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Abstract .  The specification for the object-oriented concurrent language 
Java [3] is rather loose with respect to the interaction of shared memory 
and the local working memories of different threads. This allows maxi- 
mal freedom in the language implementation. Such freedom is reflected 
in the semantics provided in [2], where threads-memory interaction is 
formalized in terms of structures called event spaces. Two kinds of mem- 
ories are described in the Java specification: a "normal" memory and a 
more liberal one, where values can sometimes be stored even before they 
are produced as results of computation. Here we compare two structural 
operational semantics of a sublanguage of Java modelling the two types 
of memory. The two semantics share the same set of operational rules 
but put different requirements (expressed as first order theories) on the 
notion of event space. We prove a result which is informally stated in 
[3]: the two semantics coincide for properly synchronized programs. This 
shows the applicability of a new technique for combining structural op- 
erational semantics and first order specification of process behaviour. 

1 Introduction 
A concurrent program consists of multiple tasks that  are or behave as if they 
were executed all at the same time. Such tasks can be implemented using threads 
(short for "threads of execution"), which are sequences of instructions that  run 
independently within the encompassing program. The object-oriented language 
Java  supports  thread programming (see e.g. [1], [4]). 

Java  threads share a common memory, but keep working copies of shared 
variables in private working memories. It  is only when leaving a synchronized 
block tha t  must a thread copy the content of its working memory in the main 
memory. However, possible implementations of the run-time system may choose 
to update  the value of a variable in the main memory as soon as a thread 
makes an assignment to its working copy of that  variable. The Java  language 
specification [3] leaves freedom to the implementation in that  respect. 

A particular implementation technique is also discussed in [3], where a value 
can be stored by a thread in the main memory  before such value is produced by 
the computat ion.  This is called a prescient store action [3, §17.8]. The only 
restriction is that  between the prescient store and the matching assignment 
nothing "bad" happens, e.g. no other threaA reads illegitimately the prescient 
value. Consider the following code example. 
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o . b = 2 ;  
f o r ( o . a  = 1; o . a  < 10; o . a  = o . a  + 1) 

o .b  = o . a  + o .b ;  

where o is (a reference to) an object with two attr ibutes a and b of type i n t .  
When executed the value of o. a can only be stored after o. a has been assigned 
a new value, i.e. after it was incremented. If prescient store operations are per- 
mitted, then it would be also legal to store the value 10 for o. a in advance, i.e. 
before the loop is entered, excluding thereby that  any other thread can load o. a 
before the end of the loop. 

The rearrangement of store operations can be used to speed up programs 
when updating of variables is split into a thread action (called Store) and a 
memory action (Write). The global memory can concurrently provide the value 
of a pre-stored variable while a second thread waits for it. Re-grouping the store- 
operations might also optimize memory access itself. 

In [2] we present a structural operational semantics (in the style of [5]) of 
a nontrivial sub-language of Java which includes dynamic creation of objects, 
blocks, and synchronization of threads. The notion of event space is introduced 
in that  paper to formalize the communication protocol between shared memory 
and threads. Event spaces correspond roughly to configurations in Winskel's 
event structures [6], which are used for denotational semantics of concurrent 
languages. 

Here we exploit the flexibility of the approach proposed in [2], where the 
operational semantics is given parametrically in the notion of event space, and 
compare two language implementations which share the same set of operational 
rules. The implementations are obtained by imposing different requirements on 
event spaces, so that prescient stores are possible in one case and impossible 
in the other. Such requirements are expressed in simple first order clauses. In 
this framework we prove that prescient and nonprescient semantics coincide for 
properly synchronized programs, that is programs where any two threads are not 
allowed to write a variable into the global memory without synchronization (race 
conditions [4]). This property was only informally stated in [3, §17.8]. We also 
provide an example where prescient store actions for non-properly synchronized 
programs lead to inconsistent memory contents. 

The contribution of the paper is twofold: on the one hand it provides welcome 
formal confirmation of the intuitive correctness of certain compiler optimization 
techniques; on the other hand it shows the applicability of an innovative tech- 
nique for combining structural operational semantics and first order axiomati- 
sation of process behaviour. 

The paper is organized as follows: Section 2 recapitulates the definition of 
event spaces from [2]. These are used in Section 3 for the SOS-rules. Next, 
the axiomatization of event spaces is changed (Section 4) in order to allow for 
prescient stores and prescient operational semantics is defined in Section 5. It is 
then proven, in Section 6, that for properly synchronized programs the extension 
is conservative w.r.t, the old semantics. 
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2 E v e n t  S p a c e s  

The execution of a Java program comprises many threads of computat ion running 
in parallel. Threads exchange information by operating on values and objects re- 
siding in a shared main memory. As explained in the Java language specification 
[3], each thread also has a private working memory in which it keeps its own 
working copy of variables that  it must use or assign. As the thread executes a 
program, it operates on these working copies. The main memory  contains the 
master  copy of each variable. There are rules about  when a thread is permit ted 
or required to transfer the contents of its working copy of a variable into the 
master  copy or vice versa. Moreover, there are rules which regulate the lock- 
ing and unlocking of objects, by means of which threads synchronize with each 
other. These rules are given in [3, Chapter  17] and have been formalized in [2] as 
"well-formedness" conditions for structures called event spaces. We summarize 
their definition and usage. 

Event spaces will be included in the configurations of multi- threaded Java  to 
constrain the applicability of certain operational rules. Additionally, they will be 
used to model the working memories of all threads. The  main memory  is modeled 
as an abstract  store that  can be thought of as mapping addresses of instance 
variables (left-values, from a semantic domain LVal) of objects (from a semantic 
domain Obj) to values or object references (right-values, from a semantic domain 
R Val). 

