

403

o.b = 2;
for(o.a = 1; o.a < 10; 0.a = 0.a + 1)
o.b = 0.2 + 0.b;

where o is (a reference to) an object with two attributes a and b of type int.
When executed the value of o.a can only be stored after o.a has been assigned
a new value, i.e. after it was incremented. If prescient store operations are per-
mitted, then it would be also legal to store the value 10 for o.a in advance, i.e.
before the loop is entered, excluding thereby that any other thread can load 0.a
before the end of the loop.

The rearrangement of store operations can be used to speed up programs
when updating of variables is split into a thread action (called Store) and a
memory action (Write). The global memory can concurrently provide the value
of a pre-stored variable while a second thread waits for it. Re-grouping the store-
operations might also optimize memory access itself.

In [2] we present a structural operational semantics (in the style of [5]) of
a nontrivial sub-language of Java which includes dynamic creation of objects,
blocks, and synchronization of threads. The notion of event space is introduced
in that paper to formalize the communication protocol between shared memory
and threads. Event spaces correspond roughly to configurations in Winskel’s
event structures [6], which are used for denotational semantics of concurrent
languages.

Here we exploit the flexibility of the approach proposed in [2], where the
operational semantics is given parametrically in the notion of event space, and
compare two language implementations which share the same set of operational
rules. The implementations are obtained by imposing different requirements on
event spaces, so that prescient stores are possible in one case and impossible
in the other. Such requirements are expressed in simple first order clauses. In
this framework we prove that prescient and nonprescient semantics coincide for
properly synchronized programs, that is programs where any two threads are not
allowed to write a variable into the global memory without synchronization (race
conditions [4]). This property was only informally stated in {3, §17.8]. We also
provide an example where prescient store actions for non-properly synchronized
programs lead to inconsistent memory contents.

The contribution of the paper is twofold: on the one hand it provides welcome
formal confirmation of the intuitive correctness of certain compiler optimization
techniques; on the other hand it shows the applicability of an innovative tech-
nique for combining structural operational semantics and first order axiomati-
sation of process behaviour.

The paper is organized as follows: Section 2 recapitulates the definition of
event spaces from [2]. These are used in Section 3 for the SOS-rules. Next,
the axiomatization of event spaces is changed (Section 4) in order to allow for
prescient stores and prescient operational semantics is defined in Section 5. It is
then proven, in Section 6, that for properly synchronized programs the extension
is conservative w.r.t. the old semantics.

404

2 Event Spaces

The execution of a Java program comprises many threads of computation running
in parallel. Threads exchange information by operating on values and objects re-
siding in a shared main memory. As explained in the Java language specification
[3], each thread also has a private working memory in which it keeps its own
working copy of variables that it must use or assign. As the thread executes a
program, it operates on these working copies. The main memory contains the
master copy of each variable. There are rules about when a thread is permitted
or required to transfer the contents of its working copy of a variable into the
master copy or vice versa. Moreover, there are rules which regulate the lock-
ing and unlocking of objects, by means of which threads synchronize with each
other. These rules are given in {3, Chapter 17] and have been formalized in [2] as
“well-formedness” conditions for structures called event spaces. We summarize
their definition and usage.

Event spaces will be included in the configurations of multi-threaded Java to
constrain the applicability of certain operational rules. Additionally, they will be
used to model the working memories of all threads. The main memory is modeled
as an abstract store that can be thought of as mapping addresses of instance
variables (left-values, from a semantic domain LVal) of objects (from a semantic
domain Obj) to values or object references (right-values, from a semantic domain
RVal).

In accord with [3], the terms Use, Assign, Load, Store, Read, Write, Lock,
and Unlock are used here to name actions which describe the activity of the
memories during the execution of a Java program. Use and Assign denote the
above mentioned actions of the private working memory. Read and Load are
used for a loosely coupled copying of data from the main memory to a working
memory and dually Store and Write are used for copying data from a working
memory to the main memory (as mentioned in the introduction).

We let the metavariable A (possibly indexed) stand for a generic action name.
Moreover, we let B range over the set of thread actions and C over the set
of memory actions, that is: B € {Use, Assign, Load, Store, Lock, Unlock}, C €
{Read, Write, Lock, Unlock}.

Let Thread_id be a set of thread identifiers. An action is either a 4-tuple
of the form (A,9,1,v) where A € {Assign, Store, Read}, 6 € Thread_id, | €
LVal and v € RVal, or a triple (A,0,1), where 6 and ! are as above and A €
{Use, Load, Write}, or a triple (4,8, 0), where A € {Lock, Unlock} and o € Obj.

