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Abstract A structural operational semantics of a significant sublan-
guage of Java is presented, including the running and stopping of threads,
thread interaction via shared memory, synchronization by monitoring
and notification, and sequential control mechanisms such as exception
handling and return statements. The operational semantics is paramet-
ric in the notion of “event space” [6], which formalizes the rules that
threads and memory must obey in their interaction. Different computa-
tional models are obtained by modifying the well-formedness conditions
on event spaces while leaving the operational rules untouched. In par-
ticular, we implement the prescient stores described in [10, §17.8] which
allow certain intermediate code optimizations, and prove that such stores
do not affect the semantics of properly synchronized programs.

1 Introduction

The object-oriented programming language Java offers simple and tightly in-
tegrated support for concurrent programming. In Java’s model of concurrency
multiple threads of control run in parallel and exchange information by operating
on objects which reside in a shared main memory. A precise informal descrip-
tion of this model is given in the Java language specification [10]. Other notable
references are [4] and [12].

This paper presents a formal semantics of a significant sublanguage of Java
including the running and stopping of threads, thread interaction via shared
memory, synchronization by monitoring and notification, and sequential control
mechanisms such as exception handling and return statements. Here we focus
on the dynamic semantics of Java and leave a detailed treatment of the static,
type-related aspects of the language, e.g. class declarations, to a followup paper.

Our semantics is given in the style of Plotkin’s structural operational seman-
tics (SOS) [15]. In SOS, which has been used in the past for describing SML
[13], evaluation is driven by the syntactic structure of programs. This allows a
powerful proof technique for semantic analysis: structural induction. The idea
inspiring the present work is that the semantics of real concurrent languages such
as Java, with complex, interacting control features can be given in full detail by
means of simple structural rules.
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One of the difficulties in modelling concurrent Java programs consists in
capturing the complex interplay of memory and thread actions during execution.
Each thread of control has, in Java, a private working memory in which it
keeps its own working copy of variables that it must use or assign. As the
thread executes a program, it operates on these working copies. The main
memory contains the master copy of each variable. There are rules about when
a thread is permitted or required to transfer the contents of its working copy
of a variable into the master copy or vice versa. The process of copying is
asynchronous. There are also rules which regulate the locking and wnlocking
of objects, by means of which threads synchronize with each other. All this is
described precisely in [10, §17] in terms of eight kinds of low-level actions: Use,
Assign, Load, Store, Read, Write, Lock, and Unlock. Here is an example of a
rule from [10, §17.6, p. 407] involving locks and variables. Let T be a thread, V/
a variable and L a lock:

“Between an Assign action by T on V and a subsequent Unlock action by
T on L, a Store action by T on V must intervene; moreover, the Write action
corresponding to that Store must precede the Unlock action, as seen by the
main memory.”

These rules impose constraints on any implementation of Java so as to allow
a correct exchange of information among threads. On the other hand they
intentionally leave much freedom to the implementor, thus permitting certain
standard hardware and software techniques to improve the speed and efficiency
of concurrent code. Therefore, it is only on the given rules that the programmer
should rely to predict the possible behaviour of a concurrent program. Likewise,
it is only the given rules that should constrain the possible execution traces
generated by a correct operational semantics.

The above considerations led us to base our semantics on the notion of event
space. These correspond roughly to configurations in Winskel’s event structures
[21] which are denotational, non-interleaving models of concurrent languages.
The use of such structures in (interleaving) operational semantics is new. It al-
lows us to give an abstract, “declarative” account of the Java thread model while
retaining the virtues of a structural approach. This description is a straight for-
mal paraphrase of the rules of [10]. Event spaces were introduced in [6], where we
showed that their use in modelling multi-threading preserves the naive seman-
tics of “sequential” computations (i.e. computations where one thread interacts
synchronously with the memory).

Basing our description of Java on the finely grained notion of event allowed
us to observe phenomena which may be not readily seen when more abstract
approaches are taken. For example, we realized that the asynchrony of commu-
nication between main memory and working memories (viz. the loose coupling of
Read and Load actions, and similarly of Store and Write) is actually observable
in Java. Let threads 8; and 6, respectively running the code

(01) synchronized(p) { p.y = 2; } a = p.x; b = p.y; ¢ = p.y;
(02) synchronized(p) { p.y = 3; p.y = 100; } p.x = 1;
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share a main memory in which p.x = p.y = 0, and let their working memories
be initially empty. No parallel execution of #; and 62 in which main and working
memories interact synchronously would possibly allow the values 1, 2 and 3 to
be assigned respectively to a, b and c. Any model of execution not capable of
producing a run with this assignment of values, indeed possible as we show in
Section 2.3, provides maybe a correct implementation, but cannot be considered
correct as semantics of Java.

The operational semantics presented below is parametric in the notion of
event space. This allows different computational models to be obtained by mod-
ifying the well-formedness conditions on event spaces while leaving the opera-
tional rules untouched. To show the flexibility of this approach we study the
“prescient” store actions introduced in [10, §17.8]. Such actions allow optimiz-
ing compilers to perform certain kinds of code rearrangements. A bisimulation
is given to prove that such rearrangements preserve the semantics of properly
synchronized programs (see also [17]).

Related work. Several other semantics of sublanguages of Java are available in the
literature. Much work has also been done on the semantics of the Java Virtual
Machine [7, 16, 18]; this is one half of a formal semantics of the language, the
other half being a description of a Java-to-Virtual Machine bytecode compiler,
not available to date.

In this volume Drossopoulou and Eisenbach [8] give a “small-step” structural
operational semantics which covers roughly the sequential part of our sublan-
guage of Java; their work, which is mainly concerned with proving type sound-
ness, has been formalized by Syme [19]. Von Oheimb and Nipkow [14] also deal
with a sequential sublanguage of Java and give a formal proof of type safety. A
noteworthy difference between [8] and [14] is that the latter follows a “big-step”
approach. In [9] Flatt, Krishnamurthy and Felleisen investigate the semantics of
operators for combining Java classes (so-called “mixins”). All these semantics
focus on type soundness for a sequential portion of Java.

As for multi-threading, non-structural descriptions based on abstract state
machines (see [11]) are given by Borger and Schulte [5], and by Wallace [20].

Synopsis. Section 2 describes and formalizes the Java memory-threads commu-
nication protocol. Section 3 presents our event-based, structural operational
semantics of Java. Section 4 studies the notion of prescient store action. Loose
ends and future research are discussed in Section 5.

2 Event Spaces

In this section we describe and formalize the memory-threads communication
protocol of Java. This is done by writing the rules of [10, §17] as simple logical
clauses (Section 2.2) and by adopting them as well-formedness conditions on
structures called event spaces (Section 2.4). The latter are used in the opera-
tional judgements to constrain the applicability of some operational rules. An
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example of event space is given in Section 2.3, describing the “1-2-3” parallel
run of the threads 6; and 65 introduced above.

2.1 Actions and Events

A formal notion of event is given below in terms of five sets of entities:

{ Use, Assign, Load, Store, Read, Write, Lock, Unlock}, the action names;
— Thread_id, the thread identifiers;

— Obj, the objects;

— LVal, the left values (or “variables,” following [10]) and

— RVal, the (right) values.

Intuitively, Use and Assign actions do just what their names suggest, oper-
ating on the private working memories. Read and Load are used for a loosely
coupled copying of data from the main memory to a working memory and dually
Store and Write are used for copying data from a working memory to the main
memory. Lock and Unlock are for synchronizing the access to objects.

Formally, an action is either a triple (A, 6, 0), where A € {Lock, Unlock}, 0
is a thread (identifier) and o is an object, or a 4-tuple of the form (A4, 6,1, v),
where A € {Use, Assign, Load, Store, Read, Write}, | is a variable, v is a value
and 0 is as above. When A € {Use, Assign, Load, Store}, the tuple (A,0,1,v)
records that the thread 6 performs an A action on [ with value v, while, if
A € {Read, Write}, it records that the main memory performs an A action on
[ with value v on behalf of §. If A is Lock or Unlock, (A,8,0) records that
0 acquires, or respectively relinquishes, a lock on o. Actions with name Use,
Assign, Load, Store, Lock and Unlock are called thread actions, while Read,
Write, Lock and Unlock are memory actions.

FEvents are instances of actions, which we think of as happening at different
times during execution. We use the same tuple notation for actions and their
instances: the context clarifies which one is meant. When no confusion arises we
may omit components of an action or event which are not immediately relevant
in the context of discourse: so (Read, ) stands for (Read, 8,1, v), for some 6 and
v. Given a thread 6, we write () for a generic instance of a thread action
performed by . Similarly, 5(z) indicates a generic instance of a memory action
involving a location or object x.

2.2 The Rules of interaction

Here we formalize the rules of [10, Chapter 17|, to which we refer for a detailed
discussion. These rules are translated into logical clauses describing the prop-
erties of a poset of events called the “poset of discourse.” The events of such a
poset, which are thought of as occurring in the given order, are meant to record
the activity of memory and threads during the execution of a Java program. We
assume that every chain of the poset of discourse can be counted monotonically:
ag < ay <asg <.... The clauses in our formalization have the form:

Vaen.(@= (Fb1€n.¥)V (@b en. ¥)V... (Tb, €n.¥,)))
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where a and b; are lists of events, 1 is the poset of discourse and Va € n.®
means that @ holds for all tuples of events in 7 matching the elements of a (and
similarly for 3b; € n.%;). The clauses are abbreviated by adopting the following
conventions: quantification over a is left implicit when all events in a appear
in @; quantification over b; is left implicit when all events in b; appear in ;.
Moreover, a rule of the form Va € . (true = ...) is written a = (...). When
the symbols 6 and 6’ appear in a rule, we always assume that 6 # 6’. Similarly
for values v and v’, and for events a and a’.

The rules are the following: The actions performed by any one thread are
totally ordered, and so are the actions performed by the main memory for any
one variable or lock [10, §17.2, §17.5].

a(f), a’(0) = a(0) () (1)
B(x), ' (x) = p(x) B(x) (2)

Hence, the occurrences of any action (A, 6, z) are totally ordered in the poset
of discourse. We write (A, 0, x) the subposet of n including only instances of
(4,0, x).

A Store action by 6 on [ must intervene between an Assign by 6 of [ and a
subsequent Load by 6 of I. Less formally, a thread is not permitted to lose its
most recent assign [10, §17.3]:

AORNZAC)
B'(@) v ' (@)

< <
< <

(Assign, 0,1) < (Load, 0,1) = (Assign, 0,1) < (Store,0,1) < (Load,0,l) (3)

A thread is not permitted to write data from its working memory back to main
memory for no reason [10, §17.3]:

(Store, 0,1) < (Store, 0,1)" = (Store, 0,1) < (Assign, 0,1) < (Store,0,1)"  (4)

Threads start with an empty working memory and new variables are created
only in main memory and are not initially in any thread’s working memory [10,

§17.3]:

(Use, 0,1) = (Assign, 0,1)
(Store, 0,1) = (Assign, 0,1)

(Use,0,1) V (Load, 6,1) < (Use, 0,1) (5)
(Store, 0,1) (6)

IA A

A Use action transfers the contents of the thread’s working copy of a variable
to the thread’s execution engine [10, §17.1]:

(Assign, 0,1,v) < (Use,0,1,v") =
(Assign, 0,1,v) < (Assign,0,1) < (Use, 0,1,v") V (7)
(Assign, 0, l ,v) < (Load, 0,1) < (Use, 0,1,0")

(Load, 0,1,v) < (Use,0,1,v") =
(Load, 0,1,v) < (Assign,0,1) < (Use,0,1,v") vV (8)
(Load, 0,1,v) < (Load, 0,1) < (Use,0,1,0")
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A Store action transmits the contents of the thread’s working copy of a variable
to main memory [10, §17.1]:

(Assign, 0,1,v) < (Store,0,1,v") = (9)
(Assign, 0,1,v) < (Assign,0,1) < (Store,0,1,v)
The following rules require some events to be paired in the poset of discourse.
Let A and B be posets, and let f : A = B indicate that a function f is either
a monotonic injection A — B with downward closed codomain or the partial
inverse of a monotonic injection B — A with downward closed codomain. For
every poset 1 satisfying (1) and (2), for every thread 0, left value I and object
0, there exist unique functions

read_of, 4, : n(Load, 0,1) = n(Read, 0,1)
store-of,, o, = n(Write, 0,1) = n(Store, 0,1)
lock_of, ¢ , : 1(Unlock, 8, 0) = n(Lock,0,0).

