
Case Studies with CafeOBJ�Alexander KnappLudwig{Maximilians{Universit�at M�unchenknapp@informatik.uni-muenchen.deAbstractWe describe two case studies involving the algebraic speci�cation lan-guage CafeOBJ. The �rst case study uses CafeOBJ as a tool in formallybased object-oriented software engineering. We explain the derivation pro-cess of a formal speci�cation from informal but annotated object modelsand interaction diagrams by means of Jacobson's \Recycling Machine"example. On the speci�cation side, we explore CafeOBJ's rewriting logicapproach to object-orientation and discuss the implementation of a simpletechnique to constrain the non-determinism of rule applications used byour method. The second case study formalises a structural operationalsemantics of the object-oriented multi-threaded programming languageJava in CafeOBJ. This case study provides a medium scale example ofalgebraic speci�cation language's usage in rapid prototyping.IntroductionCafeOBJ [8] is the product of a consequent further development of the execute-able algebraic speci�cation language OBJ3, the most prominent representativeof the OBJ family; for a brief history of OBJ and related languages see [10].The superior new aspect of this language and system is its tightly integratedsupport of both Goguen's behavioural speci�cation technique [9] and Meseguer'srewriting logic [14] which provide two di�erent, complementary approaches toobject-orientation.In this paper, we describe two case studies using CafeOBJ. We restrict our-selves to CafeOBJ's implementation of rewriting logic and leave a comparisonto behavioural speci�cation to future work.The �rst case study uses CafeOBJ as a tool in formally based object-orientedsoftware engineering. In [17], Wirsing and the author introduced the soft-ware development method fOOSE that enhances Jacobson's well-known infor-mal object-oriented software development method OOSE [12] by formal anno-tations thus providing a mathematical rigorous software development process.Here, we exemplify this method by means of Jacobson's running example, the\Recycling Machine." We use the Uni�ed Modeling Language (UML, [3]) andits stereotypes for OOSE in the modeling process and express (part of) ourformal annotations in UML's Object Constraint Language. The speci�cation



uses CafeOBJ's implementation of rewriting logic for concurrency and object-orientation.The second case study formalises a structural operational semantics of theobject-oriented multi-threaded programming language Java described in [7].CafeOBJ is used as a language for rapid prototyping. The speci�cation for-malising multi-threaded Java builds on two separate speci�cations: SequentialJava is extended to the multi-threaded case by parameterisation. A secondspeci�cation formalises so-called event spaces, structures introduced in [7] tocoordinate the communication of the di�erent threads and the main memory.All speci�cations are available athttp://www.pst.informatik.uni-muenchen.de/personen/knapp/cafeobj.htmlTests have been performed on a PentiumPro 200 with 64 megabytes runningunder Linux, kernel 2.0.30, using CafeOBJ version 1.4.0�5.1 The Recycling MachineFormal underpinnings of informal and diagrammatic modeling, analysis anddesign techniques have become one of the major research topics in software en-gineering. Three main approaches are discussed in the literature: On the onehand, well-known diagrammatic notations and methods are provided with di�er-ent mathematically rigorous semantics; for example, Breu et. al. in [6] describe auni�ed system model for UML, Bourdeau and Cheng in [5] discuss a translationof the static diagrams used in Rumbaugh's Object Modeling Technique (OMT,[16]) to algebraic speci�cations. These foundational works mainly aim at check-ing the consistency of di�erent views during the software development processand at allowing completeness tests even in the early phases of analysis and de-sign. On the other hand, mathematically based development procedures arevisualised by diagrammatic representations, helping the software developer tomore easily grasp the speci�cation's contents [13]. These two overall approachesfocus either on purely informal or strongly mathematically oriented develope-ment procedures. A third approach tries to combine the virtues of both, inparticular, it enhances the informal, diagrammatic techniques by formal, math-ematical annotations during the development process, see for example Nakajimaand Futatsugi's enrichment of OMT by their Generic Interaction Language forObjects [15] or Achatz and Schulte's combination of Fusion with Object-Z [1].In [17], Wirsing and the author also proposed such a complementation ofJacobson's OOSE method by annotations of the object models and the interac-tion diagrams in both the requirements and robustness analysis phase of OOSE'ssoftware development process. The resulting method, called fOOSE, providesa semi-automatic translation of the enriched diagrams to rewriting logic based,object-oriented concurrent algebraic speci�cation languages such as Meseguer'sMaude or, in particular, CafeOBJ. Additionally, an experimental translation toJava is stated.In the following, we give a rough overview of fOOSE and describe the trans-lation steps of the requirements and robustness analysis phase to CafeOBJ inmore detail by means of Jacobson's recycling machine example. For a moredetailed discussion of the theoretical basis, re�nement issues, and translation toJava in the design step we refer to [17].2



1.1 Enhanced OOSE Development ProcessThe development process of OOSE consists of �ve phases: use case analysis,robustness analysis, design, implementation and test [12] (see Figure 1).
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Design Implementation TestFigure 1: Development phases of OOSEThe use case analysis serves to establish a requirement document whichdescribes the processes of the intended system in textual form. A use case is asequence of transactions performed by actors (outside the system) and objects(of the system). During the robustness analysis the use cases are re�ned and theobjects are classi�ed in three categories: interaction, control and entity objects.Then in the design phase a system design is derived from the analysis objectsand the objects of the reuse library. The design is implemented during theimplementation phase and �nally during test the implementation is tested withrespect to the use case description.As in all semi-formal approaches one problem is that testing can be doneonly at a very late stage of development; another problem is the fact thatmany important requirement and design details can neither be expressed by(the current) diagrams nor well described by informal text.In the enhanced fOOSE method means are provided to overcome these de�-ciencies without changing the basic method. The enhanced development processconsists of the same phases. The only di�erence is that the diagrams can op-tionally be re�ned and annotated by formal text. Any annotated diagram issemi-automatically translated into a formal CafeOBJ (or any other algebraicspeci�cation language implementing rewriting logic) speci�cation, i.e. the dia-gram is automatically translated into an incomplete formal CafeOBJ speci�ca-tion which then has to be completed by hand to a formal one.Thus any fOOSE diagram is accompanied by a formal speci�cation so thatevery document has a formal meaning. In many cases the formal speci�cationgenerates proof obligations which give additional means for validation of thecurrent document. Further proof obligations are generated for the re�nementof descriptions, e.g. from analysis to design. These proof obligations can serveas the basis for veri�cation. Finally, since the executable speci�cation languageCafeOBJ is used, early prototyping is possible during analysis and design.In the sequel the following method will be used for constructing a formalCafeOBJ speci�cation (see Figure 2) from an informal description.For any given informal description two diagrams are constructed: an objectmodel with attributes and invariants, and an enhanced interaction diagram. Theobject model is used for describing the states of the objects and the (inheritance)3
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Figure 2: Construction and use of formal speci�cationsrelationships, the interaction diagram describes the (data) ow of the messagesthe objects exchange. The object model directly translates to a speci�cation; theinteraction diagram yields an incomplete speci�cation. The translation of bothdiagrams yields (after completion) a CafeOBJ speci�cation together with someproof obligations. Moreover, re�nement provides the information for tracingthe relationship between use case descriptions and the corresponding design andimplementation code, the induced proof obligations are the basis for verifyingthe correctness of designs and implementations.1.2 Requirements AnalysisUse case. The informal description of the recycling machine consists of threeuse cases. One of them is the use case \returning items" which can be describedin a slightly simpli�ed form as follows (see also [12]):\A customer returns several items (such as cans or bottles) tothe recycling machine. Descriptions of these items are stored andthe daily total of the returned items of all customers is increased.The customer gets a receipt for all items he has returned before.The receipt contains a list of the returned items as well as the totalreturn sum."Object model and interaction diagram. We develop a �rst abstract rep-resentation of this use case with the help of an object diagram that describesthe objects of the problem together with their attributes and interrelationships,and of an interaction diagram that describes the ow of exchanged messages.4
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s = amount(l)Figure 3: Object model and interaction diagram of the Recycling MachineAdditionally we extend the object model by invariants and re�ne the interactiondiagrams with conditions on the messages.To do this we model the use case as an interactive system consisting of anobject of class RecyclingMachine (Figure 3 on the left). This class representsthe recycling machine and has two attributes storing the daily total and thecurrent list of items. For simplicity of presentation both attributes are consid-ered as lists of items. The interaction diagram (Figure 3 on the right) shows(abstractly) the interaction between the customer (represented by the systemborder) and the recycling machine (the system). The customer sends a returnmessage containing a list of returned concrete items. The machine prints a re-ceipt with the list of (descriptions of) the returned items as well as the totalreturn sum in Yen. To distinguish between the concrete items and their de-scriptions in the machine we call the sort of lists of concrete items CList andthe other IList.The following invariant is appropriate for RecyclingMachine: All items ofcurrent have also to be in total. This invariant is easily expressed in theObject Constraint Language (OCL) of UML, but any other formal languagethat can be translated to CafeOBJ would do. We attach it to the object model.In the same way we extend the interaction diagram in order to expresssemantic relationships of the message parameters. We specify not only theparameter sorts of messages, but introduce formal parameter names and statethe relationships between the formal parameters in an additional \where clause".In our example, we add a formula requiring that the item list in parameter l andthe amount s of the printmessage are a list of descriptions of the concrete itemsin parameter cl of message return and the sum of the prices in l, respectively.For this purpose, we introduce two abstract functions desclist and amountthat have to be implemented later on.Construction of a formal speci�cation. Next we show how one can con-struct semi-automatically a formal speci�cation of the use case from the dia-grams. The object model generates the class declarations and invariants; bya combination of the object model with the interaction diagram one can con-struct automatically a set of (incomplete) rewrite rules which after completion5



