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Abstract A structural operational semantics of a significant sublan-
guage of Java is presented, including the running and stopping of threads,
thread interaction via shared memory, synchronization by monitoring
and notification, and sequential control mechanisms such as exception
handling and return statements. The operational semantics is paramet-
ric in the notion of “event space” [6], which formalizes the rules that
threads and memory must obey in their interaction. Different computa-
tional models are obtained by modifying the well-formedness conditions
on event spaces while leaving the operational rules untouched. In par-
ticular, we implement the prescient stores described in [10, §17.8] which
allow certain intermediate code optimizations, and prove that such stores
do not affect the semantics of properly synchronized programs.

1 Introduction

The object-oriented programming language Java offers simple and tightly in-
tegrated support for concurrent programming. In Java’s model of concurrency
multiple threads of control run in parallel and exchange information by operating
on objects which reside in a shared main memory. A precise informal descrip-
tion of this model is given in the Java language specification [10]. Other notable
references are [4] and [12].

This paper presents a formal semantics of a significant sublanguage of Java
including the running and stopping of threads, thread interaction via shared
memory, synchronization by monitoring and notification, and sequential control
mechanisms such as exception handling and return statements. Here we focus
on the dynamic semantics of Java and leave a detailed treatment of the static,
type-related aspects of the language, e.g. class declarations, to a followup paper.

Our semantics is given in the style of Plotkin’s structural operational seman-
tics (SOS) [15]. In SOS, which has been used in the past for describing SML
[13], evaluation is driven by the syntactic structure of programs. This allows a
powerful proof technique for semantic analysis: structural induction. The idea
inspiring the present work is that the semantics of real concurrent languages such
as Java, with complex, interacting control features can be given in full detail by
means of simple structural rules.
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One of the difficulties in modelling concurrent Java programs consists in
capturing the complex interplay of memory and thread actions during execution.
Each thread of control has, in Java, a private working memory in which it
keeps its own working copy of variables that it must use or assign. As the
thread executes a program, it operates on these working copies. The main
memory contains the master copy of each variable. There are rules about when
a thread is permitted or required to transfer the contents of its working copy
of a variable into the master copy or vice versa. The process of copying is
asynchronous. There are also rules which regulate the locking and unlocking
of objects, by means of which threads synchronize with each other. All this is
described precisely in [10, §17] in terms of eight kinds of low-level actions: Use,
Assign, Load , Store, Read , Write, Lock , and Unlock . Here is an example of a
rule from [10, §17.6, p. 407] involving locks and variables. Let T be a thread, V
a variable and L a lock:

“Between an Assign action by T on V and a subsequent Unlock action by
T on L, a Store action by T on V must intervene; moreover, the Write action
corresponding to that Store must precede the Unlock action, as seen by the
main memory.”

These rules impose constraints on any implementation of Java so as to allow
a correct exchange of information among threads. On the other hand they
intentionally leave much freedom to the implementor, thus permitting certain
standard hardware and software techniques to improve the speed and efficiency
of concurrent code. Therefore, it is only on the given rules that the programmer
should rely to predict the possible behaviour of a concurrent program. Likewise,
it is only the given rules that should constrain the possible execution traces
generated by a correct operational semantics.

The above considerations led us to base our semantics on the notion of event
space. These correspond roughly to configurations in Winskel’s event structures
[21] which are denotational, non-interleaving models of concurrent languages.
The use of such structures in (interleaving) operational semantics is new. It al-
lows us to give an abstract, “declarative” account of the Java thread model while
retaining the virtues of a structural approach. This description is a straight for-
mal paraphrase of the rules of [10]. Event spaces were introduced in [6], where we
showed that their use in modelling multi-threading preserves the naive seman-
tics of “sequential” computations (i.e. computations where one thread interacts
synchronously with the memory).

Basing our description of Java on the finely grained notion of event allowed
us to observe phenomena which may be not readily seen when more abstract
approaches are taken. For example, we realized that the asynchrony of commu-
nication between main memory and working memories (viz. the loose coupling of
Read and Load actions, and similarly of Store and Write) is actually observable
in Java. Let threads θ1 and θ2, respectively running the code

(θ1) synchronized(p) { p.y = 2; } a = p.x; b = p.y; c = p.y;
(θ2) synchronized(p) { p.y = 3; p.y = 100; } p.x = 1;
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share a main memory in which p.x = p.y = 0, and let their working memories
be initially empty. No parallel execution of θ1 and θ2 in which main and working
memories interact synchronously would possibly allow the values 1, 2 and 3 to
be assigned respectively to a, b and c. Any model of execution not capable of
producing a run with this assignment of values, indeed possible as we show in
Section 2.3, provides maybe a correct implementation, but cannot be considered
correct as semantics of Java.

The operational semantics presented below is parametric in the notion of
event space. This allows different computational models to be obtained by mod-
ifying the well-formedness conditions on event spaces while leaving the opera-
tional rules untouched. To show the flexibility of this approach we study the
“prescient” store actions introduced in [10, §17.8]. Such actions allow optimiz-
ing compilers to perform certain kinds of code rearrangements. A bisimulation
is given to prove that such rearrangements preserve the semantics of properly
synchronized programs (see also [17]).

Related work. Several other semantics of sublanguages of Java are available in the
literature. Much work has also been done on the semantics of the Java Virtual
Machine [7, 16, 18]; this is one half of a formal semantics of the language, the
other half being a description of a Java-to-Virtual Machine bytecode compiler,
not available to date.

