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Abstract. The UML abstract syntax and semantics specification distin-
guishes between the statics and the dynamics of collaborations: the role
context and interactions. We propose a formal semantics of interactions
based on the abstract syntax and directly reflecting the specification.
The semantics is both parametric in the notion of context and in se-
mantic details that are intentionally left open by the specification, but
resolves true inconsistencies. The formalisation uses temporal logic for-
mulae in the style of Manna and Pnueli. We illustrate the flexibility of
our semantics by discussing instantiations for a running example; its in-
tuitiveness is substantiated by proving that the temporal formulae give
rise to partial orders that also directly can be inferred from interactions.

Introduction

The object-oriented software modelling language UML, the “Unified Modeling
Language”, supports behavioural modelling, amongst a variety of different tech-
niques, by the stimulus-based notion of interactions in collaborations. In an UML
model, collaborations specify how an operation or an use case of the model is
realised by a cooperation of several instances of model elements. For the static
aspects of such a realisation a collaboration defines a context of class and asso-
ciation roles describing which features actually participating instances have to
show. For the dynamic aspects a collaboration defines an interaction, specifying
which actions have to be performed by participating instances, which stimuli to
other participating instances these actions have to dispatch, and in which order
these stimuli can be sent, sequentially or concurrently.

The UML specification [10] defines the concrete and abstract syntax for col-
laborations and interactions and gives a description of the intended semantics,
but entirely lacks a formal semantics. This omission does not only seriously limit
the employment of UML for the construction of analysable and testable software
designs in general; for collaborations and interactions the situation is aggrav-
ated by a gross vagueness of the specification itself. In particular, the informal
semantics falls short of describing how participating instances of an interaction
should actually react to an incoming stimulus, when actions are complete, and
how local state information is to be treated; for some other, similar, problems
see e.g. [9].

* This work was carried out during a stay at the Computer Science Laboratory of SRI
International as part of the Visitor Exchange Program P-1-3334. It was supported
by a DAAD scholarship and partially by the Bayerische Forschungsstiftung.
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We therefore propose a formalisation of interactions in UML collaborations
that clarifies at least some of the ambiguities of the specification but abstracts
from semantic details that are intentionally left open. We claim that our form-
alisation directly, and intuitively, captures the informal semantics given in the
UML specification. In order to reflect the semantic requirements following the
specification as closely as possible, the formalisation is based on the UML meta-
model. The concurrency constraints of UML interactions are expressed as tem-
poral logic formulas in the style of Manna and Pnueli [8]. These formulae only
take into account the sending of stimuli according to actions and the receiving
of stimuli by instances. In particular, the formalisation is parametric in the no-
tion of réle context and in the more detailed execution of actions beyond the
sending of stimuli which is under-specified by the UML specification. In order to
corroborate our claim that our formalisation captures the UML specification, we
provide an alternative approach to the semantics by unfolding interactions into
partial orders, using Pratt’s pomset framework [11]. We prove that the temporal
formulae give rise to these partial orders.

Several formal semantics of interactions have already been investigated, both
of the specific notion in UML and of several closely related techniques: Aratjo [2]
translates a subset of UML sequence diagrams into temporal logic formulas.
Gehrke, Goltz, and Wehrheim [6] sketch a translation of UML collaboration
diagrams to Petri nets, but do not base their considerations on the meta-model.
Wirsing and the author [12] model interaction diagrams of OOSE, one of the
main predecessors of UML interactions, by asynchronously communicating finite
automata; however, it is unclear whether this approach can be extended to the
broader notion of UML interactions. For the equally closely related Message
Sequence Charts semantical models based on process algebra, Petri nets, and
automata have been investigated, for an overview see e.g. [7]; none of these
approaches refers to an object-oriented setting. The semantics of réle modelling
in general is extensively discussed by Andersen [1]; the precise connections to
UML collaborations, however, remain to be explored.