Ewyents are instances of actions, which we think of as happening at different
times during execution. We use the same tuple notation for actions and their
instances (the context clarifies which one is meant) and let a, b, ¢ stand for
either. Sometimes we omit components of an action or event: we may write e.g.
{Read, !} for (Read,8,!,v) when 8 and v are not relevant.

An event space is a poset of events (thought of as occurring in the given
order) in which every chain can be enumerated monotonically with respect to the
arithmetical ordering 0 < 1 < 2 < ... of natural numbers, and which satisfies the
conditions {17.2.1-17.6.2’) of Table 1. These conditions, which formalize directly

405

the rules of [3, Chapter 17}, are expressed by clauses of the form:
Vacn.(P= (3 en. &) v en. W) V... (3b, €1.¥,)))

where a and b; are lists of events, 7 is an event space and Va € n.%® means
that @ holds for all tuples of events in 1 matching the elements of @ {(and simi-
larly for 3b € . ¥). Such statements are abbreviated by adopting the following
conventions: quantification over a is left implicit when all events in a appear
in ¢; quantification over b; is left implicit when all events in b; appear in ¥,.
Moreover, a rule of the form Va € n.(true = ...) is written a = (...). The
term (A,4,z), denotes the n-th occurrence of (A4, 6, z) in a given space, if such
an event exists, and is undefined otherwise.

We include the origin of each rule from [3, Chapter 17] and refer to [3] and
[2] for more detail. For instance, rule (17.2.1) says that actions performed by any
thread are totally ordered and (17.2.2) that so are the actions performed by the
main memory for any variable or object. Similarly, rules (17.6.2) and (17.6.2°)
say that a lock action acts as if it flushes all variables from the thread’s working
memory, i.e. before use they must be assigned or loaded from main memory.

A complete event space is an event space that additionally fulfills the axioms
{17.2.6) and (17.2.7) such that any Read and Store events are “completed” by
corresponding Load and Write events.

A new event a = (A4,6,z) is adjoined to an event space 17 by extending the
execution order as follows: if 4 is a thread action, then b < a for all instances
b of (B,6) in 7; if a is a main memory action, then ¢ < a for all instances ¢ of
(C,z) in 1. Moreover, if A is Load then ¢ < a for all instances ¢ of (Read, 8, x)
in n, and if A is Write then ¢ < a for all instances ¢ of (Store,#8,z) in 1. The
term 1 @ a denotes the space thus obtained, provided it obeys the above rules,
and it is otherwise undefined. If it is defined then n & a] yields true and false
otherwise. If 77 is an event space and a@ = (a1, as,...axn) i8 a sequence of events,
we write n @ a for n®a; B a2 ® - & ap, and analogously n & al.

3 Operational Semantics

We briefly recapitulate the structural operational semantics of multi-threaded
Java in [2]. We restrict ourselves to those parts that are relevant for the “pre-
scient” compiler optimization.

Objects are kept in the main memory. We use a semantic domain Store that
is abstractly given by the following five semantic functions: upd : LVal x RVal x
Store — Store updates a given store; we write u[l — v] for upd(l,v,). The
function lval : Obj x Identifier x Store — LVal retrieves the left-value of an
instance variable (such as of o.a). Analogously, rval : LVal x Store — RVal
retrieves the right-value of a left-value; we write u(l) for rval(l, #). New objects
are allocated by newe : Store — 0bj x Store. This family of functions is indexed
by class types C' € ClassType. For a given store u, news(p) yields an object o
and a store p’ such that u' extends p where p'(lval{o,i, 1')) is defined for any
identifier 7 ranging over all instance variables of the class C.

407

The operational semantics works on a set M-Term of multi-threaded abstract
terms that contain single-threaded abstract terms from a set S-Term. We let
the metavariable ¢ range over S-Term. To each syntactic category of Java we
associate a homonymous category of abstract terms. The well-typed terms of
Java are mapped to abstract terms of corresponding category by a translation
(_)°, which we leave implicit when no confusion arises. Abstract blocks are terms
of the form {t};,) where the source I of the environment (I, p) contains the
local variables of the block. A multi-threaded abstract term T is a set of pairs
(8,t), where 8 € Thread.id and t € S-Term and no distinct elements of T bear
the same thread identifier. Multi-threaded abstract terms {(61,%1), (f2,%2),-..}
are written as lists (61,¢1) | (f2,t2) | ... and pairs (6,t) are written ¢ when 6 is
irrelevant.

