
A Formal Semantics for UML Interactions

Alexander Knapp?

Ludwig–Maximilians–Universität München
knapp@informatik.uni-muenchen.de

Abstract. The UML abstract syntax and semantics specification distin-
guishes between the statics and the dynamics of collaborations: the rôle
context and interactions. We propose a formal semantics of interactions
based on the abstract syntax and directly reflecting the specification.
The semantics is both parametric in the notion of context and in se-
mantic details that are intentionally left open by the specification, but
resolves true inconsistencies. The formalisation uses temporal logic for-
mulae in the style of Manna and Pnueli. We illustrate the flexibility of
our semantics by discussing instantiations for a running example; its in-
tuitiveness is substantiated by proving that the temporal formulae give
rise to partial orders that also directly can be inferred from interactions.

Introduction

The object-oriented software modelling language UML, the “Unified Modeling
Language”, supports behavioural modelling, amongst a variety of different tech-
niques, by the stimulus-based notion of interactions in collaborations. In an UML
model, collaborations specify how an operation or an use case of the model is
realised by a cooperation of several instances of model elements. For the static
aspects of such a realisation a collaboration defines a context of class and asso-
ciation rôles describing which features actually participating instances have to
show. For the dynamic aspects a collaboration defines an interaction, specifying
which actions have to be performed by participating instances, which stimuli to
other participating instances these actions have to dispatch, and in which order
these stimuli can be sent, sequentially or concurrently.

The UML specification [10] defines the concrete and abstract syntax for col-
laborations and interactions and gives a description of the intended semantics,
but entirely lacks a formal semantics. This omission does not only seriously limit
the employment of UML for the construction of analysable and testable software
designs in general; for collaborations and interactions the situation is aggrav-
ated by a gross vagueness of the specification itself. In particular, the informal
semantics falls short of describing how participating instances of an interaction
should actually react to an incoming stimulus, when actions are complete, and
how local state information is to be treated; for some other, similar, problems
see e.g. [9].

 117

We therefore propose a formalisation of interactions in UML collaborations
that clarifies at least some of the ambiguities of the specification but abstracts
from semantic details that are intentionally left open. We claim that our form-
alisation directly, and intuitively, captures the informal semantics given in the
UML specification. In order to reflect the semantic requirements following the
specification as closely as possible, the formalisation is based on the UML meta-
model. The concurrency constraints of UML interactions are expressed as tem-
poral logic formulas in the style of Manna and Pnueli [8]. These formulae only
take into account the sending of stimuli according to actions and the receiving
of stimuli by instances. In particular, the formalisation is parametric in the no-
tion of rôle context and in the more detailed execution of actions beyond the
sending of stimuli which is under-specified by the UML specification. In order to
corroborate our claim that our formalisation captures the UML specification, we
provide an alternative approach to the semantics by unfolding interactions into
partial orders, using Pratt’s pomset framework [11]. We prove that the temporal
formulae give rise to these partial orders.

Several formal semantics of interactions have already been investigated, both
of the specific notion in UML and of several closely related techniques: Araújo [2]
translates a subset of UML sequence diagrams into temporal logic formulas.
Gehrke, Goltz, and Wehrheim [6] sketch a translation of UML collaboration
diagrams to Petri nets, but do not base their considerations on the meta-model.
Wirsing and the author [12] model interaction diagrams of OOSE, one of the
main predecessors of UML interactions, by asynchronously communicating finite
automata; however, it is unclear whether this approach can be extended to the
broader notion of UML interactions. For the equally closely related Message
Sequence Charts semantical models based on process algebra, Petri nets, and
automata have been investigated, for an overview see e.g. [7]; none of these
approaches refers to an object-oriented setting. The semantics of rôle modelling
in general is extensively discussed by Andersen [1]; the precise connections to
UML collaborations, however, remain to be explored.

The remainder of this paper is structured as follows: In Sect. 1 we summarise
UML interactions’ abstract syntax and intended semantics. Section 2 presents
the generation of temporal formulae from interactions in collaborations that
precisely define the semantics of interactions. In Sect. 3 we assign partial orders
to interactions and prove that the temporal logic formalisation indeed yields
these partial orders. We conclude with an outlook to possible integrations of our
semantics with more general approaches.

We assume some familiarity with the UML notation and a superficial know-
ledge of the UML abstract syntax [10].

1 UML Interactions

We briefly recall the parts of the UML meta-model pertaining to collabora-
tions and interactions and their intended semantics [10] by means of a simple
example. Notwithstanding the problems with the mapping from concrete to ab-
stract syntax as described in the UML notation guide we more conveniently
present the example in diagram form, but actually discuss the abstract syntax

118

thereby defined. Consider the collaboration diagram in Fig. 1(a); some relev-
ant fragments of its abstract syntax are presented graphically in Fig. 1(b) and
Fig. 1(c).

1.1A[i:=0..#(d)]: m(d[i])
b

1.1B: r := n(d)

/ P : A / Q : B

c
1

/ R : C/ S : D

d

1

r<<local>>

1.1B/1.1C: o()

/ S : D

*

2.1: p()

1: k()
2: l()

{ ordered }

(a) Collaboration Diagram

1.1B :
Message

P : ClassifierRole

R : ClassifierRole

: AssociationRole
: Argument

value = d

: CallAction

recurrence = 1
isAsync = false
target = c

action

sender

receiver

communication
Connection

operation
n : Operation

(b) Abstract Syntax of Message 1.1B

1.1A :
Message

1 :
Message

pred
act act

act

1.1B :
Message

r1.1B :
Message

pred
1.1C :

Message

act

r1.1C :
Message

act

2 :
Message

act

2.1 :
Message

r2.1 :
Message

act

(c) Abstract Syntax of the Interaction

Fig. 1. Example of an UML Collaboration

 119

1.1 Abstract Syntax and Semantics According to the
UML Specification

For the static aspects of a collaboration, rôles are specified that have to be
filled in order to perform the task of the collaboration, describing the features
collaborators have to show. Rôles are based on elements of a surrounding UML
model; omitting the details, we require that ClassifierRole1 P actually has two
Operations k and l, that there is an AssociationRole with AssociationEndRoles
having type P and Q, and so forth.