In this volume Drossopoulou and Eisenbach [8] give a “small-step” structural
operational semantics which covers roughly the sequential part of our sublan-
guage of Java; their work, which is mainly concerned with proving type sound-
ness, has been formalized by Syme [19]. Von Oheimb and Nipkow [14] also deal
with a sequential sublanguage of Java and give a formal proof of type safety. A
noteworthy difference between [8] and [14] is that the latter follows a “big-step”
approach. In [9] Flatt, Krishnamurthy and Felleisen investigate the semantics of
operators for combining Java classes (so-called “mixins”). All these semantics
focus on type soundness for a sequential portion of Java.

As for multi-threading, non-structural descriptions based on abstract state
machines (see [11]) are given by Börger and Schulte [5], and by Wallace [20].

Synopsis. Section 2 describes and formalizes the Java memory-threads commu-
nication protocol. Section 3 presents our event-based, structural operational
semantics of Java. Section 4 studies the notion of prescient store action. Loose
ends and future research are discussed in Section 5.

2 Event Spaces

In this section we describe and formalize the memory-threads communication
protocol of Java. This is done by writing the rules of [10, §17] as simple logical
clauses (Section 2.2) and by adopting them as well-formedness conditions on
structures called event spaces (Section 2.4). The latter are used in the opera-
tional judgements to constrain the applicability of some operational rules. An
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example of event space is given in Section 2.3, describing the “1-2-3” parallel
run of the threads θ1 and θ2 introduced above.

2.1 Actions and Events

A formal notion of event is given below in terms of five sets of entities:

– {Use, Assign, Load , Store, Read , Write, Lock , Unlock}, the action names;
– Thread
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where a and bi are lists of events, η is the poset of discourse and ∀a ∈ η . Φ
means that Φ holds for all tuples of events in η matching the elements of a (and
similarly for ∃bi ∈ η . Ψi). The clauses are abbreviated by adopting the following
conventions: quantification over a is left implicit when all events in a appear
in Φ; quantification over bi is left implicit when all events in bi appear in Ψi.
Moreover, a rule of the form ∀a ∈ η . (true ⇒ . . . ) is written a ⇒ (. . . ). When
the symbols θ and θ′ appear in a rule, we always assume that θ 6= θ′. Similarly
for values v and v′, and for events a and a′.

The rules are the following: The actions performed by any one thread are
totally ordered, and so are the actions performed by the main memory for any
one variable or lock [10, §17.2, §17.5].

α(θ), α′(θ) ⇒ α(θ) ≤ α′(θ) ∨ α′(θ) ≤ α(θ) (1)
β(x), β′(x)⇒ β(x) ≤ β′(x) ∨ β′(x) ≤ β(x) (2)

Hence, the occurrences of any action (A, θ, x) are totally ordered in the poset
of discourse. We write η(A, θ, x) the subposet of η including only instances of
(A, θ, x).

A Store action by θ on l must intervene between an Assign by θ of l and a
subsequent Load by θ of l. Less formally, a thread is not permitted to lose its
most recent assign [10, §17.3]:

(Assign, θ, l) ≤ (Load , θ, l)⇒ (Assign, θ, l) ≤ (Store, θ, l) ≤ (Load , θ, l) (3)

A thread is not permitted to write data from its working memory back to main
memory for no reason [10, §17.3]:

(Store , θ, l) ≤ (Store, θ, l)′ ⇒ (Store, θ, l) ≤ (Assign , θ, l) ≤ (Store, θ, l)′ (4)

Threads start with an empty working memory and new variables are created
only in main memory and are not initially in any thread’s working memory [10,
§17.3]:

(Use, θ, l)⇒ (Assign, θ, l) ≤ (Use , θ, l) ∨ (Load , θ, l) ≤ (Use, θ, l) (5)
(Store, θ, l)⇒ (Assign, θ, l) ≤ (Store, θ, l) (6)

A Use action transfers the contents of the thread’s working copy of a variable
to the thread’s execution engine [10, §17.1]:

(Assign, θ, l, v) ≤ (Use, θ, l, v′)⇒
(Assign, θ, l, v) ≤ (Assign , θ, l)′ ≤ (Use , θ, l, v′) ∨
(Assign, θ, l, v) ≤ (Load , θ, l) ≤ (Use , θ, l, v′)

(7)

(Load , θ, l, v) ≤ (Use, θ, l, v′)⇒
(Load , θ, l, v) ≤ (Assign, θ, l) ≤ (Use , θ, l, v′) ∨
(Load , θ, l, v) ≤ (Load , θ, l)′ ≤ (Use, θ, l, v′)

(8)
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A Store action transmits the contents of the thread’s working copy of a variable
to main memory [10, §17.1]:

(Assign, θ, l, v) ≤ (Store, θ, l, v′)⇒
(Assign, θ, l, v) ≤ (Assign , θ, l)′ ≤ (Store, θ, l, v′)

(9)

The following rules require some events to be paired in the poset of discourse.
Let A and B be posets, and let f : A 
 B indicate that a function f is either
a monotonic injection A → B with downward closed codomain or the partial
inverse of a monotonic injection B → A with downward closed codomain. For
every poset η satisfying (1) and (2), for every thread θ, left value l and object
o, there exist unique functions

read
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If a thread is to perform an Unlock action on any lock, it must first copy all
assigned values in its working memory back out to main memory [10, §17.6] (this
rule formalizes the quotation in the introduction):

(Assign, θ, l) ≤ (Unlock , θ)⇒
(Assign, θ, l) ≤ store
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are eventually assigned to a, b, and c respectively. We shall run part of this
example through our operational rules in Section 3.7. Figure 1 describes this
run as a poset of events, whose ordering is represented by the arrows. The actions
of the two threads and of the main memory on the two instance variables p.x
and p.y are aligned vertically in four columns. We let o be the object denoted
by p, while x and y stand for the left values of p.x and p.y respectively.