These are called the “pairing” functions. Indices are omitted when understood.
The function read_of matches the n-th occurrence of (Load, 6,1) in n with the
n-th occurrence of (Read, 6,1) if such an event exists in 1 and is undefined oth-
erwise. Similarly for store_of and lock_of.

Each Load or Write action is uniquely paired with a preceding Read or Store
action respectively. Matching actions bear identical values [10, §17.2, §17.3]:

(Load, 8,1,v) = (Read, 0,1,v) = read_of (Load, 0,1,v) < (Load, 8,1, v) (10)
(Write, 0,1, v) = (Store, 0,1,v) = store_of (Write, 0,1,v) < (Write,0,1,v) (11)

Rules (10) and (11) ensure that read_of and store_of are total. We call load _of
and write_of their partial inverses.

The actions on the master copy of any given variable on behalf of a thread are
performed by the main memory in exactly the order that the thread requested

10, §17.3]:
(Store, 0,1) < (Load, 0,1) = write_of (Store, 0,1) < read_of (Load,0,1)  (12)
A thread is not permitted to unlock a lock it does not own [10, §17.5]:
(Unlock, 0, 0) = lock_of (Unlock, 8, 0) < (Unlock, 6§, 0) (13)

Rule (13) ensures that lock_of is total. We write unlock_of its partial inverse.

Only one thread at a time is permitted to lay claim to a lock, and moreover
a thread may acquire the same lock multiple times and does not relinquish
ownership of it until a matching number of Unlock actions have been performed
[10, §17.5]:

(Lock,0,0) < (Lock, 8, 0) = unlock_of (Lock, 8, 0) < (Lock,#',0) (14)
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If a thread is to perform an Unlock action on any lock, it must first copy all
assigned values in its working memory back out to main memory [10, §17.6] (this
rule formalizes the quotation in the introduction):

(Assign, 0,1) < (Unlock, ) =

15
(Assign, 0,1) < store_of (Write, 6,1) < (Write,0,1) < (Unlock, 6) (15)

A Lock action acts as if it flushes all variables from the thread’s working memory;
before use they must be assigned or loaded from main memory [10, §17.6]:

(Lock,0) < (Use, 6,1) =
(Lock, 0) < (Assign, 0,1) < (Use,0,1) V (16)
(Lock, 0) < read_of (Load,0,1) < (Load, 8,1) < (Use, 6,1)
(Lock,0) < (Store, 0,1) = (Lock, 0) < (Assign, 0,1) < (Store, 6,1) (17)

Discussion. Each of the above rules corresponds to one rule in [10]. Note that
the language specification requires any Read action to be completed by a corre-
sponding Load and similarly for Store and Write. The above theory does not
include clauses expressing such requirements because it must capture “incom-
plete” program executions (see Section 4). Except for read and store completion,
any rule in [10] which we have not included above can be derived in our axiom-
atization. In particular,

(Load, 0,1) < (Store, 0,1) = (Load, 0,1) < (Assign, 0,1) < (Store,0,1)  (*)

of [10, §17.3] holds in any model of the axioms. In fact, by (6) there must
be some Assign action before the Store; moreover, one of such Assign must
intervene in between the Load and the Store, because otherwise, from (1) and
(3), there would be a chain (Store,0,1) < (Load,0,l) < (Store,0,1) with no
Assign in between, which contradicts (4). Similarly, the following rule of [10,
§17.3] derives from (10) and (11):

(Load, 0,1) < (Store, 0,1) = read_of (Load, 0,1) < write_of (Store, 0,1)

Clauses (6) and (17) simplify the corresponding rules of [10, §17.3, §17.6] which
include a condition (Load, 6,1) < (Store,0,l) to the right of the implication.
This would be redundant because of ().

2.3 Example

We briefly illustrate the above formal rules on the example given in the intro-
duction, where two threads

(61) synchronized(p) { p.y = 2; } a = p.x; b = p.y; ¢ = p.y;
(02) synchronized(p) { p.y = 3; p.y = 100; } p.x = 1;

start with a main memory where both instance variables p.x and p.y have value
0, and with empty working memories, and interact so that the values 1, 2 and 3
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are eventually assigned to a, b, and c respectively. We shall run part of this
example through our operational rules in Section 3.7. Figure 1 describes this
run as a poset of events, whose ordering is represented by the arrows. The actions
of the two threads and of the main memory on the two instance variables p.x
and p.y are aligned vertically in four columns. We let o be the object denoted
by p, while x and y stand for the left values of p.x and p.y respectively.

Since all actions performed by the same thread and by the memory on the
same variable must be totally ordered, each column of Figure 1 is a chain. More-
over, some memory actions must occur before or after some thread actions. For
example, a (Write, 01, y, 2) must come after (Assign, 61,y, 2) because, as dictated
by the structure of the program, an Unlock follows the assignment p.y = 2, and
hence, by (15), 61’s working copy of y must be written in main memory before
the Unlock and after a corresponding Store. Note that not all the assigned val-
ues must be stored in main memory. For example, it would have been legal to
omit (Store, 02, y,3) and (Write, 02, y, 3); in this case, however, the value 3 would
have never been passed to 6;. Similarly, not all the values used by a thread must
be first loaded from main memory: in the example no (Load, 01, y,2) precedes
(Use, 01,y,2).

As stated in the introduction, the above assignments to a, b and ¢ would
not be possible if communication between main and working memories where
“synchronous,” that is if no other event were allowed to happen between a Read
and a corresponding Load or, equivalently, if these two actions were executed as
a single atomic step (and similarly for Store and Write). Assume in fact that
there is a synchronous run producing a = 1, b = 2, and ¢ = 3. Since 3 must
be assigned to ¢, an action (Read, 01, y,3) must occur, and moreover it must be
after 05 writes 3 and before it writes 100 in the master copy of y. Hence, by (15),
(Read, 61,y,3) must occur while 6, is executing the synchronized block. Again
by (15), a (Store,01,y,2) must occur before 6 exits its synchronized block;
moreover this Store must occur before (Read,6,y,3), otherwise the value 3
would be lost, and therefore 6; must enter its synchronized block before 6.
Then, in order to get the value 1 for a, the assignment a = p.x must occur
after 05 has left the block, it has assigned, stored and written 1 in x, and after
01 has read and loaded such value in its working copy of . However, by the
time 6; can load 1 in x, the value of y in its working memory must already be 3,
because a (Read, 01, y, 3) occured while 6 was executing the synchronized block.
Therefore, to assign 2 to b, #; can neither rely on the content of it’s working
copy of y, nor on the master copy in main memory, which, by now, must contain

100.

2.4 Event Spaces

An event space is a poset of events every chain of which can be counted monoton-
ically (ap < a1 < ag < ...) and satisfying conditions (1) to (17) of Section 2.2.
Event spaces serve two purposes in our operational semantics: On the one
hand they provide all the information needed to reconstruct the working mem-
ories (which in fact do not appear in the operational judgements). On the other
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(Lock, 61, 0)
}
(ASSZ'gTL, 017 Y, 2)

}

(Store, 61,y,2)

\

(Write, 61,y,2)
(Unlock, 64 ,40) ‘ (Lock, 02, 0)
'
(ASSZ'gTL, 927 Y, 3)

}
(Store, 027 Y, 3)

-

(Write, 02, y, 35 (Assign, 02, y, 100)
' '
(Read, 61,y,3) (Store, 63, y, 100)

g

(Write, 02, y, 106)

(Unlock, 02, 0)
'
(Assign, 02, x,1)

'
(Store, O, 2,1)

(Write, 02, x,1)

{
(Read, 61, 2,1)

(Load, 61, x, 1)‘

}
(US@, 017 Zz, 1)

}
(USG, 017 Y, 2)

}
(Load, 017 Y, 3)

'
(US@, 917 Y, 3)

Figure 1. An event space for Example 2.3
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hand event spaces record the “historical” information on the computation which
constrains the execution of certain actions according to the language specifica-
tion, and hence the applicability of certain operational rules (see Section 3.4).

Given two event spaces (X, <x) and (Y, <y), we say that (X, <x) is a con-
servative extension of (Y,<y) when ¥ C X and <y C <x and, for alla,b€ Y,
a <x b implies a <y b.

To adjoin a new event a to an event space ) = (X, <x ), we use an operation ®
defined as follows: n®a denotes nondeterministically an event space ' = (Y, <y)
such that:

— 7 is a conservative extension of n, with Y = X U {a};

— if @ = «(f) is a thread action performed by 6, then o’ <y a for all thread
actions o’ = o/(6) by 0 in 7//;

— if a = fB(x) is a memory action on x, then a’ < a for all memory actions
a =pf'(z)onzin 7.

If no event space 1’ exists satisfying these conditions, then n@®a is undefined. For
example, by (5), the term n@® (Use, 0,1) is defined only if a suitable (Assign, 6,1)
or (Load,0,1) occurs in 7. If n is an event space and a = (a1, as,...,a,) is a
sequence of events, we write n@aforn@®a; Bas B --- P ay.

As little ordering may be added to an event space by the operation & as
is required by the rules of interaction: indeed two expressions 1 @ a @& b and
1@ b @ a may denote the same event space. This reflects the fact that the same
concurrent activity may be described by different sequences of interleaved events.
More ordering can also be introduced than strictly dictated by the rules. For
example, the expression (Read, 0, 0) ® (Lock, 0,1, v) ® (Load, 0,1, v) may produce
an event space {(Lock,d,0) < (Read, 8,1,v) < (Load,8,l,v)}: although no rule
enforces that (Lock, 0, 0) < (Read, 0,1,v), it better be so in view of rule (16) if a
(Use, 0,1) is to be further added to the space.

3 Operational Semantics

The present paper focuses on the dynamic semantics of Java. Of course, the
behaviour of a program may depend on type information obtained from static
analysis. Part of this information we assume is retrievable at run-time from the
main memory (see Section 3.1), part goes to enrich the syntactic terms upon
which the operational semantics operates (see Section 3.2).

In Java every variable and every expression has a type which is known at
compile-time. The type limits the possible values that the variable can hold or
expression can produce at run-time. Adopting the terminology of [10], every
object belongs to a class (the class of the object, the one which is mentioned
when the object is created). Moreover, the values contained by a variable or
produced by an expression should, by the design of the language, be compatible
with the type of the variable or expression. A value of primitive type (such as
booleans) is only compatible with that type (boolean), while a reference to an
object is compatible with any class type which is a superclass of the object’s
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class [10, §4.5.5]. We do not implement run-time compatibility checks in our
semantics (they can be added straightforwardly). For example, like in Java, we
do not check that the object produced by evaluating the expression e in throw e;
is compatible with Throwable. However, we do use type information wherever
it is needed to drive computation. An example is the execution of a try-catch
statement (see Section 3.8).

Java’s modifiers are not treated in the present paper. For example, we do
not consider static fields; these would require minor changes of the semantic
machinery. Similarly, synchronized methods can be easily implemented by using
synchronized statements (see Section 3.7), as remarked in [10, §8.4.3.5].