The dynamic part of a collaboration is described by Messages gathered in
an Interaction. An interaction declares how and in which order stimuli com-
plying to its messages are to be exchanged. Each Message has a reference to
a sender ClassifierRole, a receiver ClassifierRole, a communication connection
AssociationRole, an Action, a set of predecessor Messages, and, optionally, an
activator Message. Semantically, the “activator is the message that invoked the
procedure which in turn invokes the current message” [10, p. 2-115]; before a mes-
sage can be executed all its predecessor messages have to be completed. There
are several constraints on these predecessor and activator relations; with M the
set of messages of an interaction the following properties have to be satisfied:

i. The graph (M,P) with P the predecessor relation on M is acyclic.
ii. The graph (M,A) with A the activator relation on M is a forest.
iii. For m′, m′′ ∈ M , if m′′ transitively precedes m′ then either both have the

same activator m ∈ M or both have no activator.

Executing a message actually means executing its action possibly resulting in
the sending of a stimulus that complies to the message and therefore its action.
An Action can be a CallAction, a ReturnAction, and of several other kinds, we
do not discuss here. Each Action has a target expression that resolves to a set of
target instances on evaluation; a recurrence expression that determines how the
target set is iterated (sequentially or in parallel); and argument expressions that
yield the actual arguments of the Action. Furthermore, an Action can be asyn-
chronous, i.e., on execution no results are awaited, or synchronous, i.e., awaiting
results. A CallAction refers additionally to an Operation, a stimulus complying
to such an action will call that operation with the evaluated argument expres-
sions as actual parameters. A ReturnAction has no explicit target; it returns the
actual arguments to a caller.

According to (our interpretation of) the UML specification the intended se-
mantics of the interaction described in Fig. 1(a) is the following: At start, only
stimuli complying to 1 can occur since it is the only message that has no prede-
cessors and no activators. Such stimuli can only be created by an execution of 1’s
action. Execution of this action means the creation of a single stimulus µ that is
sent from the instance playing the actor rôle to the instance playing P and that
bears an asynchronous call action of operation k with no actual arguments. Since
the action of 1 is declared as asynchronous, no return stimulus is awaited and
message 1 is completed; thus, stimuli complying to 2 may now occur. Further-
more, on receipt of stimulus µ, 1.1A, 1.1B, and 1.1C are activated; the actions

120

of 1.1A and 1.1B can now be executed concurrently, 1.1C has to wait for the
completion of 1.1B. The action of 1.1B calls n with actual argument d; it is
synchronous, hence a return stimulus with a value for r is awaited and only on
receipt 1.1B is completed. On completion of 1.1B, the action of 1.1C can be
executed analogously. However, note that 1.1B and 1.1C share the local link r;
this has to be stored such that the return stimulus for 1.1B and the stimulus
for 1.1C have access. The action of 1.1A asynchronously calls m as many times
as d has elements with actual argument d[i] where i varies with the number of
calls; the message is completed when all elements of d are processed. Meanwhile
the action of 2 may have been executed in the same vein, activating 2.1. —

Interactions may be composed inside the same collaboration by sharing rôles;
or, transgressing the boundaries of one collaboration, by messages sharing ac-
tions. In the latter case, execution of an action will generate stimuli complying
to all messages sharing this action.

1.2 Problems of the UML Specification

This exposition deviates from or interprets the UML specification in the following
points: According to [10, p. 2-115] the activator relationship of messages in an
interaction imposes a tree; we relax this condition to forests to allow multiple
initial messages. The completion of a message is identified with the completion
of its action, which in turn is determined by the termination of its recurrence
expression; this remains open in [10]. By [10, pp. 2-99ff.], return actions do not
send stimuli; in order to express our semantics more compactly, we require that
they do. This also resolves the problem, left open in [10], by which means a
synchronous call action learns of the results it is waiting for; we thus require a
message with a return action that is activated by the message bearing the call
action and that is the final message activated by the call message (see [10, p. 3-
128] for a motivation). This leads to the following two additional constraints on
the messages M of an interaction:

iv. For m ∈M , if the action of m is a return then there is no m′ ∈M such that
m activates m′.

v. For m ∈M , if the action of m is a synchronous call then there is an r ∈ M
such that the action of r is a return, m activates r and m′ transitively
precedes r for all m′ ∈M such that m activates m′.

Finally, given our interpretation that shared actions lead to stimuli complying
to several messages, the UML specification neglects the consequences of sharing,
viz., that shared actions can only be executed if the corresponding messages do
not depend on each other. Dependencies in the presence of sharing may be of
the form: messages m0 and m1 precede messages m′

0 and m′
1, resp., but m0 and

m′
1 share the same action and also m′

0 and m1 share the same action; none of
these action can be executed in this situation. We therefore require that after
identifying all those messages of an interaction that share the same action and
extending this identification to the predecessor and activator relations, the new
predecessor relation has to be acyclic, the activator relation has to form a forest,
etc. More precisely, we regard an interaction as a graph (M,R) with the messages
M as vertices and the activator and predecessor relations as edges; each vertex

 121

m is labelled by α(m), the action of m, and each edge by whether its an activator
or a predecessor edge:

vi. The quotient of an interaction (M,R) by α satisfies constraints (i–v).

The UML abstract syntax and its contextual constraints sketched so far
serve as a basis for our formalisation of UML interactions. In particular, we will
only consider CallActions and ReturnActions, all other kinds may be treated
similarly; we do not include the script attribute of Action. Moreover, we do not
consider the composition of interactions; we henceforth assume that messages
sharing actions are contained in the same interaction.

2 Formal Semantics

We formalise the semantics of UML interactions as formulae in a temporal logic
in the style of Manna and Pnueli [8]. We try to argue that this kind of form-
alisation allows us to capture the informal semantic requirements of the UML
specification directly and intuitively. A state variable yields the global system
state; functions for local states of actions and stimuli sent and received partially
characterise this state. Execution of actions is described by transition systems
on the local states of actions. Temporal formulae over the system state constrain
the concurrent execution of actions; activations are directly reflected by number
sequences. Thus, the global state may change not only subject to the execution
of actions in a given interaction, as a collaboration may be embedded in a more
comprehensive model. We leave open the representation of instances playing the
rôles of an interaction’s context and some details of executing actions, like the
evaluation of arguments. These are under-specified in the UML specification
and we will discuss plausible choices thus demonstrating the flexibility of our
approach.