The remainder of this paper is structured as follows: In Sect. 1 we summarise
UML interactions’ abstract syntax and intended semantics. Section 2 presents
the generation of temporal formulae from interactions in collaborations that
precisely define the semantics of interactions. In Sect. 3 we assign partial orders
to interactions and prove that the temporal logic formalisation indeed yields
these partial orders. We conclude with an outlook to possible integrations of our
semantics with more general approaches.

We assume some familiarity with the UML notation and a superficial know-
ledge of the UML abstract syntax [10].

1 UML Interactions

We briefly recall the parts of the UML meta-model pertaining to collabora-
tions and interactions and their intended semantics [10] by means of a simple
example. Notwithstanding the problems with the mapping from concrete to ab-
stract syntax as described in the UML notation guide we more conveniently
present the example in diagram form, but actually discuss the abstract syntax
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thereby defined. Consider the collaboration diagram in Fig. 1(a); some relev-
ant fragments of its abstract syntax are presented graphically in Fig. 1(b) and

Fig. 1(c).

1: k()
2:10) 1.1A[i:=0..#(d)]: m(d[i])
AN AN b
/P:A /Q:B
2.1: pO)
\\l.lB: r:=n(d)

1.1B/1.1C: 0()\

{ordered } d/* <<local>>\ r ¢

I
1
/S:D /S:D /R:C

(a) Collaboration Diagram

| P_- ClassifierRol sender CallActi
. X action | recurrence = 1
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R_- ClassifierRol I— =

| Message. target =c
< Argument
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Connec [ Operation |~ [¥he=1

(b) Abstract Syntax of Message 1.1B

Message Message Message
act act act

L1A: L1B: L1C: 2.1
Message Message | pred | Message Message
act| act act

act 1 pred IR
Message Message

(c) Abstract Syntax of the Interaction

Fig. 1. Example of an UML Collaboration
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1.1 Abstract Syntax and Semantics According to the
UML Specification

For the static aspects of a collaboration, réles are specified that have to be
filled in order to perform the task of the collaboration, describing the features
collaborators have to show. Roles are based on elements of a surrounding UML
model; omitting the details, we require that ClassifierRole! P actually has two
Operations k and 1, that there is an AssociationRole with AssociationEndRoles
having type P and Q, and so forth.

The dynamic part of a collaboration is described by Messages gathered in
an Interaction. An interaction declares how and in which order stimuli com-
plying to its messages are to be exchanged. Each Message has a reference to
a sender ClassifierRole, a receiver ClassifierRole, a communication connection
AssociationRole, an Action, a set of predecessor Messages, and, optionally, an
activator Message. Semantically, the “activator is the message that invoked the
procedure which in turn invokes the current message” [10, p. 2-115]; before a mes-
sage can be executed all its predecessor messages have to be completed. There
are several constraints on these predecessor and activator relations; with M the
set of messages of an interaction the following properties have to be satisfied:

i. The graph (M, P) with P the predecessor relation on M is acyclic.
ii. The graph (M, A) with A the activator relation on M is a forest.
iii. For m’,m” € M, if m” transitively precedes m’ then either both have the
same activator m € M or both have no activator.

Executing a message actually means executing its action possibly resulting in
the sending of a stimulus that complies to the message and therefore its action.
An Action can be a CallAction, a ReturnAction, and of several other kinds, we
do not discuss here. Each Action has a target expression that resolves to a set of
target instances on evaluation; a recurrence expression that determines how the
target set is iterated (sequentially or in parallel); and argument expressions that
yield the actual arguments of the Action. Furthermore, an Action can be asyn-
chronous, i.e., on execution no results are awaited, or synchronous, i.e., awaiting
results. A CallAction refers additionally to an Operation, a stimulus complying
to such an action will call that operation with the evaluated argument expres-
sions as actual parameters. A ReturnAction has no explicit target; it returns the
actual arguments to a caller.