After introducing in Section 3.1 semantic domains such as stores and envi-
ronments, we describe a “compilation” function translating Java programs into
semantically enriched abstract syntax (Section 3.2). Next, we define operational
judgements (Section 3.3) and give the SOS rules which generate them. These
are presented in homogeneous groups (expressions, statements, exceptions, etc.)
in Section 3.4 to 3.10.

3.1 Semantic Domains

Primitive semantic domains. These are the building blocks of our operational
semantics, and nothing is assumed on the structure of their elements.

We call RVal the primitive domain of (right) values. These are produced by
the evaluation of expressions and can be assigned to variables. A distinguished
subset Obj of RValis also given as primitive; we call its elements (references to)
objects. In particular, since threads are objects in Java, we choose the domain
Thread_id of the previous section to be Obj. Right values come equipped with a
primitive function value mapping literals to the corresponding values.

value : Literal — RVal

In particular, null is the reference to the null object denoted by the literal null,
that is: null = value(null). Similarly, true = value(true) and so on.

In Java the object denoted by an expression e may contain several fields
with the same name 4; then, the type of e decides on which field is actually
accessed by the expression e.i. An identifier together with a type are therefore a
non-ambiguous name for field access. We call Fieldldentifier, ranged over by f,
the set of such pairs (see Table 1). The domain of left-values introduced in the
previous section is not primitive: an instance variable is addressed by a non-null
object reference o together with a field identifier f, and written o.f.

LVal = (0bj\ {null}) x FieldIdentifier

Store is the primitive domain of stores ranged over by p. This domain comes
equipped with the following primitive semantic functions, where ClassType is as
in Appendix A:

new : ClassType x Store — Obj x Store
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upd : LVal x RVal x Store — Store
rval : LVal x Store = RVal.

Besides providing storage for variables, stores are assumed to contain infor-
mation produced by the static analysis of a program; typically: the names and
types of fields and methods for each class, the initial values of fields, the subclass
relation, and so on. This information does not change during execution and it
could alternatively be kept separate from stores.

Given a class type C' and a store p, the function new produces a new object
of type C with suitably initialized instance variables, and returns it in output
together with p updated with the new object. We write:

o€, C,

dropping p when understood, to mean that o is a reference to an object in p of a
class type which is compatible with C. We also assume that the partial function
init : Fieldldentifier x Store — RVal returns the initial values for an object’s
fields. The domain of this function is the set of pairs (f, u) where f = (i, C) and
1 is an appropriate field for C in p.

The function upd updates a store, while rval gets the right-value associated
in a store with a given left-value. These functions are partial: they are undefined
on the left-values o. f where f is not an appropriate field for o in the given store.
We write p[l — v] and p(l) for upd(l, v, ) and rval(l, 1) respectively.

A rather weak axiomatization of stores is given below by using a binary
predicate < (written infix). The meaning of e; < eq is that if e; is defined, then
S0 is eo and they denote the same value. By e; ~ e5 we mean that both e; < es
and ey < e7 hold.

() =1/ (1) where new(C, p) = (o, ')
init((i,C), p) = 1 (0.(i,C)) where new(C, p) = (o, u")
pll = o](1) =
)

P
o~

pll! — ] ifl£1

IA
1
=3

ult o)L
pll! — V[l — (=)l =] ifl#£T

pll = p(l)

LA 12
T EE = ¢ OB E

12

Finally, Throws is the primitive domain of exceptional results. Upon occur-
rence of an exception, Java allows objects to be passed to handlers as “reasons”
for the exception. The primitive function

throw : Obj — Throws

turns an object into an exception throw(o) “with reason 0.” Note that elements
of Throws are not right values.
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Environments and stacks. Environments are pairs (I, p) where I is a subset of
Identifier U {this} and p is a partial function from I to right values.

T = Identifier U {this}
Env=7>3_;c7(I = RVal)

The component I of an environment (I, p), called the source of p, is meant to
contain the local variables of a block and the formal parameters of a method body
or of an exception handler. Environments are also used to store the information
on which object’s code is currently being executed: p(this). By abuse of notation,
we write p for an environment (I, p) and indicate with sre(p) its source I. In
particular, we understand that py is an empty environment (I, py) such that py(7)
is undefined for all¢ € I. Asusual, p[i — v](j) = vifi = j and p[i — v](j) =~ p(j)
otherwise.

Let Stack be the domain of stacks of environments, and let the metavariable
o range over this domain. The empty stack is written oy. The operation push :
Envx Stack — Stack is the usual one on stacks. An instance variable declaration
i = v binds v to ¢ in the topmost environment of a stack o; we write o[i = v] the
result of this operation. The result of assigning v to ¢ in the first environment
(I, p) of o such that ¢ € I is written o[i — v]. The value associated with ¢ in
such an environment is denoted by o (7). More precisely:

i = o] push(pli — v],0’) if o = push(p,o’) and i € src(p)
oli=v] =
undefined otherwise;

push(pli — v],0’) if o0 = push(p,o’) and i € sre(p)

oli — v] = ¢ push(p,o’[i — v]) if o = push(p,o’) and i & src(p)
undefined otherwise;
p() if o = push(p,o’) and i € src(p)
o(i) =< o'(4) if o = push(p,o’) and i ¢ src(p)

undefined otherwise.

3.2 Abstract Terms

The operational semantics presented below does not work directly on the Java
syntax of Appendix A, which we call concrete, but on the abstract terms pro-
duced by the grammar of Table 1. We call A-Term the set of abstract terms and
let ¢t range over this set. Concrete and abstract syntax share the clauses defining
Identifier, Literal, ReturnType and ClassInstanceCreationFExpression.

Some of the abstract terms, those which cannot be further evaluated, play
the role of results in our operational semantics. There are operational rules
which only apply when a result is produced ([assign4] for example). Some of the
results are called abrupt (see Section 3.8), as specified by the following grammar:

Results ::= * | RVal | AbruptResults
AbruptResults ::= Throws | return RVal | return
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The terms return v and return are results produced by evaluating return state-
ments, respectively with and without a return value.

In most cases, abstract terms look just like their concrete counterparts. Some
abstract terms, however, are enriched with semantic information produced by
the static analysis of the Java program. For example, abstract blocks, which we
write {S},, have two components: a sequence S of (abstract) statements and an
environment p containing the local variables of the block. We leave p implicit
when irrelevant.

Unlike with field identifiers, the method invoked by a method call e.i(...)
is only known at run-time, because it depends not only on the static type C of
e but on the dynamic class type of the object denoted by e. At compile-time,
however, a “most specific compile-time declaration” is chosen for ¢ among the
methods of C' and of its superclasses. The class where this declaration is found,
the types of the parameters and the return type are attached by the compiler to
i for later run-time usage (see [10, §15.11] for more detail). This motivates the
introduction of the domain Methodldentifier in the abstract syntax. When the
rest is understood, we write just the identifier of a method identifier.

A recursive function (_)° translates concrete into abstract syntax. Terms
of the shared domains are translated into themselves. The concrete list-like
syntactic domains, such as BlockStatements, are translated in the obvious way
into abstract domains of the form K* and KT, where:

K= | KK*
Kta=K|KK*.

Lists that are optional in a concrete term are translated into the empty list ()
when missing. In writing abstract terms we often omit the empty list.

The translation is generally trivial. For example: (throw (e))° = throw(e°).
All non-trivial cases are listed in Table 2. We understand that a “declaration
environment” is implicitly carried along during translation, recording the static
information collected from processing class declarations. We express that an
expression e has declared type 7 (in the current declaration environment) by
writing e : T.

Every syntactic domain A-IC of the abstract syntax corresponds to a concrete
domain KC, and the translation is such that ¢t € IC whenever t° € A-K. There
are syntactic categories in the abstract syntax which have no counterpart in the
concrete; these are: Obj, RVal, Throws, Fieldldentifier, Methodldentifier and
ActivationFrame. Of these only the latter is still to be discussed, which we do
in Section 3.5.

3.3 Operational Judgements

Configurations. A configuration represents the state of execution of a multi-
threaded Java program; therefore, it may include several abstract terms, one for
each thread of execution. Each thread has an associated stack. We call M -term



A-Statement

A-Block

A-BlockStatement
A-LocalVariableDeclaration
A-VariableDeclarator
A-Ezxpression

A-FieldAccess
Fieldldentifier
A-MethodInvocation
Methodldentifier
ActivationFrame
A-Assignment
A-LeftHandSide

A-StatementExpression
A-TryStatement

A-CatchClause
A-IfThenStatement
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= |; | A-Block | A-StatementEzpression;
| synchronized ( A-Fxpression) A-Block
| A-IfThenStatement | AbruptResults
| throw A-Ezpression; | A-TryStatement
| return; | return A-Expression;
::={ A-BlockStatement” } Env
::= A-LocalVariableDeclaration; | A-Statement
::= Type A-VariableDeclarator”
::= Identifier = A-Ezxpression
= RVal | Throws| Literal | Identifier | this
| A-FieldAccess | ClassInstanceCreationEzpression
| A-MethodInvocation | ActivationFrame
| A-Assignment | UnaryOperator A-Expression
| A-Expression BinaryOperator A-Expression
::= A-Ezxpression. Fieldldentifier
::= (Identifier, ClassType)
::= A-Ezpression. Methodldentifier ( A-Expression”)
::= (Identifier, ClassType, Type*, ResultType)
::= (MethodIdentifier , A-Block)
= A-LeftHandSide = A-Expression
::= Identifier | A-FieldAccess
= A-Assignment | ClassInstanceCreationExpression
| A-MethodInvocation | ActivationFrame
::=try A-Block A-CatchClause™
| try A-Block A-CatchClause” finally A-Block
::= catch ( Type Identifier) A-Block
= 1if ( A-Expression) A-Statement

Table 1. Abstract syntax

{8y ={5

(catch (7 1) b)°
(€ed)°
(e.i

(e.i(E)

= e°
=e°.f

o

)
)O

}1,0p) Where I is the set of local variables
declared in §

= catch (7 i) { S }(1ugiy.pg) Where { S} (1) = b°

where e: 7 and f = (i,7)

= ¢e°.m(E°) where m = (i,C, T, 7) and the

“compile-time declaration” of 7 is found
in C and has signature 7 — 7

if 4 appears in the scope of a local
variable declaration with that name;

this.f otherwise, where this: 7 and f = (¢, 7).

Table 2. Translation to abstract syntax
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a partial map from thread identifiers to pairs (¢, o), where ¢ is an abstract term
and o is a stack. We let the metavariable T' range over M -terms:

T : Thread_id — A-Term x Stack.

When we assume that 6 is not in the domain of T' we write T | (6,¢, o) for the
M-term T such that T7(0) = (t,0) and T7(6') ~ T'(0") for 8’ # 0, where ~ is as
in Section 3.1.

A configuration of the operational semantics is a triple (7,7, ) consisting
of an M-term T, an event space n and a store p. In writing configurations, we
generally drop the parentheses and all parts that are not immediately relevant in
the context of discourse; for example, we may write just “¢,o,7” to mean some
configuration (7' | (0,¢,0),n, u). Configurations are ranged over by ~.

Operational semantics. The operational semantics is the smallest binary relation
— on configurations which is closed under the rules of Section 3.4 to 3.10.
These are, in fact, rule schemes, whose instances are obtained by replacing
the metavariables with suitable semantic objects. Rules with no premise are
called axioms. Related pairs of configurations are written y; — 72 and called
operational judgements or transitions.