2.1 Semantic Domains

Formally, we require the following semantic domains: A domain Σ of global
system states representing the states of instances playing the different rôles in
the context of an interaction; for each action a a domain Λa of local action states
comprising information from the recurrence and the target expression of a; for
each action a a domain Ma for stimuli complying to a; and for each message m
a domain Mm for stimuli complying to m and the action α(m) attached to it,
such that there is a map α : Mm →Mα(m) exhibiting information that is shared
by several stimuli. The semantic domain Σ is equipped with maps

ap : Σ → {⊥, ↓}] (N × Λa) and
mp : Σ → {⊥, ↓}]Mm

for every action a, every message m, and every p ∈ (N × N)+. The number
pair sequences p are used to distinguish different occurrences of actions and
stimuli; nesting is reflected by the length of a sequence, the pairs reflect the
possibly parallel occurrences on a given nesting level. Intuitively, the map ap

122

either yields the local action state of the pth occurrence of a together with
a “program counter” that is used to create stimuli; or ap yields that the pth
occurrence of a is undefined (⊥) in a system state; or has already terminated
(↓). Analogously, the pth stimulus occurrence for a message m has been sent but
not yet received if mp yields an element of Mm; this stimulus has not been sent
if mp yields ⊥; and this stimulus has already been received if mp yields ↓.

2.2 Transition Semantics for Actions

For each action a we assume that its semantics is given by some initial local
action state depending on the system state

λ0
a : Σ → Λa

and transition relations

−→σ
a ⊆ (Λa × ({↓}] Λa))] (Λa × (Λa × ℘Ma))

parameterised over the global system state σ ∈ Σ.
Action occurrences will be created in an initial state; note, however, that such

a notion is not required in the UML specification and may therefore be omitted.
After creation, an action occurrence may proceed either by terminating and we
write λ↓σa if (λ, ↓) ∈ −→σ

a ; or it may proceed by a silent step changing only
its local state and we write λ −→σ

a λ′ if (λ, λ′) ∈ −→σ
a with λ′ 6= ↓; or it may

proceed by changing its local state and sending stimuli and we write λ −→σ
a λ

′,M
if (λ, (λ′,M)) ∈ −→σ

a . An action’s recurrence expression may allow for sending
several different stimuli in one transition step.

The flexibility offered by such a general semantics for actions does indeed
seem to be necessary: Let a be the call action of message 1.1A in our running
example (Fig. 1) having: as its recurrence expression i:=0..#(d), as its tar-
get expression b, as its operation a reference to m, and as its single argument
expression d[i]. Various choices for a formal semantics are possible: For one in-
stance, we could assume that the target expression is only evaluated once, when
the action is created, and that the evaluation of the actual argument is atomic.
Then we would choose Λa = N×O where O is some semantic domain of object
identifiers and Ma = V × O with an additional semantic domain V for values
such that O is a sub-domain of V . The initial state would be

λ0
m(σ) = (0, [[b]](σ))

and a transition relation could be defined by

(i, o)↓σm if][[d]](σ) > i,
(i, o) −→σ

a (i+ 1, o), ([[d]](σ)(i), b) if][[d]](σ) ≤ i
where [[−]] is a function evaluating an expression in a state and] denotes the
cardinality function.

However, the evaluation of the actual arguments may require many steps
which then has to be reflected in the semantic domain Λa. Analogously, the
evaluation of the target expression may not be atomic. We simply are not com-
mitted to any of these selections.

 123

2.3 Semantics of Interactions

We now turn to the semantics of full interactions and their ordering constraints.
We use a linear first-order temporal logic with temporal connectives � (always),
♦ (eventually), and W (unless). The underlying state language consists of one
flexible state variable σ from the semantic domain Σ, rigid variables, the se-
mantic maps ap and mp as function symbols, and −→σ

a as relation symbols (we
also use the various abbreviations introduced above). The semantics of a spe-
cification in such a temporal logic is defined to be a transition system whose
runs satisfy all formulae of the specification; for more details on this formalism
cf. [8].

Let I be an interaction, M its set of messages, A the set of actions that is
attached to M , and let α(m) denote the action of m ∈M . The instantiation of
the formula schemes (1–13) defined below according to I define a temporal logic
specification of the semantics of I.

First, we embed the transition semantics for actions into temporal logic. Each
occurrence of an action a ∈ A is created in its initial state:

∀p ∈ (N× N)+ . ap(σ) = ⊥W ap(σ) = (0, λ0
a(σ)) . (1)

Each occurrence of an action a ∈ A proceeds as given by its transition semantics:

(ap(σ) = (i, λ)⇒ (ap(σ) = (i, λ) W

((ap(σ) = ↓ ∧ λ↓σa) ∨
(ap(σ) = (i, λ′) ∧ (λ −→σ

a λ
′)) ∨

(ap(σ) = (i+ 1, λ′) ∧ (λ −→σ
a λ

′, {µ1, . . . , µk}) ∧∧
0≤j≤k
m∈α−1(a)

α(mp.(i,j)(σ)) = µj ∧ ∀j > k .mp.(i,j)(σ) = ⊥))) .

(2)

Occurrences of actions that have terminated can not be reactivated:

(ap(σ) = ↓⇒�ap(σ) = ↓) .

Next, stimuli can only be created by appropriate actions:

mp.(i,j)(σ) = ⊥W (α(m)p(σ) = (i+ 1, λ) ∧mp.(i,j)(σ) 6= ⊥) . (3)

Stimuli do not change between sending and receiving:

((mp(σ) = µ ∧ µ 6= ⊥)⇒ (mp(σ) = µ W mp(σ) = ↓)) . (4)

Stimuli will be received sometime:

(mp(σ) 6= ⊥⇒ ♦mp(σ) = ↓) . (5)

Stimuli that have been received can not be resent:

(mp(σ) = ↓⇒�mp(σ) = ↓) . (6)

124

Finally, we treat the order constraints of the interaction I. If a message m is
preceded by a message m′

(α(m)p(σ) = (0, λ)⇒ α(m′)p(σ) = ↓) , (7)

saying that whenever the pth occurrence of message m’s action is ready to be
executed the preceding message m′ must have terminated.