(by hand) de�ne the dynamic behaviour of the use case. These rewrite ruleswork on multisets of objects and messages, the so-called ACZ-Configurationsof CafeOBJ. Changes of con�gurations by rewrite rules form the computationalmodel of the speci�cation.The �rst step is to provide functional speci�cations for all sorts, data types,and functions used in the diagrams. This has to be done by hand. The spec-i�cations may be constructed reusing prede�ned modules from a speci�cationlibrary such as NAT and LIST or designing a completely new speci�cation.The following speci�cation of items is new. It introduces two sorts CItemand Item denoting the \concrete" items of the user and the descriptions of theseitems. The operation desc yields the description of a concrete item whereas theoperation price computes the price whose value will be given in Yen.module ITEM {imports {protecting (YEN)}signature {[ Item CItem ]op price : Item -> Yenop desc : CItem -> Item}} The speci�cation of item lists is obtained by instantiating a list module(which we assume to be provided in a library) twice, once with concrete items forelements and once with items; in both cases we rename the sort List. Moreover,we need two more operations mentioned in the \where clause" of the interactiondiagram: amount(l) calculates the sum of the prices of the elements of l anddesclist(cl) converts any \concrete" list cl into a list of descriptions.module ITEMLIST {import {protecting (YEN)protecting (ITEM)protecting (LIST[ITEM { sort Elt -> CItem }] *{ sort List -> CList })protecting (LIST[ITEM { sort Elt -> Item }] *{ sort List -> IList })}signature {op desclist : CList -> IListop amount : IList -> Yen}axioms {var c : CItemvars cl cl' : CListvar i : Itemvars il il' : IList 6



eq desclist((nil):CList) = (nil):IList .eq desclist(c) = desc(c) .cq desclist(cl, cl') = desclist(cl), desclist(cl')if (cl =/= (nil):CList) and (cl' =/= (nil):CList) .eq amount((nil):IList) = 0 .eq amount(i) = price(i) .cq amount(il, il') = amount(il) + amount(il')if (il =/= (nil):IList) and (il' =/= (nil):IList) .}} As a second step we automatically construct class descriptions from theobject models and interaction diagrams:� Every object model and every interaction diagram induces a set of classdeclarations:{ Each object name C with attributes a1; : : : ; an of types s1; : : : ; sn ofthe diagram represents a class declaration. Such a class additionallyhas attributes of sort ObjectId for each object a class instance sendsa message to in any interaction diagram.class C { a1 : s1 : : : an : sn o1 : ObjectId : : : }{ Each inheritance relation from D to C corresponds to an extensionof the class declaration of D by a subclass declarationclass D [ C : : : ] { : : : }� The interaction diagram induces a set of message declarations:Each message m(v1 : s1; : : : ; vn : sn) from one object to another objectinduces the message declarationop m : ObjectId s1 : : : sn ObjectId -> MessageThe �rst argument of m indicates the sender object, the last argumentthe destination. Messages that involve only one object, i.e. messages to orfrom the system border, are treated analogously.For the recycling machine we get:class RecyclingMachine {total : IListcurrent : IList}op return : CList ObjectId -> Messageop print : ObjectId IList Yen -> Message� Both diagrams generate the skeleton of a rule:7



For any message m(: : : vj : sj : : : ) from E0 to C of the interaction dia-gram, letclass C [ : : :] { : : : ai : si : : : }class E0 [ : : : ] { : : : bi : s0i : : : }be the corresponding class declarations, mk(: : : wkj : skj : : : ) for 1 � k �n, be the outgoing messages from C to class Ek of the same activity belowm before another message is received by C (if any) and � the \whereclause" of the diagram. Then we obtain the following skeleton of a rewriterule: crl [m] m(o0, : : : , vj, : : : , o)< o : C | : : : ai = wi : : : > =>< o : C | : : : ai = ? : : : >m1(o, : : : , w1j, : : : , o1) : : :mn(o, : : : , wnj, : : :, on)if � and �? .where o0; : : : ; on are object identi�ers (for the classes E0; : : : ; En). Thisschema has to be adapted for messages that come from or go to the systemborder.Note that this rule schema introduces new variables on the right hand sideof the rule, which is not allowed in CafeOBJ. In the actual implementationthese new variables have to be substituted suitably by expressions from �or �? (by this substitution � may vanish).The rule skeleton expresses that if the object o receives the message m itsends the messages m1; : : : ;mn. The question marks ? on the right hand sideof the rule indicate that the resulting state of o is not expressed in the diagram.Therefore the new values of the attributes have to be added by hand. Similarly,�? states that the condition is perhaps under-speci�ed.For example, the diagrams of Figure 3 induce the following skeleton:crl [return]:return(cl, rm)< rm : RecyclingMachine | (total = t), (current = c) > =>< rm : RecyclingMachine | (total = ?), (current = ?) >print(rm, desclist(l), amount(desclist(l), (nil):IList))if �? .To get the complete rule one has to �ll the question marks with the appro-priate values (t, desclist(cl)) and desclist(cl).The third step of the speci�cation construction process consists of translatingthe control strategy given by the interaction diagrams, that is the prescribedorder of message ow. For this translation we use the intermediate language ofprocess expressions [2] with message names as atomic processes. We provide ageneral scheme to constrain the applicability of rewrite rules by a given processexpression.This separation of logic and control yields an easy way to examine di�erentviews of interaction diagrams. In Jacobson's original interpretation every mes-sage generates a response. As suggested by the asynchronous arrows of UML we8