Rule conventions. In writing an axiom y; — 2 we focus only on the relevant
parts of the configurations involved, and understand that whatever is omitted
from 7; remains unchanged in v,. For example, we understand that the axiom
; — x stands for T' | (0,;,0),n,u— T | (0, %,0),n, n. On the other hand, rules
with a premise are read by assuming that whatever changes occur in the omitted
parts of the premise (besides thread identifiers) also occur in the conclusion
(unless otherwise specified). For example, we understand that:

er—* €2 Ty | (0, e1,01),m1, 1 — o | (6, €2, 02), 12, p2
—— stands for

e1;— e} Ty | (8,e1;,010),m, 11 — Ta | (B, e25,00),m2, g

Metavariable convention. The metavariables used below (in variously deco-
rated form) in the rule schemes range as follows: k € Literal, i € Identifier,
f € Fieldldentifier, m € Methodldentifier, o € Obj, | € LVal, v € RVal,
V € RVal*, e € A-Expression, E € A-Expression®, T € Type, C € ClassType,
d € A-VariableDeclarator, D € A-VariableDeclarator”, s € A-BlockStatement,
S € A-BlockStatement™, b € A-Block, h € A-CatchClause, H € A-CatchClause”,
¢ € Results, and q € AbruptResults.

3.4 “Silent” Actions

We call Load, Store, Read and Write the “silent” actions because they may
spontaneously occur during the execution of a Java program without the inter-
vention of any thread’s execution engine (no term evaluation). In some cases
such an occurrence is subject to the previous occurrence of other actions. In
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the operational semantics, the relevant “historical” information is recorded in a
configuration’s event space. Note that, given an event space 1 and an action a,
only if @ a is defined, and hence the occurrence of a in 17 complies with the
requirements of the language specification, can a rule n — 1 & a be fired. This
point is crucial for a correct understanding of the rules [read, load, store, write]
for silent actions given in Table 3, as well as [assign5, access3] of Table 4 and
[syn2, synd] of Table 8.

The same argument explains how is the [store] rule able to “guess” the right
value to be stored: the axioms (6) and (9) of Section 2 guarantee that the
apparently arbitrary value v in n — 1 @ (Store, 0,1, v) is in fact the latest value
assigned by 0 to [. In Section 4, changing the event space axioms, we let [store]
make a real guess on v, by looking “presciently” into the future.

[read]" T,n, p— T,n @ (Read, 0,1, p(1)),
[load]* T,n —T,n® (Load, 0,1, v)
[store]! T,n— T,n® (Store, 0,1, v)

[write]'  T,n,u— T,n® (Write, 0,1,v), u[l — v]

Lif T(6) is defined

Table 3. “Silent” actions

3.5 Expressions

Table 4 contains the rules for expressions.

To evaluate the assignment to an instance variable successfully, the left hand
side is evaluated first by repeatedly applying [assignl], until a left value is pro-
duced. Then the right hand side is evaluated by [assign3], and the assignment of
the resulting value is recorded in the event space by [assign5]. Note that [assignl]
does not apply to an assignment e; = e when e; is a left value [ because, even
though [ may further evaluate to a right value v by [access3], v = e would not be
a legal abstract term. The same argument applies below to rules such as [syn3]
and so forth. Note that evaluating null.f to throw(o) in rule [access2] would
not allow exceptions thrown to the left hand side of an assignment to propagate
outward in the structure of the program (see Section 3.8). To wit, throw(o) is an
expression result while throw(o).f can be viewed as an “A-LeftHandSide result.”

The rules [assign2] and [assignd] deal with assignments to local variables. In
the present semantics an attempt to access a field of the null object raises a
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NullPointerException [access2]. A more elaborate treatment is required when
static fields are considered (see [10, §15.10.1]).

The evaluation of a method invocation e.m(eq, ..., ex) is done in three steps:
First e, e1, ..., e, are evaluated (in this order). If evaluation is successful, the
actual method to be invoked is then determined from m and from the type of
the object denoted by e. We deal with non-successful evaluations in Section 3.8.
Finally, the actual method call is performed. We assume that the run-time
retrieval of methods is performed by a function

methodBody : ClassType x MethodIdentifier x Store — A-Block x Identifier”

which receives in input the class of the object for which the method is being
invoked, a method identifier m and a store (containing the class declarations),
and returns, together with the body of m, the list of its formal parameters. This
function is partial: methodBody(C,m, ), where m = (i, C’, T, 1), is undefined if
no user-defined method i with signature 7 — 7 can be found in g, inspecting the
classes which lie between C' and C’ in the class hierarchy. In that case m could
still be a Java built-in method, like start or stop, otherwise a compile time
error would have occured. Separate operational rules are provided for built-in
methods (see Table 12 for example). Note that all such rules are subject to the
condition that methodBody is undefined (which it must be for final methods),
thus implementing method overriding.

Method calls produce activation frames, the elements of ActivationFrame
in Table 1. The block of a frame represents the body of the invoked method.
Activation frames are produced at run-time by the function

frame : Obj x Methodldentifier x RVal* x Store — ActivationFrame

defined as follows: frame(o,m,V, ) = (m,{S} jthis—ol[1—v]), for an object o
of type C, if methodBody(C,m, ) = ({S},,I); otherwise it is undefined. Note
that, since the type of the null object has no name (see [10, §4.1]), frame is always
undefined when applied to null. Since it is the “static” information contained
in p which is used by frame, we generally leave this parameter implicit. The
operational rules for evaluating activation frames are given in Table 5.

Start configuration. Let C be the only class in a program called P to be public,
and let the compilation of P produce an initial store pg recording all relevant
type information. Let C' have a method main with a string parameter (this is
a simplifying assumption: Java requires an array of strings, but arrays are not
treated in this paper). We understand that a command line “java P arg” given
as input to the computer produces a start configuration

(97 (mainv { S }p[i»—w])a JVJ)’ Qa M

where () is the empty event space, (0, ) = new(Thread, ug), v = value(arg), and
methodBody(C,main, puy) = ({ S },,9).
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[assignl] a e [assign2] &
€1 =€ —> €2 = ¢ 1=€1 — 1= ¢€y
[assign3| R [assignd] i=v,0—v,0[i— 1]
= €1 —> | = €9
[assign3] (0,1 = v), 1 —= (6,0),7 & (Assign, 6,1, v)
€1 — €9
[access1] e [access2]!  null. f, p — throw(o) . f, i/
€1 . f —> €9 . f
[access3] (97 l)a n— (07 U), n @ ( USG, 97 lv U)
[this] this, o — o(this),o [var] i,0 —0(i),0o
[new] new C' (), p — new(C, p) [lit] k — value(k)
[unop1] _ame [unop2] op v — op(v)
op €1 — Op €2
[binop1] a e [binop2] are
e1 bope— e bope v bop e — v bop eg
[binop3] vy bop va — bop(vy, v2)
€1 —> €2 By — Es
1 _— 2 _—
[parseql] P R—— [parseq?2] S —
— FEi—F
[calll] a 2 [call2] . 2
e1.m(E) — ea.m(E) o.m(Ey) — o.m(E3)

[call3] 0.m(V) — frame(o,m, V) [call4]! null. m(V'), p — throw(o), i/

! where (o, ¢') = new(NullPointerException, 1)

Table 4. Expressions

by — by . -
[frame] (e b) — (m.ba) [exit1] (m,{});
[exit2]  (m,{return S});— x [exit3] (m,{returnv S}) — v

Table 5. Activation frames
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el —e
[decl] _ ! R
Ti=e D;—T1=1e3 D,
[locvardecl1] Ti=vdD;, c—7dD;, ofi =1]
[locvardecl2] Ti=v;, 00— %, 0l =1
Table 6. Local variable declarations
el —e
[expstat]] N [expstat2] vy — ¥
€1; —> €2,
€1 — €9
ski j— % if1
[skip] ’ [if1] if(er;) s — if(ea) s
[if2] if(true) s — s [if3] if(false) s — *

Table 7. Expression statements, skip and conditional

[statseq] % [] xS — S
[block1] {}—=
block?] S1, push(p1, 01) —> Sa, push(pz, 02)
{Sl}P1701 — {SQ}sz 02
€1 —> €2
svnl 1
[synd] synchronized (e1) b — synchronized (ez) b
[S H2] €, 1M1 —> 0,72
,synchronized (e) b), 71 — synchronized (0) b,m2 & (Lock, 0,0
Y o b b, 72 & (Lock, 0
by —b
[syn3] . — .
synchronized (0) by — synchronized (o) by
[Synlﬂ b? m —C 12

(0, synchronized (0) b), 1 — ¢, n2 @ (Unlock, 0, 0)

Lif e; ¢ RVal

Table 8. Blocks and synchronization
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3.6 Local Variable Declarations

The rules for local variable declarations are given in Table 6.

3.7 Statements

Table 7 contains the rules for expression statements, skip and conditional state-
ments. Table 8 contains the rules for blocks and synchronization. The statements
for control manipulation (return and exception try) are treated in Section 3.8.

Ezample. Consider the two threads 6; and 6» of Example 2.3 running in parallel
with initially empty working memories, empty event space @), and stacks mapping
the local variable p to 0. We write t2 the portion of program run by 6,. In the
example 01 enters its synchronized block first. Its evaluation is described in
Figure 2, where stacks are omitted.

3.8 Control mechanisms

In Java, the evaluation of expressions and statements may have a normal or
an abrupt completion. Abrupt completion may be caused by the occurrence
of an exceptional situation during execution, such as an attempt to divide an
integer by 0; it can also be forced by the program by means of a throw or a
return statement. For example, the execution of throw e;, where the expression
e evaluates to some object o, throws an exception “with reason 0” to be caught
by the nearest dynamically-enclosing catch clause of a try statement (see [10,
§11.3]). Similarly, the execution of return e; returns control, together with the
value of e, to the nearest dynamically-enclosing activation frame.

The interactions between these two mechanisms are described in [10, §14.15,
§14.16, §14.18], to which we refer for more detail. The rules for exception han-
dling are given in Table 9 and Table 11. Uncaught exceptions are not treated in
the present paper.

Some of the rules for the try statement include a finally clause written
in square brackets, to be regarded as “optional:” the brackets indicate that
the clause should be ignored if the statement at hand has no finally block.
A similar convention is adopted for the return statements and results, where
return [v]; accounts for both cases where some value v is and is not returned
(and similarly for the results).

Table 10 contains a grammar of syntactic contexts which pop control out
upon occurrence of an abrupt evaluation result, with no further ado. Contexts
of the form ¥ [-], called “pop-out” contexts, are used in the rule scheme [pop]
to propagate abrupt evaluation results outwards through the structure of a pro-
gram. All syntactic constructs which are not represented in a pop-out context
respond to such results with some computational action described by a separate
semantic rule. Examples of such constructs are the synchronized and the try
statements.
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[pop]! Iq] — ¢ [exit4] (m, { throw(o) S }) — throw(o)
[retl] a e [ret2] return [v] ;— return[v]
returne; ;— returnes;
[throw]] S [throw?2] throw o;— throw(o)
throw e; ;— throwes;
[tryl] try { } H— *
[try2] try { return[v] S} H [finally {}| — return[v]
by — b
[ory3)” .
try by H [finally b] — try by H [finally }]

foryd]® b— { throw(o) S }

Y try b catch (74) {9’ }, H [finally V'] —

try { throw(o) S } catch (7 i) {5 } im0 H [finally b']
by —b
[try5]? — .
try { throw(o) S} catch (7 i) by H [finallyb] —
try { throw(o) S } catch (7 i) by H [finally b]
b—
[try6]® S
try { throw(o) S} catch (74) b H—c
ey 7] b— { throw(o) S'}
try b catch (71i) b —
try { throw(o) S} catch (7 i) ¥’

p— try b Hy [finally by] — try { throw(o) S} Hy [finally by]

R try b catch (74) b Hy [finallyb;] —

try { throw(o) S} catch (7 i) b’ Hy [finally by]

[try9]* try { throw(o) S} catch (7 ¢) b [finally { }] — throw(o)
fory10]* try { throw(o) S} H [finally b] — ¢

ry

try { throw(o) S} catch (7 i) b H [finally b — ¢

! where 9[_] is a “pop-out” context
2 if by # { throw(o) S }

Sifoer

Yifod T

Table 9. Exceptions and return
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f=e | i=[] | 1=[]

(] | [bope | vbop[.]