If message m is activated by message m′

(α(m)p.(i,j) = (0, λ)⇒m′
p.(i,j)(σ) = ↓) , (8)

(m′
p.(i,j)(σ) = ↓⇒ ♦α(m)p.(i,j) = (0, λ)) , (9)

saying that when a stimulus with number i adhering to the pth occurrence of
the action of message m′ has been received, the p.ith occurrence of message m
will be ready for execution some time later on, but that execution can not start
prematurely.

If message r is the return message of message m

(rp.(i,j).(k,l)(σ) = ↓⇒ α(m)p(σ) = (i+ 1, λ)) , (10)

saying that when a stimulus with number (k, l) adhering to the p.(i, j)th occur-
rence of message r’s action has been received the pth activation of message m’s
action is (still) in state i+ 1.

We additionally designate an initial state. Let N be the messages without an
activator in I. Only occurrences of actions of messages in N may exist initially.

∀m ∈M . ∀p ∈ (N ×N)+ \ {(0, 0)} . α(m)p(σ) = ⊥ (11)
∀m ∈M \N . α(m)(0,0)(σ) = ⊥ (12)

∀m ∈ N .♦α(m)(0,0)(σ) = (0, λ0
a(σ)) (13)

The semantics of I is defined to be all runs (models) of the temporal logic
specification yielded by instantiating formula schemes (1–13) according to I.

Example. For our running example as depicted in Fig. 1(c), denoting the action
of message m by am,

(a2p(σ) = (0, λ)⇒ a1p(σ) = ↓)
(a1.1Ap.(i,j) = (0, λ)⇒ 1p.(i,j)(σ) = ↓)
(1p.(i,j)(σ) = ↓⇒ ♦a1.1Ap.(i,j) = (0, λ))

(a1.1Bp.(i,j) = (0, λ)⇒ 1p.(i,j)(σ) = ↓)
(1p.(i,j)(σ) = ↓⇒ ♦a1.1Bp.(i,j) = (0, λ))

(a1.1Cp.(i,j) = (0, λ)⇒ 1p.(i,j)(σ) = ↓)
(1p.(i,j)(σ) = ↓⇒ ♦a1.1Cp.(i,j) = (0, λ))

defines the ordering constraints for the messages 1, 1.1A, 1.1B, and 1.1C ac-
cording to (7–9). A simple model construction will be discussed in the next
section.

 125

It may be noted that we assume that for shared actions several different
stimuli complying to each of the corresponding messages occur. These may be
comprised into only one stimulus complying to several messages and the shared
action.

3 Partial Orders from Interactions

In order to provide evidence that our formalisation captures the intuitive se-
mantics of interactions as described in the specification, we investigate the par-
tial orders of stimuli that can be produced by executing an interaction. These
partial orders are derived again directly from the abstract syntax. They may
appear as an even more obvious approach to the semantics of interactions; how-
ever, it seems to be non-trivial to integrate them with a semantics of actions.
We thus subsequently prove that our temporal logic semantics yields the same
partial orders for terminating interactions.

More precisely, we assign a process, i.e. a set of (labelled) pomsets [11], to an
interaction, with the labelling from the messages of the interaction. Such a pro-
cess represents all possible unrollings or executions of the interaction assuming
that each action of a message can be executed an arbitrary, but finite number
of times; completion of a message, viz. of its action, will be indicated by special
labels. The overall plan of the process construction is to assign to each activation
nesting level of messages a set of processes in a bottom-up fashion and to insert
the pomsets of these processes whenever the start message of a nesting level
occurs in the previous nesting level.

The process is built from simple pomsets containing only a single atom m,
denoting the possible occurrence of a stimulus complying to the message m, or

126

Synchronous insertion is obviously a special case of homomorphism. Both
synchronous and asynchronous insertion are associative; additionally

p← q← r = p← r← q and p↼ q ↼ r = p↼ r ↼ q

hold for pomsets p, q, and r such that all the synchronous and asynchronous
insertions are defined, respectively.

3.1 Process Construction

To begin with, we construct processes for interactions without shared actions;
the general case will be discussed shortly. Again we perceive such an interaction
as a graph I with messages as its vertices and edges labelled either “activator”
or “predecessor” which has to satisfy conditions (i–v) of Sect. 1. In order to
abbreviate notation, we write m //

 127

Example. We illustrate the construction of an interaction’s corresponding pro-
cess by our running example interaction I as depicted in Fig. 1(c). All actions
in I are sequential. The graph I fulfils the conditions of (B) and we get

I0 =
1.1A 1.1B //

128

Finally, ϕ(I) = ϕ(I0)← ψ(I1)← ψ(I2)← ψ(I3); synchronous insertion into the
pomset above yields

 129

More precisely, for a terminating run (σi)i∈N of I with messages M define

Hi = {(

130

sharing of actions as one possibility to combine different interactions in a common
contextual collaboration, but much work remains to be done in this respect.

Finally, the contextual parametricity of our semantics allows its smooth integ-
ration with existing more general approaches to a comprehensive system model
for UML, such as the SysLab [3] or pUML [5].

Acknowledgements. I profitted much from discussions with José Meseguer, Mar-
tin Wirsing, and Harald Störrle.

References

1. Egil P. Andersen. Conceptual Modeling of Objects — A Role Modeling Approach.
PhD thesis, Universitetet i Oslo, 1997.

2. João Araújo. Formalizing Sequence Diagrams. In Luis F. Andrade, Ana Moreira,
Akash R. Deshpande, and Stuart Kent, editors, Proc. Wsh. Formalizing UML.
Why? How?, Vancouver, 1998.

3. Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin.
Systems, Views and Models of UML. In Axel Korthaus and Martin Schader,
editors, The Unified Modeling Language — Technical Aspects and Applications,
pages 93–108. Physica, Heidelberg, 1998.

4. Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing. An
Event-Based Structural Operational Semantics of Multi-Threaded Java. In Jim
Alves-Foss, editor, Formal Syntax and Semantics of Java, volume 1523 of Lect.
Notes Comp. Sci., pages 157–200. Springer, Berlin, 1999.