used in our interaction diagrams, we prefer to state return messages explicitly.Both views are easily expressed as processes.The abstract syntax of processes we use is given by:A ::= p j � j mP ::= A j P ; P j P+ P j P k P j P�An atomic process is a message name m (occuring in an interaction diagram),or a constant p denoting successful termination, or a constant � for deadlock.A composite process may be an atomic process, sequential composition, non-deterministic choice, parallel composition of processes, or a repeat statement.We adopt the usual precedence conventions on process expressions.Processes are assumed to satisfy the following laws (borrowed from processalgebra, see [2]).p ; p = p; p ;p = p; � ; p = �;p1 ; (p2 ; p3) = (p1 ; p2) ; p3;� + p = p;p1 + p2 = p2 + p1; p1 + (p2 + p3) = (p1 + p2) + p3;(p1 + p2) ; p3 = p1 ; p3 + p2 ; p3;p k p = p; � k p = �;p1 k p2 = p2 k p1; p1 k (p2 k p3) = (p1 k p2) k p3;(p1 + p2) k p3 = (p1 k p3) + (p2 k p3);(m1 ; p1) k (m2 ; p2) = m1 ; (p1 k (m2; p2)) +m2 ; ((m1 ; p1) k p2)p� = (p ; p�) +pNote that the last equation for parallel composition induces an interleavingapproach to concurrency: either m1 or m2 has to be executed �rst.We say that a run of a speci�cation satis�es a process expression if, roughlyspeaking, the sequence of consumed messages is a trace of the process expression.Informally this means that a rewrite rule consuming a message m may only beapplied if m is accepted by the process expression. For example, an applicationof the rewrite rule return is only allowed for a given process expression if thisprocess accepts the message return which is consumed by the rule return. Forthe details of the technically more involved precise de�nition see [17].Interaction diagrams are easily translated to process expressions as follows:� The interaction diagram de�nes a control strategy which is based on theassumption that the objects of the diagram are controlled by (sequential)processes which are composed in parallel:For each object the incoming messages are sequentially composed fromtop to bottom; if a message block is part of a loop, the translated block issurrounded by a repeat statement. These object behaviours are composedin parallel.The control strategy interprets the vertical axis as time: the messages haveto occur at one object in the de�ned order. The di�erent objects may act in9



parallel, controlled by this protocol. The emergence of new messages is left tothe object.In the recycling machine example, the interaction diagram de�nes the fol-lowing (trivial) control strategyreturnConstraints by a process expression can be implemented in CafeOBJ by aspeci�cation of processes with two functions on processes hd : P ! }((A) andtl : A � P ! P that compute the accepted atomic processes for an arbitraryprocess expression and its behaviour after an atomic process has been executed,respectively.module PROCESS[A :: ACTION] {protecting (SET[A { sort Elt -> Action }] *{ sort Set -> Set<Action> })signature {[ Action < Process ]op terminate : -> Actionop deadlock : -> Actionop _;_ : Process Process -> Processop _+_ : Process Process -> Processop _||_ : Process Process -> Processop _* : Process -> Processop hd : Process -> Set<Action>op tl : Action Process -> Process: : :}axioms {eq hd(terminate) = terminate .eq hd(deadlock) = empty .eq hd(a:Action) = a .cq hd(p1:Process ; p2:Process) = hd(p1)if (not (terminate in hd(p1))) .cq hd(p1:Process ; p2:Process) = (hd(p1) - terminate) hd(p2)if (terminate in hd(p1)) .eq hd(p1:Process + p2:Process) = hd(p1) hd(p2) .cq hd(p1:Process || p2:Process) = (hd(p1) hd(p2)) - terminateif (hd(p1) =/= empty) and (hd(p2) =/= empty) and(not ((terminate in hd(p1)) and (terminate in hd(p2)))) .cq hd(p1:Process || p2:Process) = hd(p1) hd(p2)if (terminate in hd(p1)) and (terminate in hd(p2)) .cq hd(p1:Process || p2:Process) = emptyif (hd(p1) == empty) or (hd(p2) == empty) .eq hd(p:Process *) = hd(p) terminate .: : :}} This speci�cation of processes is used by a module CONTROL that provides aclass Control. This class has an attribute process that holds the actual process10



expression a run of a speci�cation must satisfy. Since we can not use messagenames themselves as atomic processes we use strings instead.module CONTROL {imports {protecting (ACZ-CONFIGURATION)protecting (PROCESS[STRING { sort Action -> String }])}signature {class Control {process : Process}op control : -> Process}} Each rewrite rule of the speci�cation to be governed by a process expressionis translated as follows: A rulecrl [r] m o => c if � .is replaced bycrl [r] m o < cntrl : Control | process = p > =>c < cntrl : Control | process = tl(m, Q) >if m in hd(p) and � .For the recycling machine, the full speci�cation of the use case \return items"reads as follows:module RM {imports {protecting (CONTROL)protecting (ITEMLIST)}signature {class RecyclingMachine {total : IListcurrent : IList}op return : CList ObjectId -> Messageop print : ObjectId IList Yen -> Message}axioms {var p : Processvars cntrl rm : ObjectIdvar cl : CListvars t c : IListvar s : Yen 11



crl [return]:return(cl, rm)< cntrl : Control | process = p >< rm : RecyclingMachine | (total = t), (current = c) > =>< cntrl : Control | process = tl("return", p) >< rm : RecyclingMachine | (total = t, desclist(cl)),(current = desclist(cl)) >print(rm, desclist(cl), amount(desclist(cl), (nil):IList))if ("return" in hd(p)) .eq control = "return" .}}A sample run. We test the speci�cation with a start con�guration where theuser returns three bottles.module RM1 {imports {protecting (RM)}signature {op ret1 : -> CItemop ret2 : -> CItemop ret3 : -> CItemop bottle : -> Item}axioms {eq price(bottle) = 100 .eq desc(ret1) = bottle .eq desc(ret2) = bottle .eq desc(ret3) = bottle .}}select RM1exec makeControl(Cntrl, (process = control)) .exec makeRecyclingMachine(Rm, (total = nil), (current = nil)) .exec < Cntrl > < Rm > return(ret1, ret2, ret3, (nil):CList, Rm) .CafeOBJ answers-- execute in RM1 : < Cntrl > < Rm > return(ret1 , ret2 , ret3 ,nil,Rm)< Cntrl : Control | (process = terminate) > < Rm : RecyclingMachine| (total = bottle , bottle , bottle , current = bottle , bottle, bottle) > print(Rm,bottle , bottle , bottle,300) : ACZ-Configuration(0.010 sec for parse, 113 rewrites(0.230 sec), 424 match attempts)12