D5 1 omB) | em(el))

iZ10Ds | 115 | {118}

if ([-])s | return|_];

| throw [_]; | synchronized([_])b

| try { } H finally {[_]S}

| try { throw(o) S} finally {[_] 5"}

| try { throw(o) S} catch (714) {[-] S’} H finally {} ifoer
| try { throw(o) S} catch (74) {¢S'} H finally {[_] 8"} ifoer
| try { return[v] S} H finally {[-] S}

§-1 w= [ EvE]]

Table 10. “Pop-out” contexts

by — by
try { } H finally by — try { } H finally by

[finl]

b—c

fin2
[fin2] try { } H finally b— ¢

by — ba

try { return [v] S} H finally by —
try { return [v] S} H finally by

[fin3]

by — b2

try { throw(o) S} catch (74) { } H finally by —
try { throw(o) S} catch (7 4) { } H finally by

b—c

try { throw(o) S} catch (74) { } H finally b— ¢

[fin5]*

by — by
try { throw(o) S } catch (7 4) {¢S’} H finally b; —
try { throw(o) S } catch (74) { ¢S’} H finally b,
b— { throw(o) S'}
try b finally ¥/ — try { throw(o) S } finally b/

[fin6]*

[fin7]

by — b2

try { throw(o) S} finally by —
try { throw(o) S } finally by

[fing]

Lifoer

Table 11. finally
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(01, synchronized(p){py=2;}...) | (62, t2), O,
by [statseq, syn2, var]
(01, synchronized (o) {p.y=2;}...) | (02, t2), {(Lock,0:1,0)}, u
by [statseq, syn3, block2, statseq, expstatl, assignl, accessl, var]
(01, synchronized (o) {o.y=2;}...)]| (62, t2), {(Lock,01,0)},
by [statseq, syn3, block2, statseq, expstatl, assign3, lit]
(01, synchronized (o) {o.y=2;}...)| (02, t2), {(Lock,0:1,0)}, 1
by [statseq, syn3, block2, statseq, expstatl, assignb]
(01, synchronized (o) {2; } ...) | (02, ta), {--- < (Assign,01,0.y,2)}, 1
by [statseq, syn3, block2, statseq expstat2]
(01, synchronized (o) {*} ...)| (02, t2), {--- < (Assign,01,0.y,2)},
by [statseq, syn3, block2, *]
(01, synchronized(o){ } ...) | (62, t2), {--- < (Assign,01,0.y,2)},
by [store]
(01, synchronized(o){ } ...) | (02, t2), {--- < (Store,01,0.y,2)}, i
by [write]

(01, synchronized(o){ } ...) | (02, t2), {--- < (Write, 61,0.y,2)}, plo.y — 2]

by [statseq, synd, blockl]
(01, xa=p.x;...)]| (02, t2), {--- < (Unlock,b61,0)}, ulo.y — 2]
by [+]
(O, a=pox; ...) | (s, 1), {-- < (Unlock, 61,0)}, ploy v 2

Figure 2. Run of Example 2.3

3.9 Starting and Stopping Threads

The notion of configuration introduced in Section 3.3 is extended here to include
a set © of thread identifiers, whose elements identify threads which are bound
to stop. We write © | § for © U {#} when we assume that 6 is not in ©. A
configuration is now redefined to be a 4-tuple of the form:

(T7 @’ ’r]’ u)'
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All operational rules introduced so far have no interaction with the mechanism
for stopping threads; in view of the conventions introduced in Section 3.3, by
which parts of a configuration may be left implicit when not directly involved in
the evaluation, the rules of the previous sections can be read with no editing in
the new operational setting with ©.

Table 12 presents the rules for the methods start () and stop() of the class
Thread. The interplay of stopping threads and Java’s notification system is
discussed in Section 3.10.

[start1]!:2 f.start();,© — x| (0, frame(6, Tun, ());, 0y), O
[start2]!:3 f.start();, 0 — x| (0,%,09),0\ {6}
[start3]b4® T|(¢,0.start(); ), u— T | (¢, throw(o)), '
[stopl] f.stop();, 0 — x, 0O U {6}

[stop2]® (0,1),0] 6, u — (0, throw(o)), O, 1/

Lif frame(6, start, () is undefined

2ifg¢ o

3if @ € O or frame(f,run, ()) is undefined

4 if T(0) is defined or 6 = ¢’

® where (o0, ') = new(IllegalThreadStateException, )
6 where ¢ is a redex and (o, ') = new(ThreadDeath, 1)

Table 12. start() and stop()

The rules [startl], [start2] and [start3] can only be applied if the method
start () has not been overloaded, that is if frame(6, start,()) is undefined.
Since stop() is declared as final in class Thread and thus cannot be redefined,
no analogous side condition is required in the rules for stop(). The rule [start1]
only applies if no thread with the same identifier as the one to be started is
currently running; this is implicit in the use of “|”. If such a thread identifier
exists an I1legalThreadStateException is thrown by [start3].

If a thread 6 is started and frame(, run, ()) is undefined, the built-in run
method of the class Thread is invoked. The latter simply calls the run method
of 8’s run object, that is the runnable object given as argument to the expression
that created 6 [10, §20.20], if such an object exists, and do nothing otherwise
[10, §20.20.13]. Since, for simplicity, we only consider class instance creation
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expressions with empty parameter list, and hence have no run objects associated
with threads, 8 does nothing when started if frame(6, run, ()) is undefined. This
explains [start2]. This rule also captures the case of a thread which has been
stopped before having ever been started (indeed possible in Java [10, §20.20.15]).
If the thread is eventually started, it will immediately terminate and its name
removed from 6.

As a result of the invocation of a stop method of class Thread an asyn-
chronous exception is thrown. Java allows a small but bounded amount of
execution to occur between the method call and the actual throw of the excep-
tion [10, §11.3.2]. We allow such execution to be arbitrarily long: at any time
during execution a thread whose stop method has been invoked (by [stopl])
may decide that the time has come to throw a ThreadDeath exception. The
exception is thrown by [stop2] as deep inside the structure of the program as is
necessary to allow a catch by a possibly enclosing try-catch statement. This is
ensured by the side condition that t is a redex. These are the terms of the form:

Redex = i=v|l=v|nullf|nullf=el|l|this|i|newC(); | k
|opv|vibopuve |om (V) |Ti=vdD;|Ti=wv;|v;|;
15 (0)s | {} | (m,{}) | throu(0); | revurnle]; | try{} H
| 6.start(); | O.stop(); | o.wait(); | o.notify();

As throw v and return [v] are not contained in this list of redices, a thread cannot
stop as long as it is performing a transfer of control, i.e. performing pop-out rules.

A more committed policy for stopping threads may be adopted either by
requiring fairness on [stop2] or by enforcing such a condition by means of a
counter binding the amount of execution steps allowed before this rule is applied.

No rule removes threads from a configuration: when they finish execution,
threads keep dwelling in an M-term together with the result that they produced.

3.10 Wait and notification

In Java every object has a “wait set.” A thread 6 who owns at least one, say n

locks on an object o can add itself on that object’s wait set by invoking o.wait().
This thread would then lose all its locks on o and lie dormant until some other
thread wakes it up by invoking o.notify(). Before resuming computation, 6
must get its n locks back, possibly competing with other threads in the usual
manner. When a thread goes to sleep in a wait set it is said to change its state
from running to waiting. When notified, such a thread changes its state from
waiting to notified, and finally from notified to running when it obtains its locks
back.

Let the letters R, W and N stand respectively for running, waiting and
notified. The notion of M-term introduced in Section 3.3 is extended here by
endowing each thread with a record of its state. The record of a running thread
consists just of the identifier R. The record of a thread which is waiting or
notified consists of a triple (X, 0,n), where X is the identifier W or N, o is the
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object on whose wait set the thread is waiting and n is the number of locks that
the thread acquired on that object.

An M-term is now redefined to be a partial function mapping thread identi-
fiers to triples (¢, €,0), where ¢t and o are as before and € is a state record. The
notation T' | (0, t, €, 0) extends that of Section 3.3 in the obvious way. When ¢ is
a triple (X, 0,n) we write T | (0,t,X,0,n,0) for T | (0,t, (X, 0,n),0) and omit
the parts that are not immediately relevant as usual when no confusion arises.

The operational rules introduced so far apply to M-terms of the new form by
agreeing that, unless otherwise specified, evaluation applies to running threads
(which can nevertheless change state when evaluated). More precisely: if the
state record of a thread is omitted in the left hand side of a judgement, then it
is understood to be R. For example, [expstatl] is now read
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Ty ‘ (07 61,R, Crl)aelanla.ul — 15 ‘ (07 62,@02)’@2,772’#2

Ty ‘ (07 €1 ;aRa Ul)a @b’r]la.ul — 15 ‘ (07 €23, 6,02), 92’712#12

while [skip] is now read T' | (0,;,R,0),0,n,u— T | (8,%,R,0),O,n, n. More-
over, silent actions only apply to running threads; more precisely: the side con-
dition in Table 3 changes now to “if T(#) = (¢, R).” Finally, threads run when
started, that is: the state of 6 in the right hand side of [start1] and [start2] is R.

[wait1]* (0, 0.wait(); ), n, u — (0, throw(d')), n, 1
[wait2]? (0,0.wait();, R),n — (0, %, W,0,n),n® (Unlock, 0, 0)"
[notify1]! (0, 0.notify();),n, u — (0, throw(o')),n, '
[notify2]? (0,0.n0tify();) | (t, W,0),n— (0,%) | (t, N,0),n
[notify3]? T | onotify();— T | *

[ready] (0,t,N,o,n),n— (0,t,R),n @ (Lock, 0, 0)"
[stop3] 0,t, W),010— (0,t,N),0 | 0

Lif locks(0,0,m) = 0 and (o', i) = new(IllegalMonitorException, i)
2 if locks(0,0,m) =n >0

34 T(0) # (W, 0) for all 0

Table 13. Wait sets and notification

The rules for the notification system are given in Table 13.

By the rules [waitl] and [notifyl], an appropriate exception is thrown if a
thread attempts to operate on the wait set of an object on which it possesses no
locks. The expression locks(6,0,n) denotes the number of locks that a thread
0 possesses on o in an event space 1 (the number of events (Lock, 6, 0) with no
matching Unlock). By the rule [wait2] a thread 6 can put itself in the wait set
of an object o. This step involves the release by 6 of all its locks on o. Rule
[notify2] notifies a thread waiting in the wait set of an object 0. Such a thread,
however, cannot run until all its locks on o are restored. This is done by [ready].
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Any notification on an object whose wait set is empty has no effect ([notify3]).
A waiting thread which has been stopped is woken up by [stop3].

Example. Figure 3 illustrates the interaction of the rules for wait and notification.
Consider the M-term

(0, synchronized(p) { if(c) p.wait(); },0) |
(¢, synchronized(p) { p.notify(); },o’).

Let t = synchronized(o) { * } and ¢’ = synchronized(p) { p.notify(); }, let 0
be the empty event space and n = {(Lock, 8, 0) < (Unlock,8,0)}; let o and ¢’ be
stacks with o(p) = o’(p) = 0 and o(c) = true. The stacks, which do not change
during execution, are omitted in the figure.