Since all actions performed by the same thread and by the memory on the
same variable must be totally ordered, each column of Figure 1 is a chain. More-
over, some memory actions must occur before or after some thread actions. For
example, a (Write, θ1, y, 2) must come after (Assign , θ1, y, 2) because, as dictated
by the structure of the program, an Unlock follows the assignment p.y = 2, and
hence, by (15), θ1’s working copy of y must be written in main memory before
the Unlock and after a corresponding Store. Note that not all the assigned val-
ues must be stored in main memory. For example, it would have been legal to
omit (Store, θ2, y, 3) and (Write, θ2, y, 3); in this case, however, the value 3 would
have never been passed to θ1. Similarly, not all the values used by a thread must
be first loaded from main memory: in the example no (Load , θ1, y, 2) precedes
(Use, θ1, y, 2).

As stated in the introduction, the above assignments to a, b and c would
not be possible if communication between main and working memories where
“synchronous,” that is if no other event were allowed to happen between a Read
and a corresponding Load or, equivalently, if these two actions were executed as
a single atomic step (and similarly for Store and Write). Assume in fact that
there is a synchronous run producing a = 1, b = 2, and c = 3. Since 3 must
be assigned to c, an action (Read , θ1, y, 3) must occur, and moreover it must be
after θ2 writes 3 and before it writes 100 in the master copy of y. Hence, by (15),
(Read , θ1, y, 3) must occur while θ2 is executing the synchronized block. Again
by (15), a (Store, θ1, y, 2) must occur before θ1 exits its synchronized block;
moreover this Store must occur before (Read , θ1, y, 3), otherwise the value 3
would be lost, and therefore θ1 must enter its synchronized block before θ2.
Then, in order to get the value 1 for a, the assignment a = p.x must occur
after θ2 has left the block, it has assigned, stored and written 1 in x, and after
θ1 has read and loaded such value in its working copy of x. However, by the
time θ1 can load 1 in x, the value of y in its working memory must already be 3,
because a (Read , θ1, y, 3) occured while θ2 was executing the synchronized block.
Therefore, to assign 2 to b, θ1 can neither rely on the content of it’s working
copy of y, nor on the master copy in main memory, which, by now, must contain
100.

2.4 Event Spaces

An event space is a poset of events every chain of which can be counted monoton-
ically (a0 ≤ a1 ≤ a2 ≤ . . . ) and satisfying conditions (1) to (17) of Section 2.2.

Event spaces serve two purposes in our operational semantics: On the one
hand they provide all the information needed to reconstruct the working mem-
ories (which in fact do not appear in the operational judgements). On the other
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(Lock , θ1, o)

(Assign, θ1, y, 2)
?



166                                                               

hand event spaces record the “historical” information on the computation which
constrains the execution of certain actions according to the language specifica-
tion, and hence the applicability of certain operational rules (see Section 3.4).

Given two event spaces (X,≤X) and (Y,≤Y ), we say that (X,≤X) is a con-
servative extension of (Y,≤Y ) when Y ⊆ X and ≤Y ⊆ ≤X and, for all a, b ∈ Y ,
a ≤X b implies a ≤Y b.

To adjoin a new event a to an event space η = (X,≤X), we use an operation⊕
defined as follows: η⊕a denotes nondeterministically an event space η′ = (Y,≤Y )
such that:

– η′ is a conservative extension of η, with Y = X ∪ {a};
– if a = α(θ) is a thread action performed by θ, then a′ ≤Y a for all thread

actions a′ = α′(θ) by θ in η′;
– if a = β(x) is a memory action on x, then a′ ≤ a for all memory actions

a′ = β′(x) on x in η′.

If no event space η′ exists satisfying these conditions, then η⊕a is undefined. For
example, by (5), the term η⊕(Use , θ, l) is defined only if a suitable (Assign , θ, l)
or (Load , θ, l) occurs in η. If η is an event space and a = (a1, a2, . . . , an) is a
sequence of events, we write η ⊕ a for η ⊕ a1 ⊕ a2 ⊕ · · · ⊕ an.

As little ordering may be added to an event space by the operation ⊕ as
is required by the rules of interaction: indeed two expressions η ⊕ a ⊕ b and
η⊕ b⊕ a may denote the same event space. This reflects the fact that the same
concurrent activity may be described by different sequences of interleaved events.
More ordering can also be introduced than strictly dictated by the rules. For
example, the expression (Read , θ, o)⊕ (Lock , θ, l, v)⊕ (Load , θ, l, v) may produce
an event space {(Lock , θ, o) ≤ (Read , θ, l, v) ≤ (Load , θ, l, v)}: although no rule
enforces that (Lock , θ, o) ≤ (Read , θ, l, v), it better be so in view of rule (16) if a
(Use, θ, l) is to be further added to the space.

3 Operational Semantics

The present paper focuses on the dynamic semantics of Java. Of course, the
behaviour of a program may depend on type information obtained from static
analysis. Part of this information we assume is retrievable at run-time from the
main memory (see Section 3.1), part goes to enrich the syntactic terms upon
which the operational semantics operates (see Section 3.2).

In Java every variable and every expression has a type which is known at
compile-time. The type limits the possible values that the variable can hold or
expression can produce at run-time. Adopting the terminology of [10], every
object belongs to a class (the class of the object, the one which is mentioned
when the object is created). Moreover, the values contained by a variable or
produced by an expression should, by the design of the language, be compatible
with the type of the variable or expression. A value of primitive type (such as
booleans) is only compatible with that type (boolean), while a reference to an
object is compatible with any class type which is a superclass of the object’s
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class [10, §4.5.5]. We do not implement run-time compatibility checks in our
semantics (they can be added straightforwardly). For example, like in Java, we
do not check that the object produced by evaluating the expression e in throw e;
is compatible with Throwable. However, we do use type information wherever
it is needed to drive computation. An example is the execution of a try-catch
statement (see Section 3.8).