1.3 Robustness AnalysisUse case. The use case \return items" is re�ned in two aspects: insteadof returning a list of items the customer returns the items one by one; themachine itself is decomposed into several objects. Accordingly, the informaldescription consists of a re�nement of the use case description of Section 1.2and a description of the objects of the machine:\A recycling machine receives returning items (such as cans orbottles) from a customer. Descriptions of these items and the dailytotal of the returned items of all customers are stored in the machine.If the customer presses the start button he can return the items oneby one. If the customer presses the receipt button he gets a receiptfor all items he has returned before. The receipt contains a list ofthe returned items as well as the total return sum."The second phase of OOSE, called \robustness analysis", deals with such are�nement.Object model. Objects are classi�ed in three categories: interface, controland entity objects. Interface objects build the interface between the actors (thesystem border) and the system, the entity objects represent the (storable) dataused by the system and the control objects are responsible for the exchange ofinformation between the interface and the entity objects.
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Figure 4: Object model of the robustness analysis for the Recycling MachineThe recycling machine consists of �ve objects (sorts): the interface objectCustomerPanel, a control object Receiver and the entity objects Current,DayTotal and DepositItem. CustomerPanel and Receiver communicate the13



data concerning the returned items, the Receiver uses Current and DayTotalfor storing and computing the list of current items and the daily total.DepositItem stands for all kinds of returned items, in particular for the classof bottles which is modeled as its heir (see Figure 4).The objects have the following attributes: the CustomerPanel has a stateattribute to record whether the start button was pressed; the Receiver hasno attributes; DepositItem has a name and a price, Bottle has additionallya height and a width; the class Current has a list (of DepositItem) and anamount as attributes, DayTotal a list of deposit items.The attributes of Current satisfy the invariant that the amount is the sumof the prices of the items of the list.Interaction diagram. From the informal description one can derive threekinds of messages which are sent from the system border (i.e. from the customer)to the CustomerPanel: a start message, a return message for returning oneconcrete item and a receipt message for requiring a receipt. Each of thesemessages begins a new activity of the customer panel. On the other hand, thecustomer panel sends a print message to the system border.The start message concerns only the CustomerPanel. After receipt of thereturn message the customer panel sends a message, say new(i), with thedescription i of the concrete item to the receiver. Then the receiver forwardsthis information to Current and DayTotal by two messages, called add and concrespectively; the end of such a return process is to be acknowledged by a messageack. In the third activity the CustomerPanel sends a printreceipt request tothe Receiver which in turn sends a standard get message to Current. Aftergetting the answer the Receiver forwards the answer to the CustomerPanel(by a message called send) which prints the result (see Figure 5).The \where clause" of the diagram shows that the description i of a returneditem ci is not changed and that the amount of the print message is compatiblewith the prices of the returned items.Construction of a Formal Speci�cation. We add a functional speci�cationfor the states of the customer panel.module STATE {signature {[ State ]ops on, off, wait : -> State}} The re�ned diagram generates automatically six class and twelve messagedeclarations according to our method in Section 1.2, e.g.class Receiver {customerpanel : ObjectIdcurrent : ObjectIddaytotal : ObjectId} 14
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Figure 5: Interaction diagram of the robustness analysis for the Recycling Ma-chineop start : ObjectId -> Messageop return : ObjectId ObjectId -> Messageop new : ObjectId ObjectId ObjectId -> MessageIn order to de�ne the rule skeletons for the interaction diagram of the recy-cling machine we use the attributes de�ned in the object model (see Figure 4).We obtain the following skeletons for e.g. the start, return and new message:crl [start] start(cp)< cp : CustomerPanel | state = a > =>< cp: CustomerPanel | state = ? >if �?crl [return] return(ci, cp)< cp : CustomerPanel | state = a > =>< cp : CustomerPanel | state = ? >new(cp, i, rc)if i = desc(ci) and �?[new] new(cp, i, rc)< rc : Receiver > =>< rc : Receiver >conc(rc, i, cur) 15



add(rc, i, dt)if �?The behaviour of the interaction diagram is represented by the followingstrategy:start ; (return)� ; ack ; receipt ; sendk (new)� ; printreceipt ; tok (conc)� ; getk (add)�To get the full rules one has to add the state changes and the necessarypreconditions. We require preconditions only for the behaviour of the customerpanel: pressing the start button should actually start the machine only if it isin state o�, returning an item and requiring a receipt should be possible onlyif the machine is on. By �lling in values also for the other question marks weobtain the following rules:rl [start]: start(cp)< cp : CustomerPanel | (state = off) > =>< cp : CustomerPanel | (state = on) > .rl [return]: return(ci, cp)< cp : CustomerPanel | (state = on) > =>< cp : CustomerPanel | (state = on) >new(cp, desc(< ci : CItem >), rc) .rl [new]: new(cp, i, rc)< rc : Receiver | (current = cur), (daytotal = dt) > =>< rc : Receiver | (current = cur), (daytotal = dt) >conc(rc, i, cur)add(rc, i, dt) .A sample run. The whole speci�cation with integrated process control cannow be tested. We give a run for the returning of three bottles.exec makeCustomerPanel(Cp, (state = off), (receiver = Rc)) .exec makeReceiver(Rc, (customerpanel = Cp), (current = Cur),(daytotal = Dt)) .exec makeCurrent(Cur, (list = nil), (amount = 0),(receiver = Rc), (customerpanel = Cp)) .exec makeDayTotal(Dt, (list = nil)) .exec makeItem(Bottle, (price = 100)) .exec makeCItem(Ret1, (desc = Bottle)) .exec makeCItem(Ret2, (desc = Bottle)) .exec makeCItem(Ret3, (desc = Bottle)) .exec makeControl(Cntrl,(process = ("start" ; (("return" ; "ack") * ;("receipt" ; "send")))|| ((("new") * ; ("printreceipt" ; "to"))|| ((("conc") * ; "get")|| ("add" *))))) .exec < Cntrl > < Cp > < Rc > < Cur > < Dt >return(Ret3, Cp) return(Ret2, Cp) return(Ret1, Cp) start(Cp) .16



exec < Cntrl > < Cp > < Rc > < Cur > < Dt >receipt(Cp) .CafeOBJ answers:-- execute in RM : < Cntrl > < Cp > < Rc > < Cur > < Dt > return(Ret3,Cp) return(Ret2,Cp) return(Ret1,Cp) start(Cp)< Rc : Receiver | (current = Cur , daytotal = Dt , customerpanel= Cp) > < Cur : Current | (list = Bottle , Bottle , Bottle , amount= 300 , customerpanel = Cp , receiver = Rc) > < Dt : DayTotal |(list = Bottle , Bottle , Bottle) > < Cntrl : Control | (process= ((("return" ; "ack") *) ; ("receipt" ; "send")) || ((("new" *) ; ("printreceipt" ; "to")) || ((("conc" *) ; "get") || ("add"*)))) > < Cp : CustomerPanel | (state = on , receiver = Rc) > :ACZ-Configuration(23.350 sec for parse, 418988 rewrites(374.290 sec),3343231 match attempts)-- execute in RM : < Cntrl > < Cp > < Rc > < Cur > < Dt > receipt(Cp)< Dt : DayTotal | (list = Bottle , Bottle , Bottle) > < Cur : Current| (list = nil , amount = 0 , receiver = Rc , customerpanel = Cp)> < Rc : Receiver | (customerpanel = Cp , current = Cur , daytotal= Dt) > < Cntrl : Control | (process = "add" *) > < Cp : CustomerPanel| (state = off , receiver = Rc) > print(Cp,l,300) : ACZ-Configuration(1.430 sec for parse, 40301 rewrites(51.250 sec), 311025 match attempts)Another interpretation of interaction diagrams. Because of our separa-tion of logic and control we can switch between di�erent interpretations of thecontrol ow of messages given by the interaction diagrams. The following is analternative view: The vertical axis is interpreted causally: A message m to anobject o is called the reason of all messages emerged by o between the receptionof m and the reception of any other message after (below) m. A message mustoccur before any other message it is the reason for.For the recycling machine this yields the following process expression:start ;(return ; new ; (add k conc) ; ack)�receipt ; printreceipt ; get ; to ; sendIn CafeOBJ we get the following behaviour:exec makeControl(Cntrl, (process = "start" ;((("return" ; ("new" ;(("add" || "conc") ; "ack"))) *) ;("receipt" ; ("printreceipt" ;("get" ; ("to" ; "send"))))))) .-- execute in RM : < Cntrl > < Cp > < Rc > < Cur > < Dt > receipt(Cp)< Dt : DayTotal | (list = Bottle , Bottle , Bottle) > < Cur : Current| (list = nil , amount = 0 , receiver = Rc , customerpanel = Cp)> < Rc : Receiver | (customerpanel = Cp , current = Cur , daytotal= Dt) > < Cntrl : Control | (process = terminate) > < Cp : CustomerPanel17