5. Robert France, Andrew Evans, Kevin Lano, and Bernhard Rumpe. The UML as
a Formal Modeling Notation. Comp. Stand. Interf., 19(7):325–334, 1998.

6. Thomas Gehrke, Ursula Goltz, and Heike Wehrheim. The Dynamic Models of
UML: Towards a Semantics and Its Application in the Development Process. Tech-
nical Report 11/98, Universität Hildesheim, 1998.

7. Piotr Kosiuczenko and Martin Wirsing. Towards an Integration of Message Se-
quence Charts and Timed Maude. In Murat M. Tanik, Jiro Tanaka, Kiyoshi Itoh,
Michael Goedicke, Wilhelm Rossak, Hartmut Ehrig, and Franz Kurfueß, editors,
Proc. 3rd Int. Conf. Integrated Design and Process Technology, Berlin, 1998.

8. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Vol. 1: Specification. Springer, New York–etc., 1992.

9. Object Management Group. OMG UML v1.3: Revisions and Recommendations
— Appendix A: Issues Database Report. Technical report, Object Management
Group, 1999. http://www.omg.org/docs/ad/99-06-11.pdf.

10. Object Management Group. Unified Modeling Language Specification, Version 1.3.
Technical report, Object Management Group, 1999.
http://www.omg.org/docs/ad/99-06-08.zip.

11. Vaughan Pratt. Modeling Concurrency with Partial Orders. Int. J. Parallel Pro-
gram., 15(1):33–71, 1986.

12. Martin Wirsing and Alexander Knapp. A Formal Approach to Object-Oriented
Software Engineering. In José Meseguer, editor, Proc. 1st Int. Wsh. Rewriting Logic
and Its Applications, volume 4 of Electr. Notes Theo. Comp. Sci., pages 321–359.
Elsevier, 1996.

	<<UML>> '99 — The Unified Modeling Language Beyond the Standard
	Preface
	Organisation
	Table of Contents
	Architecting Web-Based Systems with the Unified Modeling Language
	Extending Architectural Representation in UML with View Integration
	1 Introduction
	2 Motivation for View Integration in UML
	2.1 Architectural Representation in UML
	2.2 Deficiencies of Pure View Representation
	2.3 Outline

	3 Example: Layered Architecture Constrains UML Design
	4 UML Integration
	5 C2 and UML
	5.1 Overview of C2
	5.2 C2 Representation
	5.3 C2 Integration
	5.3.1 C2 Structural Integration
	5.3.2 C2 Behavioral Integration

	6 Conclusion
	References

	Enabling the Refinement of a Software Architecture into a Design
	1 Introduction
	2 Motivation
	2.1 Refinement
	2.2 Abstraction

	3 Mapping from an ADL to the UML
	3.1 Overview of C2
	3.2 Mapping C2SADEL to UML Using Strategy #1
	3.3 Mapping C2SADEL to UML Using Strategy #2
	3.4 Transformation Rules
	3.5 Limitations of UML to Represent Software Architectures

	4 Integrating Rational Rose with DRADEL
	4.1 Architecture of the Rational Rose® Environment
	4.2 Architecture of the DRADEL Environment
	4.3 Integration Approach

	5 Related Work
	6 Conclusions and Future Research Directions
	References

	Using the UML for Architectural Description
	1 Introduction
	2 What Is IEEE P1471?
	2.1 IEEE Goals for P1471
	2.2 Using P1471
	2.3 The P1471 Conceptual Framework

	3 P1471 Requirements on Architectural Descriptions
	3.1 Stakeholders and Concerns
	3.2 Architectural Views
	3.3 Architectural Viewpoints
	3.4 Viewpoint Example

	4 Using the UML in the Context of IEEE P1471
	5 General Issues
	6 Closing
	References

	Viewing the OML as a Variant of the UML
	Introduction
	The History of OML and Future Contributions to the UML
	Key OML and UML Metamodel Fragments
	UML
	OML

	The UML Extension Mechanism
	OML as a UML Variant
	Responsibilities
	Aggregation
	Type/Class/Interface
	All Relationships Are Dependencies

	Conformant and Non-conformant Variants
	Summary and Conclusions

	A Comparison of the Business Object Notation and the Unified Modeling Language
	Introduction
	Introduction to BON
	What Is not in BON?

	Seamlessness and Reversibility
	Class Interfaces
	Features.
	Compressed Interfaces.
	Visibility.

	Static Architecture Diagrams
	Client-Supplier Relationships.
	Clustering.

	Dynamic Diagrams

	Design by Contract and Assertion Languages
	Assertions in BON
	The Object Constraint Language
	Comparison
	Contextual Information
	Software Contracting with OCL
	Using the Constraint Languages

	Limitations of BON and UML
	Improvements to BON
	Improvements to UML

	Conclusions

	Formalizing the UML Class Diagram Using Object-Z
	1 Introduction
	2 Formalizing Syntactic Structres of UML Class Diagrams
	2.1. Classes
	2.2. Associations
	2.3. Association Classes
	2.4. Generalizations
	2.5. Class Diagrams

	3 Formalizing the Semantics of UML Class Diagrams
	3.1. Object-Z Overview
	3.2. A Library System
	3.3. Translating UML Class Constructs to Object-Z
	3.3.1. Semantics of a Class
	3.3.2. Semantics of Association
	3.3.3. Association Class

	4 Conclusions
	References

	A Formal Approach to Collaborations in the Unified Modeling Language
	Introduction
	Collaborations
	Interactions
	Formalizing Collaborations
	Generalization between Collaborations
	Use Cases
	Subsystems
	Concluding Remarks

	A Formal Semantics for UML Interactions
	Introduction
	UML Interactions
	Abstract Syntax and Semantics According to the UML Specification
	Problems of the UML Specification

	Formal Semantics
	Semantic Domains
	Transition Semantics for Actions
	Semantics of Interactions

	Partial Orders from Interactions
	Process Construction
	From Runs to Pomsets

	UML 2.0 Architectural Crossroads: Sculpting or Mudpacking? Panel
	1 Discussion Context
	2 Position Statements
	3 Participant Biographies

