
Verifying a Compiler Opt imizat ion for
Mul t i -Threaded Java

Bernhard Reus, Alexander Knapp, Pietro Cenciarelti, and Martin Wirsing

Ludwig-M aximilians-Universit ~t Miinchen
{reus, knapp, cenciare, wirs ing}@informat ik. uni-muenchen, de

Abstract . The specification for the object-oriented concurrent language
Java [3] is rather loose with respect to the interaction of shared memory
and the local working memories of different threads. This allows maxi-
mal freedom in the language implementation. Such freedom is reflected
in the semantics provided in [2], where threads-memory interaction is
formalized in terms of structures called event spaces. Two kinds of mem-
ories are described in the Java specification: a "normal" memory and a
more liberal one, where values can sometimes be stored even before they
are produced as results of computation. Here we compare two structural
operational semantics of a sublanguage of Java modelling the two types
of memory. The two semantics share the same set of operational rules
but put different requirements (expressed as first order theories) on the
notion of event space. We prove a result which is informally stated in
[3]: the two semantics coincide for properly synchronized programs. This
shows the applicability of a new technique for combining structural op-
erational semantics and first order specification of process behaviour.

1 Introduction
A concurrent program consists of multiple tasks that are or behave as if they
were executed all at the same time. Such tasks can be implemented using threads
(short for "threads of execution"), which are sequences of instructions that run
independently within the encompassing program. The object-oriented language
Java supports thread programming (see e.g. [1], [4]).

Java threads share a common memory, but keep working copies of shared
variables in private working memories. It is only when leaving a synchronized
block tha t must a thread copy the content of its working memory in the main
memory. However, possible implementations of the run-time system may choose
to update the value of a variable in the main memory as soon as a thread
makes an assignment to its working copy of that variable. The Java language
specification [3] leaves freedom to the implementation in that respect.

A particular implementation technique is also discussed in [3], where a value
can be stored by a thread in the main memory before such value is produced by
the computat ion. This is called a prescient store action [3, §17.8]. The only
restriction is that between the prescient store and the matching assignment
nothing "bad" happens, e.g. no other threaA reads illegitimately the prescient
value. Consider the following code example.

403

o . b = 2 ;
f o r (o . a = 1; o . a < 10; o . a = o . a + 1)

o .b = o . a + o .b ;

where o is (a reference to) an object with two attr ibutes a and b of type i n t .
When executed the value of o. a can only be stored after o. a has been assigned
a new value, i.e. after it was incremented. If prescient store operations are per-
mitted, then it would be also legal to store the value 10 for o. a in advance, i.e.
before the loop is entered, excluding thereby that any other thread can load o. a
before the end of the loop.

The rearrangement of store operations can be used to speed up programs
when updating of variables is split into a thread action (called Store) and a
memory action (Write). The global memory can concurrently provide the value
of a pre-stored variable while a second thread waits for it. Re-grouping the store-
operations might also optimize memory access itself.

In [2] we present a structural operational semantics (in the style of [5]) of
a nontrivial sub-language of Java which includes dynamic creation of objects,
blocks, and synchronization of threads. The notion of event space is introduced
in that paper to formalize the communication protocol between shared memory
and threads. Event spaces correspond roughly to configurations in Winskel's
event structures [6], which are used for denotational semantics of concurrent
languages.

Here we exploit the flexibility of the approach proposed in [2], where the
operational semantics is given parametrically in the notion of event space, and
compare two language implementations which share the same set of operational
rules. The implementations are obtained by imposing different requirements on
event spaces, so that prescient stores are possible in one case and impossible
in the other. Such requirements are expressed in simple first order clauses. In
this framework we prove that prescient and nonprescient semantics coincide for
properly synchronized programs, that is programs where any two threads are not
allowed to write a variable into the global memory without synchronization (race
conditions [4]). This property was only informally stated in [3, §17.8]. We also
provide an example where prescient store actions for non-properly synchronized
programs lead to inconsistent memory contents.

The contribution of the paper is twofold: on the one hand it provides welcome
formal confirmation of the intuitive correctness of certain compiler optimization
techniques; on the other hand it shows the applicability of an innovative tech-
nique for combining structural operational semantics and first order axiomati-
sation of process behaviour.

The paper is organized as follows: Section 2 recapitulates the definition of
event spaces from [2]. These are used in Section 3 for the SOS-rules. Next,
the axiomatization of event spaces is changed (Section 4) in order to allow for
prescient stores and prescient operational semantics is defined in Section 5. It is
then proven, in Section 6, that for properly synchronized programs the extension
is conservative w.r.t, the old semantics.

404

2 E v e n t S p a c e s

The execution of a Java program comprises many threads of computat ion running
in parallel. Threads exchange information by operating on values and objects re-
siding in a shared main memory. As explained in the Java language specification
[3], each thread also has a private working memory in which it keeps its own
working copy of variables that it must use or assign. As the thread executes a
program, it operates on these working copies. The main memory contains the
master copy of each variable. There are rules about when a thread is permit ted
or required to transfer the contents of its working copy of a variable into the
master copy or vice versa. Moreover, there are rules which regulate the lock-
ing and unlocking of objects, by means of which threads synchronize with each
other. These rules are given in [3, Chapter 17] and have been formalized in [2] as
"well-formedness" conditions for structures called event spaces. We summarize
their definition and usage.

