rules for
multi-threaded Java and discuss their pendants in CafeOB.J.

Multi-threaded terms, stacks, and configurations. A multi-threaded
Java configuration may include multiple S-terms, one for each running thread.
An abstract term T of multi-threaded Java is a set of pairs (0,t), where
0 € Thread_id, t € S-Term and no distinct elements of T' bear the same thread
identifier. The set of abstract terms of multi-threaded Java is called M-Term.
M-terms {(61,%1),(02,t2),...} are written as lists (61,t1) | (62,¢2) | ... and
pairs (6,t) are written ¢ when 6 is irrelevant.

We formalise these requirements simply as sets of elements of a sort T-Term.
The restriction that the thread identifiers in an M-term must be distinct is

omitted, since it is never used in the semantics.

make T-TERM (PAIR(THREAD { sort Elt -> ThreadId },
S-TERM { sort Elt -> S-Term }) *
{ sort Pair<X;Y> -> T-Term })

make M-TERM (SET(T-TERM { sort Elt -> T-Term }) *
{ sort Set<X> -> M-Term })

Each thread of execution of a Java program has its own stack. Let M-Stack =
Thread_id — S-Stack be the domain of multi-threaded stacks, ranged over by
o. Given o € M-Stack, the multi-threaded stacks push(6, p, o), o[f,i — v] and
olf,i = v] map ' to (') when 6 # 6, and otherwise map 6 respectively to
push(p,o(0)), o(0)[i — v] and o(8)[i = v].

make M-STACK (PARTIALFUNCTION(THREAD { sort Elt -> ThreadId },

30

S-STACK { sort Elt -> S-Stack,
op bottom ->
(bottom) : S-StackErr }) *
{ sort PartialFunction<X;Y> -> M-Stack,
sort Set<X> -> Set<ThreadId>,
sort Set<Y> -> Set<S-Stack> })

The configurations of multi-threaded Java are 4-tuples (T, 7, o, u) consisting
of an M-term T', an event space i an M-stack o and a store u.

module! M-CONFIGURATION {
imports {
protecting (QUADRUPLE (M-TERM { sort Elt -> M-Term },
EVENTSPACE { sort Elt -> EventSpace },
M-STACK { sort Elt -> M-Stack },
STORE { sort Elt -> Store }) *
{ sort Quadruple<W;X;Y;Z> -> Conf })

Multi-threaded rules. The operational rules make use of the following no-
tation: store,(6,1) denotes the oldest unwritten value of I stored by 6 in n and
rval, (0,1) denotes the latest value of [assigned or loaded by 6 in 7.

These functions are easily specified in CafeOBJ; their lengthy definitions are
therefore omitted here.

The operational semantics for multi-threaded Java is given in Table 5. There
is a “primed” version [x’] for of each rule [x] of Section 2.1; [x’] is omitted if it
reads as [x] by the notational conventions.

The high non-determinism of the “silent action”-rules [read], [load], [store],
and [write] is hard to model in CafeOBJ, since for example the [read] rule is
always applicable. We therefore do not use event spaces for our formalised
rules, but restrict ourselves to a simple implementation that provides the same
interface as EVENTSPACE. In particular, for sake of simplicity, a thread reads
from the main memory whenever it is using a variable and writes through to
main memory whenever it is assigning a variable.

axioms {
var th : ThreadId
var ee : EventSpace
var ss : M-Stack
var mm : Store
var 1 : LVal
var v : RVal

ceq [assign3’]:
step(<< << th, (1 = v) >, ee, ss, mm >) =
<< << th, (v) >>, ee +< event(assign, th, 1, v)
+< event(store, th, 1, v)
+< event(write, th, 1),
ss, mm [1 [-> v] >
if (ee +< event(assign, th, 1, v)
+< event(store, th, 1, v)
+< event (write, th, 1)) =/= (bottom) :EventSpaceErr

31

[assign3’]
[assignd’]
[val’]

fvar’]
[block2’]
[synchrol]
[synchro2]

[lock]

[unlock]
[read]
[load]
fstore]
[write]

[par]

ceq [val’]:

(0,1 =v),n— (0,v),n & (Assign,,l,v)
(0,i=v),0 — (8,v),0[0,i — v]
0,1),n — (6, rval,,(6,1)),n & (Use, 6,1)

(0,i),0 — (0,0(0,1)),0
(0,51), push(8, p1,01) — (0, 52), push(8, p2,02)
(07 {51 }m)7 o —* (9 {52}P2)7 02