4 Prescient Event Spaces

The aim of this section is the formalization of the so-called “prescient stores”
of [10, §17.8] in our event space semantics. The specification claims that the
“prescient” semantics is conservative for “properly synchronized” programs. We
also formalize the intuitive notion of “proper synchronization” and prove this
claim.

The prescient store actions are introduced in [10, §17.8, p. 408] as follows:

“ ... the store action [of variable V by thread T is allowed] to instead

occur before the assign action, if the following restrictions are obeyed:

— If the store action occurs, the assign is bound to occur. ...

— No lock action intervenes between the relocated store and the assign.

— No load of V intervenes between the relocated store and the assign.

— No other store of V' intervenes between the relocated store and the assign.

— The store action sends to the main memory the value that the assign
action will put into the working memory of thread 7'

The last property inspires us to call such an early store action prescient: ... ”

This section is an improved and corrected version of [17].

4.1 Prescient Event Space Rules

The specification of prescient stores [10, §17.8] seems to assume that it is known
which Store events are prescient and which prescient Store event is matched by
which Assign event (as if they would be e.g. re-arrangements of Store actions
in the old sense). We do not assume such knowledge but adopt a more general
approach introducing so-called labellings that allow us to use the “old” Store and
Assign events as introduced in Section 2.1 with an additional “labelling” that
states whether they are prescient or not. These labellings are not necessarily
unique but it is always possible to infer a labelling at run time. It will turn
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(0, synchronized(p) { if(c) p.wait(); },R) | (¢, ¢, R),(

by [syn2, var]

(6, synchronized(o) { if(c) p.wait(); }, R) | (¢', ¢/, R),{(Lock,0,0)}

by [syn3, block2, statseq,

(0, synchronized(o) { if(true) p.wait

by [syn3, block2, statseq,
(0, synchronized(o) { p.wait()
by [syn3, block2, statseq,
(0, synchronized(o) { o.wait()

by [syn3, block2, statseq,

ifl, var]
0; 1, R) [ (¢, ', R),{(Lock,0,0)}
if2]

s LR (O, ¢, R), {(Lock,0,0)}

expstatl, calll, var]

LR (0, ', R), {(Lock,0,0)}

wait2]

(@ t',R)]| (0,syn’d(0) { * }, W,0,1),{(Lock,0,0) < (Unlock,0,0)}

(¢, synchronized(p) { pnotify(); }) | (8¢, W,0,1),n

(¢, synchronized(o) { p.notify();
by [syn3, block2, statseq,
(¢, synchronized(o) { o.notify();

by [syn3, block2, statseq,

by [syn2, var]

bR) (6,1, W,0,1),n® (Lock, 6, 0)

expstatl, calll, var]

bR) (6,1, W,0,1),n® (Lock, 6, 0)

notify?2]

(@, syn’d(o) { * }, R) | (0,syn’d(0) { * }, N,0,1),n® (Lock, &, 0)

by [syn3, block2,

+]

(¢, syn’d(0) { }, R) | (6,syn’d(0) { x }, N,0,1),n® (Lock,®, 0)

by [syn4, blockl]

(@, *,R) | (0, synchronized(o) { * },N,0,1),n® - ® (Unlock, ', 0)

(¢, x,R) | (0, synchronized(o)
by [syn3, block2,

by [ready]
{* }vR)an@”'@(LOCkaeaO)

by *]

(0, *,R) | (0, synchronized(o) { },R),n® ---® (Lock,0,0)

by [syn4, blockl]

(8, %, R) | (6, *,R),W,& - & (Unlock,9, 0)

Figure 3. Interaction of wait() and notify()
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out, however, that the semantics is independent of the choice of labellings, see
Corollary 4.7.

Prescient event spaces are defined, on the one hand, by a relaxation of the
event space rules: All rules which forbid prescient stores are cancelled and used
instead to define inductively a predicate that tells whether a Store event is
necessarily prescient. But, on the other hand, we have to add some rules to
ensure that a prescient Store corresponds to a relocated Store that obeyes the
old event space rules.

First, we define an abbreviation for the maximal event of type (A4, 0,1), ir-
relevant of its fourth component, occurring before some other event a, and thus
write (A, 6,1) <p, a if

(4,0,1) < an((A,0,1) <a=(A,0,0) < (A,0,1))

If we write, however, (Store,0,l,v) <p (Assign,0,l,v), i.e. both events are
written with their values and those are identical, then we mean the maximal
(Store, 0,1, v) event with value v before (Assign, 0,1, v).

We define prescient, (Store,0,1) to be valid if one of the rules (P1-P7) below
holds. The subscript 7 is usually omitted if it is clear from the context. Note
that @ # ¥ abbreviates —(® = ¥) where we use the conventions of Section 2.2,
i.e. 7(¢ = ¥) is short for =Va. (@ = Ib.¥) where a and b are lists of events
and a contains precisely all events occurring in @ except the bound (Store, 6, 1)
event.

(Store, 0,1)" < (Store, 0,1) # (Store,0,1) < (Assign,0,1) < (Store,0,1) (P1)
(Store, 0,1) # (Assign, 0,1) < (Store, 6,1) (P2)
(Assign, 0,1,v") < (Store, 0,1, v) %

P3
(Assign, 0,1,v") < (Assign, 0,1)" < (Store, 0,1,v) (P3)
(Lock, 0) < (Store,0,1) # (Lock, 8) < (Assign, 0,1) < (Store, 6,1) (P4)
Store, 0,1) < (Store, 0,1) A prescient((Store, 0,1)
(P5)
(Store, 0,1)" < (Assign,0,1) < (Assign, 0,1) < (Store,0,1)
Store, 0,1,v) <p (Assign,0,l,v) <r (Load, 0,1
(P6)

(Assign, 0,1,v) < (Store, 0,1,v) < (Load, 0,1)

(Store, 0,1,v) <, (Assign,0,l,v) <p (Unlock,8) &
(Assign, 0,1,v) < (Store, 0,1,v) < write_of ((Store, 0,1,v)") (P7)
< (Unlock, ) A —prescient((Store,0,1,v)")

Rules (P1-P4) are the negations of (4), (6), (9), and (17), respectively, that
forbid prescient Store events. Rule (P5) is sound because if there is only one
(Assign, 0,1, v) between two stores and the first is prescient, then by re-arranging
the prescient Store two Store events would follow each other without a triggering
Assign in between, which contradicts the old semantics. Rules (P6-P7) ensure
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that in cases where old event space rules (3) and (15) are violated, still a relocated
(i.e. prescient) Store exists which is responsible for storing the right value. So
e.g. (P6) states that if any Store between the last Assign before a Load and the
Load itself is necessarily prescient, then the last Store before the Assign must
also be prescient and thus responsible for fulfilling old (3) when relocated. Note
that it is sufficient to consider the last Assign before the Load (and the Unlock,
respectively).

With respect to the other (old) event space laws, we keep rules (1), (2), (5),
(7-8), (10-14), and (16).

Rule (3) has to be adapted as follows, allowing prescient Stores on the right
hand side of an implication:

(Assign, 0,1,v) <r, (Load, 0,1) =
((Assign,0,1,v) < (Store,0,1,v) < (Load, 0,1)) V (3"
((Store, 0,1,v) <, (Assign,0,1,v) <, (Load, 0,1

and rule (15) analogously:

(Assign, 0,1, v) <p, (Unlock,8) =
((Assign,&,l,v) < (Store, 0,1,v) < write_of (Store, 8,1, v)
< (Unlock,6) A —prescient(Store,0,1)) V (157)
((Store,@,l,v) <p (Assign,0,1,v) <p (Unlock,0) A
write_of (Store, 0,1, v) < (Unlock, 9)
Both rules are used in cooperation with (P6-P7). Note that in the left branch
of the the disjunction in the conclusion of (3’) it is unnecessary to stipulate
—prescient(Store, 0,1) since this will follow from (NP3) and (18) that will be
defined below.
We can also infer which Store events are necessarily not prescient: We define

the predicate non_prescient(Store, 6,1) on the given event space 1 to be true if
one of the rules (NP1-NP3) is fulfilled.

Va € {(Lock), (Load,1), (Store, 1)} . (Store, 0,1,v) < a 7

(Store, 0,1,v) < (Assign,0,1,v) < a (NP1)
(Store, 0,1) < (Store, 0,1)" N non_prescient((Store, 6,1)") # (NP2)

(Store, 0,1) < (Assign, 0,1) < (Assign, 0,1) < (Store,0,1)’
((Assign,0,1,v) <z, (Unlock, ) A

(Assign,0,1,v) < (Store,0,1,v) < (Unlock,0) ) #

((Assign,0,1,v) < (Store,0,1,v)" < write_of ((Store,0,1,v)") (NP3)

< (Unlock, 8) A ﬂpresczent((Store,Q,l,v)’)) Vv
((Store,@,l,v)” <r (Assign,0,1,v) <, (Unlock,8) N

—non_prescient((Store, 0,1,v)")
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Rule (NP1) corresponds to the second, third, and fourth requirement in [10,
§17.8] (see top of Section 4), (NP2) to (P5), and (NP3) to (P7). If Assign <y,
Unlock, such that the Assign is the last one before the Unlock, then (NP3) says
that if all Stores in between are prescient but one, then this one is necessarily
non_prescient if the following holds: There is no matching Store before the
Assign or the last such is non_prescient. This is a sound rule, because if the Store
of discourse were not non-prescient, then one might choose it to be prescient,
but then no last matching Store would occur before the Assign that could be
chosen prescient. In such a case the Assign would not have been stored before
the Unlock—not even by a prescient store—and hence the old semantics is not
preserved.

Notice that the predicate prescient propagates from past to present with the
exception of (P6-P7) which in some case needs to look back to the last non-
prescient Store, whereas non_prescient is computed in the opposite direction.
Also observe that ~non_prescient(s) is not equivalent to prescient(s) for a Store
event s and hence also prescient(s) V non_prescient(s) does not always hold.

Finally, we add the new rule

(Store, 0,1) = —( prescient(Store, 0,1) A non_prescient(Store, 0,1)) (18)

according to the specification of prescient Store events. This rule in cooperation
with (NP1-NP3) prohibits that prescient Stores occur at places ruled out by the
specification.

Summing up, a prescient event space is a poset of events every chain of which
can be counted monotonically and satisfying conditions (1), (2), (3’), (5), (7-8),
(10-14), (157), (16), and (18).

The non-deterministic operation & of Section 2.4 also works for prescient
event spaces (the only difference being that it defines a predicate on event spaces
that are prescient).

An event space is called complete if for all Read and Store events corre-
sponding Load and Write events exist (all load_of and write_of functions are
total; see the discussion at the end of Section 2.2). A prescient event space 7 is
called complete if additionally for any necessarily prescient (Store, 0,1, v) there
is a subsequent (Assign, 6,1, v). Note that it makes sense only for the final event
space of a reduction sequence to be complete. During execution, the matching
Assign for a prescient Store might not have happened. A complete prescient
event space fulfills the first and last requirement in [10, §17.8] (see top of Sec-
tion 4). A prescient event space I is called completable if there is a sequence of
events a such that I' @ a is complete.