Event spaces will be included in the configurations of multi- threaded Java to
constrain the applicability of certain operational rules. Additionally, they will be
used to model the working memories of all threads. The main memory is modeled
as an abstract store that can be thought of as mapping addresses of instance
variables (left-values, from a semantic domain LVal) of objects (from a semantic
domain Obj) to values or object references (right-values, from a semantic domain
R Val).

In accord with [3], the terms Use, Assign, Load, Store, Read, Write, Lock,
and Unlock are used here to name actions which describe the activity of the
memories during the execution of a Java program. Use and Assign denote the
above mentioned actions of the private working memory. Read and Load are
used for a loosely coupled copying of data from the main memory to a working
memory and dually Store and Write are used for copying da ta from a working
memory to the main memory (as mentioned in the introduction).

We let the metavariable A (possibly indexed) stand for a generic action name.
Moreover, we let B range over the set of thread actions and C over the set
of memory actions, that is: B • { Use, Assign, Load, Store, Lock, Unlock}, C •
{Read, Write, Lock, Unlock}.

Let Thread_id be a set of thread identifiers. An action is either a 4-tuple
of the form (A,8, I,v) where A • {Assign, Store, Read}, 8 • Thread_id, l •
LVal and v • RVal, or a triple (A, 8, l), where 8 and I are as above and A •
{Use, Load, Write}, or a triple (A,8,o) , where A • {Lock, Unlock} and o • Obj.

Events are instances of actions, which we think of as happening at different
times during execution. We use the same tuple notation for actions and their
instances (the context clarifies which one is meant) and let a, b, c stand for
either. Sometimes we omit components of an action or event: we may write e.g.
(Read, l) for (Read, 8, l, v) when 8 and v are not relevant.

An event space is a poset of events (thought of a~s occurring in the given
order) in which every chain can be enumerated monotonically with respect to the
ari thmetical ordering 0 < 1 < 2 < . . . of natural numbers, and which satisfies the
conditions (17.2.1-17.6.2') of Table 1. These conditions, which formalize directly

405

the rules of [3, Chapter 17], are expressed by clauses of the form:

Va E 7- (~5 =~ ((3bl E 7. ~1) y (3b2 E 77- ~2) V . . . (3bn E ~?. ~n)))

where a and bi are lists of events, ~? is an event space and Va E 7. ~ means
tha t ~ holds for all tuples of events in ~ matching the elements of a (and simi-
larly for ~b E 7. ~) . Such statements are abbreviated by adopting the following
conventions: quantification over a is left implicit when all events in a appear
in ~5; quantification over b~ is left implicit when all events in b~ appear in ~i.
Moreover, a rule of the form Va E 7 . (true ~ . . .) is written a :=~ (. . .) . The
term (A, 0, x),~ denotes the n-th occurrence of (A, 0, x) in a given space, if such
an event exists, and is undefined otherwise.

We include the origin of each rule from [3, Chapter 17] and refer to [3] and
[2] for more detail. For instance, rule (17.2.1) says that actions performed by any
thread are totally ordered and (17.2.2) that so are the actions performed by the
main memory for any variable or object. Similarly, rules (17.6.2) and (17.6.2')
say that a lock action acts as if it flushes all variables from the thread 's working
memory, i.e. before use they must be assigned or loaded from main memory.

A complete event space is an event space that additionally fulfills the axioms
(17.2.6) and (17.2.7) such that any Read and Store events are "completed" by
corresponding Load and Write events.

A new event a = (A, ~, x) is adjoined to an event space ~ by extending the
execution order as follows: if A is a thread action, then b < a ibr all instances
b of (B, 0) in ~7; if a is a main memory action, then c <: a for all instances c of
(C, x) in 7. Moreover, if A is Load then c < a for all instances e of (Read, ~, x)
in '17, and if A is Write then c < a for all instances c of (Store, 0, x) in U. The
term ~7 ® a denotes the space thus obtained, provided it obeys the above rules,
and it is otherwise undefined. If it is defined then ~ ® aS yields true and false
otherwise. If ~ is an event space and a = (al , a2 , . . , an) is a sequence of events,
we write ~ • a for ~7 ® al • a2 ® • • • G a~ and analogously r! G a~.

3 O p e r a t i o n a l S e m a n t i c s

We briefly recapitulate the structural operational semantics of mult i- threaded
Java in [2]. We restrict ourselves to those parts that are relevant for the "pre-
scient" compiler optimization.

Objects are kept in the main memory. We use a semantic domain Store that
is abstract ly given by the following five semantic functions: upd : LVal x RVal x
Store ~ Store updates a given store; we write #[l ~-* v] for upd(1,v, tL). The
function lval : Obj x Identifier x Store ~ LVal retrieves the left-value of an
instance variable (such as of o .a) . Analogously, rval : LVal x Store ~ RVal
retrieves the right-value of a left-value; we write It(1) for rval(l, #). New objects
are allocated by n e w c : Store ~ Obj x Store. This family of functions is indexed
by class types C E ClassType. For a given store it, n e w c (#) yields an object o
and a store it' such that it' extends It where #~(Ival(o,i, td)) is defined for any
identifier i ranging over all instance variables of the class C.