Java’s modifiers are not treated in the present paper. For example, we do
not consider static fields; these would require minor changes of the semantic
machinery. Similarly, synchronized methods can be easily implemented by using
synchronized statements (see Section 3.7), as remarked in [10, §8.4.3.5].

After introducing in Section 3.1 semantic domains such as stores and envi-
ronments, we describe a “compilation” function translating Java programs into
semantically enriched abstract syntax (Section 3.2). Next, we define operational
judgements (Section 3.3) and give the SOS rules which generate them. These
are presented in homogeneous groups (expressions, statements, exceptions, etc.)
in Section 3.4 to 3.10.

3.1 Semantic Domains

Primitive semantic domains. These are the building blocks of our operational
semantics, and nothing is assumed on the structure of their elements.

We call RVal the primitive domain of (right) values. These are produced by
the evaluation of expressions and can be assigned to variables. A distinguished
subset Obj of RVal is also given as primitive; we call its elements (references to)
objects. In particular, since threads are objects in Java, we choose the domain
Thread
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upd : LVal× RVal× Store ⇀ Store
rval : LVal× Store ⇀ RVal.

Besides providing storage for variables, stores are assumed to contain infor-
mation produced by the static analysis of a program; typically: the names and
types of fields and methods for each class, the initial values of fields, the subclass
relation, and so on. This information does not change during execution and it
could alternatively be kept separate from stores.

Given a class type C and a store µ, the function new produces a new object
of type C with suitably initialized instance variables, and returns it in output
together with µ updated with the new object. We write:

o ∈µ C,

dropping µ when understood, to mean that o is a reference to an object in µ of a
class type which is compatible with C. We also assume that the partial function
init : FieldIdentifier × Store ⇀ RVal returns the initial values for an object’s
fields. The domain of this function is the set of pairs (f, µ) where f = (i, C) and
i is an appropriate field for C in µ.

The function upd updates a store, while rval gets the right-value associated
in a store with a given left-value. These functions are partial: they are undefined
on the left-values o.f where f is not an appropriate field for o in the given store.
We write µ[l 7→ v] and µ(l) for upd(l, v, µ) and rval(l, µ) respectively.

A rather weak axiomatization of stores is given below by using a binary
predicate � (written infix). The meaning of e1 � e2 is that if e1 is defined, then
so is e2 and they denote the same value. By e1 ' e2 we mean that both e1 � e2

and e2 � e1 hold.

µ(l) � µ′(l) where new (C, µ) = (o, µ′)
init((i, C), µ) � µ′(o.(i, C)) where new (C, µ) = (o, µ′)

µ[l 7→ v](l) � v

µ[l′ 7→ v](l) ' µ(l) if l 6= l′

µ[l 7→ v′][l 7→ v] � µ[l 7→ v]
µ[l′ 7→ v′][l 7→ v] ' µ[l 7→ v][l′ 7→ v′] if l 6= l′

µ[l 7→ µ(l)] � µ

Finally, Throws is the primitive domain of exceptional results. Upon occur-
rence of an exception, Java allows objects to be passed to handlers as “reasons”
for the exception. The primitive function

throw : Obj→ Throws

turns an object into an exception throw(o) “with reason o.” Note that elements
of Throws are not right values.
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Environments and stacks. Environments are pairs (I, ρ) where I is a subset of
Identifier ∪ {this} and ρ is a partial function from I to right values.

I = Identifier ∪ {this}
Env =

∑
I⊆I(I ⇀ RVal)

The component I of an environment (I, ρ), called the source of ρ, is meant to
contain the local variables of a block and the formal parameters of a method body
or of an exception handler. Environments are also used to store the information
on which object’s code is currently being executed: ρ(this). By abuse of notation,
we write ρ for an environment (I, ρ) and indicate with src(ρ) its source I. In
particular, we understand that ρ∅ is an empty environment (I, ρ∅) such that ρ∅(i)
is undefined for all i ∈ I. As usual, ρ[i 7→ v](j) = v if i = j and ρ[i 7→ v](j) ' ρ(j)
otherwise.

Let Stack be the domain of stacks of environments, and let the metavariable
σ range over this domain. The empty stack is written σ∅. The operation push :
Env×Stack → Stack is the usual one on stacks. An instance variable declaration
i = v binds v to i in the topmost environment of a stack σ; we write σ[i = v] the
result of this operation. The result of assigning v to i in the first environment
(I, ρ) of σ such that i ∈ I is written σ[i 7→ v]. The value associated with i in
such an environment is denoted by σ(i). More precisely:

σ[i = v] =

{
push(ρ[i 7→ v], σ′) if σ = push(ρ, σ′) and i ∈ src(ρ)
undefined otherwise;

σ[i 7→ v] =






push(ρ[i 7→ v], σ′) if σ = push(ρ, σ′) and i ∈ src(ρ)
push(ρ, σ′[i 7→ v]) if σ = push(ρ, σ′) and i /∈ src(ρ)
undefined otherwise;

σ(i) =






ρ(i) if σ = push(ρ, σ′) and i ∈ src(ρ)
σ′(i) if σ = push(ρ, σ′) and i /∈ src(ρ)
undefined otherwise.

3.2 Abstract Terms

The operational semantics presented below does not work directly on the Java
syntax of Appendix A, which we call concrete, but on the abstract terms pro-
duced by the grammar of Table 1. We call A-Term the set of abstract terms and
let t range over this set. Concrete and abstract syntax share the clauses defining
Identifier, Literal, ReturnType and ClassInstanceCreationExpression.

Some of the abstract terms, those which cannot be further evaluated, play
the role of results in our operational semantics. There are operational rules
which only apply when a result is produced ([assign4] for example). Some of the
results are called abrupt (see Section 3.8), as specified by the following grammar:

Results ::= ∗ | RVal | AbruptResults
AbruptResults ::= Throws | return RVal | return
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The terms return v and return are results produced by evaluating return state-
ments, respectively with and without a return value.