In accord with [3], the terms Use, Assign, Load, Store, Read, Write, Lock, 
and Unlock are used here to name actions which describe the activity of the 
memories during the execution of a Java program. Use and Assign denote the 
above mentioned actions of the private working memory. Read and Load are 
used for a loosely coupled copying of data  from the main memory to a working 
memory  and dually Store and Write are used for copying da ta  from a working 
memory  to the main memory (as mentioned in the introduction). 

We let the metavariable A (possibly indexed) stand for a generic action name. 
Moreover, we let B range over the set of thread actions and C over the set 
of memory  actions, that  is: B • { Use, Assign, Load, Store, Lock, Unlock}, C • 
{Read, Write, Lock, Unlock}. 

Let Thread_id be a set of thread identifiers. An action is either a 4-tuple 
of the form (A,8, I,v) where A • {Assign, Store, Read}, 8 • Thread_id, l • 
LVal and v • RVal, or a triple (A, 8, l), where 8 and I are as above and A • 
{Use, Load, Write}, or a triple (A,8,o) ,  where A • {Lock, Unlock} and o • Obj. 

Events are instances of actions, which we think of as happening at  different 
times during execution. We use the same tuple notation for actions and their 
instances (the context clarifies which one is meant)  and let a, b, c stand for 
either. Sometimes we omit components of an action or event: we may write e.g. 
(Read, l) for (Read, 8, l, v) when 8 and v are not relevant. 

An event space is a poset of events (thought of a~s occurring in the given 
order) in which every chain can be enumerated monotonically with respect to the 
ari thmetical  ordering 0 < 1 < 2 < . . .  of natural  numbers, and which satisfies the 
conditions (17.2.1-17.6.2') of Table 1. These conditions, which formalize directly 
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the rules of [3, Chapter  17], are expressed by clauses of the form: 

Va E 7- (~5 =~ ((3bl E 7. ~1) y (3b2 E 77- ~2) V . . .  (3bn E ~?. ~n))) 

where a and bi are lists of events, ~? is an event space and Va E 7.  ~ means 
tha t  ~ holds for all tuples of events in ~ matching the elements of a (and simi- 
larly for ~b E 7.  ~) .  Such statements  are abbreviated by adopting the following 
conventions: quantification over a is left implicit when all events in a appear  
in ~5; quantification over b~ is left implicit when all events in b~ appear  in ~i. 
Moreover, a rule of the form Va E 7 .  ( true ~ . . .  ) is written a :=~ ( . . . ) .  The  
term (A, 0, x),~ denotes the n-th occurrence of (A, 0, x) in a given space, if such 
an event exists, and is undefined otherwise. 

We include the origin of each rule from [3, Chapter  17] and refer to [3] and 
[2] for more detail. For instance, rule (17.2.1) says that  actions performed by any 
thread are totally ordered and (17.2.2) that  so are the actions performed by the 
main memory for any variable or object. Similarly, rules (17.6.2) and (17.6.2') 
say that  a lock action acts as if it flushes all variables from the thread 's  working 
memory,  i.e. before use they must be assigned or loaded from main memory. 

A complete event  space is an event space that  additionally fulfills the axioms 
(17.2.6) and (17.2.7) such that  any Read and Store events are "completed" by 
corresponding Load and Write events. 

A new event a = (A, ~, x) is adjoined to an event space ~ by extending the 
execution order as follows: if A is a thread action, then b < a ibr all instances 
b of (B, 0) in ~7; if a is a main memory action, then c <: a for all instances c of 
(C, x) in 7. Moreover, if A is Load then c < a for all instances e of (Read, ~, x)  
in '17, and if A is Write then c < a for all instances c of (Store, 0, x) in U. The 
term ~7 ® a denotes the space thus obtained, provided it obeys the above rules, 
and it is otherwise undefined. If it is defined then ~ ® aS yields true and false 
otherwise. If ~ is an event space and a = (al ,  a2 , . . ,  an) is a sequence of events, 
we write ~ • a for ~7 ® al • a2 ® • • • G a~ and analogously r! G a~. 

3 O p e r a t i o n a l  S e m a n t i c s  

We briefly recapitulate the structural operational semantics of mult i- threaded 
Java  in [2]. We restrict ourselves to those parts  that  are relevant for the "pre- 
scient" compiler optimization. 

Objects are kept in the main memory. We use a semantic domain Store that  
is abstract ly given by the following five semantic functions: upd : LVal x RVal x 
Store ~ Store updates a given store; we write #[l ~-* v] for upd(1,v, tL). The 
function lval : Obj x Identifier x Store ~ LVal retrieves the left-value of an 
instance variable (such as of o .a) .  Analogously, rval : LVal x Store ~ RVal 
retrieves the right-value of a left-value; we write It(1) for rval(l, #). New objects 
are allocated by n e w c  : Store ~ Obj x Store. This family of functions is indexed 
by class types C E ClassType. For a given store it, n e w c ( # )  yields an object o 
and a store it' such that  it' extends It where #~(Ival(o,i, td)) is defined for any 
identifier i ranging over all instance variables of the class C. 
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(B,O),(B',8) ~ (B,8) <_ (B',8) V (B',0) < (B,8) (17.2.1) 
(c, x), (c', ~) ~ (c, x) < (c', ~) v (c', ~) < (c, 5) (17.2.2) 
(Assign, O, l) < (Load, O, l) ~ (Assign, 8, l) <_ (Store, 8, l) < (Load, 8, l) (17.3.2) 
(Store, O, l),~ < (Store, O, l),~ =ez 