406

(B,O),(B',8) ~ (B,8) <_ (B',8) V (B',0) < (B,8) (17.2.1)
(c, x), (c', ~) ~ (c, x) < (c', ~) v (c', ~) < (c, 5) (17.2.2)
(Assign, O, l) < (Load, O, l) ~ (Assign, 8, l) <_ (Store, 8, l) < (Load, 8, l) (17.3.2)
(Store, O, l),~ < (Store, O, l),~ =ez

(17.3.3) (Store, 8, l),~ < (Assign, O, l) < (Store, 8, l),~
(Use,O,l) ~ (Assign, 8, l) < (Use, O, 1)V (Load, O,l) <_ (use,o, l) (17.3.4)
(Store, O, l) ~ (Assign, O, l) < (Store, 8, l) (17.3.5)
(Assign, O,l,v)n < (Store, O,l,v')

v = v 'V (Assign, O,l,v),~ < (Assign, O,l)m < (Store,e,l,v') (17.1)
(Load, O, l),~ ~ (Read, O, l)n < (Load, 8, l)n (17.3.6)
(Write, 8,1)~ ~ (Store, O, l)n < (Write, O, l),~ (17.3.7)
(Store, 8, l),~ < (Load, 8, l),~ ~ (Write, 8, l)m < (Read, O, l),~ (17.3.8)
(Lock, O, o),~ < (Lock, 8', o) A 8 ~ 8' =~ (Unlock, O, o),~ < (Lock, 8', o) (17.5.1)
(Unlock, O, o),~ ~ (Lock, O, o), < (Unlock, O, o),~ (17.5.2)
(Assign, O, l) < (Unlock, O)

(17.6.1) (Assign, a, 1) <_ (Store,8,1),~ <_ (Write,8,1),~ <_ (Unlock,8)
(Lock, O) < (Use, O, l)

(Lock, O) < (Assign, O, l) < (Use, O, l) V
(Lock, O) < (Read, O, l)n < (Load, O, l),~ < (Use, O, l)

(Lock, 8) < (Store, O, l) ~ (Lock, O) < (Assign, 8, l) < (Store, O, l)

(Read, 8, l),~ ~ (Load, 8, l),~
(Store, o, l)~ ~ (w,~te, 8, l),,

Table 1. Event space axioms

(17.6.2)

(17.6.2')

(17.2.6)
(17.2.7)

The local variables of a block are kept in a stack of environments. Environ-
ments, denoted Env, are pairs (I, p) of declared identifiers I C_ Identifiert_J {this}
and a map p : I --~ RVal representing the values they (possibly) have. Environ-
ments are also used to store the information on which object's code is currently
being executed (p(this)). An environment p is updated as usual by p[i ~-* v].
The empty environment is denoted by P0. Let S-Stack be the domain of (single-
threaded) stacks of environments. The empty stack is written cr 0. The operation
push : Env × S-Stack --* S-Stack is the usual one on stacks. We use the operations
cr[i H V] for updating stacks, and a(i) for retrieving values. Each thread of execu-
tion of a Java program has its own stack. We call M-Stack = Thread_id ~ S-Stack
the domain of multi-threaded stacks, ranged over by a. Given a E M-Stack, the
multi-threaded stacks push(tg, p,a) , cr[O,i ~-~ v] map tg' to a(tg') when 0 ¢ 0',
and otherwise map 0 respectively to push(p,a(O)), (r(0)[i ~ v]. Note that an
additional operation is necessary for extending (stacks of) environments when
dealing with local variable declarations, but those are not addressed in this paper
(cf. [2]). We also write cr(0, i) instead of a(O)(i).

407

The operat ional semantics works on a set M-Term of multi-threaded abstract
terms tha t contain single-threaded abstract terms from a set S-Term. We let
the metavariable t range over S-Term. To each syntact ic ca tegory of Java we
associate a homonymous category of abs t rac t terms. The well-typed terms of
Java are mapped to abs t rac t terms of corresponding category by a t ransla t ion
(_)°, which we leave implicit when no confusion arises. Abst rac t blocks are terms
of the form { t }(I,p) where the source I of the environment (I , p) contains the
local variables of the block. A mult i - threaded abs t rac t term T is a set of pairs
(0, t), where 0 E Thread_id and t 6 S-Term and no distinct elements of T bear
the same thread identifier. Mult i - threaded abs t rac t terms {(01, t l) , (02, t 2) , . . . }
are wri t ten as lists (01,t l) I (02,t2) I . . . and pairs (O,t) are wri t ten t when 0 is
irrelevant.

The configurations of mult i - threaded Java are 4-tuples (T, rh a, #) consisting
of an M - t e r m T, an event space 7, an M-s tack a, and a store #. The operat ional
semantics is the binary relation , on configurations inductively defined by the
rules tha t follow. In the rule schemes in Tables 2-4, the metavariables range as
follows: i E Identifier, k E Identifier U LVal, l E LVal, o E Obj, e E Expression,
v E RVal, s E Statement, b E BlockStatement, B E BlockStatement*, q 6 Block,
t E S-Term, and T E M-Term. Stacks, event spaces, and stores are omitted when
they are not relevant.

We write storev(O , l) for the oldest unwri t ten value of I stored by 0 in r]. More
formally: let an event (Store, O, l)n in ~ be called unwritten if (Wri te , O, l)~ is
undefined in 7; then, store,(O, l) = v if there exists an unwri t ten (Store, O, l, v),~
such tha t for any unwri t ten (Store,O,l)m we have n <_ m; if no such a Store
event exists, store,~(O, l) is undefined. Similarly, we write rvalv(O, l) for the latest
value of 1 assigned or loaded and read by 0 in ~?.