| (state = off , receiver = Rc) > print(Cp,l,300) : ACZ-Configuration(1.420 sec for parse, 533 rewrites(6.670 sec), 3305 match attempts)Speci�cation metrics. The result for the recycling machine example aretwo speci�cations with about 100 lines in four modules and 200 lines in �vemodules, respectively. An additional library containing PROCESS and CONTROLcomprises about 150 lines in �ve modules. The parsing time for the speci�cationof the requirements analysis is about four seconds, for the speci�cation of therobustness analysis about seven seconds.2 Formalising Java SemanticsJava o�ers simple and tightly integrated support for concurrent programming.A concurrent program consists of multiple tasks that are or behave as if theywere executed all at the same time. In Java tasks are implemented using threads,which are sequences of instructions that run independently within the encom-passing program.A structural operational semantics of a non-trivial sublanguage of Java in-cluding threads and their synchronisation was given in [7]. The interactionbetween threads via shared memory is described in terms of structures calledevent spaces. These provide an abstract, declarative description of the Javathread model which is an exact formal counterpart of the informal languagedescription [11, Chapter 17]. The semantics is presented in two steps: First asimple operational description of the sequential part of Java is introduced. Thenthe thread model is developed.In this section we are formalising this semantics in CafeOBJ following thestructure of the original presentation in [7].The following part of the concrete Java syntax is covered by the semantics:Block ::= { BlockStatement� }BlockStatement ::= LocalVariableDeclaration j StatementLocalVariableDeclaration ::= Type VariableDeclarator+VariableDeclarator ::= Identi�er = ExpressionStatement ::= ; j Block j ExpressionStatement ;j synchronized(Expression ) BlockExpressionStatement ::= Assignment j new ClassType ( )Assignment ::= LeftHandSide = AssignmentExpressionLeftHandSide ::= Name j FieldAccessName ::= Identi�er j Name . Identi�erFieldAccess ::= Primary . Identi�erAssignmentExpression ::= Assignment j UnaryExpressionUnaryExpression ::= UnaryOperator UnaryExpressionj Primary j NamePrimary ::= Literal j this j FieldAccessj (Expression ) j new ClassType ( )Expression ::= AssignmentExpression
18



2.1 Sequential JavaWe �rst briey summarise the semantic domains used in the operational seman-tics of sequential Java and their formalisation. Then we introduce the abstractsyntax for Java terms. Finally, the operational rules and their translation toCafeOBJ are presented. We illustrate some terminology and our approach bymeans of the following Java program:class Point {int x, y;Point() { }}class Main {public static void main(String[] argv) {Point p = new Point();p.x = 1; p.y = 2;p.x = p.y;}}Semantic domains. Objects, for example an instance of class Point, arekept in the main memory. This store can be thought of as mapping addressesof instance variables (left-values, from a semantic domain LVal), e.g. of instancevariable p.x) of objects (from a semantic domain Obj, e.g. referenced by p) tovalues or object references (right-values, from a semantic domain RVal, e.g. 2).A semantic domain Store is assumed equiped with �ve semantic functions: upd :LVal�RVal�Store! Store updates a given store; upd(l; v; �) is written �[l 7! v].The function lval : Obj � Identi�er � Store * LVal retrieves the left-value ofan instance variable (such as of p.x). Analogously, rval : LVal� Store * RValretrieves the right-value of a left-value (for example 2 for p.y); rval(l; �) iswritten �(l). New objects are allocated by newC : Store ! Obj � Store. Thisfamily of functions is indexed by class types C 2 ClassType. For a given store�, newC(�) yields an object o and a store �0 such that �0 extends � where�0(lval (o; i; �0)) is de�ned for any identi�er i ranging over all instance variablesof the class C.The store is straightforwardly formalised in module STORE. Note that, sincethe semantics does not deal with class declarations, classes (in our examplePoint and Main) have to be coded in the speci�cation by hand.module* DECLARATIONS {signature {[ Bool Int < Literal,ObjectId < Obj,Literal Obj < RVal,Ident, ClassType < Type ]op void : -> RValop null : -> Objclass Main {} 19



class Point {x : Inty : Int}: : :}: : :}module* STORE {imports {protecting (DECLARATIONS): : :}signature {[ LVal, Store ]op new : ClassType Store -> Pair<Obj;Store>op upd : LVal RVal Store -> Storeop lval : Obj Ident Store -> LValop rval : LVal Store -> RValop init : Obj Set<Ident> -> Obj { strat: (1 2 0) }op _[_|->_] : Store LVal RVal -> Storeop __ : Store LVal -> RVal: : :}: : :} The local variables of a block are kept in a stack of environments. Stacksof the domain S-Stack are ranged over by �, environements of the domain Envare ranged over by �. We omit the straightforward de�nitions for these domainsand their formalisation.Abstract Syntax. The operational semantics works on a set S-Term of ab-stract terms. Let the metavariable t range over S-Term. To each syntacticcategory of Java a homonymous category of abstract terms is associated. Thewell-typed terms of Java are mapped to abstract terms of corresponding categoryby a translation (



is modeled by the sort declaration[ Name FieldAccess < Name^FieldAccess < LeftHandSide ] :The symbol =' is the operator for variable declarations. The operatorundefined represents the empty environment. A block f : : : g� is written{ : : : }^�. We use an explicit terminator nil for lists of block statements.Operational judgements. The con�gurations of sequential Java are triples(t; �; �) consisting of an S-term t, an S-stack �, and a store �. The operationalsemantics is the binary relation
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where assignment-left is used to put the result of the evaluation in the premiseof the rule back into the context. Due to this context, the result of step(<<(h1), ss, mm >>) has again to be in LeftHandSide which must be ensured byan additional condition.We decided to analyse the left-hand sides of the rules' conclusions in moredetail and to separate those subsorts the rules can safely apply to. For example,[assign1] should only apply if e1 is neither in Ident nor in LVal. We avoid theintroduction of new sorts like in a declarationIdent^LVal LeftHandSide-Ident-LVal < LeftHandSide(where LeftHandSide-Ident-LVal would represent left-hand sides of assign-ments that are not identi�ers nor left-values). Instead, we de�ne membershippredicates like for examplepred is-ident^lval : AbstractSyntaxvar k : Ident^LValeq is-ident^lval(k) = true .The reduction of is-ident^lval(t) == true for a t : AbstractSyntaxyields true if and only if t : Ident^LVal. With such predicates the rules canbe formalised straightforwardly:axioms {var ss : S-Stackvar mm : Storevar i : Identvar l : LValvar k : Ident^LValvar v : RValvars h h1 : LeftHandSidevars ae ae1 : AssignmentExpressionceq [assign1]:step(<< (h1 = ae), ss, mm >>) =assignment-left(step(<< (h1), ss, mm >>), ae)if not (is-lefthandsidenf(h1) == true) .ceq [assign2]:step(<< (k = ae1), ss, mm >>) =assignment-right(step(<< (ae1), ss, mm >>), k)if not (is-assignmentexpressionnf(ae1) == true) .eq [assign3]:step(<< (l = v), ss, mm >>) = << (v), ss, mm [ l |-> v ] >> .eq [assign4]:step(<< (i = v), ss, mm >>) = << (v), ss [ i |-> v ], mm >> .eq assignment-left(<< h, ss, mm >>, ae) = << (h = ae), ss, mm >> .eq assignment-right(<< ae, ss, mm >>, h) = << (h = ae), ss, mm >> .eq is-lefthandsidenf(h) = is-ident^lval(h) == true .eq is-assignmentexpressionnf(ae) = is-rval(ae) == true .: : :}} 23