The configurations of multi-threaded Java are 4-tuples (T, 7,0, u) consisting
of an M-term T, an event space 7, an M -stack o, and a store u. The operational
semantics is the binary relation — on configurations inductively defined by the
rules that follow. In the rule schemes in Tables 2-4, the metavariables range as
follows: i € Identifier, k € Identifier U LVal, | € LVal, 0 € Obj, e € Expression,
v € RVal, s € Statement, b € BlockStatement, B € BlockStatement™, q € Block,
t € S-Term, and T € M-Term. Stacks, event spaces, and stores are omitted when
they are not relevant.

We write store,(6,1) for the oldest unwritten value of stored by 6 in 1. More
formally: let an event (Store,8,1), in 9 be called unwritten if (Write,8,1), is
undefined in #; then, store,(6,1) = v if there exists an unwritten (Store,8,l,v),
such that for any unwritten (Store,6,1),, we have n < m; if no such a Store
event exists, store,(6,1) is undefined. Similarly, we write rval,(8,1) for the latest
value of [assigned or loaded and read by & in 7.

. el — €2 . e; — e

a2 9 S S A

[assignl] PP — [assign2] P ——

[assign3’] (0?1 = U)a’? g (9»1))»77@ (Ass’ignaoalvv)

[assignd4’] (8,i =v),0 — (8,v),0[8,i — v]

[binopl] " = B [binop2] B
1ope—+ezope v ope; —= vop e

[binop3] V1 Op Vg —* V1 0P V2 [pth] (e) — ¢

[accessl)] c1r e [access2] o.i,p —» lwal(o, i, n), p

61.1:—-*82.1'

{this] (6,this), o — (6,0(0, this)), o [new] new C (),p — newc(u)
[val’] 8,0),n — (6, rval,(6,1)),n ® (Use, ,1)
[var’] (0’ i)’a — (0,0’(671.)),0.

Table 2. Expressions

408

by —» by by —» o
tatseql] ——————0 R ot N o S,
[statseql] B, B [statseq2] 5B. o — B
€1 —» €3 €, [y —» U, [3
tatl e —— 2 _——
[expstatl] pR—— [expstat2] Pr——
[skip] N [block1] {}s,0—¢c
[block?’] (6, B1), push(8, p1, o1) — (6, Bs), push(8, p2,02)
(07 {Bl }Pl)7 (25 B (0’ {B2}P2)7 247
. €] = €2
(1] if(e1) s — if(e2) s
[if2] if(true) s —> s [if3] if(false) s, pp —> 1
[while] while(e) s —» if(e) { s while(e) s }
[for] for(ei; ep; es) s — { e1; while(es) { ses; } }
Table 3. Statements
€1 —* €32
1
[synchrol] synchronized(e;) ¢ —> synchronized{e2) ¢
qgi —» g2
2
[synchro?] synchronized(o) g —» synchronized(o) g2
[lOCk] (9, e): n — (0’ O), 72
(8, synchronized(e) q),m1 — (0, synchronized(o) q),n2 ® (Lock, 8, 0)
{unlock] {6, synchronized{o) { },),n — w @ (Urlock, 8, 0)
[read] T,n,p— T, & (Read, 8,1, u(l)), p
{load] T,n— T,n® (Load, 0,1)
[store] T,9 — T,1n & (Store, 8,1,v)
[write] T,n,p— T,n & (Write, 0,1), p[l — store,(8,1)]
[pas] e
t1 f T e to iT

Table 4. Multi-threaded Java

The rules [assign3’, val’, lock, unlock, read, load, store, write] make use of
the well-formedness conditions of event spaces via the &. The rules [read, load,
store, write] are spontaneous in the sense that they do not depend on T. The
[store] rule additionally “guesses” the value of the last Assign; its correctness is
ensured by axiom (17.1). Synchronization, i.e. mutual exclusion, is handled by
[synchrol, synchro2, lock, unlock], by [par] sequential computations are lifted to
multi-threaded ones.