€1 —* €y

synchronized(e;) ¢ — synchronized(es) ¢
G — g2
synchronized(o) ¢; — synchronized(o) ¢o
(97 e): h— (07 0)7 "2
(8, synchronized(e) q), ;1 —
(6, synchronized(o) q),n2 & (Lock, 6, o)

(6, synchronized(o) { },),n — 1 & (Unlock, 6, 0)
T.,n,u— T,n® (Read, 0,1, u(l)), 1
T,n— T,n & (Load,,1)

T,n— T,n & (Store,6,1,v)

T,n,u— T,n® (Write,0,1), u[l — store,(6,1)]

t1 — t2
t]|T—>t2‘T

Table 5. Multi-threaded Java

step(<< << th, (1) >>, ee, ss, mm >>) =
<< << th, rval(ee +< event(read, th, 1, (mm 1))

+< event(load, th, 1), th, 1) >>,

ee +< event(read, th, 1, (mm 1))
+< event(load, th, 1)
+< event(use, th, 1), ss, mm >>
if (ee +< event(read, th, 1, (mm 1))
+< event(load, th, 1)
+< event(use, th, 1)) =/= (bottom):EventSpaceErr .

Additionally we now use a different approach to guide the reduction and to
avoid wrong reduction branches as in [assign1]: we introduce priorities of rewrite
rules. This requires to implement a certain amount of reflection capabilities in
CafeOBJ in order to decide which rules can be applied to a given term. This is
done by a function match. The priorities are fixed in a partial order.

32

op priorities : -> PartialOrder<String>

pred match : Conf String

eq match(<< << th, (1 = v) >>, ee, ss, mm >>, "assign3’") = true .

eq match(<< << th, (1) >>, ee, ss, mm >>, "val’") = true .

eq priorities = make-partialorder (<< "assign2", "assignl" >>
<< "assign3’", "assign2" >>
<< "assign4’", "assign2" >>
<< "unop2!", "unopl" >>
<< "access2", "accessl" >>
<< "pth2", "pthl" >>
<< "decl2", "decll" >>
<< "blockl", "block2" >>
<< "synchro2", "synchrol" >>
<< "unlock", "synchro2" >>)

ceq [assigni]:
step(<< << th, (hl =
assignment-left(step(<< << th, (hl) >>, ee, ss, mm >>), ae)
if priority(<< (<< th, (hl = ae) >>), ee, ss, mm >>,
"assigni") true .

ae) >>, ee, ss, mm >>) =

ceq [assign2]:
step(<< << th, (k = ael) >>, ee, ss, mm >>) =
assignment-right (step(<< << th, (ael) >>, ee, ss, mm >>), k)
if priority(<< (<< th, (k = ael) >>), ee, ss, mm >>,
"assign2") == true .

Although this approach is much more complex than the one described in
Section 2.1 it seems to be easier to reason about. Logic, i.e. the operational
rules, and control, i.e. the priorities, are separated more clearly. The additional
complexity can be read from a run of the example in Section 2.1. Now the block
is executed in a thread with thread identifier thd1.

let test = << << thdl, ({ (((Point (p =’ (mew Point ()))) ;)
(((p . x) =1) 3)
((p . v =2) 3
(((p - x) = (p - y)) ;) nil))))
} © (undefined [p [-> null 1)) >>,

null, undefined [thdl [-> empty], empty >> .

exec step(test, 15)

CafeOBJ answers

-- execute in M-CONFIGURATION : step(<< (<< thdl , ((((Point (p
=’ mew Point ())) ;) ((((p . x) =1) ;) ((((p . y) =2) ;) (
((p . x) = (p . y)) ;) nil)))) (undefined [p |-> null]
)) >>) , null , (undefined [thdl [-> empty]) , empty >>,15)

<< (<< thdl , * >>) , ((((((((((((null +< asr-action-0) +< asr-action-1)

+< ulw-action-0)
+< asr-action-5)
+< asr-action-7)

+< asr-action-2) +< asr-action-3) +< ulw-action-1)
+< nlw-action-3) +< ulw-action-4) +< asr-action-6)

CCCCeeeeeeeeeeeeeececccccd

+< ulw-action-5) ,

33

((((undefined [thdl |-> empty 1) [thdl |-> push(undefined [p
[-> null J,empty) 1) ...) , point-0 >> : Conf
(0.000 sec for parse, 699059 rewrites(596.660 sec),
1876858 match attempts)

We inspect the event space and the main memory.