	Core Meta-Modelling Semantics of UML: The pUML Approach
	Introduction
	The pUML Approach
	Working with the Standard
	Core Semantics
	Adopting a Denotational Approach
	Review and Feedback
	Tool Support
	Formalisation Strategy

	The UML Core
	Generalization/Specialization
	Informal Description
	Existing Formal Definitions
	Syntax and Well-Formedness
	Semantics

	Package Instances
	Constraints

	A Model-Instance Viewpoint Architecture
	Further Work

	A Metamodel for OCL
	Introduction
	Structure of the Metamodel
	Constraints
	Types
	Expressions
	Values
	Conclusion

	Tool-Supported Compression of UML Class Diagrams
	1 Introduction
	2 Compression and Expansion on Labeled Directed Graphs
	2.1 Basic Definitions
	2.2 Operations
	2.2.1 Constructing an Initial Compressible Graph
	2.2.2 Setting a Hosting Relation
	2.2.3 Resetting a Hosting Relation
	2.2.4 Compression and Expansion
	2.2.5 Incremental Expansion
	2.2.6 Displaying a Compressible Graph
	2.2.7 Example

	3 Applying Graph Compression to Class Diagrams
	3.1 User Interface
	3.2 Compression as Abstraction
	3.3 Handling Multiplicity and Qualification of Associations
	3.4 Alternative Presentation Options for Multiple Edges

	4 Prototype
	5 Open Problems and Conclusions
	References

	A Pragmatic Approach for Building a User-Friendly and Flexible UML Model Repository
	1 Introduction
	1.1 UML Graphical Notation Support Versus Metamodel Support

	2 Meta-metamodel Support
	2.1 The Four-Layer Metamodel Architecture
	2.2 The Bootstrap Meta-metamodel
	2.3 Providing a Partial MOF Support
	2.4 Representing Model Instances in the Repository
	2.5 Towards a Generic Model Repository

	3 Metamodel Support
	3.1 Mapping the Metamodel Abstractions into Language Constructs
	3.2 The Tailored Interfaces
	3.3 The Reflective Interface

	4 Repository Design Issues
	4.1 The Logical Storage Name Space Structure
	4.2 Repository Encapsulation
	4.3 Object Identifiers
	4.4 The Double-Layered Naming Hierarchy
	4.5 Stereotype Support
	4.6 Default Values for Attributes
	4.7 Proxies Management: Partial Loading of a Model

	5 Textual Representations of Model Elements
	5.1 The JMI Textual Notation
	5.2 XMI and XMI+ Textual Notations

	6 Using the Repository Tool
	6.1 A TMN Specifications Repository
	6.2 A UML to SDL Translator

	7 Conclusions
	References

	Modeling Dynamic Software Components in UML
	Introduction and Motivation
	Modeling Component Configurations with UML
	Component Links
	Component Boundaries

	Modeling Component Behaviour with UML
	Components in Collaboration Diagrams
	Components in Sequence Diagrams
	The Lifecycle of a Component
	Components in Class Diagrams

	Visualizing Component Behaviour at Runtime
	Identifying Component Links in an Implementation
	Related Work
	Summary

	Extending UML for Modeling Reflective Software Components
	Introduction
	Reflective Components in the Design Phase
	Aspect-Oriented Programming: Separation of Concerns
	Reflection
	Benefits of Capturing Reflective Components in the Design Phase
	Benefits of Describing and Interchanging Metalevel Design Models with XML

	Modeling Reflective Components with UML
	Aspects
	Aspect-Class Relationship
	Woven Class
	Example: Reifying the Observer Design Pattern in the Metalevel
	Example: An Aspect-Oriented Web Server
	Metalevel, Baselevel, and Metaclasses

	Describing and Interchanging Reflective Components with UXF and XMI
	Current Project Status and Future Work
	Conclusion

	Nine Suggestions for Improving UML Extensibility
	1 Introduction
	2 Background
	2.1 The SeaBank Framework
	2.2 Modeling SeaBank Components
	2.3 Implementing SAGE in Rational Rose

	3 Suggestions for Improving UML Extensibility
	3.1 Distinction Between Keywords and Stereotypes is Unclear
	3.2 Semantics of Stereotype Hierarchies Are Underspecified
	3.3 Tagged Value Inheritance and Specification are Underspecified
	3.4 UML Should Support Tagged Value Types
	3.5 Support Tagged Values as Metaattributes in the UML Metamodel
	3.6 Tools Should Support the OCL
	3.7 Tools Should Comply to the UML Standard
	3.8 The UML Metamodel Should Be Self-contained
	3.9 Tools Should Be Metamodel Based

	4 Conclusion
	References

	A Classification of Stereotypes for Object-Oriented Modeling Languages
	1 Introduction
	2 A Classification of Stereotypes
	2.1 Decorative Stereotypes
	2.2 Descriptive Stereotypes
	2.3 Restrictive Stereotype
	2.4 Redefining Stereotype

	3 Strength and Weaknesses of Stereotypes
	4 Defining Stereotypes
	5 Guiding for Stereotype Design
	6 Summary and Conclusions
	References

	First-Class Extensibility for UML — Packaging of Profiles, Stereotypes, Patterns
	1 Introduction
	2 Why Use UML Packages as the Base?
	3 Packages for Structured Meta-Model Extension
	3.1 UML 1.3 Compatibility
	3.2 Contrast with Subclassing Approach
	3.3 But <my favorite language> Works Differently
	3.4 Define .Join. Rules to Combine Element Definitions
	3.5 What Can This Be Used for?