(17.3.3) (Store, 8, l),~ < (Assign, O, l) < (Store, 8, l),~ 
( Use,O,l) ~ (Assign, 8, l) < (Use, O, 1)V (Load, O,l) <_ ( use,o, l)  (17.3.4) 
(Store, O, l) ~ (Assign, O, l) < (Store, 8, l) (17.3.5) 
(Assign, O,l,v)n < (Store, O,l,v') 

v = v 'V  (Assign, O,l,v),~ < (Assign, O,l)m < (Store,e,l,v') (17.1) 
(Load, O, l),~ ~ (Read, O, l)n < (Load, 8, l)n (17.3.6) 
( Write, 8,1)~ ~ (Store, O, l)n < ( Write, O, l),~ (17.3.7) 
(Store, 8, l),~ < (Load, 8, l),~ ~ ( Write, 8, l)m < (Read, O, l),~ (17.3.8) 
(Lock, O, o),~ < (Lock, 8', o) A 8 ~ 8' =~ ( Unlock, O, o),~ < (Lock, 8', o) (17.5.1) 
( Unlock, O, o),~ ~ (Lock, O, o), < ( Unlock, O, o),~ (17.5.2) 
(Assign, O, l) < ( Unlock, O) 

(17.6.1) (Assign, a, 1) <_ (Store,8,1),~ <_ (Write,8,1),~ <_ (Unlock,8) 
(Lock, O) < ( Use, O, l) 

(Lock, O) < (Assign, O, l) < ( Use, O, l) V 
(Lock, O) < (Read, O, l)n < (Load, O, l),~ < ( Use, O, l) 

(Lock, 8) < (Store, O, l) ~ (Lock, O) < (Assign, 8, l) < (Store, O, l) 

(Read, 8, l),~ ~ (Load, 8, l),~ 
(Store, o, l)~ ~ (w,~te, 8, l),, 

Table 1. Event space axioms 

(17.6.2) 

(17.6.2') 

(17.2.6) 
(17.2.7) 

The local variables of a block are kept in a stack of environments. Environ- 
ments, denoted Env, are pairs (I, p) of declared identifiers I C_ Identifiert_J {this} 
and a map p : I --~ RVal representing the values they (possibly) have. Environ- 
ments are also used to store the information on which object's code is currently 
being executed (p(this)). An environment p is updated as usual by p[i ~-* v]. 
The empty environment is denoted by P0. Let S-Stack be the domain of (single- 
threaded) stacks of environments. The empty stack is written cr 0. The operation 
push : Env × S-Stack --* S-Stack is the usual one on stacks. We use the operations 
cr[i H V] for updating stacks, and a(i) for retrieving values. Each thread of execu- 
tion of a Java program has its own stack. We call M-Stack = Thread_id ~ S-Stack 
the domain of multi-threaded stacks, ranged over by a. Given a E M-Stack, the 
multi-threaded stacks push(tg, p,a) ,  cr[O,i ~-~ v] map tg' to a(tg') when 0 ¢ 0', 
and otherwise map 0 respectively to push(p,a(O)), (r(0)[i ~ v]. Note that  an 
additional operation is necessary for extending (stacks of) environments when 
dealing with local variable declarations, but those are not addressed in this paper 
(cf. [2]). We also write cr(0, i) instead of a(O)(i). 
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The operat ional  semantics works on a set M-Term of multi-threaded abstract 
terms tha t  contain single-threaded abstract terms from a set S-Term. We let 
the metavariable t range over S-Term. To each syntact ic  ca tegory of Java  we 
associate a homonymous  category of abs t rac t  terms. The  well-typed terms of  
Java  are mapped  to abs t rac t  terms of corresponding category by a t ransla t ion 
(_)°, which we leave implicit when no confusion arises. Abst rac t  blocks are terms 
of the form { t }(I,p) where the source I of the environment  (I ,  p) contains the 
local variables of  the block. A mult i - threaded abs t rac t  term T is a set of  pairs 
(0, t), where 0 E Thread_id and t 6 S-Term and no distinct elements of T bear  
the same thread identifier. Mult i - threaded abs t rac t  terms {(01, t l ) ,  (02, t 2 ) , . . .  } 
are wri t ten as lists (01,t l)  I (02,t2) I . . .  and pairs (O,t) are wri t ten  t when 0 is 
irrelevant. 

The  configurations of mult i - threaded Java are 4-tuples (T, rh a, #) consisting 
of  an M - t e r m  T,  an event space 7, an M-s tack  a,  and a store #. The  operat ional  
semantics  is the binary relation , on configurations inductively defined by the 
rules tha t  follow. In the rule schemes in Tables 2-4,  the metavariables range as 
follows: i E Identifier, k E Identifier U LVal, l E LVal, o E Obj, e E Expression, 
v E RVal, s E Statement,  b E BlockStatement, B E BlockStatement*, q 6 Block, 
t E S-Term, and T E M-Term. Stacks, event spaces, and stores are omitted when 
they are not relevant. 

We write storev(O , l) for the oldest unwri t ten value of I stored by 0 in r]. More 
formally: let an event (Store, O, l)n in ~ be called unwritten if (Wri te ,  O, l)~ is 
undefined in 7; then, store,(O, l) = v if there exists an unwri t ten (Store, O, l, v),~ 
such tha t  for any unwri t ten (Store,O,l)m we have n <_ m; if no such a Store 
event exists, store,~(O, l) is undefined. Similarly, we write rvalv(O, l) for the latest 
value of 1 assigned or loaded and read by 0 in ~?. 