According to (our interpretation of) the UML specification the intended se-
mantics of the interaction described in Fig. 1(a) is the following: At start, only
stimuli complying to 1 can occur since it is the only message that has no prede-
cessors and no activators. Such stimuli can only be created by an execution of 1’s
action. Execution of this action means the creation of a single stimulus p that is
sent from the instance playing the actor réle to the instance playing P and that
bears an asynchronous call action of operation k with no actual arguments. Since
the action of 1 is declared as asynchronous, no return stimulus is awaited and
message 1 is completed; thus, stimuli complying to 2 may now occur. Further-
more, on receipt of stimulus p, 1.1A, 1.1B, and 1.1C are activated; the actions
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of 1.1A and 1.1B can now be executed concurrently, 1.1C has to wait for the
completion of 1.1B. The action of 1.1B calls n with actual argument d; it is
synchronous, hence a return stimulus with a value for r is awaited and only on
receipt 1.1B is completed. On completion of 1.1B, the action of 1.1C can be
executed analogously. However, note that 1.1B and 1. 1C share the local link r;
this has to be stored such that the return stimulus for 1.1B and the stimulus
for 1.1C have access. The action of 1.1A asynchronously calls m as many times
as d has elements with actual argument d[i] where i varies with the number of
calls; the message is completed when all elements of d are processed. Meanwhile
the action of 2 may have been executed in the same vein, activating 2.1. —

Interactions may be composed inside the same collaboration by sharing roles;
or, transgressing the boundaries of one collaboration, by messages sharing ac-
tions. In the latter case, execution of an action will generate stimuli complying
to all messages sharing this action.

1.2 Problems of the UML Specification

This exposition deviates from or interprets the UML specification in the following
points: According to [10, p. 2-115] the activator relationship of messages in an
interaction imposes a tree; we relax this condition to forests to allow multiple
initial messages. The completion of a message is identified with the completion
of its action, which in turn is determined by the termination of its recurrence
expression; this remains open in [10]. By [10, pp. 2-99ff.], return actions do not
send stimuli; in order to express our semantics more compactly, we require that
they do. This also resolves the problem, left open in [10], by which means a
synchronous call action learns of the results it is waiting for; we thus require a
message with a return action that is activated by the message bearing the call
action and that is the final message activated by the call message (see [10, p. 3-
128] for a motivation). This leads to the following two additional constraints on
the messages M of an interaction:

iv. For m € M, if the action of m is a return then there is no m’ € M such that
m activates m’.

v. For m € M, if the action of m is a synchronous call then there is an r € M
such that the action of 7 is a return, m activates r and m’ transitively
precedes r for all m’ € M such that m activates m’.

Finally, given our interpretation that shared actions lead to stimuli complying
to several messages, the UML specification neglects the consequences of sharing,
viz., that shared actions can only be executed if the corresponding messages do
not depend on each other. Dependencies in the presence of sharing may be of
the form: messages mg and m; precede messages my, and m/, resp., but mg and
m/ share the same action and also m{, and m, share the same action; none of
these action can be executed in this situation. We therefore require that after
identifying all those messages of an interaction that share the same action and
extending this identification to the predecessor and activator relations, the new
predecessor relation has to be acyclic, the activator relation has to form a forest,
etc. More precisely, we regard an interaction as a graph (M, R) with the messages
M as vertices and the activator and predecessor relations as edges; each vertex
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m is labelled by a(m), the action of m, and each edge by whether its an activator
or a predecessor edge:

vi. The quotient of an interaction (M, R) by « satisfies constraints (i-v).

The UML abstract syntax and its contextual constraints sketched so far
serve as a basis for our formalisation of UML interactions. In particular, we will
only consider CallActions and ReturnActions, all other kinds may be treated
similarly; we do not include the script attribute of Action. Moreover, we do not
consider the composition of interactions; we henceforth assume that messages
sharing actions are contained in the same interaction.