The main block of our running example can now be executed:let test = << ({ (((Point (p =' (new Point ( )))) ;)((((p . x) = 1) ;)((((p . y) = 2) ;)((((p . x) = (p . y)) ;) nil))))} ^ (undefined [ p |-> null ])),empty, empty >> .exec step(test, 15) .CafeOBJ answers-- execute in S-CONFIGURATION : step(<< ({ (((Point (p =' new Point( ))) ;) ((((p . x) = 1) ;) ((((p . y) = 2) ;) ((((p . x) = (p . y)) ;) nil)))) } ^ (undefined [ p |-> null ])) , empty ,empty >>,15)<< * , empty , point-0 >> : Conf(0.000 sec for parse, 973 rewrites(0.140 sec), 2539 match attempts)The program has created a new instance point-0 of class Point. We mayinspect it with red < point-0 >:-- reduce in S-CONFIGURATION : < point-0 >< point-0 : Point | (x = 2 , y = 2) > : Point(0.230 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)2.2 Event SpacesThe execution of a non-idealised, non-sequential Java program comprises manythreads of computation running in parallel. Threads exchange information byoperating on values and objects residing in a sharedmain memory. As explainedin the Java language speci�cation [11], each thread also has a private workingmemory in which it keeps its own working copy of variables that it must useor assign. As the thread executes a program, it operates on these workingcopies. The main memory contains the master copy of each variable. There arerules about when a thread is permitted or required to transfer the contents ofits working copy of a variable into the master copy or vice versa. Moreover,there are rules which regulate the locking and unlocking of objects, by meansof which threads synchronise with each other. These rules are given in [11,Chapter 17] and have been formalised in [7] as \well-formedness" conditions forstructures called event spaces. Event spaces are included in the con�gurations ofmulti-threaded Java to constrain the applicability of certain operational rules.Additionally, they are used to model the working memories of all threads. Wesummarise the de�nition of event spaces and simultaneously formalise them ina CafeOBJ speci�cation.Actions and events. In accord with [11], the terms Use, Assign, Load , Store,Read , Write, Lock , and Unlock are used to name actions which describe theactivity of the memories during the execution of a Java program. Use andAssign denote the above mentioned actions of the private working memory.Read and Load are used for a loosely coupled copying of data from the main24



memory to a working memory and dually Store and Write are used for copyingdata from a working memory to the main memory.Let Thread



cq event(a, t, l, v) = oid(makeASR-Action(action = a, thread = t,location = l, value = v))if (a == assign) or (a == store) or (a == read) .cq event(a, t, l) = oid(makeULW-Action(action = a, thread = t,location = l))if (a == use) or (a == load) or (a == write) .cq event(a, t, o) = oid(makeON-Action(action = a, thread = t,object = o))if (a == lock) or (a == unlock) .: : :}} An event space is a poset of events (thought of as occurring in the givenorder) in which every chain can be enumerated monotonically with respect tothe arithmetical ordering 0 � 1 � 2 � : : : of natural numbers, and whichsatis�es the conditions (17.2.1{17.6.2') of Table 4. These conditions, whichformalise directly the rules of [11, Chapter 17], are expressed by clauses of theform: 8~a 2 � : (�) ((9~b1 2 � :	1) _ (9~b2 2 � :	2) _ : : : (9~bn 2 � :	n)))where ~a and ~bi are lists of events, � is an event space and 8~a 2 � :� means that� holds for all tuples of events in � matching the elements of ~a (and similarlyfor 9~b 2 � :	).Such statements are abbreviated by adopting the following conventions:quanti�cation over ~a is left implicit when all events in ~a appear in �; quan-ti�cation over ~bi is left implicit when all events in ~bi appear in 	i. More-over, a rule of the form 8~a 2 � : (true ) : : : ) is written ~a ) (: : : ). Fur-thermore, B ranges over the set of thread actions and C over the set ofmemory actions, that is: B 2 fUse;Assign;Load ;Store;Lock ;Unlockg, C 2fRead ;Write ;Lock ;Unlockg. Components of an action or event may be omit-ted: e.g. (Read ; l) is written for (Read ; �; l; v) when � and v are not relevant.The term (A; �; x)n denotes the n-th occurrence of (A; �; x) in a given space, ifsuch an event exists, and is unde�ned otherwise.The origin of each rule from [11, Chapter 17] is included; for more detailsrefer to [11] and [7]. For instance, rule (17.2.1) says that actions performed byany thread are totally ordered and (17.2.2) that so are the actions performedby the main memory for any variable or object. Similarly, rules (17.6.2) and(17.6.2') say that a lock action acts as if it ushes all variables from the thread'sworking memory, i.e. before use they must be assigned or loaded from mainmemory.The formula scheme of the event space rules can be imitated in CafeOBJby parameterisation. The module RULE-BASE provides the parameter speci�-cation with predicates all-pred representing � and exists-pred representing	1; : : : ;	n. The type of these predicates depends on whether quanti�cationruns over event space elements, such as for example in (17.3.2), or over orderedpairs in event spaces, such as for example in (17.3.4). These dependent typescould be avoided by specifying several di�erent RULE-BASE and RULE modules.module* RULE-BASE { 26



(B; �); (B0; �)) (B; �) � (B0; �) _ (B0; �) � (B; �) (17.2.1)(C; x); (C 0; x)) (C; x) � (C 0; x) _ (C 0; x) � (C; x) (17.2.2)(Assign; �; l) � (Load ; �; l))(Assign; �; l) � (Store; �; l) � (Load ; �; l) (17.3.2)(Store; �; l)m < (Store; �; l)n )(Store; �; l)m � (Assign ; �; l) � (Store ; �; l)n (17.3.3)(Use; �; l)) (Assign; �; l) � (Use; �; l) _ (Load ; �; l) � (Use; �; l) (17.3.4)(Store; �; l)) (Assign; �; l) � (Store; �; l) (17.3.5)(Assign; �; l; v)n � (Store; �; l; v0))v = v0 _ (Assign ; �; l; v)n < (Assign; �; l)m � (Store; �; l; v0) (17.1.5)(Load ; �; l)n ) (Read ; �; l)n � (Load ; �; l)n (17.3.6)(Write; �; l)n ) (Store ; �; l)n � (Write ; �; l)n (17.3.7)(Store; �; l)m � (Load ; �; l)n ) (Write ; �; l)m � (Read ; �; l)n (17.3.8)(Lock ; �; o)n � (Lock ; �0; o) ^ � 6= �0 )(Unlock ; �; o)n � (Lock ; �0; o) (17.5.1)(Unlock ; �; o)n ) (Lock ; �; o)n � (Unlock ; �; o)n (17.5.2)(Assign; �; l) � (Unlock ; �))(Assign; �; l) � (Store; �; l)n � (Write ; �; l)n � (Unlock ; �) (17.6.1)(Lock ; �) � (Use ; �; l))(Lock ; �) � (Assign ; �; l) � (Use ; �; l) _(Lock ; �) � (Read ; �; l)n � (Load ; �; l)n � (Use ; �; l) (17.6.2)(Lock ; �) � (Store ; �; l))(Lock ; �) � (Assign ; �; l) � (Store ; �; l) (17.6.2')Table 4. Event space axiomsimports {protecting (PARTIALORDER(ACTION sort Elt -> ObjectId ) * { : : : }protecting (SET(TRIV) * { sort Elt -> AllRangesort Set<X> -> Set<AllRange> })protecting (SET(TRIV) * { sort Elt -> ExistsRangesort Set<X> -> Set<ExistsRange> })}signature {[ AllRange ExistsRange ]op all-range : PartialOrder<ObjectId> -> Set<AllRange>op exists-range : PartialOrder<ObjectId> -> Set<ExistsRange>pred all-pred : AllRangepred exists-pred : PartialOrder<ObjectId> AllRange ExistsRange27