	4 Frameworks - Light and Heavyweight Extensions
	4.1 JavaBeans for a Java Profile
	4.2 Stereotypes as Framework Application
	4.3 Framework for Heavyweight Extensions: Instantiation
	4.4 Constraints on Framework Application

	5 Other Extensibility Mechanisms
	6 Proof of Concept
	7 Conclusions
	References

	UML-Based Fusion Analysis
	1 Introduction
	2 Fusion Analysis and UML
	2.1 Fusion Analysis
	2.2 Mapping to UML

	3 Bank Case Study
	3.1 Problem Statement: Banking System
	3.2 Class Diagrams
	3.2.1 Bank System Class Diagram

	3.3 System Interface
	3.3.1 Bank System Context Diagram
	3.3.2 Bank Scenario
	3.3.3 Bank Operation Schemas
	3.3.4 Bank Life Cycle Model

	4 Related Work and Discussion
	4.1 Related Work
	4.2 System Interface Protocol
	4.3 Operation Schemas
	4.4 In Perspective

	5 Conclusion
	References

	Using UML for Modelling the Static Part of a Software Process
	1 Introduction
	2 The Metamodel and the Reference Model
	2.1 The Metamodel
	2.2 The Reference Model

	3 Static Part: Documents
	4 Static Part: Tasks
	4.1 Task Decomposition by Aggregation
	4.2 Task Decomposition by Refinement

	5 Drawbacks Concerning the Dynamic Part Description with UML
	6 Conclusions and Related Work
	References

	Framework for Describing UML Compatible Development Process
	1 Introduction
	2 Traditional Specification of Software Development Processes
	3 Basic Features of the Product-Focussed Object-Oriented Process Specification
	4 Static Structure of Software Development and Management Artifacts
	5 Dynamics of Software Development Artifacts - Development Processes
	5.1 Rational Unified Process
	5.2 The Process of the Fusion Method

	6 The Object-Oriented Specification of Development Processes
	7 Comparison to Other Design Methods and Methodological Frameworks
	8 Summary
	References

	On the Behavior of Complex Object-Oriented Systems
	UML-RT as a Candidate for Modeling Embedded Real-Time Systems in the Telecommunication Domain
	Introduction
	Three Basic Concepts for Real-Time Design
	Blocks
	Signals
	Job Buffers
	The Implications of the Concepts Introduced

	Conceptional Mapping to UML-RT
	Blocks, Capsules, and Ports
	Signals and Connectors
	Job Buffers and Priority Layers

	Design and Modeling in the Telecommunication Domain
	Summary and Conclusion

	Modeling Hard Real Time Systems with UML The OOHARTS Approach
	Introduction
	An Example Model
	Overview
	OOHARTS Development Process

	Requirements Definition
	Hard Real Time Analysis
	System Environment Interaction Model
	Defining the Object Class Model
	Describing the Behavior using the Object Behavior Chart in OOHARTS

	Hard Real Time Design
	Refinement of Behavioral Aspects

	Implementation
	UML Extensions Summary
	Conclusion

	UML Based Performance Modeling Framework for Object-Oriented Distributed Systems1
	1 Introduction
	2 Framework Requirements
	3 Framework Architecture
	4 Technical Foundations
	4.1 Queuing Networks
	4.2 The Method of Decomposition

	5 UML Techniques for Performance Modeling
	5.1 Resource Representation
	5.2 Workload Representation
	5.3 Triggering Properties
	5.4 Service Demand Binding
	5.5 Network Connections
	5.6 Class Name Resolution

	6 How to Use the Framework
	7 Prototype Implementation and a Modeling Example
	8 Discussion
	9 Conclusions
	References

	Defining the Context of OCL Expressions
	1 Introduction
	2 OCL Expressions and their Context
	3 A More General Approach
	4 Declaration Syntax
	5 Global and Local Declarations
	6 Derivation of Global Declarations
	7 Derivation of Local Declarations
	8 Example
	9 Summary
	References

	Mixing Visual and Textual Constraint Languages
	1 Introduction
	2 OCL
	3 Constraint Diagrams
	4 Mixing OCL with Constraint Diagrams
	4.1. Annotating CDs with OCL
	4.2. Embedding CDs in OCL
	4.3. Mixing OCL and CDs

	5 Further Work
	References

	Correct Realizations of Interface Constraints with OCL*
	Introduction
	Motivations
	The General Method: An Overview

	The Account Example
	Specification of Interface Constraints
	Interface Constraints
	Semantics of Interface Constraints

	Specification of Class Constraints
	Using OCL to Specify Class Constraints
	Semantics of Class Constraints

	Justification of the Implementation Relation
	Related Work
	Concluding Remarks

	Generating Tests from UML Specifications
	Introduction
	Software Testing
	Test Data Generation Techniques Based on UML
	Transition Coverage Level
	Full Predicate Coverage Level
	Transition-Pair Coverage Level
	Complete Sequence Level

	A Rose-Based Test Data Generation Tool
	Algorithms

	Empirical Evaluation
	Conclusions

	Formalising UML State Machines for Model Checking
	Introduction
	Formal Semantics
	Formal Description of State Machines
	The Run-to-Completion Step
	Collaboration of Objects
	Particular Comments on the Semantics

	Conclusions

	SDL as UML: Why and What Panel
	Philippe Dhaussy, Joel Champeau, Michel Boulestin: Using UML and SDL for Embedded Systems
	Anders Ek: UML /SDL Convergence
	Øystein Haugen: Converging MSC and UML Sequence Diagrams
	Philippe Leblanc: SDL-UML Convergence
	Birger Møller-Pedersen, Thomas Weigert: Towards a Convergence of SDL and UML
	References

	UML Behavior: Inheritance and Implementation in Current Object-Oriented Languages
	1 Introduction
	2 Aims
	3 Notions
	3.1 Transition
	3.2 State
	3.3 Active Objects

	4 Abstract State Machine
	4.1 Sequential Execution
	4.2 Concurrent Execution

	5 Behavior Inheritance
	5.1 State Inheritance
	5.2 Transition Inheritance
	5.2.1 Definition of a Preorder Relationship
	5.2.2 Sequential Execution
	5.2.3 Concurrent Execution

	6 Behaviour Implementation
	6.1 State Representation

	7 Conclusion and Related Works
	References

	UML Collaboration Diagrams and their Transformation to Java
	Introduction
	Deploying UML Collaboration Diagrams
	Transformation Approach
	Refined Meta Model
	Transformation Algorithm
	Conclusion and Perspectives

	Towards Three-Dimensional Representation and Animation of UML Diagrams
	Introduction
	Class Diagrams
	Object Diagrams
	Animating Sequence Diagrams
	Three-Dimensional Sequence Diagrams
	Conclusion and Future Work

	Typechecking UML Static Models
	Introduction
	UML Static Models
	Requirements and Class Diagram
	Collection Types
	Iteration Expressions