2 Formal Semantics

We formalise the semantics of UML interactions as formulae in a temporal logic
in the style of Manna and Pnueli [8]. We try to argue that this kind of form-
alisation allows us to capture the informal semantic requirements of the UML
specification directly and intuitively. A state variable yields the global system
state; functions for local states of actions and stimuli sent and received partially
characterise this state. Execution of actions is described by transition systems
on the local states of actions. Temporal formulae over the system state constrain
the concurrent execution of actions; activations are directly reflected by number
sequences. Thus, the global state may change not only subject to the execution
of actions in a given interaction, as a collaboration may be embedded in a more
comprehensive model. We leave open the representation of instances playing the
rOles of an interaction’s context and some details of executing actions, like the
evaluation of arguments. These are under-specified in the UML specification
and we will discuss plausible choices thus demonstrating the flexibility of our
approach.

2.1 Semantic Domains

Formally, we require the following semantic domains: A domain X of global
system states representing the states of instances playing the different roles in
the context of an interaction; for each action a a domain A, of local action states
comprising information from the recurrence and the target expression of a; for
each action a a domain M, for stimuli complying to a; and for each message m
a domain M, for stimuli complying to m and the action a(m) attached to it,
such that there is a map o : My, — M) exhibiting information that is shared
by several stimuli. The semantic domain X is equipped with maps

ap: X —{L, |} (Nx4A,) and
my: X — {L, |} WM,

for every action a, every message m, and every p € (N x N)*. The number
pair sequences p are used to distinguish different occurrences of actions and
stimuli; nesting is reflected by the length of a sequence, the pairs reflect the
possibly parallel occurrences on a given nesting level. Intuitively, the map a,
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either yields the local action state of the pth occurrence of a together with
a “program counter” that is used to create stimuli; or a, yields that the pth
occurrence of a is undefined (L) in a system state; or has already terminated
(1). Analogously, the pth stimulus occurrence for a message m has been sent but
not yet received if m,, yields an element of M,,; this stimulus has not been sent
if m, yields 1; and this stimulus has already been received if m,, yields |.

2.2 Transition Semantics for Actions

For each action a we assume that its semantics is given by some initial local
action state depending on the system state

)\2 X = A,
and transition relations
—a C (Aa x ({1} W))W (A X (Ao X pM,))

parameterised over the global system state o € Y.

Action occurrences will be created in an initial state; note, however, that such
a notion is not required in the UML specification and may therefore be omitted.
After creation, an action occurrence may proceed either by terminating and we
write A2 if (\,]) € —9; or it may proceed by a silent step changing only
its local state and we write A —2 A if (\,\) € —7 with X # |; or it may
proceed by changing its local state and sending stimuli and we write A —7 X', M
it (A, (N, M)) € —7. An action’s recurrence expression may allow for sending
several different stimuli in one transition step.

The flexibility offered by such a general semantics for actions does indeed
seem to be necessary: Let a be the call action of message 1.1A in our running
example (Fig. 1) having: as its recurrence expression i:=0..#(d), as its tar-
get expression b, as its operation a reference to m, and as its single argument
expression d[i]. Various choices for a formal semantics are possible: For one in-
stance, we could assume that the target expression is only evaluated once, when
the action is created, and that the evaluation of the actual argument is atomic.
Then we would choose A, = N x O where O is some semantic domain of object
identifiers and M, = V x O with an additional semantic domain V for values
such that O is a sub-domain of V. The initial state would be

A () = (0, [b] (o)

and a transition relation could be defined by

(1,0)17, if4[d](o) >4,
(i,0) —¢ (i +1,0), ([a)(0)(2),0) if §[d](0) <

where [—] is a function evaluating an expression in a state and # denotes the
cardinality function.

However, the evaluation of the actual arguments may require many steps
which then has to be reflected in the semantic domain A,. Analogously, the
evaluation of the target expression may not be atomic. We simply are not com-
mitted to any of these selections.
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2.3 Semantics of Interactions

We now turn to the semantics of full interactions and their ordering constraints.
We use a linear first-order temporal logic with temporal connectives O (always),
¢ (eventually), and W (unless). The underlying state language consists of one
flexible state variable ¢ from the semantic domain Y| rigid variables, the se-
mantic maps a, and m, as function symbols, and —7 as relation symbols (we
also use the various abbreviations introduced above). The semantics of a spe-
cification in such a temporal logic is defined to be a transition system whose
runs satisfy all formulae of the specification; for more details on this formalism
cf. [8].