: : :}}module* RULE(X :: RULE-BASE) {signature {pred rule : PartialOrder<ObjectId>pred rule : PartialOrder<ObjectId> Set<AllRange>op filter : Set<AllRange> -> Set<AllRange>pred exists : PartialOrder<ObjectId> AllRange Set<ExistsRange>: : :}axioms {var po : PartialOrder<ObjectId>var x : AllRangevar m : Set<AllRange>var y : ExistsRangevar n : Set<ExistsRange>eq rule(po) = rule(po, filter(all-range(po))) .eq rule(po, empty) = true .eq rule(po, x m) = exists(po, x, exists-range(po)) and rule(po, m) .eq filter(empty) = empty .eq filter(x m) = if all-pred(x)then x filter(m)else filter(m)fi .eq exists(po, x, empty) = false .eq exists(po, x, y n) = exists-pred(po, x, y) or exists(po, x, n) .: : :}} A separate module RULES provides all the necessary predicates. For rules(17.3.2) and (17.3.4) these are-- Rule 3eq assign<load(<< a, l >>) = action(< a >) == assign andaction(< l >) == load andthread(< a >) == thread(< l >) andlocation(< a >) == location(< l >) .eq <store<(po, << x1, x2 >>, s) = action(< s >) == store andthread(< s >) == thread(< x1 >) andlocation(< s >) ==location(< x1 >) and(po . x1 <= s) and (po . s <= x2) .-- Rule 5eq use(u) = (action(< u >) == use) and true .eq assign<-or-load<(po, x1, x2) = (action(< x2 >) == assign or28



action(< x2 >) == load) andthread(< x2 >) ==thread(< x1 >) andlocation(< x2 >) ==location(< x1 >) and(po . x1 <= x2) .Thus we get the formal counterpart to (17.3.2) and (17.3.4) by a fairly com-plicated instantiation:make RULE3 (RULE(RULES { sort AllRange -> Pair<ObjectId;ObjectId>,sort ExistsRange -> ObjectId,sort Set<AllRange> ->Set<Pair<ObjectId;ObjectId>>,sort Set<ExistsRange> -> Set<ObjectId>,op all-range -> relation,op exists-range -> underlying,op all-pred -> assign<load,op exists-pred -> <store<: : : }))make RULE5 (RULE(RULES { var x : AllRange,sort AllRange -> ObjectId,sort ExistsRange -> ObjectId,sort Set<AllRange> -> Set<ObjectId>,sort Set<ExistsRange> -> Set<ObjectId>,op all-range -> underlying,op exists-range -> underlying,op all-pred(x) -> use(x),op exists-pred -> assign<-or-load<: : : }))The module EVENTSPACE imports all the instantiated rule schemes. It checksfor a given poset of object identi�ers whether it ful�lls all event space rulesthrough function eventspace.module! EVENTSPACE {imports {protecting (RULE1 * { op rule -> rule1, : : : }): : :protecting (RULE15 * { op rule -> rule15, : : : })}signature {[ PartialOrderErr<ObjectId> < EventSpaceErr < EventSpace,PartialOrderNull<ObjectId> < EventSpaceNull < EventSpaceOK,EventSpaceOK < PartialOrderOK<ObjectId>,EventSpaceOK < EventSpace,EventSpace < PartialOrder<ObjectId>,ObjectId Pair<ObjectId;ObjectId> < EventSpace ]op eventspace : PartialOrder<ObjectId> -> EventSpace: : :}: : :} 29



Event space extensions. An event space � may also be extended by a newevent a = (A; �; x) as follows: if A is a thread action, then b � a for all instancesb of (B; �) in �; if a is a main memory action, then c � a for all instances c of(C; x) in �. Moreover, if A is Load then c � a for all instances c of (Read ; �; x)in �, and if A is Write then c � a for all instances c of (Store ; �; x) in �. Theterm � � a denotes the space thus obtained, provided it obeys the above rules,and it is otherwise unde�ned.This behaviour is formalised by a function +<. We omit its straightforwardbut lengthy de�nition.op _+<_ : EventSpace ObjectId -> EventSpace2.3 Multi-Threaded JavaStores assume in multi-threaded Java a more active role than they have insequential Java because of the way the main memory interacts with the workingmemories: a \silent" computational step changing the store may occur withoutthe direct intervention of a thread's execution engine. Changes to the store aresubject to the previous occurrence of certain events which a�ect the state ofcomputation. Event spaces are included in the con�gurations to record suchhistorical information.We �rst state the necessary extensions for the notions of terms, stacks, andcon�gurations from the single-threaded to the multi-threaded case. We includea brief overview of their formalisation. Then we give the operational rules formulti-threaded Java and discuss their pendants in CafeOBJ.Multi-threaded terms, stacks, and con�gurations. A multi-threadedJava con�guration may include multiple S-terms, one for each running thread.An abstract term T of multi-threaded Java is a set of pairs (�; t), where� 2 Thread



S-STACK { sort Elt -> S-Stack,op bottom ->(bottom):S-StackErr }) *{ sort PartialFunction<X;Y> -> M-Stack,sort Set<X> -> Set<ThreadId>,sort Set<Y> -> Set<S-Stack> } )The con�gurations of multi-threaded Java are 4-tuples (T; �; �; �) consistingof an M -term T , an event space � an M -stack � and a store �.module! M-CONFIGURATION {imports {protecting (QUADRUPLE(M-TERM { sort Elt -> M-Term },EVENTSPACE { sort Elt -> EventSpace },M-STACK { sort Elt -> M-Stack },STORE { sort Elt -> Store }) *{ sort Quadruple<W;X;Y;Z> -> Conf }): : :}Multi-threaded rules. The operational rules make use of the following no-tation: store�(�; l) denotes the oldest unwritten value of l stored by � in � andrval�(�; l) denotes the latest value of l assigned or loaded by � in �.These functions are easily speci�ed in CafeOBJ; their lengthy de�nitions aretherefore omitted here.The operational semantics for multi-threaded Java is given in Table 5. Thereis a \primed" version [x'] for of each rule [x] of Section 2.1; [x'] is omitted if itreads as [x] by the notational conventions.The high non-determinism of the \silent action"-rules [read], [load], [store],and [write] is hard to model in CafeOBJ, since for example the [read] rule isalways applicable. We therefore do not use event spaces for our formalisedrules, but restrict ourselves to a simple implementation that provides the sameinterface as EVENTSPACE. In particular, for sake of simplicity, a thread readsfrom the main memory whenever it is using a variable and writes through tomain memory whenever it is assigning a variable.axioms {var th : ThreadIdvar ee : EventSpacevar ss : M-Stackvar mm : Storevar l : LValvar v : RValceq [assign3']:step(<< << th, (l = v) >>, ee, ss, mm >>) =<< << th, (v) >>, ee +< event(assign, th, l, v)+< event(store, th, l, v)+< event(write, th, l),ss, mm [ l |-> v ] >>if (ee +< event(assign, th, l, v)+< event(store, th, l, v)+< event(write, th, l)) =/= (bottom):EventSpaceErr .31