In most cases, abstract terms look just like their concrete counterparts. Some
abstract terms, however, are enriched with semantic information produced by
the static analysis of the Java program. For example, abstract blocks, which we
write {S}ρ, have two components: a sequence S of (abstract) statements and an
environment ρ containing the local variables of the block. We leave ρ implicit
when irrelevant.

Unlike with field identifiers, the method invoked by a method call e.i(. . . )
is only known at run-time, because it depends not only on the static type C of
e but on the dynamic class type of the object denoted by e. At compile-time,
however, a “most specific compile-time declaration” is chosen for i among the
methods of C and of its superclasses. The class where this declaration is found,
the types of the parameters and the return type are attached by the compiler to
i for later run-time usage (see [10, §15.11] for more detail). This motivates the
introduction of the domain MethodIdentifier in the abstract syntax. When the
rest is understood, we write just the identifier of a method identifier.

A recursive function (
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A-Statement ::= ∗ | ; | A-Block | A-StatementExpression ;
| synchronized(A-Expression ) A-Block
| A-IfThenStatement | AbruptResults
| throw A-Expression ; | A-TryStatement
| return ; | return A-Expression ;

A-Block ::= { A-BlockStatement∗ } Env
A-BlockStatement ::= A-LocalVariableDeclaration ; | A-Statement

A-LocalVariableDeclaration ::= Type A-VariableDeclarator+

A-VariableDeclarator ::= Identifier = A-Expression
A-Expression ::= RVal | Throws | Literal | Identifier | this

| A-FieldAccess | ClassInstanceCreationExpression
| A-MethodInvocation | ActivationFrame
| A-Assignment | UnaryOperator A-Expression
| A-Expression BinaryOperator A-Expression

A-FieldAccess ::= A-Expression . FieldIdentifier
FieldIdentifier ::= (Identifier , ClassType)

A-MethodInvocation ::= A-Expression . MethodIdentifier ( A-Expression∗ )
MethodIdentifier ::= (Identifier , ClassType , Type∗, ResultType)
ActivationFrame ::= (MethodIdentifier , A-Block)

A-Assignment ::= A-LeftHandSide = A-Expression
A-LeftHandSide ::= Identifier | A-FieldAccess

A-StatementExpression ::= A-Assignment | ClassInstanceCreationExpression
| A-MethodInvocation | ActivationFrame

A-TryStatement ::= try A-Block A-CatchClause+

| try A-Block A-CatchClause∗ finally A-Block
A-CatchClause ::= catch (Type Identifier ) A-Block

A-IfThenStatement ::= if (A-Expression ) A-Statement

Table 1. Abstract syntax

{ S }◦ = { S◦ }(I,ρ∅) where I is the set of local variables
declared in S

(catch (τ i) b)◦ = catch (τ i) { S }(I∪{i},ρ∅) where {S }(I,ρ∅) = b◦

((e))◦ = e◦

(e.i)◦ = e◦.f where e : τ and f = (i, τ)
(e.i(E))◦ = e◦. m(E◦) where m = (i, C, T , τ ) and the

“compile-time declaration” of i is found
in C and has signature T → τ

i◦ =






i if i appears in the scope of a local
variable declaration with that name;

this.f otherwise, where this : τ and f = (i, τ).

Table 2. Translation to abstract syntax
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a partial map from thread identifiers to pairs (t, σ), where t is an abstract term
and σ is a stack. We let the metavariable T range over M -terms:

T : Thread
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the operational semantics, the relevant “historical” information is recorded in a
configuration’s event space. Note that, given an event space η and an action a,
only if η ⊕ a is defined, and hence the occurrence of a in η complies with the
requirements of the language specification, can a rule η
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NullPointerException [access2]. A more elaborate treatment is required when
static fields are considered (see [10, §15.10.1]).

The evaluation of a method invocation e.m(e1, . . . , ek) is done in three steps:
First e, e1, . . . , ek are evaluated (in this order). If evaluation is successful, the
actual method to be invoked is then determined from m and from the type of
the object denoted by e. We deal with non-successful evaluations in Section 3.8.
Finally, the actual method call is performed. We assume that the run-time
retrieval of methods is performed by a function

methodBody : ClassType×MethodIdentifier × Store ⇀ A-Block× Identifier∗

which receives in input the class of the object for which the method is being
invoked, a method identifier m and a store (containing the class declarations),
and returns, together with the body of m, the list of its formal parameters. This
function is partial: methodBody(C, m, µ), where m = (i, C ′, T , τ ), is undefined if
no user-defined method i with signature T → τ can be found in µ, inspecting the
classes which lie between C and C ′ in the class hierarchy. In that case m could
still be a Java built-in method, like start or stop, otherwise a compile time
error would have occured. Separate operational rules are provided for built-in
methods (see Table 12 for example). Note that all such rules are subject to the
condition that methodBody is undefined (which it must be for final methods),
thus implementing method overriding.

Method calls produce activation frames, the elements of ActivationFrame
in Table 1. The block of a frame represents the body of the invoked method.
Activation frames are produced at run-time by the function

frame : Obj×MethodIdentifier× RVal ∗ × Store ⇀ ActivationFrame

defined as follows: frame(o, m, V, µ) = (m, {S}ρ[this 7→o][I 7→V ]), for an object o
of type C, if methodBody(C, m, µ) = ({S}ρ, I); otherwise it is undefined. Note
that, since the type of the null object has no name (see [10, §4.1]), frame is always
undefined when applied to null. Since it is the “static” information contained
in µ which is used by frame, we generally leave this parameter implicit. The
operational rules for evaluating activation frames are given in Table 5.