Let I be an interaction, M its set of messages, A the set of actions that is
attached to M, and let a(m) denote the action of m € M. The instantiation of
the formula schemes (1-13) defined below according to I define a temporal logic
specification of the semantics of I.

First, we embed the transition semantics for actions into temporal logic. Each
occurrence of an action a € A is created in its initial state:

Vpe (Nx N)T.ay(0) = LW ay(o) = (0,\(a)) . (1)

Each occurrence of an action a € A proceeds as given by its transition semantics:

Occurrences of actions that have terminated can not be reactivated:
(ap(0) = | = Day(0) =) .
Next, stimuli can only be created by appropriate actions:
my (i) (0) = LW (a(m)p(o) = (i + 1, A) Amy i5)(0) # L) - 3)

Stimuli do not change between sending and receiving;:

((mp(o) =pAp#L)=(mplc) =pWmy(o) =1)) . (4)
Stimuli will be received sometime:
(mp(o) # L= 0myp(o) =1) . (5)

Stimuli that have been received can not be resent:

(mp(o) = 1 =D0Omy(o) =1) . (6)
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Finally, we treat the order constraints of the interaction I. If a message m is
preceded by a message m/

(a(m)p(o) = (0,A) = a(m’)p(0) = 1) , (7)

saying that whenever the pth occurrence of message m’s action is ready to be
executed the preceding message m’ must have terminated.
If message m is activated by message m’

(a(m)p.ig) = (0,X) = my, ; 5)(0) = 1), (®)
(My.(i.5y(0) = L = Oa(m )p. @.a) = (0, A) (9)
saying that when a stimulus with number i adhering to the pth occurrence of

the action of message m’ has been received, the p.ith occurrence of message m
will be ready for execution some time later on, but that execution can not start

prematurely.
If message r is the return message of message m
(Tp.(i.g). (k) (0) = L = a(m)p(0) = (i +1,X)) , (10)

saying that when a stimulus with number (k, ) adhering to the p.(%, j)th occur-
rence of message r’s action has been received the pth activation of message m’s
action is (still) in state ¢ + 1.

We additionally designate an initial state. Let N be the messages without an
activator in I. Only occurrences of actions of messages in N may exist initially.

Vm e M .Vpe (NxN)T\{(0,0)}.a(m),(c) =L (11)
Vm € M\ N .a(m)o,0(0) =L (12)
VYm € N . Qa(m)0,0)(0) = (0, A(c)) (13)

The semantics of I is defined to be all runs (models) of the temporal logic
specification yielded by instantiating formula schemes (1-13) according to I.

Ezxample. For our running example as depicted in Fig. 1(c), denoting the action
of message m by am,

(a2(0) = (0,A) = aly(0) = )
(al 1Ap(1])—(0>\)é1( ():
(p(w)( o)=1]=0al. 185 (4,5
(al 1Bp(lj)—(0>\)$1( ()Z
(1

(

(1

Il
—~
<o
Z >
Nais
~—

p.(ij)(0) = L = 0al. 1B, (i ) = (0, A))
al.1C, (i,5) = (0 )\) =1, (1])(
p(w)( =] =0al. 1Cp. (i) = ( )‘>>

v
v

defines the ordering constraints for the messages 1, 1.1A, 1.1B, and 1.1C ac-
cording to (7-9). A simple model construction will be discussed in the next
section.
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It may be noted that we assume that for shared actions several different
stimuli complying to each of the corresponding messages occur. These may be
comprised into only one stimulus complying to several messages and the shared
action.

3 Partial Orders from Interactions

In order to provide evidence that our formalisation captures the intuitive se-
mantics of interactions as described in the specification, we investigate the par-
tial orders of stimuli that can be produced by executing an interaction. These
partial orders are derived again directly from the abstract syntax. They may
appear as an even more obvious approach to the semantics of interactions; how-
ever, it seems to be non-trivial to integrate them with a semantics of actions.
We thus subsequently prove that our temporal logic semantics yields the same
partial orders for terminating interactions.