410

(Store,0,1)m < (Store,8,1)n # (Store,0,1)m < (Assign,0,l) < (Store,0,1), (P1)
(Store,0,1)n # (Assign,8,1) < (Store,0,1)n (P2)
(Assign, 8,1, v)m < (Store,8,1,v), #
v=1v" V (Assign,8,1,v)m < (Assign,8,1) < (Store,8,l,v)n
(Lock, 8) < (Store,0,1)n 7 (Lock,8) < (Assign,8,l) < (Store,8,1), (P4)
(Store, 0,1)m < (Assign,8,0), < (Assign,8,1) < (Store,0,1), A
prescient ((Store, 0,1)m) = k = k'

(P3)

(P5)

Table 5. Rules for prescient

Fourth, adapt rule (17.3.2) as follows, allowing prescient Stores on the right
hand side of an implication:

(Assign,6,1,v) < (Load, 9,1) =
((Assign, 8,1) < (Store,0,1) < (Load,8,1)) V
((Store, 8,1,v) < (Assign,8,l,v) < (Load,8,1) A prescient(Store,0,1,v))

and rule (17.6.1) as follows:

(Assign, 8,1,v) < (Unlock,8) =
(Assign,0,1) < (Store,0,1), < (Write,0,1),, < (Unlock,8)) v

((Store,8,1,v),, < (Assign,8,1,v) < (Unlock,8) A

(Write,0,1), < (Unlock,8) A prescient((Store,8,1,v),))

Finally, we need an additional rule corresponding to the second, third, and fourth
requirements in the citation at top of Section 4. We add a new rule scheme: for
any a € {(Lock}, (Load,l), (Store,1)} :

(Store,8,1,v), < a A prescient((Store,8,1,v),) =

17.8
(Store, 8,1,v), < (Assign,0,l,v) <a ()

Next, we redefine the operation @& on prescient event spaces: A new event a is
adjoined to a prescient event space n as in the case for old event spaces, but
one additional condition. Let A € {Store, Assign, Load}. If a = (A,6,]) and
b = (A4,0',1) € n then b < a. Also, the term 7 @ a denotes the space thus
obtained, provided it obeys the above rules for prescient event spaces, and it is
otherwise undefined.

Analogously to the predicate prescient one can also define a predicate
non_prescient which contains only Stores that are necessarily non-prescient. We
define non_prescient((Store,8,1),,) on an (implicitly) given event space to be
true if one of the rules of Table 6 is fulfilled.

Rule (NP2) is the dual of (P5). Moreover, rule (NP2) is raised by (17.3.3)
and (NP3) by new rule (17.8). Observe also that the predicate prescient prop-
agates from past to present whereas non_prescient is computed in the oppo-
site direction. Note that = non_prescient(B) is not equivalent to prescient(B)

411

—3(Assign, 0,1,v). (Store,0,1)m < (Assign,8,1,v) (NP1)

(Store, 8,1)m < (Assign,8,0), < (Assign,0,1)y < (Store,0,D)n A
non_prescient((Store,0,1),) = k = k'

Va € {(Lock), (Load, 1), (Store,l)} . (Store, 0,1, v)m < a =
—3(Assign,0,1,v).(Store, 8,1, v)ym < (Assign,0,l,v) < a

(NP2)
(NP3)

Table 6. Rules for non_prescient

and hence also prescient(B) V non._prescient(B) does not always hold and
prescient(B) A non_prescient(B) is not always false.

A prescient event space 7 is called consistently complete if it is complete and
for no instance of a Store, say s, we have that prescz’entn(s) A non_prescientn(s).
Note that it makes only sense for the final event space of a reduction sequence
to be consistently complete (as for complete). During execution, the matching
Assign for a prescient Store might not have happened and therefore the cor-
responding Store would be considered non_prescient, which might lead to a
contradiction. A consistently complete event space fulfills the first and last re-
quirement in [3, §17.8] (see top of Section 4), because a prescient Store would
otherwise have no matching Assign and hence by rule (NP1) contradict consis-
tently completeness.

There might be a Store event s in a given event space for which neither
prescient(s) nor non_prescient(s) is derivable. In this case one needs a “labelling”
of Store events, i.e. a predicate fixing whether a Store shall be considered pre-
scient or not. More formally, a labelling for a prescient event space is a predicate
¢ on Store events such that it obeys rules (L1-L3) in Table 7.

prescient(s) = £(s) (L1)

non_prescient(s) = —£(s) (L2)

((Store,8,1),m < (Assign,0,1)x < (Assign,0,0)p < (Store,0,0)n = k=k') = (L3)
(€((Store, 8,1)m) = &((Store,6,1)n))

prescient(s) = p*(s) (PC1)

p(s) = p"(s) (PC2)

((Store,0,1)m < (Assign, 0,1)x < (Assign,0,0)p < (Store,0,1)n =k =k') = (PC3)

(p” ((Store,8,1)m) = p*((Store, 8, D)n))

Table 7. Rules for labelling and prescient closure

Rule (L3) implies that —¢ is closed under (NP2).