[assignl]

[assign3']

[assign4']

[binopl]

[binop3]

[access1]

[this]

[wr]

[v~r']

e l ~ e 2 e l ~ e 2 [assign2]
e l = e - ~ e 2 -~ e k -~ e l ~ k = e 2

(e, l = v), ~ --~ (O, v), 77 • (Assign, O, l, v)

(o, i = v) , o - + (o, v) , o [o , i ~ ~]

el ~ e= [binop2]
e l op e ---,- e2 op e

Vl op v2 --~ vl op v2 [pth]

e l ~ e 2

v opel ~ v ope2

(e) - - ~ e

e l ~ e 2 [access2]
e l .i ---~ e2 .i

(0, t h i s) ,t7 ~ (0, or(O, this)), (7 [new]

o.i, # ~ Ival(o, i, ~), #

h e . C () , ~ --*- n e ~ c (#)

(0, l), ~/--~ (0, rvaln(O,l)),Tl • (Use,O,1)

(o,i) , o - - . (o ,o(o , i)) , o

Table 2. Expressions

408

[statseql]

[expstatl]

[skip]

[block2']

[if1]

[if21

[while]

[for]

bl ~ b2 [statseq2] b, #1 ~ #2
bl B --~ b2 B b B, #l --~ B, #2

el --~ e2 [expstat2] e,/~1 - ' ~ v, tt2
el ; --¢" e2 ; e; ,/£I ~ /3,2

; , a --~ a [block1] { } . , a - -~ a

(O, B1),push(O, p l , a l) - - - * (O , B2),push(O, p2, a2)
(O, {BI },1), al --~ (O, {B2},2), a2

e l - - ~ e 2
i~(e~) s - - * i ~ (e ~)

i f (t rue) s - -~ s ~f3] i f (false) s , # - -~ #

while(e) s ~ i f (e) { s while(e) s }

for(e l ; e2; e3) s----* { el; while(e2) { s e3; } }

T a b l e 3. Statements

[synchrol]

[synchro2]

[lock]

[unlock]

el ~ e2
synchronized(el) q - -~synchron ized (e2) q

ql - -~q2
synchronized(o) q l - - ~ s y n c h r o n i z e d (o) q2

(0, e),~1 --* (0, o), ,2
(O, synchronized(e) q) , ~ l - - * (O , synchronized(o) q),~2 • (Lock,O,o)

(0, synchronized(o) { }p) ,~-- - - -~q~(Unlock, O,o)

[read] T, ~h # ~ T, ~l q) (Read, O, l, tt(l)), tt

[load] T, 71 ~ T, ~} ~ (Load, O, l)

store] T, ~I ~ T, ~ • (Store, O, l, v)

[write] T, ~, tt ---* T, ~l + (Write, O, l), t~[l ~-~ store.(O, /)]

tl - -~ t2
[par] tl I T --~ t2 IT

Tab le 4. Multi-threaded Java

The rules [assign3', val ' , lock, unlock, read, load, store, write] make use of
the well-formedness conditions of event spaces via the q~. The rules [read, load,
s tore, write] are spontaneous in the sense t h a t they do not depend on T. T h e
[store] rule addi t ional ly "guesses" the value of the last Ass ign; its correctness is
ensured by ax iom (17.1). Synchroniza t ion , i.e. mutua l exclusion, is handled by
[synchrol , synchro2, lock, unlock], by [par] sequential computa t ions are lifted to
mul t i - th readed ones.

409

4 P r e s c i e n t E v e n t S p a c e s

The prescient store actions are introduced in [3, 17.8] as follows: " . . . the store
[of variable V by thread T] action [is allowed] to instead occur before the assign
action, if the following rule restrictions are obeyed:

- If the store occurs, the assign is bound to occur
- No lock action intervenes between the relocated store and the assign.
- No load of V intervenes between the relocated store and the assign.
- No other store of V intervenes between the relocated store and the assign.
- The store action sends to the main memory the value that the assign action

will put into the working memory of thread T.

The last property inspires us to call such an early store action prescient: . . . "
The specification above seems to assume that it is known which Store events

are prescient and which prescient Store event is matched by which Assign event.
We do not assume such knowledge but adopt a more general approach introduc-
ing so-called complete labellings. These labellings are not necessarily unique but
it is always possible to infer a complete labelling at run time. It will turn out,
however, that the semantics is independent of the choice of complete labellings,
see Corollary 6.

In order to define the new prescient event spaces we proceed as follows:
First, we have to add new relations (cf. axioms (17.2.1), (17.2.2)) between

certain actions of different threads in order to be able to formalize the precondi-
tions of the second, third, and fourth requirement above. Assign, Load or Store
actions for the same variable and Lock actions must be comparable. To this end
let D = {Assign, Load, Store}, then we stipulate:

(D,O, l) , (D,O' , l) ~ (D,O,l) <_ (D,O',l) v (D,O',l) <_ (D,O,l)

Since Store and Lock events are already comparable, by transit ivity also Lock
and D actions are comparable.

Second, rules (17.3.3), (17.3.5), (17.1), and (17.6.2') are now used for the
definition of a predicate prescient on event spaces and Store events yielding true
iff a Store is necessarily prescient. We define prescient,((Store, O, l)n) to be valid
if one of the rules in Table 5 holds. Note that ~ is usually omit ted if it is clear
from the context.

Rules (P I - P 4) simply tell that a Store event which does not obey old rules
(17.3.3), (17.3.5), (17.1), or (17.6.2') is necessarily prescient. Rule (P5) is sound
because if there is only one (Assign,O,l ,v) between two stores and the first
is prescient, then by re-arranging the prescient Store two Store events would
follow each other without a triggering Assign in between, which contradicts the
old semantics.