More precisely, we assign a process, i.e. a set of (labelled) pomsets [11], to an
interaction, with the labelling from the messages of the interaction. Such a pro-
cess represents all possible unrollings or executions of the interaction assuming
that each action of a message can be executed an arbitrary, but finite number
of times; completion of a message, viz. of its action, will be indicated by special
labels. The overall plan of the process construction is to assign to each activation
nesting level of messages a set of processes in a bottom-up fashion and to insert
the pomsets of these processes whenever the start message of a nesting level
occurs in the previous nesting level.

The process is built from simple pomsets containing only a single atom m,
denoting the possible occurrence of a stimulus complying to the message m, or
m, denoting the completion of the message’s action. From these simple processes
we proceed to more complex ones by the well-known (total) process operations
of sequential composition (;), parallel composition (]|), sequential iteration (*),
parallel repetition (1), and homomorphisms [11]; two additional partial opera-
tions for the treatment of synchronous and asynchronous actions are introduced.
We define these operations for pomsets only; they are lifted to processes in the
usual way:

Let p and ¢ be pomsets such that ¢ has a unique minimal element. Let
(X, <x, k) and (Y, <y, ) be representing partial orders for p and g, resp., such
that X and Y are disjoint; let m € Y be the representation of the minimal
element of ¢ and let C = {x € X | k(z) = A\(m)}.

The asynchronous insertion of ¢ in p, written p — q, is given by the pomset
represented by the partial order (Z, <z, u) with: Z = X U (Y \ {m}) - C' (where
N - M denotes the M-fold disjoint sum of N); for every z, 2’ € Z define z <y 2’ if
either 2,2’ € X and z <x 2/, or 2,2’ € Y x{x} for some z € C and m 2z <y m 2,
or z € Cand 2 € Y x {z}; for every z € Z define pu(z) = k(z) if z € X and
u(z)=Amz)ifzeY x C.

The synchronous insertion of ¢ in p, written p < ¢, is given by the pomset
represented by (Z, <, ) with Z and p as for the asynchronous insertion and
2z <y 2 for z,2' € Z if either 2,2’ € X and z <x 7/, or 2,2’ € Y x {z} for some
z € Candmz <y mz,orzeCand 2 €Y x {z},or z €Y x {2} for some
Z"e C and 2’ <x 7.
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Synchronous insertion is obviously a special case of homomorphism. Both
synchronous and asynchronous insertion are associative; additionally

peqer=peregq and pogor=perig

hold for pomsets p, ¢, and r such that all the synchronous and asynchronous
insertions are defined, respectively.

3.1 Process Construction

To begin with, we construct processes for interactions without shared actions;
the general case will be discussed shortly. Again we perceive such an interaction
as a graph I with messages as its vertices and edges labelled either “activator”
or “predecessor” which has to satisfy conditions (i—v) of Sect. 1. In order to
abbreviate notation, we write m > m’, if message m is the activator of m’, and
m — m/, if m is a predecessor of m’. For the set of messages M of I fix a set
M, disjoint from M and a bijective function = : M — M.

We first describe how a process is assigned to each level of activation, i.e.,
a full subgraph of the interaction having as one vertex an activating message
and as the additional vertices all the messages that it (immediately) activates.
Each such level would be an interaction if requirement (v) would be dropped.
Let Cy be the set of all graphs with vertices from N C M, edges labelled from
{+>,—}, fulfilling requirements (i-iv) above, and having exactly one activator
vertex. Let Py be the class of all processes with labels from N U N. Define
Yy : Cny — Py as follows: Let C = (N, R) € Cn, and let ¢ € N be its unique
activator. Define a pomset p represented by the partial order (N\{c}, =, idn\{c})
and a homomorphism o : p — Py given by o(m) = m if the action of m is a
return; o(m) = m* ; m if the action of m is not a return and always sequential;
and o(m) = m'* ;@ otherwise. Then x5 (C) = c; po.