Start configuration. Let C be the only class in a program called P to be public,
and let the compilation of P produce an initial store µ∅ recording all relevant
type information. Let C have a method main with a string parameter (this is
a simplifying assumption: Java requires an array of strings, but arrays are not
treated in this paper). We understand that a command line “java P arg” given
as input to the computer produces a start configuration

(θ, (main, {S }ρ[i 7→v]), σ∅), ∅, µ

where ∅ is the empty event space, (θ, µ) = new(Thread, µ∅), v = value(arg), and
methodBody(C, main, µ∅) = ({S }ρ, i).
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[assign1]
e1
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[decl]
e1
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3.6 Local Variable Declarations

The rules for local variable declarations are given in Table 6.

3.7 Statements

Table 7 contains the rules for expression statements, skip and conditional state-
ments. Table 8 contains the rules for blocks and synchronization. The statements
for control manipulation (return and exception try) are treated in Section 3.8.

Example. Consider the two threads θ1 and θ2 of Example 2.3 running in parallel
with initially empty working memories, empty event space ∅, and stacks mapping
the local variable p to o. We write t2 the portion of program run by θ2. In the
example θ1 enters its synchronized block first. Its evaluation is described in
Figure 2, where stacks are omitted.

3.8 Control mechanisms

In Java, the evaluation of expressions and statements may have a normal or
an abrupt completion. Abrupt completion may be caused by the occurrence
of an exceptional situation during execution, such as an attempt to divide an
integer by 0; it can also be forced by the program by means of a throw or a
return statement. For example, the execution of throw e;, where the expression
e evaluates to some object o, throws an exception “with reason o” to be caught
by the nearest dynamically-enclosing catch clause of a try statement (see [10,
§11.3]). Similarly, the execution of return e; returns control, together with the
value of e, to the nearest dynamically-enclosing activation frame.

The interactions between these two mechanisms are described in [10, §14.15,
§14.16, §14.18], to which we refer for more detail. The rules for exception han-
dling are given in Table 9 and Table 11. Uncaught exceptions are not treated in
the present paper.

Some of the rules for the try statement include a finally clause written
in square brackets, to be regarded as “optional:” the brackets indicate that
the clause should be ignored if the statement at hand has no finally block.
A similar convention is adopted for the return statements and results, where
return [v] ; accounts for both cases where some value v is and is not returned
(and similarly for the results).

Table 10 contains a grammar of syntactic contexts which pop control out
upon occurrence of an abrupt evaluation result, with no further ado. Contexts
of the form ϑ [
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[pop]1 ϑ [q]
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ϑ [
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(θ1 , synchronized(p) { p.y = 2; } . . . ) | (θ2, t2), ∅, µ

(θ1 , synchronized(o) { p.y = 2; } . . . ) | (θ2 , t2), {(Lock , θ1, o)}, µ
by [statseq,

?
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All operational rules introduced so far have no interaction with the mechanism
for stopping threads; in view of the conventions introduced in Section 3.3, by
which parts of a configuration may be left implicit when not directly involved in
the evaluation, the rules of the previous sections can be read with no editing in
the new operational setting with Θ.

Table 12 presents the rules for the methods start() and stop() of the class
Thread. The interplay of stopping threads and Java’s notification system is
discussed in Section 3.10.

[start1]1,2 θ.start(); , Θ
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expressions with empty parameter list, and hence have no run objects associated
with threads, θ does nothing when started if frame(θ, run, ()) is undefined. This
explains [start2]. This rule also captures the case of a thread which has been
stopped before having ever been started (indeed possible in Java [10, §20.20.15]).
If the thread is eventually started, it will immediately terminate and its name
removed from Θ.

As a result of the invocation of a stop method of class Thread an asyn-
chronous exception is thrown. Java allows a small but bounded amount of
execution to occur between the method call and the actual throw of the excep-
tion [10, §11.3.2]. We allow such execution to be arbitrarily long: at any time
during execution a thread whose stop method has been invoked (by [stop1])
may decide that the time has come to throw a ThreadDeath exception. The
exception is thrown by [stop2] as deep inside the structure of the program as is
necessary to allow a catch by a possibly enclosing try-catch statement. This is
ensured by the side condition that t is a redex. These are the terms of the form:

Redex ::= i = v | l = v | null.f | null.f = e | l | this | i | new C () ; | k
| op v | v1 bop v2 | o.m (V ) | τ i = v d D ; | τ i = v ; | v ; | ;
| if (v) s | { } | (m, { }) | throw (o) ; | return [v] ; | try{ } H

| θ.start () ; | θ.stop () ; | o.wait () ; | o.notify () ;

As throw v and return [v] are not contained in this list of redices, a thread cannot
stop as long as it is performing a transfer of control, i.e. performing pop-out rules.

A more committed policy for stopping threads may be adopted either by
requiring fairness on [stop2] or by enforcing such a condition by means of a
counter binding the amount of execution steps allowed before this rule is applied.

No rule removes threads from a configuration: when they finish execution,
threads keep dwelling in an M -term together with the result that they produced.

3.10 Wait and notification

In Java every object has a “wait set.” A thread θ who owns at least one, say n
locks on an object o can add itself on that object’s wait set by invoking o.wait().
This thread would then lose all its locks on o and lie dormant until some other
thread wakes it up by invoking o.notify(). Before resuming computation, θ
must get its n locks back, possibly competing with other threads in the usual
manner. When a thread goes to sleep in a wait set it is said to change its state
from running to waiting. When notified, such a thread changes its state from
waiting to notified, and finally from notified to running when it obtains its locks
back.

Let the letters R, W and N stand respectively for running, waiting and
notified. The notion of M -term introduced in Section 3.3 is extended here by
endowing each thread with a record of its state. The record of a running thread
consists just of the identifier R. The record of a thread which is waiting or
notified consists of a triple (X, o, n), where X is the identifier W or N , o is the



                                                               183

object on whose wait set the thread is waiting and n is the number of locks that
the thread acquired on that object.