4.2 Labellings

According to the definitions above even for complete prescient event spaces there
might be a Store event s in a given event space for which neither prescient(s)
nor non_prescient(s) is derivable. We define so-called labellings which allow to
choose to a certain extent which Store shall be considered prescient and which
not.
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For a complete prescient event space 7 a labelling is a predicate £ on Stores
that obeys rules (L1-L4) below together with a corresponding matching function

passz’gn_off;ﬁ’l :{(Store,0,1) € n | £(Store, 0,1)} = n(Assign,0,1)

that fulfills the axioms (M1-M5). Note that rule (M1) ensures that passign_of
is total.

prescient(s) = £(s)

non_prescient(s) = —L(s)

(P5) [¢/prescient] = £(Store, 0,1,v)

(NP3) [¢/prescient, =€/ non_prescient] = —{(Store, 0,1, v)
(Store, 0,1, v) A L(Store, 0,1, v) =

(Store, 0,1,v) < passz’gn_ofl(Store,Q,l,v) = (Assign, 6,1,v) (M1)
Va € {(Lock), (Load,1), (Store, 1)} . (Store, 0,1) < a A £(Store, 0,1) =

passz’gn_ofl(Store, 0,))<a (M2)
passz’gn_ofl(Store, 0,1) < (Store,0,1) A —=L((Store,0,1)) = (M3)

passz’gn_ofe(Store,Q,l) < (Assign, 0,1) < (Store, 0,1)’
( (Store, 0,1,v) <y, (Assign, 0,1,v) <p (Load,0,1) A{(Store,0,l,v) %
(Assign, 0,1,v) < (Store,0,1,v) < (Load, 0,1) (M4)
= passz’gn_ofl(Store, 0,1,v) = (Assign, 0,1, v)
( (Store, 0,1,v) <y, (Assign,0,l,v) <p, (Unlock,0) A {(Store,0,l,v) &
(Assign, 0,1,v) < (Store, 0,1,v)" < write_of ((Store, 0,1,v)")
< (Unlock,0) A —L((Store, 0,1, v)")
= passz’gn_ofl(Store, 0,1,v) = (Assign, 0,1, v)

(M5)

In rule (L3) we use “(P5) [¢/prescient]” to abbreviate the axiom (P5) where
prescient is syntactically replaced by ¢ and the (bound) event (Store, 0,1, v) of
(P5) coincides with the one in the conclusion of (L3). The analogous convention
applies for (L4). Rule (L3) is necessary to propagate ¢ (as prescient) according
to (P5), and rule (L4) to propagate —¢ (as non_prescient) according to (NP3).
Observe that one does not need similar rules in order to propagate (P7) and
(NP2), since those are already covered by (the contraposition of) rules (L4) and
(L3), respectively.

By rule (M3) one can never choose an Assign event as matching when its re-
arrangement would lead to a situation forbidden by the old event space rule (4),
i.e. where two Store events would follow each other. Rules (M4) and (M5) fix the
matching for the prescient Store in situations where rules (3’) and (15’) apply
but only the right disjunct in their conclusion is fulfilled. Note that for (M4-M5)
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the nested implication
(®A V)= passign_ofl(Store, 0,1,v) = (Assign, 0,1, v)

is read with the usual conventions for & but (Store, 0,1, v) and (Assign, 6,1, v)
are obviously universally quantified outermost.

Lemma 4.1. For any complete prescient event space one can give a labelling.

Proof. We choose £ := prescient and show that it fulfills the labelling rules: (L1)
holds by definition of ¢, (L2) follows from (18), (L3) follows from (P5), and (L4)
can be shown by contradiction employing (15°), (P7), and (18).

For any (Store,0,l) in the event space with ¢(Store,8,1) there is a fol-
lowing matching (Assign,d,l) event as the event space of discourse is com-
plete. So for passign_of” we can choose the function which maps any labelled
(Store, 1) to the last following matching Assign before the first following event
a € { (Load, 1), (Lock), (Unlock), (Store, 1) }, unless a = (Store, 1) and —£(Store, 1)
when the last but one such Assign is chosen which exists by (NP2). Then
passz’gn_ofe is a matching function by definition.

4.3 Prescient Operational Semantics

We obtain the prescient operational semantics from the old semantics of Section 3
just by switching from the event spaces of Section 2 to the prescient event spaces
of Section 4 keeping the operational rules untouched.

For the prescient operational semantics we write —>. Moreover, let Conf,
denote the set of configurations with prescient event spaces, and Conf, those
according to the definition of — of Section 3.

Lemma 4.2. Any event space n (obeying the old rules) is also a prescient event
space, thus any old configuration is a new configuration, i.e., Conf, C Conf,,
and any reduction I' — I’ is also a prescient one, i.e. I' —> I"" holds as well.

Proof. Assume 7 is an event space satisfying the old rules. By a simple induc-
tion, prescient(s) never holds for any Store event s in 1. Thus 7 is a prescient
event space because the new rules form a subset of the old rules. Since the con-
figurations only differ in the event space definition and the rules of the semantics
are not changed at all, the other claims of the lemma now hold trivially.

Since we use labellings our operational semantics is very liberal. It accepts
reductions using Store events even if it is not clear during execution whether this
Store event is meant to be prescient or not. In such a case, however, the prescient
Store is not done as early as possible. Therefore, in practical cases, any Store
which is not recognized by the rules (P1-P7) can be considered non_prescient.
This corresponds to choose the labelling to be simply prescient (cf. Lemma 4.1).
As a consequence, the labelling can be computed at run time. Due to (P6-
P7), however, it is not always possible to detect immediately whether a Store is
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prescient, sometimes one has to wait for a Load- or Lock event to happen. Also
the matching can be computed at run-time with a little lookahead, cf. (M4-M35).

By the proof of Lemma 4.1, however, labellings only exist for complete pre-
scient event spaces, hence, in the rest of the paper, any prescient event space I
is supposed to be completable. Any completion of I" has a labelling and though
its restriction to I'" does not necessarily give a labelling, because (M1) obviously
need not be valid, it is easily checked that all the other rules for labellings still
hold. Thus for any completable prescient event space there exists a “partial”
labelling, which fulfills only (L1-L4) and (M2-M5). Therefore we can assume
that any completable prescient event space is endowed with a fixed (partial)
labelling ¢ that, for the sake of simplicity, will be exhibited in form of special
action names: pStore and pAssign. If ¢(Store, 0,1, v) holds then (Store,6,1,v)
is denoted (pStore, 6,1, v) and analogously for the corresponding Assign we use
pAssign. This notation contains implicitly all information given by the matching
function, since by monotonicity of passign_of for every (pStore, 6,1, v) the first
subsequent (pAssign, 0,1, v) must be the matching one.

4.4 Prescient Semantics is Conservative

The relation between the “normal” and the “prescient” semantics is described
in [10, §17.8, p. 408] as follows:

“The purpose of this relaxation is to allow optimizing Java compilers to
perform certain kinds of code rearrangements that preserve the semantics of
properly synchronized programs but might be caught in the act of performing
memory actions out of order by programs that are not properly synchronized.”

This has to be formalized in the sequel. The following notation, exemplified

for — only, will be used analogously for all kinds of arrows: —+ denotes a

one-step reduction with rule r; if e = (r1,...,7,) is a list of rules then <
denotes —> ... % if the list is irrelevant we write —*. For rules that change

the event space we often decorate arrows with actions instead of rule names as
the latter are ambiguous.

First, we observe that —> and — can not be bisimilar by definition since
—> permits (prescient) Store-actions where — does not. But —> cannot even
be bisimilar to the reflexive closure of —, since simulating a (pStore, ,1) and
the following Writes by void steps leads to inequivalent configurations (since the
main memories will contain different values for 1).

As a prerequisite for a simulation relation of type Conf. x Conf,, we define
an equivalence on prescient configurations ~ C Conf, x Conf, as follows:

(Tym,p) ~ (T, p') =T =T N(T,n,0,u) L (T, 0, 0", 1)
(T,n,p) L (T, 0, 1) <=Va.n@al &n @al A

Ve (T,1, 1) = (T1, 1, 1) A (T 1) =5 (T, 12, p2) = 1 = pio
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where a is any sequence of actions, e is a sequence of rules and (T, 7, u) —>°

(T',n', ) if (T,n,u) —* (T',n', 1) such that n’ is complete. (For the sake of

simplicity we do not consider the extended configurations of Section 3.10.)
This equivalence relation is obviously preserved by the rules of the semantics:

Lemma 4.3. The relation ~ is an equivalence relation such that if I'1 ~ I5

then Il —» I iff Iy N I} for any rule v, and if such a reduction r exists then
Il ~ I} holds.

In order to establish a bisimulation result, we must delay all the operations
which are possible due to a (pStore, 8,1, v) until the matching pAssign event.

But that will not work for all kinds of programs. Consider the following
example:

(0, { synchronized(p) {px=1;}1}, o) | (@, {px=2;}, &)

with o(p) = o/(p) = 0 and | = 0.x. Its execution may give rise to a sequence of
computation steps which contains the following complete subsequence of actions:

(Lock, 0, 0), (Assign, 0,1,1), (Store, 0,1,1), (pStore, &', 1, 2),
(Write, 0,1, 2), (Write, 0,1, 1), (Unlock, 0, 0), (pAssign, ', 1,2)

In a simulation the (pStore, ¢, 1, 2) is illegal w.r.t. to the old event space definition
and can only be simulated by a void (i.e. delaying) step as well as the following
Write. Now the (Write, 6,1, 1) and the corresponding (Store, 0,1, 1) are bound to
occur before the Unlock. Finally, after the pAssign we must recover the pending
prescient (Store, @',1,2) and its corresponding ( Write, 6',1,2). According to this
simulation, [ has value 2 in the global memory but the reduction via —> yields
1 for [. Thus, both end-configurations are not equivalent.

Consequently, we have to restrict ourselves to “properly synchronized” pro-
grams. A multi-threaded program T is called properly synchronized if any (pre-
scient) event space in any possible configuration occurring during reduction ful-
fills the following axiom:

(Assign, 0,1), (Assign, &', 1) =

19
(Assign, 0,1) < (Unlock, 0,0) < (Lock, 0, 0) < (Assign,§',1) (19)

where the Assigns may correspond to prescient Store actions. Analogously,
an event space is called properly synchronized if it fulfills (19). A sufficient
condition for “properly synchronizedness” is obviously the syntactic criterion
that in a program shared variables may only be assigned in synchronized blocks.

Proper synchronization guarantees that between a prescient Store event and
its corresponding pAssign event no other thread can change the main memory:

Lemma 4.4. Let I' be a properly synchronized complete prescient event space.

If 0 £ 0 the following holds:

(pStore, 0,1) < (Write, 0 ,1) = passign_of (pStore, 0,1) < (Write, &', 1)
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Proof. Let (pStore, 6,1) < (Write,0',1) with § # ¢ and let (pAssign,0,l) =
passign_of (pStore, 0,1).