For the overall construction, let Ip; be the set of all interactions with vertices
M and define Py; as before. Define ¢ : [[,, Iar — Py mutually recursive as
follows: Let I = (M, R) be an interaction.

A. If I = (M, R) such that there is no activator in M (i.e. there are no ¢,m € M
with ¢ ->m), then define a homomorphism o : M — Py; by o(m) = m* ;m
if the action of m is always sequential and o = m!*;m if the action of m may
be parallel; define a pomset p represented by the partial order (M,—,idas)
with — the predecessor relation of I. Define (1) = po.

B. If I = (M, R) such that there is at least one activator in M, then let A =
{ai,...,ar} be the penultimate vertices of the activator forest in I (i.e. for
every a € A there is an m’ € M such that a -> m’ but there are no two
vertices m’,m” € M such that a -> m’ -> m/’; and A is maximally so);
for every 1 < i < k define I, = (M;, R;) as the full subgraph generated
by {m € M | a; ~> m} U {a;}; further, define Iy = (Mo, Ry) as the full
subgraph of I generated by M \ U;<;<,(M; \ {a;}); finally, define Py =
em,(Io) and P; = P,y « ¥, (I;) if the action of a; is synchronous and
P, = P;_1 — ¢, (1;) if the action of a; is asynchronous. Then ¢ps (1) = Py.

Let I = (M, R) be an interaction and ¢ : [[,; Isr — Par defined as above.
Then, [I] = ¢ (1) is the corresponding process of 1.
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Example. We illustrate the construction of an interaction’s corresponding pro-
cess by our running example interaction I as depicted in Fig. 1(c). All actions
in I are sequential. The graph I fulfils the conditions of (B) and we get

1.1A 1.1B——1.1C 2.1
Iy = el
r1.1B r1.1C r2.1
A A A
1.1B 1.1C 2.1

Omitting the indices of ¢ and ¢, we have ¢([;) = 1.1B;r1.1B, ¢)(I3) = 1.1C;
r1.1C, and ¢(I3) =2.1;r2.1. The graph Iy again fulfils the conditions of (B):

Il=1——>2
1.1A 1.1B——1.1C 2.1
~. A 7
g !

Here, o(I}) = 1;(1.1A*;T.1A[|1.1B*;1.1B;1.1C*;1.1C), v(I}) = 2;2.1*;2.1
Now, by (A), ¢(Iy) = 1*;1;2";2, and thus o(lo) = ¢(Iy) < ¥(I]) — ¥(I3); a
typical pomset of this process is

1.1A 1.1C

1.1A  1.1B—>1.1C 1.1A 1.1C 2.1
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Finally, o(I) = ¢(lo) < ¥(I1) < (I2) < 1(I3); synchronous insertion into the
pomset above yields

1.1C
|
rl.1C
_ _
1.1A 1.1B—>14-1C 1.1C 2.1
(N - | |
1.1A r1.1B 1.1A r1.1C r2.1
. e |
1.1A 1.1B 1.1A T1.iB—1.1C 2.1
\T \T/ _ T _
1 1 1 2 2

In the general case, actions may be shared by messages. The construction of
a process for an interaction without shared actions can be lifted to this situation:
Let I = (M, R) be an interaction satisfying conditions (i-vi) of Sect. 1, viewed
as an edge-labelled graph as above. Let a(m) denote the action of a message
m € M. Define an edge-labelled graph I'/ao = (M/a, R/) with M/« the set of
equivalence classes [m] of messages quotiented by a, i.e., [m] = [m/] if a(m) =
a(m'); and R/a as v -» v if v = [m] and v' = [m/] and m > m/, and v = v/
if v = [m] and v' = [m/] and m — m/. By definition, I/« is the graph of an
interaction. Furthermore, for [m] = {mo, ..., mn,—1}, let o([m]) = mo]||. . .||mn-1
and o([m]) =g || ... || mn_1.