An M -term is now redefined to be a partial function mapping thread identi-
fiers to triples (t, ε, σ), where t and σ are as before and ε is a state record. The
notation T | (θ, t, ε, σ) extends that of Section 3.3 in the obvious way. When ε is
a triple (X, o, n) we write T | (θ, t, X, o, n, σ) for T | (θ, t, (X, o, n), σ) and omit
the parts that are not immediately relevant as usual when no confusion arises.

The operational rules introduced so far apply to M -terms of the new form by
agreeing that, unless otherwise specified, evaluation applies to running threads
(which can nevertheless change state when evaluated). More precisely: if the
state record of a thread is omitted in the left hand side of a judgement, then it
is understood to be R. For example, [expstat1] is now read
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T1 | (θ, e1, R, σ1), Θ1, η1, µ1
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Any notification on an object whose wait set is empty has no effect ([notify3]).
A waiting thread which has been stopped is woken up by [stop3].

Example. Figure 3 illustrates the interaction of the rules for wait and notification.
Consider the M -term

(θ, synchronized(p) { if(c) p.wait(); }, σ) |
(θ′, synchronized(p) { p.notify(); }, σ′).

Let t = synchronized(o) { ∗ } and t′ = synchronized(p) { p.notify(); }, let ∅
be the empty event space and η = {(Lock , θ, o) ≤ (Unlock , θ, o)}; let σ and σ′ be
stacks with σ(p) = σ′(p) = o and σ(c) = true. The stacks, which do not change
during execution, are omitted in the figure.

4 Prescient Event Spaces

The aim of this section is the formalization of the so-called “prescient stores”
of [10, §17.8] in our event space semantics. The specification claims that the
“prescient” semantics is conservative for “properly synchronized” programs. We
also formalize the intuitive notion of “proper synchronization” and prove this
claim.

The prescient store actions are introduced in [10, §17.8, p. 408] as follows:

“ . . . the store action [of variable V by thread T is allowed] to instead
occur before the assign action, if the following restrictions are obeyed:

– If the store action occurs, the assign is bound to occur. . . .

– No lock action intervenes between the relocated store and the assign.
– No load of V intervenes between the relocated store and the assign.

– No other store of V intervenes between the relocated store and the assign.
– The store action sends to the main memory the value that the assign

action will put into the working memory of thread T .

The last property inspires us to call such an early store action prescient : . . . ”

This section is an improved and corrected version of [17].

4.1 Prescient Event Space Rules

The specification of prescient stores [10, §17.8] seems to assume that it is known
which Store events are prescient and which prescient Store event is matched by
which Assign event (as if they would be e.g. re-arrangements of Store actions
in the old sense). We do not assume such knowledge but adopt a more general
approach introducing so-called labellings that allow us to use the “old” Store and
Assign events as introduced in Section 2.1 with an additional “labelling” that
states whether they are prescient or not. These labellings are not necessarily
unique but it is always possible to infer a labelling at run time. It will turn
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(θ, synchronized(p) { if(c) p.wait(); }, R) | (θ′, t′, R), ∅

(θ, synchronized(o) { if(c) p.wait(); }, R) | (θ′, t′, R), {(Lock, θ, o)}
?
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out, however, that the semantics is independent of the choice of labellings, see
Corollary 4.7.

Prescient event spaces are defined, on the one hand, by a relaxation of the
event space rules: All rules which forbid prescient stores are cancelled and used
instead to define inductively a predicate that tells whether a Store event is
necessarily prescient. But, on the other hand, we have to add some rules to
ensure that a prescient Store corresponds to a relocated Store that obeyes the
old event space rules.

First, we define an abbreviation for the maximal event of type (A, θ, l), ir-
relevant of its fourth component, occurring before some other event a, and thus
write (A, θ, l) ≤L a if

(A, θ, l) ≤ a ∧ (
(A, θ, l)′ ≤ a⇒ (A, θ, l)′ ≤ (A, θ, l)

)

If we write, however, (Store, θ, l, v) ≤L (Assign, θ, l, v), i.e. both events are
written with their values and those are identical, then we mean the maximal
(Store, θ, l, v) event with value v before (Assign , θ, l, v).

We define prescientη(Store, θ, l) to be valid if one of the rules (P1–P7) below
holds. The subscript η is usually omitted if it is clear from the context. Note
that Φ 6⇒ Ψ abbreviates ¬(Φ⇒ Ψ) where we use the conventions of Section 2.2,
i.e. ¬(Φ ⇒ Ψ) is short for ¬∀a . (Φ ⇒ ∃b . Ψ) where a and b are lists of events
and a contains precisely all events occurring in Φ except the bound (Store , θ, l)
event.

(Store, θ, l)′ ≤ (Store, θ, l) 6⇒ (Store, θ, l)′ ≤ (Assign, θ, l) ≤ (Store, θ, l) (P1)

(Store, θ, l) 6⇒ (Assign, θ, l) ≤ (Store , θ, l) (P2)

(Assign , θ, l, v′) ≤ (Store, θ, l, v) 6⇒
(Assign , θ, l, v′) ≤ (Assign, θ, l)′ ≤ (Store, θ, l, v)

(P3)

(Lock , θ) ≤ (Store, θ, l) 6⇒ (Lock , θ) ≤ (Assign, θ, l) ≤ (Store, θ, l) (P4)

(Store, θ, l)′ ≤ (Store, θ, l) ∧ prescient((Store, θ, l)′) 6⇒
(Store, θ, l)′ ≤ (Assign , θ, l) ≤ (Assign, θ, l)′ ≤ (Store, θ, l)

(P5)