[assignl] 

[assign3'] 

[assign4'] 

[binopl] 

[binop3] 

[access1] 

[this] 

[wr]  

[v~r'] 

e l  ~ e 2  e l  ~ e 2  [assign2] 
e l  = e - ~  e 2  -~  e k -~  e l  ~ k = e 2  

(e, l = v), ~ --~ (O, v), 77 • (Assign, O, l, v) 

(o,  i = v ) , o  - +  (o,  v ) ,  o [o ,  i ~ ~] 

el ~ e= [binop2] 
e l  op e ---,- e2 op e 

Vl op v2 --~ vl op v2 [pth] 

e l  ~ e 2  

v opel ~ v ope2 

(e)  - - ~  e 

e l  ~ e 2  [access2] 
e l  .i  ---~ e2 .i 

(0, t h i s )  ,t7 ~ (0, or(O, this)), (7 [new] 

o.i, # ~ Ival(o, i, ~), # 

h e .  C ( ) ,  ~ --*- n e ~ c ( # )  

(0, l), ~/--~ (0, rvaln(O,l)),Tl • (Use,O,1) 

(o,i) ,  o - - .  (o ,o(o , i ) ) ,  o 

Table  2. Expressions 
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[statseql] 

[expstatl] 

[skip] 

[block2'] 

[if1] 

[if21 

[while] 

[for] 

bl ~ b2 [statseq2] b, #1 ~ #2 
bl B --~ b2 B b B, #l --~ B, #2 

el --~ e2 [expstat2] e,/~1 - ' ~  v, tt2 
el ; --¢" e2 ; e; ,/£I ~ /3,2 

; , a --~ a [block1] { } . ,  a - -~ a 

(O, B1),push(O, p l , a l ) - - - * ( O ,  B2),push(O, p2, a2) 
(O, {BI },1 ), al  --~ (O, {B2},2), a2 

e l - - ~ e 2  
i~(e~) s - - * i ~ ( e ~ )  

i f ( t rue)  s - -~ s ~f3] i f ( false)  s , #  - -~  # 

while(e) s ~ i f (e)  { s while(e) s } 

for(e l ;  e2; e3) s----* { el; while(e2) { s e3; } } 

T a b l e  3. Statements 

[synchrol] 

[synchro2] 

[lock] 

[unlock] 

el ~ e2 
synchronized(el)  q - -~synchron ized (e2 )  q 

ql - -~q2 
synchronized(o) q l - - ~ s y n c h r o n i z e d ( o )  q2 

(0, e),~1 --* (0, o), ,2 
(O, synchronized(e) q ) , ~ l - - * ( O ,  synchronized(o)  q),~2 • (Lock,O,o) 

(0, synchronized(o) { }p) ,~-- - - -~q~(Unlock,  O,o) 

[read] T, ~h # ~ T, ~l q) ( Read, O, l, tt(l) ), tt 

[load] T, 71 ~ T, ~} ~ (Load, O, l) 

store] T, ~I ~ T, ~ • (Store, O, l, v) 

[write] T, ~, tt ---* T, ~l + ( Write, O, l), t~[l ~-~ store.(  O, /)] 

tl - -~ t2 
[par] tl I T --~ t2 IT  

Tab le  4. Multi-threaded Java 

The  rules [assign3', val ' ,  lock, unlock, read, load, store,  write] make  use of 
the  well-formedness conditions of event  spaces via  the  q~. The  rules [read, load, 
s tore,  write] are  spontaneous  in the  sense t h a t  they  do not  depend on T.  T h e  
[store] rule addi t ional ly  "guesses" the value of the  last  Ass ign;  its correctness  is 
ensured by ax iom (17.1). Synchroniza t ion ,  i.e. mutua l  exclusion, is handled by  
[synchrol ,  synchro2,  lock, unlock], by [par] sequential  computa t ions  are lifted to  
mul t i - th readed  ones. 
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4 P r e s c i e n t  E v e n t  S p a c e s  

The prescient store actions are introduced in [3, 17.8] as follows: " . . .  the store 
[of variable V by thread T] action [is allowed] to instead occur before the assign 
action, if the following rule restrictions are obeyed: 

- If the store occurs, the assign is bound to occur . . . .  
- No lock action intervenes between the relocated store and the assign. 
- No load of V intervenes between the relocated store and the assign. 
- No other store of V intervenes between the relocated store and the assign. 
- The store action sends to the main memory the value that  the assign action 

will put into the working memory of thread T. 

The last property inspires us to call such an early store action prescient: . . .  " 
The specification above seems to assume that  it is known which Store events 

are prescient and which prescient Store event is matched by which Assign event. 
We do not assume such knowledge but adopt a more general approach introduc- 
ing so-called complete labellings. These labellings are not necessarily unique but 
it is always possible to infer a complete labelling at run time. It  will turn out, 
however, that  the semantics is independent of the choice of complete labellings, 
see Corollary 6. 

In order to define the new prescient event spaces we proceed as follows: 
First, we have to add new relations (cf. axioms (17.2.1), (17.2.2)) between 

certain actions of different threads in order to be able to formalize the precondi- 
tions of the second, third, and fourth requirement above. Assign, Load or Store 
actions for the same variable and Lock actions must be comparable.  To this end 
let D = {Assign, Load, Store}, then we stipulate: 

(D,O, l ) , (D,O' , l )  ~ (D,O,l) <_ (D,O',l) v (D,O',l)  <_ (D,O,l) 

Since Store and Lock events are already comparable,  by transit ivity also Lock 
and D actions are comparable.  

Second, rules (17.3.3), (17.3.5), (17.1), and (17.6.2') are now used for the 
definition of a predicate prescient on event spaces and Store events yielding true 
iff a Store is necessarily prescient. We define prescient,( ( Store, O, l)n) to be valid 
if one of the rules in Table 5 holds. Note that  ~ is usually omit ted if it is clear 
from the context. 