M-CONFIGURATION> red < asr-action-0 > .

—- reduce in M-CONFIGURATION : < asr-action-0 >

< asr-action-0 : ASR-Action | (action = assign , thread = thdl ,
location = << point-0 , x >> , value = 1) > : ASR-Action

(0.000 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)

M-CONFIGURATION> red < point-0 > .

-- reduce in M-CONFIGURATION : < point-0 >

< point-0 : Point | (x = 2 , y = 2) > : Point

(0.000 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)

The non-determinism in the [par] rule is implemented using ACI-matching
of sets. However, we can not be sure that each thread can make a computational
step at any time; for example, a thread waiting for a lock can not move. Thus,
we perform a (non-deterministic) search for a thread that is able to proceed. The
predicate is-config tests whether a the step function was applied successfully.

var st : S-Term
var tt : T-Term
var mt : M-Term

eq [par]:
step(<< (<< th, st >> tt mt), ee, ss, mm >>) =
if (is-config(step(<< << th, st >>, ee, ss, mm >>)) == true)

then par(step(<< << th, st >>, ee, ss, mm >>), tt mt)
else par(step(<< (tt mt), ee, ss, mm >>), << th, st >>)
fi .

We illustrate the specification by the so-called “Possible Swap” example
detailed in [11] and [7]. Two threads #; and 6, running in parallel want to
manipulate the coordinates of the same point object o referenced in both threads
by the local variable p. These manipulations are to run under mutual exclusion.

(A1, synchronized(p) {p.x = p.y; })|
(A2, synchronized(p) {p.y = p-x; })

We assume an instance < point-0 : Point | (x =1 , y = 2) > of Point
in the main memory. The following describes a possible run in CafeOBJ:

exec new(Point, empty)
exec set-x(< point-0 >, 1)
exec set-y(< point-0 >, 2)

let test = << (<< thdl, (synchronized (p) (
(((p . x) =(p . yv) ;) nil) ~ undefined)) >>
<< thd2, (synchronized (p) (
(((p . y) = (p . x)) ;) nil) ~ undefined)) >>),

34

(null),
((undefined [thdl |-> push(undefined [p |-> point-0],
empty) 1)
[thd2 |-> push(undefined [p |-> point-0],
empty) 1),
point-0 >> .

exec step(test, 16)

-- execute in M-CONFIGURATION : step(<< (<< thdl , (synchronized
(p) C(p . x) =(p . y)) ;) nil) ~ undefined)) >> <K<
thd2 , (synchronized (p) (((((p . y) = (p . %)) ;) nil)
" undefined)) >>) , null , ((undefined [thdl |-> push(undefined
[p I-> point-0 1,empty) 1) [thd2 |-> push(undefined [p |->
point-0],empty) 1) , point-0 >>,16)
<< (<< thdl , * >> << thd2 , * >>) , ((CCCCCCCCC(((((null +< on-action-1)
+< asr-action-1) +< ulw-action-1) +< ulw-action-2) +< asr-action-2)
+< asr-action-3) +< ulw-action-3) +< on-action-2) +< on-action-4)
+< asr-action-5) +< ulw-action-5) +< ulw-action-6) +< asr-action-6)
+< asr-action-7) +< ulw-action-7) +< on-action-5) , ((((CCCC((
(CCCCCCCCCCC((((undefined [thdl |-> push(undefined [p [-> point-0
l,empty) 1) ...) , point-0 >> : Conf
(0.000 sec for parse, 624990 rewrites(515.410 sec),
1676076 match attempts)

M-CONFIGURATION> red < on-action-1 > .

-- reduce in M-CONFIGURATION : < on-action-1 >

< on-action-1 : ON-Action | (action = lock , thread = thd2 , object
= point-0) > : ON-Action

(0.000 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)

M-CONFIGURATION> red < point-0 > .

-- reduce in M-CONFIGURATION : < point-0 >

< point-0 : Point | (x =1 , y = 1) > : Point

(0.000 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)

Specification metrics. The formalisation of multi-threaded Java takes about
1800 lines in four packages and 40 modules. The maximum nesting level we use
is five for imports and three for parameterisation. The parsing time for the
whole specification is about half an hour (sic!).

Conclusions and Future Work

We provided two case studies with CafeOBJ. In the first case study we developed
a recycling machine specification as an example of the formally based object-
oriented software engineering method fOOSE. The second case study formalised
a Java semantics in CafeOBJ.