[assign3'] (�; l = v); �



op priorities : -> PartialOrder<String>pred match : Conf Stringeq match(<< << th, (l = v) >>, ee, ss, mm >>, "assign3'") = true .eq match(<< << th, (l) >>, ee, ss, mm >>, "val'") = true .eq priorities = make-partialorder(<< "assign2", "assign1" >><< "assign3'", "assign2" >><< "assign4'", "assign2" >><< "unop2!", "unop1" >><< "access2", "access1" >><< "pth2", "pth1" >><< "decl2", "decl1" >><< "block1", "block2" >><< "synchro2", "synchro1" >><< "unlock", "synchro2" >>) .ceq [assign1]:step(<< << th, (h1 = ae) >>, ee, ss, mm >>) =assignment-left(step(<< << th, (h1) >>, ee, ss, mm >>), ae)if priority(<< (<< th, (h1 = ae) >>), ee, ss, mm >>,"assign1") == true .ceq [assign2]:step(<< << th, (k = ae1) >>, ee, ss, mm >>) =assignment-right(step(<< << th, (ae1) >>, ee, ss, mm >>), k)if priority(<< (<< th, (k = ae1) >>), ee, ss, mm >>,"assign2") == true .Although this approach is much more complex than the one described inSection 2.1 it seems to be easier to reason about. Logic, i.e. the operationalrules, and control, i.e. the priorities, are separated more clearly. The additionalcomplexity can be read from a run of the example in Section 2.1. Now the blockis executed in a thread with thread identi�er thd1.let test = << << thd1, ({ (((Point (p =' (new Point ( )))) ;)((((p . x) = 1) ;)((((p . y) = 2) ;)((((p . x) = (p . y)) ;) nil))))} ^ (undefined [ p |-> null ])) >>,null, undefined [ thd1 |-> empty ], empty >> .exec step(test, 15) .CafeOBJ answers-- execute in M-CONFIGURATION : step(<< (<< thd1 , ( (((Point (p=' new Point ( ))) ;) ((((p . x) = 1) ;) ((((p . y) = 2) ;) ((((p . x) = (p . y)) ;) nil)))) ^ (undefined [ p |-> null ])) >>) , null , (undefined [ thd1 |-> empty ]) , empty >>,15)<< (<< thd1 , * >>) , ((((((((((((null +< asr-action-0) +< asr-action-1)+< ulw-action-0) +< asr-action-2) +< asr-action-3) +< ulw-action-1)+< asr-action-5) +< ulw-action-3) +< ulw-action-4) +< asr-action-6)+< asr-action-7) +< ulw-action-5) , ((((((((((((((((((((((((((33



((((undefined [ thd1 |-> empty ]) [ thd1 |-> push(undefined [ p|-> null ],empty) ]) : : : ) , point-0 >> : Conf(0.000 sec for parse, 699059 rewrites(596.660 sec),1876858 match attempts)We inspect the event space and the main memory.M-CONFIGURATION> red < asr-action-0 > .-- reduce in M-CONFIGURATION : < asr-action-0 >< asr-action-0 : ASR-Action | (action = assign , thread = thd1 ,location = << point-0 , x >> , value = 1) > : ASR-Action(0.000 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)M-CONFIGURATION> red < point-0 > .-- reduce in M-CONFIGURATION : < point-0 >< point-0 : Point | (x = 2 , y = 2) > : Point(0.000 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)The non-determinism in the [par] rule is implemented using ACI-matchingof sets. However, we can not be sure that each thread can make a computationalstep at any time; for example, a thread waiting for a lock can not move. Thus,we perform a (non-deterministic) search for a thread that is able to proceed. Thepredicate is-config tests whether a the step function was applied successfully.var st : S-Termvar tt : T-Termvar mt : M-Termeq [par]:step(<< (<< th, st >> tt mt), ee, ss, mm >>) =if (is-config(step(<< << th, st >>, ee, ss, mm >>)) == true)then par(step(<< << th, st >>, ee, ss, mm >>), tt mt)else par(step(<< (tt mt), ee, ss, mm >>), << th, st >>)fi .We illustrate the speci�cation by the so-called \Possible Swap" exampledetailed in [11] and [7]. Two threads �1 and �2 running in parallel want tomanipulate the coordinates of the same point object o referenced in both threadsby the local variable p. These manipulations are to run under mutual exclusion.(�1; synchronized(p) f p:x = p:y; g) j(�2; synchronized(p) f p:y = p:x; g)We assume an instance < point-0 : Point | (x = 1 , y = 2) > of Pointin the main memory. The following describes a possible run in CafeOBJ:exec new(Point, empty) .exec set-x(< point-0 >, 1) .exec set-y(< point-0 >, 2) .let test = << (<< thd1, (synchronized (p) (((((p . x) = (p . y)) ;) nil) ^ undefined)) >><< thd2, (synchronized (p) (((((p . y) = (p . x)) ;) nil) ^ undefined)) >>),34



(null),((undefined [ thd1 |-> push(undefined [ p |-> point-0 ],empty) ])[ thd2 |-> push(undefined [ p |-> point-0 ],empty) ]),point-0 >> .exec step(test, 16) .-- execute in M-CONFIGURATION : step(<< (<< thd1 , (synchronized( p ) ( ((((p . x) = (p . y)) ;) nil) ^ undefined)) >> <<thd2 , (synchronized ( p ) ( ((((p . y) = (p . x)) ;) nil)^ undefined)) >>) , null , ((undefined [ thd1 |-> push(undefined[ p |-> point-0 ],empty) ]) [ thd2 |-> push(undefined [ p |->point-0 ],empty) ]) , point-0 >>,16)<< (<< thd1 , * >> << thd2 , * >>) , ((((((((((((((((null +< on-action-1)+< asr-action-1) +< ulw-action-1) +< ulw-action-2) +< asr-action-2)+< asr-action-3) +< ulw-action-3) +< on-action-2) +< on-action-4)+< asr-action-5) +< ulw-action-5) +< ulw-action-6) +< asr-action-6)+< asr-action-7) +< ulw-action-7) +< on-action-5) , ((((((((((((((((((((((((((undefined [ thd1 |-> push(undefined [ p |-> point-0],empty) ]) : : : ) , point-0 >> : Conf(0.000 sec for parse, 624990 rewrites(515.410 sec),1676076 match attempts)M-CONFIGURATION> red < on-action-1 > .-- reduce in M-CONFIGURATION : < on-action-1 >< on-action-1 : ON-Action | (action = lock , thread = thd2 , object= point-0) > : ON-Action(0.000 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)M-CONFIGURATION> red < point-0 > .-- reduce in M-CONFIGURATION : < point-0 >< point-0 : Point | (x = 1 , y = 1) > : Point(0.000 sec for parse, 1 rewrites(0.000 sec), 1 match attempts)Speci�cation metrics. The formalisation of multi-threaded Java takes about1800 lines in four packages and 40 modules. The maximum nesting level we useis �ve for imports and three for parameterisation. The parsing time for thewhole speci�cation is about half an hour (sic!).Conclusions and Future WorkWe provided two case studies with CafeOBJ. In the �rst case study we developeda recycling machine speci�cation as an example of the formally based object-oriented software engineering method fOOSE. The second case study formaliseda Java semantics in CafeOBJ.The system proved to be fast and stable enough to specify medium-scaleexamples like the Java formalisation. However, it could be a little bit faster anda little bit more robust. In particular, parsing seems to be slow and becomestedious when it comes to complex mix�x expressions. Also the interpretationof parameterised modules and only average complex rewrite rules turns out be35
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