Rules ( P I - P 4 )  simply tell that  a Store event which does not obey old rules 
(17.3.3), (17.3.5), (17.1), or (17.6.2') is necessarily prescient. Rule (P5) is sound 
because if there is only one (Assign,O,l ,v) between two stores and the first 
is prescient, then by re-arranging the prescient Store two Store events would 
follow each other without a triggering Assign in between, which contradicts the 
old semantics. 

Third, keep rules (17.2.1), (17.2.2), (17.3.4), (17.3.6), (17.3.7), (17.3.8), 
(17.5.1), (17.5.2), and (17.6.2). 
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(Store, 0, l)m <__ (Store, O, l),~ ~ (Store, O, l)m ~_ (Assign, O, l) ~ (Store, O, l),~ (P1) 
(Store, O, 1),~ 7$ (Assign, O, l) <_ (Store, O, 1),~ (P2) 
(Assign, O, l, V')m <__ (Store, O, I, v),~ ~tz (P3) 

v = v ' V  (Ass ign ,e , l , v ' )m <(Ass ign ,  e,0k < (Store, e , l ,~)n 
(Lock, O) ~_ (Store, O, l)n ~ (Lock, O) ~_ (Assign, O, l) <_ (Store, O, l)n (e4) 
(Store, O, l)m <__ (Assign, 0, l)k <_ (Assign, 0,1)k, <_ (Store, 0, l),~ A 

prescient((Store, O, l).~) ~ k = k' (P5) 

Table  5. Rules for prescient 

Fourth, adapt  rule (17.3.2) as follows, allowing prescient Stores on the right 
hand side of an implication: 

(Assign, 8, l, v) < (Load, 8, l) 
((Assign, t~, l) <_ (Store, O, l) <_ (Load, 8, l)) V 
((Store, 8, l, v) < (Assign, 8, l, v) < (Load, 8, l) A prescient(Store, 8, l, v) ) 

and rule (17.6.1) as follows: 

(Assign, 8, l, v) < ( Unlock, 8) 
(Assign, 8, l) < (Store, t?, l)n <_ ( Write, 8, l)~ < ( Unlock, 8)) V 
((Store, 8, l, v)~ <_ (Assign, O, l, v) <_ ( Unlock, 0) A 
( Write, 8, l)n <_ ( Unlock, O) A prescient((Store, 8, l, v)n)) 

Finally, we need an additional rule corresponding to the second, third, and fourth 
requirements in the citation at top of Section 4. We add a new rule scheme: for 
any a e {(Lock), (Load, l), (Store, l )}:  

(Store, t~ , l, v )n < a A prescient( ( Store, 8, l, v )n ) 
(17.8) 

(Store, 8, l, V)n <_ (Assign, 8, l, v) <_ a 

Next, we redefine the operation G on prescient event spaces: A new event a is 
adjoined to a prescient event space ~ as in the case for old event spaces, but 
one additional condition. Let A E {Store, Assign, Load}. If a = (A,8,1) and 
b = (A,8 ' , l )  E ~ then b < a. Also, the term ~ @ a  denotes the space thus 
obtained, provided it obeys the above rules for prescient event spaces, and it is 
otherwise undefined. 

Analogously to the predicate prescient one can also define a predicate 
non_prescient which contains only Stores that  are necessarily non-prescient. We 
define non_prescient((Store,O,l)m) on an (implicitly) given event space to be 
true if one of the rules of Table 6 is fulfilled. 

Rule (NP2) is the dual of (PL). Moreover, rule (NP2) is raised by (17.3.3) 
and (NP3) by new rule (17.8). Observe also that  the predicate prescient prop- 
agates from past to present whereas non_prescient is computed in the oppo- 
site direction. Note that  -1 non_prescient(B) is not equivalent to prescient(B) 
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~3(Assign, O, l, v).  (Store, O, 1)m ~ (Assign, O, l, v) (NP1) 
(Store, O, l)m ~ (Assign, 0, l)~ ~ (Assign, O, 1)k, ~_ (Store, O, l),~ A 

non_prescient( ( Store, O, l)n ) ~ k = k ~ (NP2) 

Va E {(Lock), (Load, l), (Store, 1)}. (Store, 0, l, V)m < a 
(NP3) ~3(Assign, O, I, v).  (Store, 0, l, ~)~ < (Assign, 0, l, . )  < 

Table  6. Rules for non_prescient 

and hence also prescient (B)  V non_prescient(B)  does not always hold and 
presc ient (B)  A non_prescient(B)  is not always false. 

A prescient event space ~ is called consistently complete if it is complete and 
for no instance of a Store, say s, we have that  prescient~(s)  A non_prescientv(s  ). 
Note that  it makes only sense for the final event space of a reduction sequence 
to be consistently complete (as for complete). During execution, the matching 
Assign for a prescient Store might not have happened and therefore the cor- 
responding Store would be considered non_prescient,  which might lead to a 
contradiction. A consistently complete event space fulfills the first and last re- 
quirement in [3, §17.8] (see top of Section 4), because a prescient Store would 
otherwise have no matching Assign and hence by rule (NP1) contradict consis- 
tently completeness. 