Third, keep rules (17.2.1), (17.2.2), (17.3.4), (17.3.6), (17.3.7), (17.3.8),
(17.5.1), (17.5.2), and (17.6.2).

410

(Store, 0, l)m <__ (Store, O, l),~ ~ (Store, O, l)m ~_ (Assign, O, l) ~ (Store, O, l),~ (P1)
(Store, O, 1),~ 7$ (Assign, O, l) <_ (Store, O, 1),~ (P2)
(Assign, O, l, V')m <__ (Store, O, I, v),~ ~tz (P3)

v = v ' V (Ass ign ,e , l , v ')m <(Ass ign , e,0k < (Store, e , l ,~)n
(Lock, O) ~_ (Store, O, l)n ~ (Lock, O) ~_ (Assign, O, l) <_ (Store, O, l)n (e4)
(Store, O, l)m <__ (Assign, 0, l)k <_ (Assign, 0,1)k, <_ (Store, 0, l),~ A

prescient((Store, O, l).~) ~ k = k' (P5)

Table 5. Rules for prescient

Fourth, adapt rule (17.3.2) as follows, allowing prescient Stores on the right
hand side of an implication:

(Assign, 8, l, v) < (Load, 8, l)
((Assign, t~, l) <_ (Store, O, l) <_ (Load, 8, l)) V
((Store, 8, l, v) < (Assign, 8, l, v) < (Load, 8, l) A prescient(Store, 8, l, v))

and rule (17.6.1) as follows:

(Assign, 8, l, v) < (Unlock, 8)
(Assign, 8, l) < (Store, t?, l)n <_ (Write, 8, l)~ < (Unlock, 8)) V
((Store, 8, l, v)~ <_ (Assign, O, l, v) <_ (Unlock, 0) A
(Write, 8, l)n <_ (Unlock, O) A prescient((Store, 8, l, v)n))

Finally, we need an additional rule corresponding to the second, third, and fourth
requirements in the citation at top of Section 4. We add a new rule scheme: for
any a e {(Lock), (Load, l), (Store, l)}:

(Store, t~ , l, v)n < a A prescient((Store, 8, l, v)n)
(17.8)

(Store, 8, l, V)n <_ (Assign, 8, l, v) <_ a

Next, we redefine the operation G on prescient event spaces: A new event a is
adjoined to a prescient event space ~ as in the case for old event spaces, but
one additional condition. Let A E {Store, Assign, Load}. If a = (A,8,1) and
b = (A,8 ' , l) E ~ then b < a. Also, the term ~ @ a denotes the space thus
obtained, provided it obeys the above rules for prescient event spaces, and it is
otherwise undefined.

Analogously to the predicate prescient one can also define a predicate
non_prescient which contains only Stores that are necessarily non-prescient. We
define non_prescient((Store,O,l)m) on an (implicitly) given event space to be
true if one of the rules of Table 6 is fulfilled.

Rule (NP2) is the dual of (PL). Moreover, rule (NP2) is raised by (17.3.3)
and (NP3) by new rule (17.8). Observe also that the predicate prescient prop-
agates from past to present whereas non_prescient is computed in the oppo-
site direction. Note that -1 non_prescient(B) is not equivalent to prescient(B)

411

~3(Assign, O, l, v). (Store, O, 1)m ~ (Assign, O, l, v) (NP1)
(Store, O, l)m ~ (Assign, 0, l)~ ~ (Assign, O, 1)k, ~_ (Store, O, l),~ A

non_prescient((Store, O, l)n) ~ k = k ~ (NP2)

Va E {(Lock), (Load, l), (Store, 1)}. (Store, 0, l, V)m < a
(NP3) ~3(Assign, O, I, v). (Store, 0, l, ~)~ < (Assign, 0, l, .) <

Table 6. Rules for non_prescient

and hence also prescient (B) V non_prescient(B) does not always hold and
presc ient (B) A non_prescient(B) is not always false.

A prescient event space ~ is called consistently complete if it is complete and
for no instance of a Store, say s, we have that prescient~(s) A non_prescientv(s).
Note that it makes only sense for the final event space of a reduction sequence
to be consistently complete (as for complete). During execution, the matching
Assign for a prescient Store might not have happened and therefore the cor-
responding Store would be considered non_prescient, which might lead to a
contradiction. A consistently complete event space fulfills the first and last re-
quirement in [3, §17.8] (see top of Section 4), because a prescient Store would
otherwise have no matching Assign and hence by rule (NP1) contradict consis-
tently completeness.

There might be a Store event s in a given event space for which neither
prescient(s) nor non_prescient(s) is derivable. In this case one needs a "labelling"
of Store events, i.e. a predicate fixing whether a Store shall be considered pre-
scient or not. More formally, a labelling for a prescient event space is a predicate

on Store events such that it obeys rules (L1-L3) in Table 7.

prescient(s) ~ ~(s) (L1)
non_prescient (s) ~ --,~(s) (L2)
((Store,O,l),~ < (Assign, O,l)k < (Assign, O,l)k, ~ (Store,O,l)~ ~ k = Ic')

(~((Store, O, I)m) ~ ~((Store, O, l)~)) (L3)

prescient(s) ~ p* (s) (eel)
; (s) ~ p*(s) (PC2)
((Store,e,L)m <_ (Assign, O,1)~ < (Assign, O,l)~, < (Store,O,1)~ ~ k = k')

(p*((Store, O, l)m) ~ p*((Store, O, l)n)) (PC3)

Table 7. Rules for labelling and prescient closure

Rule (L3) implies that -~g is closed under (NP2).
Let p be any binary predicate on event spaces and Store events (where we

usually omit the event space argument). Then we define the prescient closure of
p, the binary predicate p*, inductively by rules (PC1-PC3) of Table 7.