First, assume that store_of (Write,0',1) = (Store,¢',1) < (Write,¢',1), for
a non-prescient (Store, 1) such that we have (Assign, @ ,1) < (Store,@',1)

by the negation of (P2). There is a maximal non-prescient (Assign, ¢ 1) <p,
(Store,¢,1) such that by (P3) the fourth (value-)components of (Assign,6',1)
and (Store, 0',1) are equal. Moreover, by (M3) no (pAssign, 8’,1) whatsoever can
occur between those two. If now

(pAssign, 0,1) < (Unlock, 0, 0) < (Lock, 0, 0) < (Assign, 0',1)

we obviously have (pAssign, 0,1) < (Write,¢',1). Otherwise, from properly syn-
chronization, i.e. (19), it follows

(Assign, 0',1) < (Unlock, @', 0) < (Lock,0,0) < (pAssign, 0,1) (%)
for a suitable (Unlock, 0")—(Lock, 0) pair. We show that even
(Assign, §',1) < (Store, 0, 1) < write_of (Store,0',1) < (Unlock,8',0)  (xx)
which proves the lemma since, by the negation of (NP3), we also have
(Lock, 0, 0) < (pStore,0,1) < (pAssign, 0,1)

which together with (x) leads to a contradiction to our assumption that
(pStore, 6,1) < (Write, 0, 1).
In order to prove (xx), first note that

(Store, ', 1) < (Unlock,0') =
(Store, 0',1) < write_of (Store, 0, 1) < (Unlock,0")
holds in arbitrary prescient event spaces. To see this, it is sufficient to con-
sider the maximal (Store, 0',1) <p (Unlock, ") by monotonicity of write_of. By
(P7) and (M4) it is then impossible that there is also another (Assign,6’,1)
or (pAssign, @ 1) after (Store,')1). There is a maximal (Assign,0,1) <p,
(Store, ¢',1). Between those two events no (pAssign, §’,1) can occur due to (M3),

hence (15’) is applicable and we are done.
For a proof of (xx) by contradiction, assume that

(Assign, 0',1) < (Unlock, ', 0) < (Store,0',1)
such that (Assign, 0',1) <r (Unlock,®',0) follows. Then by (15’) we have
(Assign, 8’ 1) < (Store,0',1) < write_of ((Store, ', 1)") < (Unlock, 8)
since if we only had

(pStore, 0,1, v) <p, (Assign, 0’ 1,v) < (Unlock, 0, 0) < (Store,d,1)
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the matching rule (M5) would be violated. By (P1), however, there must exist
a (pAssign, @' 1) event such that

(Store, &' ,1)" < (pAssign, ' ,1) < (Store, 0’ 1).

which contradicts the assumed maximality of (Assign, ¢',1).
The second case that store_of (Write, 0’ ,1) = (pStore, 0, 1) < (Write,0',1) is
treated analogously.

In the rest of this subsection we formalize the already sketched simulation
idea. To that end, in the sequel A (possibly with annotations) stands for con-
figurations in Conf. and I for new configurations in Conf,. Recall that any
old configuration is also a valid one in the new sense by Lemma 4.2. Ac-
cording to the observations above, we define a new reduction relation >— :
(Confy x E*) x (Conf, x E*) where E = {(pStore), (Write), (Read)} by the
rules of (reds)—(redq) below. Note that we do not need to treat (Load) events
(cf. rule (NP3)). The corresponding >—-configurations (A, e) consist of an old
configuration A € Conf, plus a list of “pending” events e. Appending an event
a at the end of a list e is written e o a. An additional operation splity ;(e) is
needed. Given a list of events e it yields a pair of lists (e;, €’) where both are
sublists of e; the sublist e; is obtained from e by extracting all (pStore,6,1),
(Write, 0,1) and (Read, 1) events and simultaneously changing a (pStore, 0,1)
into (Store, 0,1); €' is e;’s complement w.r.t. e.

(4,e) Kpstore,filv) (A, eo (pStore, 0,1, v)) (reds)
(Ae) JWrite,0.) (A,eo (Write,0,1,v)) if (pStore,0,l,v) € e A (redy,)
write_of (pStore, 0,1, v) = (Write, 0,1, v)
(Ae) {Read,8".lv) (A eo (Read,d',l,v)) if (Write,0,1) € e (red,)
(A, e) (pAssign.6,l,v) (A e') if  splity(e) = (er,€') A (redy)
) reda
A (Assign,0,l,v) Al ﬁ» A/
(A, e) > (A, e) for any other case r if A —» A/ (redq)

To relate configurations of —> and >— reductions the simulation relation
~ C Conf, x (Conf, x E*) is defined as follows:

I'~(Ae) if, and onlyif, (A,e)l AN A > TAANTA~T
where
(A,e)l if, and only if, JA'. (A’ ¢) =" (A, ¢)

i.e. I' is equivalent to (A, e) if e is obtained correctly by means of >— and I is
equivalent to the completion of A, usually called I'a, by executing the pending
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events in e. Note that —> is used here for the sequence of events e, as e may
contain prescient Store events.
Below we use the following notation of a commuting diagram

I —— 17

I3 — I3

stating that I' — Iy — Iy and I' — I's — I'5 and Iy ~ I';. This notation is
also used for any other kind of arrows.

Lemma 4.5. If I' ~ (A,e) and I' = I'"', where 7 is as in case (redq) and I’

stems from a properly synchronized program, then A s A’ and the diagram

A—Sory ~ T

l’l" 'I"l l’l"
ASerl o~ T

r

commutes; thus I' = (A, e) >~ (A’,e) = I holds.

Proof. (sketched) First note that if the left square commutes, then the whole
diagram commutes by Lemma 4.3.

Next, observe that r can be executed also before e. For a proof of this
check that r does not depend on e by inspecting the relevant laws for event
spaces: Rules (5), (16) refer to in-between-events which are not possible in
e € E*. Rules (10) and (3’) are impossible since corresponding Loads are ruled
out by (NP1) and (18). Rule (11) is not relevant as matching Writes are treated
in (redy). Thus, we are left with (15’). Suppose r = (Unlock, ) and that
(pAssign, 0,1,v) < r is ensured via rule (15) by a preceding Store only (i.e. the
right branch of the disjunction in (15’) holds exclusively), then the last of those
preceding (Store,0,1,v) events is prescient, i.e. ¢(Store, 6,1, v) holds by (P6).
Therefore, (pAssign, 0,1,v) = passign_ofl(Store, 0,1,v) by (M4) such that e can
not contain the Store anymore as it is obtained via >—*.

To prove that the diagram commutes it suffices, by definition of ~, to show
that the same actions are executed, but maybe in different order. We have to
ensure that Write events of the same variable from different threads are not
re-ordered. Consider some (Write, 0,1) of e. By Lemma 4.4 Write events of a
different thread 6’ can not occur in the completion of A, so neither in I'4 and
hence neither in e. But e can also never contain two (Write, 0,1) events, since
the first would be the matching Write event for the starting pStore; the second
Write event’s matching Store (maybe prescient) would have to intervene between
the starting pStore and its corresponding pAssign event by the monotonicity of
store_of , thus contradicting (M2).
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Theorem 4.6. For properly synchronized programs the relation =~ is a simula-
tion relation of —> and >—, i.e. if I’ SN X during the execution of such a
program and I = (A, €) then there is a (A',€') such that (A, e) > (A ¢') and
I'=~ (A ¢).

Proof. Assume I' = (4,e), ie. A —“5 T'n ~ I'. We do a case analysis for
r 1"
Case r = (Write): If (pStore, 0,1) € e then it holds that (A, e) > (A,eor) by
(redy ). Moreover, by Lemma 4.3, ' = (A, eor).

If (pStore,6,1) ¢ e then by Lemma 4.5, (A, e) >» (A',€') and I =~ (A, ¢).

Case r = (pAssign): Let splity ,(e) = (er, €’). Since an Assign is always possible,

Assign,0,1, L
assume that A (Assign.8.Lv) A;. Now every action in e; becomes legal for the old

semantics, so we can further assume A; —> A’, such that (A,e) > (A, ¢).
One can prove analogously to Lemma 4.5 that the left rectangle in

A—SoTy ~ T
(Assign, 0,1, v)l

A o~ r r

ell
!

Aoy o~ I
commutes; the right rectangle commutes by Lemma 4.3, thus (A4, e) . (A’ e
and [ = (A')€').
For pStore and Read one proceeds as for Write, all other cases follow from
Lemma 4.5.

The main result of Section 4 is the following corollary which states that the
prescient semantics is conservative, i.e. any prescient execution sequence of a
properly synchronized program can be simulated by a “normal” execution of
Java.

Corollary 4.7. Given I' € Conf, from a properly synchronized program and
Ae Confy, if ' ~ A and I' —>* I such that the event space np+ of I is
complete, then for any labelling of nr there is a reduction sequence A —* A’
such that I ~ A’.

Moreover, if two different labellings yield two different reduction sequences

A—* Al and A —* A, then still A} ~ Al holds.

Proof. First, observe that if I' ~ A then I' &~ (A,¢). By a simple induction
on the length of the derivation by Theorem 4.6, we get (A, ) >—+* (A’ e) and
I'" = (4A',e). Now e = ¢ follows from the fact that I is complete which entails
that all prescient stores are matched by an Assign such that e must be empty in
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the end. From e = ¢ we immediately get I/ ~ A’. Also from (A, ¢) >—* (4',¢)
we can strip off a derivation A —* A’ by definition of >—.
The second claim follows just by transitivity of ~ as A} ~ I'" ~ Al

5 Conclusions and Future Work

In this paper we presented a structural operational semantics of concurrent Java
and showed its flexibility by proving a non-trivial result relating two memory
implementations. Our semantics covers a substantial part of the dynamic be-
haviour of the language, and we expect it to combine easily with the type system
developed in [8]. A further ambitious step is to include in the semantics prac-
tical features like input/output, garbage collection, distributed applications via
sockets or remote method invocation, and applets.

Event spaces are not necessarily “complete,” that is, no matching Load must
necessarily occur after a Read action or Write after a Store. In fact, there are
well-formed event spaces which are not completable, and this complicates the
metatheory of the semantics. However, it is conceivable that completability may
be axiomatized by means of “local” conditions such as the rules of Section 2.2.

It might also be worthwhile to study stronger notions of “proper synchro-
nization” (for example, by taking into account Use actions). This might simplify
the simulation of prescient semantics and allow a synchronous treatment of Read
and Load.

The proofs of semantical properties (like Lemma 4.4 or Theorem 4.6) are
combinatorial in nature; this is a typical situation where proof checkers or auto-
mated theorem provers can be usefully employed.

Finally, we intend to investigate operationally based notions of program
equivalence, which may serve as foundations for program logics. Abadi and
Leino [2] have provided an axiomatic semantics, in Hoare style, for one of the
(sequential) object calculi of [1] and proved that the logic is sound with respect
to the operational semantics of the object calculus in use. The development of
such a logic for a real concurrent object-oriented language like Java remains a
challenge.

Acknowledgements. We thank Doug Lea for useful comments and some inspira-
tion regarding future work.
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A Syntax

Statement ::= ; | Block | StatementExpression ;

| synchronized( Expression) Block

| throw Expression ; | TryStatement

| return Fzpression

| If ThenStatement
Block ::= { BlockStatements ,p¢ }
BlockStatements ::= BlockStatement | BlockStatements BlockStatement
BlockStatement ::= Local VariableDeclaration ; | Statement
LocalVariableDeclaration ::= Type VariableDeclarators
ReturnType ::= Type| void

Type ::= Primitive Type| Class Type

opt >

PrimitiveType ::= boolean | int| ...
ClassType ::= Identifier
VariableDeclarators ::= Variable Declarator
| VariableDeclarators , VariableDeclarator
VariableDeclarator ::= Identifier = Expression
Ezxpression ::= AssignmentExpression
AssignmentExpression ::= Assignment | BinaryEzpression

Assignment ::= LeftHandSide = AssignmentEzpression
LeftHandSide ::= Name | FieldAccess
Name ::= Identifier | Name . Identifier
FieldAccess ::= Primary . Identifier
Primary ::= Literal | this | FieldAccess | ( Expression)
| ClassInstanceCreationExpression

| MethodInvocation
ClassInstanceCreationFExpression ::= new Class Type ()
MethodInvocation ::= Primary . Identifier( ArgumentList ,,; )
ArgumentList ::= Expression | ArgumentList , Expression
BinaryExpression ::= UnaryEzpression
| BinaryExpression BinaryOperator
UnaryFExpression
UnaryEzpression ::= UnaryOperator UnaryFxpression
| Primary | Name
StatementExpression ::= Assignment | ClassInstanceCreationExpression
| MethodInvocation

TryStatement ::= try Block Catches
| try Block Catches op £inally Block
Catches ::= CatchClause | CatchClauses CatchClause
CatchClause ::= catch( Type Identifier) Block
IfThenStatement ::= if ( Expression ) Statement
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