There might be a Store event s in a given event space for which neither 
prescient(s)  nor non_prescient(s)  is derivable. In this case one needs a "labelling" 
of Store events, i.e. a predicate fixing whether a Store shall be considered pre- 
scient or not. More formally, a labelling for a prescient event space is a predicate 

on Store events such that  it obeys rules (L1-L3) in Table 7. 

prescient(s) ~ ~(s) (L1) 
non_prescient (s) ~ --,~(s) (L2) 
((Store,O,l),~ < (Assign, O,l)k < (Assign, O,l)k, ~ (Store,O,l)~ ~ k = Ic') 

(~((Store, O, I)m) ~ ~((Store, O, l)~)) (L3) 

prescient(s) ~ p* (s) (eel) 
; (s )  ~ p*(s) (PC2) 
((Store,e,L)m <_ (Assign, O,1)~ < (Assign, O,l)~, < (Store,O,1)~ ~ k = k') 

(p*((Store, O, l)m) ~ p*((Store, O, l)n)) (PC3) 

Table 7. Rules for labelling and prescient closure 

Rule (L3) implies that  -~g is closed under (NP2). 
Let p be any binary predicate on event spaces and Store events (where we 

usually omit the event space argument).  Then we define the prescient closure of 
p, the binary predicate p*, inductively by rules (PC1-PC3)  of Table 7. 

L e m m a  1. For any consistently complete event space one can give a labelling. 
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Proof. Choose a p such that -~(p(s)A non_prescient(s)) holds for any Store event 
s. This is possible since the event space is consistently complete; for example, 
p = prescient (or equivalently p = false) will do. It remains to prove that  
p* is a labelling: rules (L1) and (L3) hold by (PC1) and (PC3), respectively. 
In order to show rule (L2) prove by induction on the derivation of p*(s) that 
non_prescient(s) A p*(s) leads to a contradiction. In the (PC1)-case one needs 
consistently completeness and in the (PC2)-case the assumption on p. 

For a consistently complete prescient event space with a labelling the Assign 
events matching the prescient Stores can also be singled out as follows: Let g be 
a labelling on an prescient event space 7. A matching (labelling of Assigns) on 

and 7, m~, is a predicate on the Assign events of ~ fulfilling the three axioms 
in Table 8. 

Va E {(Lock), (Load,/), (Store,/)}. (Store, O, l, v) < a A ~( ( Store, O, l, v) ) 
(Store, O, l, v) <_ (Assign, O, l, v) < a A m~ ((Assign, O, l, v)) 

(Store, 0, I, v) A g((Store, 0, l, v)) 
(Store, o, l, ~) < (Assign, O, l, ~) ^ m~((Assign, O, l, ~)) 

(Store, 0, l, v)k ~ (Assign, 0, l, V)m < (Assign, 0, l, v)n A 
e( (Store, 0, l, v)k) A mt((Assign, O, l, V)m) A ml((Assign, 0, l, v)~) 

(Store, o, t , , )~  < (Assign, O, Z, ~)~ < (Store, 0, l, ~)~, < (Assign, 0, t, ~)~ ^ 
e((Store, o, l, ~)~,) 

Table 8. Rules for matching 

It is easily checked that the following predicate fulfills the axioms for matchings. 

~ne((Assign, O, l, v)m) ¢* 
3(Store ,O, l ,v) .  (Store,O,l ,v)  < (Assign, O,l ,v)m A g((Store,O,l ,v))  A 
- ,3(Assign,  ~?, l, v)n . (Store, t~, l, v) < (Assign, 8, l, v)n < (Assign, O, l, v)m 

A complete labelling is a pair consisting of a labelling and a matching for this 
labelling. 

For the sake of simplicity we assume in the rest of the paper that a com- 
plete labelling is always given and exhibited in form of special action names, 
i.e. pStore and pAssign.  If prescient(Store, O, l, v) holds then (Store, 8, l, v) is de- 
noted (pStore, 8, l, v) and analogously for the matching Assign we use pAssign.  

5 P r e s c i e n t  O p e r a t i o n a l  S e m a n t i c s  

We obtain the prescient operational semantics from the old semantics of Section 3 
just by switching from the event spaces of Section 2 to the prescient event spaces 
of Section 4 keeping the operational rules untouched. 

For the prescient operational semantics we write ----~. Moreover, let Conf~ 
denote the set of configurations with prescient event spaces, and Conf~ those 
according to the definition * of Section 2. 



413 

L e m m a  2. Any event space ~ (obeying the old rules) is also a prescient event 
space, thus any old configuration is a new configuration, i.e. Conf. C_ Conf,, 
and any reduction F ~ F ~ is also a prescient one, i.e. F ~ F' holds as well. 

Proof. Assume ~ is an event space satisfying the old rules. By a simple induction, 
prescient,(s) never holds for any Store event s in 7. Thus ~7 is a prescient event 
space because the new rules form a subset of the old rules. Since the configura- 
tions only differ in the event space definition and the rules of the semantics are 
not changed at all, the other claims of the lemma now hold trivially. 

Since we use labellings our operational semantics is very liberal. It  accepts 
reductions using Store events even if it is not clear during execution whether this 
Store event is meant to be prescient or not. In such a case, however, the prescient 
Store is not done as early as possible. Therefore, in practical cases, any Store 
which is not immediately recognized by the rules (P1-P5)  can be considered 
nonprescient. This corresponds to the prescient closure false* (cf. Lemma 1) 
meaning that  the labelling is computed at run time. By definition also rhfaue* 
is computable  at run time, thus a complete labelling is, too. 

6 P r e s c i e n t  S e m a n t i c s  is  c o n s e r v a t i v e  

The relation between the "normal" and the "prescient" semantics is described 
in [3, §17.8] as follows: "The purpose of this relaxation is to allow optimizing 
Java compilers to perform certain kinds of code rearrangements that  preserve 
the semantics of properly synchronized programs but might be caught in the act 
of performing memory actions out of order by programs that  are not properly 
synchronized." 