Let p be any binary predicate on event spaces and Store events (where we
usually omit the event space argument). Then we define the prescient closure of
p, the binary predicate p*, inductively by rules (PC1-PC3) of Table 7.

Lemma 1. For any consistently complete event space one can give o labelling.

415

pair of lists (e, ¢’} where both are sublists of e; ¢; is obtained from e by extracting
all (pStore, 8,1}, (Write,8,1) and {Read,#',1) events simultaneously changing a
(pStore, 8,1) into (Store,8,1), and €’ is e;’s complement w.r.t. e.

(A, e) 228L) (A e o (pStore, 8,1, v)) (red,)
(Ae) SR (A e o (Write,8,1)) if (pStore,0,l,v) € e (redw)
(Aye) $E20hn) (A o6 (Read,§,1,0)) if (Write,,1) € e (red;)
(A, e) BEAEL) (AT Ty i split ((e) = (en,) A

J Gssion i) 4 e (red.)
(A,e) b (A e) for any other case r if A —» A’ (reda)

Table 9. Rules for the simulating reduction relation

To relate configurations of — and »— reductions the simulation relation
=2 C Conf, x (Conf. x E*) is defined as follows:

I'=~(Aye) if,andonlyif, A > TaATa~T

i.e. I' is equivalent to (A,e) if I' is equivalent to the completion of A, usually
called I, by executing the pending events in e. Note that — is used here for
the sequence of events ¢, as e may contain prescient Store events.

Below we use the following notation of a commuting diagram

I —— 1%
Iy — Iy
stating that I' — Iy — [and I" — I's — I} and I ~ I'}. This notation is

also used for any other kind of arrows.

Lemma 4. If I' = (A,e) and I' —> I", where 7 is as in case (redq) and I’

stems from a properly synchronized program, then A v A’ and the diagram

A-oT0 ~ T

Pk

AL, o~

commutes, hence in particular I' = (4, e) b (A e) ~ I holds.
Proof. (sketched) By definition of >— we have A — A’ as we consider case

(redq). Next, we have to check that r does not depend on e, such that commu-
tation is possible. Proof is by inspecting the relevant laws for event spaces: rules

416

(17.3.2),(17.3.4),(17.6.2) refer to Load events which are not possible as long as e
contains a corresponding pStore, (17.3.7) is not relevant as matching Writes are
treated in (redw). Thus, we are left with (17.6.1). Cases, however, where Store
and Write in e allow 7 to be an Unlock are excluded by the rules for labellings.
To prove that the diagram commutes it suffices by definition of ~ to show that
the same actions are executed, but maybe in different order. We have to ensure
that Write events of the same variable from different threads are not re-ordered.
But this could only happen if r = (Write,8,l) and another (Write,8',1) € e
which is impossible since only properly synchronized programs are considered.

Theorem 5. For properly synchronized programs the relation =~ is a simulation
relation of —> and 0—, i.e. if I' —> I" during the ezecution of such a program
and I' = (4, e) then there is a (A',€') such that (A,e) > (A',¢') and I'" =~
(A, e).

Proof. Assume I" = (A,e), ie. A —=p 'y ~ I'. We do a case analysis for
r -—TD F/I:/Vrite T
Case I' — I'"': if (pStore,0,1) € e then it holds that (A,e) >— (A,eor) by
(redy). Moreover, by Lemma 3, I'" = (A,eor).

If (pStore,6,1) ¢ e then by Lemma 4, (A,e) b (A',¢') and I ~ (4, ¢).
Case I' PA%9% I Let splity (e) = (er,€'). Since an Assign is always possible,

{Assign,0,l,v)
A el Ayl

assume that Now every action in ¢; becomes legal for the old

semantics, so we can further assume 4A; ——» A’, such that (A,e) >— (4A',€).
One can prove analogously to Lemma 4 that the left rectangle in

Aoy ~ T
(Assz'gn,é?,l,v)l

Ay o~ r T

ell
!

Aoy o~ I

commutes; the right rectangle commutes by Lemma 3, thus (A, e) b— (4, ¢')
and I =~ (A, ¢).

For pStore and Read one proceeds as for Write, all other cases follow from
Lemma 4.

Our main result is the following corollary which states that the prescient
semantics is conservative, i.e. any prescient execution sequence of a properly
synchronized program can be simulated by a “normal” execution of Java.

Corollary 6. Given I" € Conf, from a properly synchronized program and A €
Conf. , if I ~ A and I’ —>* I such that the event space nr: of I is consistently