L e m m a 1. For any consistently complete event space one can give a labelling.

412

Proof. Choose a p such that -~(p(s)A non_prescient(s)) holds for any Store event
s. This is possible since the event space is consistently complete; for example,
p = prescient (or equivalently p = false) will do. It remains to prove that
p* is a labelling: rules (L1) and (L3) hold by (PC1) and (PC3), respectively.
In order to show rule (L2) prove by induction on the derivation of p*(s) that
non_prescient(s) A p*(s) leads to a contradiction. In the (PC1)-case one needs
consistently completeness and in the (PC2)-case the assumption on p.

For a consistently complete prescient event space with a labelling the Assign
events matching the prescient Stores can also be singled out as follows: Let g be
a labelling on an prescient event space 7. A matching (labelling of Assigns) on

and 7, m~, is a predicate on the Assign events of ~ fulfilling the three axioms
in Table 8.

Va E {(Lock), (Load,/), (Store,/)}. (Store, O, l, v) < a A ~((Store, O, l, v))
(Store, O, l, v) <_ (Assign, O, l, v) < a A m~ ((Assign, O, l, v))

(Store, 0, I, v) A g((Store, 0, l, v))
(Store, o, l, ~) < (Assign, O, l, ~) ^ m~((Assign, O, l, ~))

(Store, 0, l, v)k ~ (Assign, 0, l, V)m < (Assign, 0, l, v)n A
e((Store, 0, l, v)k) A mt((Assign, O, l, V)m) A ml((Assign, 0, l, v)~)

(Store, o, t , ,)~ < (Assign, O, Z, ~)~ < (Store, 0, l, ~)~, < (Assign, 0, t, ~)~ ^
e((Store, o, l, ~)~,)

Table 8. Rules for matching

It is easily checked that the following predicate fulfills the axioms for matchings.

~ne((Assign, O, l, v)m) ¢*
3(Store ,O, l ,v) . (Store,O,l ,v) < (Assign, O,l ,v)m A g((Store,O,l ,v)) A
- ,3(Assign, ~?, l, v)n . (Store, t~, l, v) < (Assign, 8, l, v)n < (Assign, O, l, v)m

A complete labelling is a pair consisting of a labelling and a matching for this
labelling.

For the sake of simplicity we assume in the rest of the paper that a com-
plete labelling is always given and exhibited in form of special action names,
i.e. pStore and pAssign. If prescient(Store, O, l, v) holds then (Store, 8, l, v) is de-
noted (pStore, 8, l, v) and analogously for the matching Assign we use pAssign.

5 P r e s c i e n t O p e r a t i o n a l S e m a n t i c s

We obtain the prescient operational semantics from the old semantics of Section 3
just by switching from the event spaces of Section 2 to the prescient event spaces
of Section 4 keeping the operational rules untouched.

For the prescient operational semantics we write ----~. Moreover, let Conf~
denote the set of configurations with prescient event spaces, and Conf~ those
according to the definition * of Section 2.

413

L e m m a 2. Any event space ~ (obeying the old rules) is also a prescient event
space, thus any old configuration is a new configuration, i.e. Conf. C_ Conf,,
and any reduction F ~ F ~ is also a prescient one, i.e. F ~ F' holds as well.

Proof. Assume ~ is an event space satisfying the old rules. By a simple induction,
prescient,(s) never holds for any Store event s in 7. Thus ~7 is a prescient event
space because the new rules form a subset of the old rules. Since the configura-
tions only differ in the event space definition and the rules of the semantics are
not changed at all, the other claims of the lemma now hold trivially.

Since we use labellings our operational semantics is very liberal. It accepts
reductions using Store events even if it is not clear during execution whether this
Store event is meant to be prescient or not. In such a case, however, the prescient
Store is not done as early as possible. Therefore, in practical cases, any Store
which is not immediately recognized by the rules (P1-P5) can be considered
nonprescient. This corresponds to the prescient closure false* (cf. Lemma 1)
meaning that the labelling is computed at run time. By definition also rhfaue*
is computable at run time, thus a complete labelling is, too.

6 P r e s c i e n t S e m a n t i c s is c o n s e r v a t i v e

The relation between the "normal" and the "prescient" semantics is described
in [3, §17.8] as follows: "The purpose of this relaxation is to allow optimizing
Java compilers to perform certain kinds of code rearrangements that preserve
the semantics of properly synchronized programs but might be caught in the act
of performing memory actions out of order by programs that are not properly
synchronized."

This has to be formalized in the sequel. The following notation, exemplified
for ---* only, will be used analogously for all kinds of arrows: ~, denotes a
one-step reduction with rule r; if e = (r l , . . . , rn) is a list of rules then

r 1 t u denotes --~ ; if the list is irrelevant we write ---~*. For rules that change
the event space we often decorate arrows with actions instead of rule names as
the lat ter are ambiguous.

First, we observe that - - v and ~ can not be bisimilar by definition since - - v
permits Store-actions where - -~ does not. But - - v cannot even be bisimilar to the
reflexive closure o f - - % since simulating a (pStore, O, l) and the following Writes
by void steps leads to inequivalent configurations (since the main memories will
contain different values for l).