This has to be formalized in the sequel. The following notation, exemplified 
for ---* only, will be used analogously for all kinds of arrows: ~, denotes a 
one-step reduction with rule r; if e = ( r l , . . .  , rn) is a list of rules then 

r 1 t u denotes . . . .  --~ ; if the list is irrelevant we write ---~*. For rules that  change 
the event space we often decorate arrows with actions instead of rule names as 
the lat ter  are ambiguous. 

First, we observe that  - - v  and ~ can not be bisimilar by definition since - - v  
permits Store-actions where - -~ does not. But - - v  cannot even be bisimilar to the 
reflexive closure o f - - %  since simulating a (pStore, O, l) and the following Writes 
by void steps leads to inequivalent configurations (since the main memories will 
contain different values for l). 

As a prerequisite for a simulation relation of type Conf~ x Conf,, we define 
an equivalence on prescient configurations ,,~ C_ Conf~ x Conf~ as follows: 

~ ¢ : : .  r = T ' A  = A ( r ,  

( T , v , a , # )  $ ' ' (r', ~ O a l A  ( T , ~ ,  # ' ) ~ V a .  ~ a l ~ '  

Ve. (T ,q ,a ,  tt) - ~  (T1,/h,o'1,#1) A (T', ?7', o", #') ~>c (T2,~2,a2,~2) ~ #1 : #2 
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where a is any sequence of actions, e is a sequence of rules and (T, ~, 7, #) _._~c 
(T',  ~r', ~', #~) if (T, ~, ~], l~) ---4>* (T', a', ~', #r) such that 7' is complete. 

This equivalence relation is obviously preserved by the rules of the semantics: 

L e m m a  3. The relation ..~ is an equivalence relation such that if 1"1 ..~ /"2 then 
1"1 ~ 1"~ iff 1"~ - - ~  l" 4 for any rule r, and if such a reduction r exists then 

~ h o l d s .  

In order to establish a bisimulation result, we must delay all the operations 
which are possible due to a (pStore, O, I, v) until the matching pAssign event. 

But that will not work for all kinds of programs. Consider the following 
example: 

(O, { synchronized(o)  { l = v; }p~ }p~) t (O', { l ----- v'; }p~) 

Its execution may give rise to a sequence of computation steps which contains 
the following complete subsequence of actions: 

(Lock, O, o), (Assign, O, l, v), (Store, O, l, v), (pStore, 0', l, v'), 
( Write, 0', l), ( Write, O, l), ( Unlock, 0, o), (pAssign, 0', l, v') 

In a simulation the (Store, 0', l, v') is illegal w.r.t, to the old event space defi- 
nition and can only be simulated by a void (i.e. delaying) step as well as the 
following Write. Now the (Write, O, l) is bound to occur before the Unlock and 
therefore also (Store, O, l, v). Finally, after the Assign we must recover the pend- 
ing prescient (Store, 0', l ,C) and its corresponding ( Write, 0', l). According to 
this simulation l has value v' in the global memory, but the reduction via 
yields v for t. Thus, both end-configurations are not equivalent, a contradiction. 

Therefore, we have to restrict ourselves to "properly synchronized" pro- 
grams. A multi-threaded program T is called properly synchronized if for 
any configuration (T',  ~7', a ' ,  # ')  such that  (T, ~7, c~o, O) --4>* (T' ,  ~f, o-', # ')  and 
( Write, 01, l, vl) <_ ( Write, 02, l, v2) in ~' there is a (Lock, ~3, o) in 7]' such that  
(Write,Ol,l ,  vl) < (Lock,03,o) < ( W r i t e ,  Oo.,l, v2). To be "properly synchro- 
nized" is a semantical (and rather intricate) property which for a program is 
hard to tell in advance. A sufficient condition for "properly synchronizedness" is 
the syntactic criterion that  in a program shared variables may only be written 
in synchronized blocks. It is clear, that in any execution sequence two Write 
actions must then be separated by the corresponding Lock. 

In the sequel A (possibly with annotations) stands for configurations in Conf, 
and F for new configurations in Conf,. Recall that any old configuration is 
also a valid one in the new sense by Lemma 2. According to the observations 
above, we define a new reduction relation ~ : (Conf, × E*) × (Conf, × E*) 
where E = {(pStore), (Write), (Read)} by the rules of Table 6. Note that  we 
do not need to treat (Load) events (cf. rule (17.8)). The corresponding ~--*- 
configurations (A, e) consist of an old configuration A E Conf~ plus a list of 
"pending" events e. Appending an event a at the end of a list e is written e o a. 
An additional operation splito,l(e ) is needed. Given a list of events e it yields a 
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pai r  of lists (ez, e ')  where b o t h  are sublists of  e; e~ is ob ta ined  f rom e by ex t rac t ing  
all (pStore, 0, l), ( Write, O, l) and (Read, 0 t, l) events  s imul taneous ly  changing a 
(pStore, O, l) into (Store, O, l), and e' is el 's  complement  w . r . t . e .  

(zx, e) (~ps~ ..... o,.~) (zx, e o (pStore,  0, l, ~)) (reds) 
(A,e)  ~(w~t~,o,t) (zS, eo(Write,O,1)) if (pStore,O,l,v) • e (redw) 

(A, e) (R~d.O',Z,.) (A, e o (Read, 0', l, v)) if (Write, O, I) G e (redr) 
(A, e) (,A~,~g,,o,z,~) t~ • (A ' ,e ' )  if splitoj(e ) = (ehe ) A 

(red~) /~ (Assign'O'l'v)P, Z~l------~el A" 

(A, e) ~ (A', e) for any other case r if A _5~ zS' (reda) 

T a b l e  9. Rules for the simulating reduction relation 

TO relate  configurat ions of --4> and ~-~ reduct ions the s imulat ion relat ion 
.~ C_ Conf~ × ( Conf,~ × E* ) is defined as follows: 

F , . ~ ( A , e )  if, and only if, A - ~  F/aAF~a ~ F  

i.e. F is equivalent  to  (A,  e) if F is equivalent  to the  comple t ion  of A, usually 
cMIed F.~, by execut ing the  pending  events  in e. Note  t ha t  --4> is used here for 
the sequence of events e, as e may contain prescient Store events.  