(Store, θ, l, v) ≤L (Assign, θ, l, v) ≤L (Load , θ, l) 6⇒
(Assign , θ, l, v) ≤ (Store, θ, l, v)′ ≤ (Load , θ, l)

(P6)

(Store, θ, l, v) ≤L (Assign, θ, l, v) ≤L (Unlock , θ) 6⇒
(Assign , θ, l, v) ≤ (Store, θ, l, v)′ ≤ write



188                                                               

that in cases where old event space rules (3) and (15) are violated, still a relocated
(i.e. prescient) Store exists which is responsible for storing the right value. So
e.g. (P6) states that if any Store between the last Assign before a Load and the
Load itself is necessarily prescient, then the last Store before the Assign must
also be prescient and thus responsible for fulfilling old (3) when relocated. Note
that it is sufficient to consider the last Assign before the Load (and the Unlock ,
respectively).

With respect to the other (old) event space laws, we keep rules (1), (2), (5),
(7–8), (10–14), and (16).

Rule (3) has to be adapted as follows, allowing prescient Stores on the right
hand side of an implication:

(Assign , θ, l, v) ≤L (Load , θ, l)⇒
(
(Assign , θ, l, v) ≤ (Store, θ, l, v) ≤ (Load , θ, l)

) ∨
(
(Store, θ, l, v) ≤L (Assign, θ, l, v) ≤L (Load , θ, l)

(3’)

and rule (15) analogously:

(Assign, θ, l, v) ≤L (Unlock , θ)⇒
(
(Assign, θ, l, v) ≤ (Store, θ, l, v) ≤ write
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Rule (NP1) corresponds to the second, third, and fourth requirement in [10,
§17.8] (see top of Section 4), (NP2) to (P5), and (NP3) to (P7). If Assign ≤L

Unlock , such that the Assign is the last one before the Unlock , then (NP3) says
that if all Stores in between are prescient but one, then this one is necessarily
non
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For a complete prescient event space η a labelling is a predicate ` on Stores
that obeys rules (L1–L4) below together with a corresponding matching function

passign
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the nested implication

(Φ 6⇒ Ψ)⇒ passign
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prescient, sometimes one has to wait for a Load - or Lock event to happen. Also
the matching can be computed at run-time with a little lookahead, cf. (M4–M5).

By the proof of Lemma 4.1, however, labellings only exist for complete pre-
scient event spaces, hence, in the rest of the paper, any prescient event space Γ
is supposed to be completable. Any completion of Γ has a labelling and though
its restriction to Γ does not necessarily give a labelling, because (M1) obviously
need not be valid, it is easily checked that all the other rules for labellings still
hold. Thus for any completable prescient event space there exists a “partial”
labelling, which fulfills only (L1–L4) and (M2–M5). Therefore we can assume
that any completable prescient event space is endowed with a fixed (partial)
labelling ` that, for the sake of simplicity, will be exhibited in form of special
action names: pStore and pAssign. If `(Store, θ, l, v) holds then (Store , θ, l, v)
is denoted (pStore, θ, l, v) and analogously for the corresponding Assign we use
pAssign. This notation contains implicitly all information given by the matching
function, since by monotonicity of passign
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where a is any sequence of actions, e is a sequence of rules and (T, η, µ)
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Proof. Let (pStore , θ, l) ≤ (Write, θ′, l) with θ 6= θ′ and let (pAssign , θ, l) =
passign
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the matching rule (M5) would be violated. By (P1), however, there must exist
a (pAssign , θ′, l) event such that

(Store, θ′, l)′ ≤ (pAssign, θ′, l) ≤ (Store, θ′, l).

which contradicts the assumed maximality of (Assign, θ′, l).
The second case that store
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events in e. Note that
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Theorem 4.6. For properly synchronized programs the relation ≈ is a simula-
tion relation of
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the end. From e = ε we immediately get Γ ′ ∼ ∆′. Also from (∆, ε) .
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A Syntax

Statement ::= ; | Block | StatementExpression ;
| synchronized(Expression ) Block
| throw Expression ; | TryStatement
| return Expression opt ;
| IfThenStatement

Block ::= { BlockStatements opt }
BlockStatements ::= BlockStatement |BlockStatements BlockStatement
BlockStatement ::= LocalVariableDeclaration; | Statement

LocalVariableDeclaration ::= Type VariableDeclarators
ReturnType ::= Type | void

Type ::= PrimitiveType |ClassType
PrimitiveType ::= boolean | int | . . .

ClassType ::= Identifier
VariableDeclarators ::= VariableDeclarator

| VariableDeclarators , VariableDeclarator
VariableDeclarator ::= Identifier = Expression

Expression ::= AssignmentExpression
AssignmentExpression ::= Assignment | BinaryExpression

Assignment ::= LeftHandSide = AssignmentExpression
LeftHandSide ::= Name | FieldAccess

Name ::= Identifier | Name . Identifier
FieldAccess ::= Primary. Identifier

Primary ::= Literal | this | FieldAccess | (Expression )
| ClassInstanceCreationExpression
| MethodInvocation

ClassInstanceCreationExpression ::= new ClassType( )
MethodInvocation ::= Primary. Identifier( ArgumentList opt )

ArgumentList ::= Expression | ArgumentList , Expression
BinaryExpression ::= UnaryExpression

| BinaryExpression BinaryOperator
UnaryExpression

UnaryExpression ::= UnaryOperator UnaryExpression
| Primary | Name

StatementExpression ::= Assignment | ClassInstanceCreationExpression
| MethodInvocation

TryStatement ::= try Block Catches
| try Block Catches opt finally Block

Catches ::= CatchClause | CatchClauses CatchClause
CatchClause ::= catch(Type Identifier ) Block

IfThenStatement ::= if( Expression ) Statement
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