The system proved to be fast and stable enough to specify medium-scale
examples like the Java formalisation. However, it could be a little bit faster and
a little bit more robust. In particular, parsing seems to be slow and becomes
tedious when it comes to complex mixfix expressions. Also the interpretation
of parameterised modules and only average complex rewrite rules turns out be

35

rather slow. Nevertheless, it must be conceded that these objections can be
easily compensated by a small expense in hardware.

Some features we would definitely like to see in future version of CafeOB.J:
A let- or where-construct would simplify many rules, as e.g. for the schematic
translation of interaction diagrams to rewrite rules or rules in the Java formal-
isation. An implementation of membership equational logic [4] would greatly
support useability; we only simulate similar features in our Java formalisation.
Parameterisation as used in the event space would benefit from a more so-
phisticated type inference algorithm for views. And last not least any kind
of meta-reasoning over modules and rules would certainly simplify CafeOBJ’s
translation from and to other formalism.

We did not investigate one major feature of CafeOBJ: behavioural speci-
fication. A detailed comparison with the rewriting logic approach to object-
orientation and concurrency is left to future work.

References

[1] K. Achatz and W. Schulte. A Formal OO Method Inspired by Fusion and
Object-Z. In J. P. Bowen, M. G. Hinchey, and D. Till, editors, Proc. 10"
Int. Conf. Z Users, volume 1212 of Lect. Notes Comp. Sci., pages 92 111,
Berlin, 1997. Springer.

[2] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Univer-
sity Press, Cambridge, 1990.

[3] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language
(Version 1.1). Technical report, Rational Software Corp., 1997.

[4] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and Proof
in Membership Equational Logic. In M. Bidoit and M. Dauchet, editors,
Proc. 7" Int. Conf. Theory and Practice of Software Development, volume
1214 of Lect. Notes Comp. Sci, pages 67 92, Berlin, 1997. Springer.

[5] R. H. Bourdeau and B. H. C. Cheng. A Formal Semantics for Object Model
Diagrams. IEEE Trans. Softw. Eng., 21(10):799 821, 1995.

[6] R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and
V. Thurner. Towards a Formalization of the Unified Modeling Language. In
M. Aksit and S. Matsuoka, editors, Proc. 11** Burop. Conf. Object-Oriented
Programming, number 1241 in Lect. Notes Comp. Sci., pages 344-366, 1997.

[7] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. From Sequential to
Multi-Threaded Java: An Event-Based Operational Semantics. In M. John-
son, editor, Proc. 6 Int. Conf. Algebraic Methodology and Software Tech-
nology, volume 1349 of Lect. Notes Comp. Sci., Berlin, 1997. Springer.

[8] R. Diaconescu and K. Futatsugi. CafeOBJ Report, volume 6 of AMAST
Series in Computing. World Scientific, Singapore, etc., 1998. To appear.

[9] J. A. Goguen and G. Malcolm. A Hidden Agenda. Technical Report CS97-
538, University of California, San Diego, 1997.

36

[10]

[16]

[17]

J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ. In J. A. Goguen and G. Malcolm, editors, Software En-
gineering with OBJ: Algebraic Specification in Practice. Cambridge, 1998.
To appear.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison Wesley, Reading, Mass., 1996.

I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented
Software Engineering. Addison Wesley, Wokingham, England, 4th edition,
1993.

K. Lano. Formal Object-Oriented Development. Springer, London, 1995.

J. Meseguer. A Logical Theory of Concurrent Objects and Its Realization
in The Maude Language. In G. A. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Concurrent Object-Oriented Programming,
pages 314 389. MIT Press, Cambridge, Massachusetts London, 1991.

S. Nakajima and K. Futatsugi. An Object-Oriented Modeling Method for
Algebraic Specifications in CafeOBJ. In W. R. Adrion, editor, Proc. 19"
Int. Conf. Softw. Eng., pages 34-44, 1997.

J. Rumbaugh, M. Blaha, W. Premerlani, and F. Eddy. Object-Oriented
Modeling and Design. Prentice-Hall, Englewood Cliffs, New Jersey, etc.,
1991.

M. Wirsing and A. Knapp. A Formal Approach to Object-Oriented Soft-
ware Engineering. In J. Meseguer, editor, Proc. 1% Int. Wsp. Rewriting
Logic and Its Applications, volume 4 of Electr. Notes Theo. Comp. Sci.,
pages 321 359. Elsevier, 1996.

37