Below we use the following nota t ion  of a commut ing  d i ag ram 

/'3 . ~  

s ta t ing  tha t  F ~ / " 1  ~ F2 and F ~ F3 * /-9' a n d / ' 2  ~ F.~. This  no ta t ion  is 
also used for any other  kind of arrows. 

L e m m a  4. If  F ~ (A , e )  and F --Lt> F' ,  where r is as in case (redd) and F 
stems from a properly synchronized program, then A _L~ A '  and the diagram 

A e ~ , F ~  ~ F 

zx' e ~ r , ~  ~ £,  

commutes, hence in particular 1" ~ (A ,e )  ~ (A ' , e ) . .~  F' holds. 

Proof. (sketched) By definition of ~ we have A ~.- A '  as we consider case 
(redd). Next ,  we have to check tha t  r does not depend on e, such tha t  commu-  
ta t ion  is possible. P roo f  is by inspect ing the  relevant laws for event spaces: rules 
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(17.3.2), (17.3.4), (17.6.2) refer to Load events which are not possible as long as e 
contains a corresponding pStore, (17.3.7) is not relevant as matching Writes are 
treated in (redw). Thus, we are left with (17.6.1). Cases, however, where Store 
and Write in e allow r to be an Unlock are excluded by the rules for labellings. 

To prove that the diagram commutes it suffices by definition of ,-~ to show that  
the same actions are executed, but maybe in different order. We have to ensure 
that Write events of the same variable from different threads are not re-ordered. 
But this could only happen if r = (Write,O,l) and another (Write,Or, I) E e 
which is impossible since only properly synchronized programs are considered. 

T h e o r e m  5. For properly synchronized programs the relation ~ is a simulation 
relation of --~ and c~--% i.e. if F ~ 1-" during the execution of such a program 
and F .~ (A, e) then there is a (A',  e') such that (A, e) ~2~ (A',  e') and F' .~ 
(A', e'). 

Pro@ Assume F ~ (A,e),  i.e. A ~ Fza ", F. We do a case analysis for 
F --~ F ' :  
Case F wr,tg U: if (pStore, O, l) E e then it holds that (A, e) ~L~ (A, e o r) by 
(redw). Moreover, by Lemma 3, F' ~ ( A, e o r). 

If (pStore, O,l) ~ e then by Lemma 4, (A,e)  ~2~ (A' ,e ' )  and F '  ~-, (A' ,e) .  
Case F pAssign F'. Let spIito,l(e ) = (e~, e'). Since an Assign is always possible, 

assume that  A (Assig,~,o,t,~) A1" Now every action in et becomes legal for the old 
semantics, so we can further assume A1 e% A', such that (A,e)  ~L,  (A' ,e ' ) .  
One can prove analogously to Lemma 4 that  the left rectangle in 

e 
A ~,FA ~ F 

A I e't> F~ ,-~ 

commutes; the right rectangle commutes by Lemma 3, thus (A, e) ~ (A', e ~) 
and F '  ~ (A', e'). 

For pStore and Read one proceeds as for Write, all other cases follow from 
Lemma 4. 

Our main result is the following corollary which states that the prescient 
semantics is conservative, i.e. any prescient execution sequence of a properly 
synchronized program can be simulated by a "normal" execution of Java. 

C o r o l l a r y  6. Given F E Conf~ from a properly synchronized program and A E 
Conf,, if F ,., A and 1" ----~* F t such that the event space ~?r, of F ~ is consistently 
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complete, then for any complete labelling of ~?F' there is a reduction sequence 
A --** A t such that F t ~ A t. 

Moreover, i f  two different eorr~plete labellings yield two different reduction 
sequences A ---** A~ and A ,* A~, then still A~ ~ A~ holds. 

Proof. First, observe that  if F ~ A then F ~ (A, c). By a simple induction 
on the length of the derivation by Theorem 5, we get (A, c) ~-~* (Ar~ e) and 
F ~ ~ (A' ,  e). Now e = s follows from the fact tha t  F '  is consistently complete 
which entails that  all prescient, stores are matched by an Assign such tha t  e 
must be empty  in the end. From e = c we immediately get F '  ~ Aq Also from 
(A, c) ~--~* (A ~, s) we can strip off a derivation A ---~* A'  by definition of ~--~. 

The second claim follows just by transitivity of ~ as A~ ~ F ~ ~ A~. 

For our running example we can conclude that  the corollary is applicable if 
all threads write o exclusively in s y n c h r o n i z e d  blocks. 

7 C o n c l u s i o n  

We have presented an event space semantics for multi- threaded Java  with pre- 
scient stores. The informal statements in [3, §17.8] have been formalized and 
proven completely. In fact, the main motivation for this work was to understand 
what they meant.  Correspondingly, we presented an operational semantics for 
prescient stores by just refining the axioms of the event space, leaving untouched 
the laws of the operational semantics. This demonstrates the flexibility of the 
event space approach. 

Future work will include the extension of the treated language, e.g. wa i t  
and n o t i f y ,  exceptions, method calls, and the application of the semantics to 
correctness proofs of Java  programs. 

A c k n o w l e d g e m e n t :  We used Paul Taylor 's  d i ag ram,  s ty .  
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