Then, [I] = [I/a]o is the corresponding process of I.

3.2 From Runs to Pomsets

There is a precise relation between the formal semantics of an interaction I as
given by all runs over a single state variable satisfying the temporal formulae
derived from (1-13) in Sect. 2 and the process [I] according to the construction
above. The pomsets in [I] only take into account the sending of messages and
the termination of actions; we may additionally interpret an occurrence of a
return stimulus in a pomset as the receipt of this stimulus. Conversely, a pomset
can be assigned to a run of I, according to our semantics, by extracting every
first occurrence of the termination of an action, the sending of a stimulus, or the
receipt of a stimulus. Such a pomset, however, may show less concurrency than
any pomset in [I] and the pomsets in [I] have to be augmented by additional,
consistent, ordering in order to match. Additionally, since all partial orders in
[I] are finite, we have to restrict our comparison to terminating runs, that is,
runs showing an eventually stable state in which every stimulus (m,) or action
occurrence (ap) is either undefined (L) or has terminated (|); note, that no
temporal logic axiom unconditionally requires an action to terminate.
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More precisely, for a terminating run (o;);en of I with messages M define

H; ={(m,p) € M x (NxN)T | a(m),(o;) =|}U
{(m,p) € M x (Nx N)* | my(0;) € Ma(m), a(m) no return} U
{(m,p) € M x (N x N)* | my(0;) = |, a(m) return}

and let 7((0;)ien) denote the pomset represented by (H, <,7n) with

H:UieNHi7

/! ! / .
h<h'ifh=h orheH, h eHZ\UOSKkH,, k<l,
n((m, p)) =m, n((m,p)) =m .

It remains to show that these pomsets are augmentations of pomsets in [I],
i.e., that for every run (o;);ey there is a m € [I] equipped with a bijective
homomorphism from 7 to 7((c;)ien)-

For a proof sketch of this claim, the following observation is decisive: Let
(X, <, A) be a representative of a pomset in [I]. Then x < 2’ only if: A\(z) ¢ M
and A\(z) = A(2'); or AM(z), \(2') ¢ M and \(x) transitively precedes or activates
Az') in I; or AM(z) € M, and the message of \(z) precedes or activates the
message of A(z') in I; or A(z) € M, A(z') € M, and the action of A\(z) is the
return action for the action of the message of A(a’). This is easily proven by
the construction of [I]. But these are exactly the orderings that are also at
least required by the temporal formulae. Since [I] contains all pomsets with an
arbitrary number of stimulus occurrences, the claim follows.

The correspondence between the pomset semantics and the temporal se-
mantics may also be extended to non-terminating runs (in the sense explained
above), if we drop the requirement that all messages have to be completed in
the pomset semantics.

Conclusions and Future Work

We presented a formal semantics for UML interactions. This semantics is given
by all runs satisfying certain temporal formulae that can be derived directly
from the abstract syntax representation of an interaction; it tries to capture the
requirements of the UML semantics specification as intuitively as possible. In
particular, the semantics is parametric in both the notion of context of interac-
tions and in a transition semantics for actions, that are under-specified by the
UML semantics. Additionally, we investigated the relationship of these models
to an event-based construction assigning pomsets over stimuli to interactions; it
was shown that temporal runs correspond to augmentations of these pomsets.
It may be interesting to combine the construction of pomset models for in-
teractions with the transition semantics for actions in the style of Cenciarelli
et. al. [4]. Such a semantics could form an even more declarative alternative.
Our temporal logic semantics, however, already provides the necessary basis
to study the important notion of composition of interactions. We considered
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sharing of actions as one possibility to combine different interactions in a common
contextual collaboration, but much work remains to be done in this respect.

Finally, the contextual parametricity of our semantics allows its smooth integ-
ration with existing more general approaches to a comprehensive system model
for UML, such as the SysLab [3] or pUML [5].

Acknowledgements. 1 profitted much from discussions with José Meseguer, Mar-
tin Wirsing, and Harald Storrle.
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