As a prerequisite for a simulation relation of type Conf~ x Conf,, we define
an equivalence on prescient configurations ,,~ C_ Conf~ x Conf~ as follows:

~ ¢ : : . r = T ' A = A (r ,

(T , v , a , #) $ ' ' (r', ~ O a l A (T , ~ , # ') ~ V a . ~ a l ~ '

Ve. (T ,q ,a , tt) - ~ (T1,/h,o'1,#1) A (T', ?7', o", #') ~>c (T2,~2,a2,~2) ~ #1 : #2

414

where a is any sequence of actions, e is a sequence of rules and (T, ~, 7, #) _._~c
(T', ~r', ~', #~) if (T, ~, ~], l~) ---4>* (T', a', ~', #r) such that 7' is complete.

This equivalence relation is obviously preserved by the rules of the semantics:

L e m m a 3. The relation ..~ is an equivalence relation such that if 1"1 ..~ /"2 then
1"1 ~ 1"~ iff 1"~ - - ~ l" 4 for any rule r, and if such a reduction r exists then

~ h o l d s .

In order to establish a bisimulation result, we must delay all the operations
which are possible due to a (pStore, O, I, v) until the matching pAssign event.

But that will not work for all kinds of programs. Consider the following
example:

(O, { synchronized(o) { l = v; }p~ }p~) t (O', { l ----- v'; }p~)

Its execution may give rise to a sequence of computation steps which contains
the following complete subsequence of actions:

(Lock, O, o), (Assign, O, l, v), (Store, O, l, v), (pStore, 0', l, v'),
(Write, 0', l), (Write, O, l), (Unlock, 0, o), (pAssign, 0', l, v')

In a simulation the (Store, 0', l, v') is illegal w.r.t, to the old event space defi-
nition and can only be simulated by a void (i.e. delaying) step as well as the
following Write. Now the (Write, O, l) is bound to occur before the Unlock and
therefore also (Store, O, l, v). Finally, after the Assign we must recover the pend-
ing prescient (Store, 0', l ,C) and its corresponding (Write, 0', l). According to
this simulation l has value v' in the global memory, but the reduction via
yields v for t. Thus, both end-configurations are not equivalent, a contradiction.

Therefore, we have to restrict ourselves to "properly synchronized" pro-
grams. A multi-threaded program T is called properly synchronized if for
any configuration (T', ~7', a ' , # ') such that (T, ~7, c~o, O) --4>* (T' , ~f, o-', # ') and
(Write, 01, l, vl) <_ (Write, 02, l, v2) in ~' there is a (Lock, ~3, o) in 7]' such that
(Write,Ol,l , vl) < (Lock,03,o) < (W r i t e , Oo.,l, v2). To be "properly synchro-
nized" is a semantical (and rather intricate) property which for a program is
hard to tell in advance. A sufficient condition for "properly synchronizedness" is
the syntactic criterion that in a program shared variables may only be written
in synchronized blocks. It is clear, that in any execution sequence two Write
actions must then be separated by the corresponding Lock.

In the sequel A (possibly with annotations) stands for configurations in Conf,
and F for new configurations in Conf,. Recall that any old configuration is
also a valid one in the new sense by Lemma 2. According to the observations
above, we define a new reduction relation ~ : (Conf, × E*) × (Conf, × E*)
where E = {(pStore), (Write), (Read)} by the rules of Table 6. Note that we
do not need to treat (Load) events (cf. rule (17.8)). The corresponding ~--*-
configurations (A, e) consist of an old configuration A E Conf~ plus a list of
"pending" events e. Appending an event a at the end of a list e is written e o a.
An additional operation splito,l(e) is needed. Given a list of events e it yields a

415

pai r of lists (ez, e ') where b o t h are sublists of e; e~ is ob ta ined f rom e by ex t rac t ing
all (pStore, 0, l), (Write, O, l) and (Read, 0 t, l) events s imul taneous ly changing a
(pStore, O, l) into (Store, O, l), and e' is el 's complement w . r . t . e .

(zx, e) (~ps~ o,.~) (zx, e o (pStore, 0, l, ~)) (reds)
(A,e) ~(w~t~,o,t) (zS, eo(Write,O,1)) if (pStore,O,l,v) • e (redw)

(A, e) (R~d.O',Z,.) (A, e o (Read, 0', l, v)) if (Write, O, I) G e (redr)
(A, e) (,A~,~g,,o,z,~) t~ • (A ' ,e ') if splitoj(e) = (ehe) A

(red~) /~ (Assign'O'l'v)P, Z~l------~el A"

(A, e) ~ (A', e) for any other case r if A _5~ zS' (reda)

T a b l e 9. Rules for the simulating reduction relation

TO relate configurat ions of --4> and ~-~ reduct ions the s imulat ion relat ion
.~ C_ Conf~ × (Conf,~ × E*) is defined as follows:

F , . ~ (A , e) if, and only if, A - ~ F/aAF~a ~ F

i.e. F is equivalent to (A, e) if F is equivalent to the comple t ion of A, usually
cMIed F.~, by execut ing the pending events in e. Note t ha t --4> is used here for
the sequence of events e, as e may contain prescient Store events.

Below we use the following nota t ion of a commut ing d i ag ram

/'3 . ~

s ta t ing tha t F ~ / " 1 ~ F2 and F ~ F3 * /-9' a n d / ' 2 ~ F.~. This no ta t ion is
also used for any other kind of arrows.