	Syntax and Semantics of Static Models
	Type Checking
	Static Models
	Type Conformance
	Type Theory
	Correctness of the Type Theory
	Type Consistency of Static Models

	Implementation
	Conclusion

	Analysing UML Use Cases as Contracts
	1 Introduction
	2 Use Cases
	3 Contracts
	4 Case Study: Private Library
	5 Analysis
	6 Conclusions and Related Work
	References

	Closing the Gap between Object-Oriented Modeling of Structure and Behavior
	1 Introduction and Background
	2 Example Overview
	3 UML Behavior Modeling Concepts
	4 The OCoN Approach
	5 Comparison
	6 Conclusion
	References

	Black and White Diamonds
	A Very Brief History of Aggregation in Object Modelling
	The Current ``Definitions'' of UML's Two Aggregation Types
	Black Diamonds
	White Diamonds
	Summary of Current State

	Proposal to Create a Useful Definition for UML WP Relationship
	Primary Characteristics
	Secondary Characteristics
	Implementation in the UML Metamodel

	Discussion and Recommendations

	Interconnecting Objects via Contracts
	1 Introduction
	2 Motivation
	3 Notation and Examples
	4 Semantics of Contracts
	5 A Design Pattern for Contracts
	6 Concluding Remarks
	Acknowledgements
	References

	How Can a Subsystem Be Both a Package and a Classifier?
	1 What is a subsystem?
	2 Review of a method
	2.1 Things to do
	Divide responsibilities. Identify a set of subsystems and assign responsibilities to each of them...
	Model Interactions. In the context of the collaborating subsystems, identify all the interactions...
	Simplify. Minimize the number of interactions a subsystem has with other subsystems. Minimize the...
	Evaluate the result. The goal is to maximize the cohesion of each subsystem and minimize the coup...
	Repeat. Repeat the process, making changes to the design at each step. Continue design iterations...

	2.2 Direction of work
	Bottom up. In [5], designers were advised to find classes, then to build and refactor class hiera...
	Top down. Critics of [5] said that subsystems should be identified first before any objects or cl...
	Middle out. In practice, a lot of work is actually done starting with a small number of potential...

	3 Principles
	4 A Scheme
	Outside. From the outside, a subsystem is treated as a single model element. It appears as a whol...
	Inside. From the inside, a subsystem reveals itself to have a complex structure. It is a system o...
	4.2 Solution to the puzzle
	4.3 Drawing the pictures
	4.4 UML Notation
	4.5 Desirable subsystem properties
	Attributes. UML specifies that a subsystem may not have attributes. But it is often very useful t...
	Interfaces needed. In addition to specifying the interfaces a subsystem provides, we need to spec...
	Component. When construction of a system reaches the point where we have code, UML adds another c...
	Generalization. A UML Subsystem is a generalizable element. That’s good. Being a generalizable el...
	Instantiability. A UML Subsystem may be instantiable or not. This is not the place to discuss wha...
	Abstraction. We ask the reader to agree with us that abstraction is useful even when talking abou...

	4.6 Just what is a subsystem, anyway
	How it happened. To testify to history: Among the UML partners different needs were felt, all of ...
	What resulted. We feel that this combination and compromise has resulted in a portmanteau concept...
	What to do. We suggest the UML define ‘subsystem’ along the lines of what RM- ODP calls a composi...

	5 Challenges
	6 Conclusions
	7 Acknowledgements
	References

	Using UML/OCL Constraints for Relational Database Design
	Introduction
	Constraints from a Database Perspective
	Classification and Comparison of Constraint Languages
	Relational Database Constraints

	Mapping of UML and OCL Constraints to Relational Database Integrity Constraints
	A Relational Database Schema for a UML Model
	OCL Mapping Patterns
	Problems and Limitations

	Conclusion

	Towards a UML Extension for Hypermedia Design*
	Introduction
	Related Work
	Conceptual Model
	Navigational Model
	Navigational Class Model
	Navigational Structure Model

	Presentational Model
	Static Presentational Model
	Dynamic Presentational Model

	Conclusions and Future Work

	Why Unified Is not Universal UML Shortcomings for Coping Round-Trip Engineering
	Introduction
	A Round-Trip Engineering Scenario
	Scene 1: Detecting Design Anomalies via Metrics
	Scene 2: Assessing Disjoint Classes via Program Visualisation
	Scene 3: Redistributing Responsibilities via Refactoring
	Consequences

	Embedding Implementation Concepts into UML
	The Behavioural Elements Approach
	The Stereotyped Association Approach
	The Special Purpose Extension Approach
	Consequences

	Tool Interoperability
	Consequences

	An Alternative: FAMIX
	Conclusions

	Timed Sequence Diagrams and Tool-Based Analysis - A Case Study
	Introduction
	Real-Time Extensions to Sequence Diagrams
	Sequence Diagrams
	Syntax of Real-Time Extensions

	Tool-Based Verification
	Timed Automata
	The Verification Process
	Translation to UPPAAL Timed Automata
	Verification

	Case Study: Protocol for Audio/Video Components
	The Protocol
	The Implementation
	The Observer Automaton

	Conclusions

	Timing Analysis of UML Sequence Diagrams
	Introduction
	UML Sequence Diagrams
	Timing Analysis of UML Sequence Diagrams
	Checking Compositions of UML Sequence Diagrams for Timing Consistency
	Compositions of UML Sequence Diagrams
	An Algorithm for Checking Timing Consistency

	Conclusion
	Proof of Theorem

	The Normal Object Form: Bridging the Gap from Models to Code
	1 Introduction
	2 Refinement versus Translation
	2.1 Separating Concerns in Implementation
	2.2 When to Refine and When to Translate?

	3 The Normal Object Form
	3.1 Class Diagrams
	3.2 Object Diagrams
	3.3 Implementation Diagrams

	4 SORT
	5 Conclusion
	References

	Modeling Exceptional Behavior
	Introduction
	Banking Example
	Specifying Exceptions
	Specifying Account and AccountExc Classes
	Discussion

	Advanced Methods and Tools for a Precise UML Panel
	Introduction
	Steve Cook
	Stephen Mellor
	Jos Warmer
	Alan Wills

	Author Index