L e m m a 4. If F ~ (A , e) and F --Lt> F' , where r is as in case (redd) and F
stems from a properly synchronized program, then A _L~ A ' and the diagram

A e ~ , F ~ ~ F

zx' e ~ r , ~ ~ £,

commutes, hence in particular 1" ~ (A ,e) ~ (A ' , e) . .~ F' holds.

Proof. (sketched) By definition of ~ we have A ~.- A ' as we consider case
(redd). Next , we have to check tha t r does not depend on e, such tha t commu-
ta t ion is possible. P roo f is by inspect ing the relevant laws for event spaces: rules

416

(17.3.2), (17.3.4), (17.6.2) refer to Load events which are not possible as long as e
contains a corresponding pStore, (17.3.7) is not relevant as matching Writes are
treated in (redw). Thus, we are left with (17.6.1). Cases, however, where Store
and Write in e allow r to be an Unlock are excluded by the rules for labellings.

To prove that the diagram commutes it suffices by definition of ,-~ to show that
the same actions are executed, but maybe in different order. We have to ensure
that Write events of the same variable from different threads are not re-ordered.
But this could only happen if r = (Write,O,l) and another (Write,Or, I) E e
which is impossible since only properly synchronized programs are considered.

T h e o r e m 5. For properly synchronized programs the relation ~ is a simulation
relation of --~ and c~--% i.e. if F ~ 1-" during the execution of such a program
and F .~ (A, e) then there is a (A', e') such that (A, e) ~2~ (A', e') and F' .~
(A', e').

Pro@ Assume F ~ (A,e), i.e. A ~ Fza ", F. We do a case analysis for
F --~ F ' :
Case F wr,tg U: if (pStore, O, l) E e then it holds that (A, e) ~L~ (A, e o r) by
(redw). Moreover, by Lemma 3, F' ~ (A, e o r).

If (pStore, O,l) ~ e then by Lemma 4, (A,e) ~2~ (A' ,e ') and F ' ~-, (A' ,e) .
Case F pAssign F'. Let spIito,l(e) = (e~, e'). Since an Assign is always possible,

assume that A (Assig,~,o,t,~) A1" Now every action in et becomes legal for the old
semantics, so we can further assume A1 e% A', such that (A,e) ~L, (A' ,e ') .
One can prove analogously to Lemma 4 that the left rectangle in

e
A ~,FA ~ F

A I e't> F~ ,-~

commutes; the right rectangle commutes by Lemma 3, thus (A, e) ~ (A', e ~)
and F ' ~ (A', e').

For pStore and Read one proceeds as for Write, all other cases follow from
Lemma 4.

Our main result is the following corollary which states that the prescient
semantics is conservative, i.e. any prescient execution sequence of a properly
synchronized program can be simulated by a "normal" execution of Java.

C o r o l l a r y 6. Given F E Conf~ from a properly synchronized program and A E
Conf,, if F ,., A and 1" ----~* F t such that the event space ~?r, of F ~ is consistently

417

complete, then for any complete labelling of ~?F' there is a reduction sequence
A --** A t such that F t ~ A t.

Moreover, i f two different eorr~plete labellings yield two different reduction
sequences A ---** A~ and A ,* A~, then still A~ ~ A~ holds.

Proof. First, observe that if F ~ A then F ~ (A, c). By a simple induction
on the length of the derivation by Theorem 5, we get (A, c) ~-~* (Ar~ e) and
F ~ ~ (A' , e). Now e = s follows from the fact tha t F ' is consistently complete
which entails that all prescient, stores are matched by an Assign such tha t e
must be empty in the end. From e = c we immediately get F ' ~ Aq Also from
(A, c) ~--~* (A ~, s) we can strip off a derivation A ---~* A' by definition of ~--~.

The second claim follows just by transitivity of ~ as A~ ~ F ~ ~ A~.

For our running example we can conclude that the corollary is applicable if
all threads write o exclusively in s y n c h r o n i z e d blocks.

7 C o n c l u s i o n

We have presented an event space semantics for multi- threaded Java with pre-
scient stores. The informal statements in [3, §17.8] have been formalized and
proven completely. In fact, the main motivation for this work was to understand
what they meant. Correspondingly, we presented an operational semantics for
prescient stores by just refining the axioms of the event space, leaving untouched
the laws of the operational semantics. This demonstrates the flexibility of the
event space approach.

Future work will include the extension of the treated language, e.g. wa i t
and n o t i f y , exceptions, method calls, and the application of the semantics to
correctness proofs of Java programs.

A c k n o w l e d g e m e n t : We used Paul Taylor 's d i ag ram, s ty .

R e f e r e n c e s

1. Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley,
Reading, Mass., 1996.

2. Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing. From
Sequential to Multi-Threaded Java: An Event-Based Operational Semantics. In
Proc. 6 th Int. Conf. Algebraic Methodology and Software Technology, Lect. Notes
Comp. Sci., Berlin, 1997. Springer. To appear.

3. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-
Wesley, Reading, Mass., 1996.

4. Doug Lea. Concurrent Programming in Java. Addison-Wesley, Reading, Mass.,
1997.

5. Gordon D. Plotkin. Structural Operational Semantics (Lecture notes). Technical
Report DAIMI FN-19, Aarhus University, 1981 (repr. 1991).

6. Glynn Winskel. An Introduction to Event Structures. In Jacobus W. de Bakker,
editor, Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, volume 354 of Lect. Notes Comp. Sci., Berlin, 1988. Springer.

