
A Formal Semantics for OCL 1.4

Maŕıa Victoria Cengarle� and Alexander Knapp

Ludwig–Maximilians–Universität München
{cengarle,knapp}@informatik.uni-muenchen.de

Abstract. The OCL 1.4 specification introduces let-declarations for
adding auxiliary class features in static structures of the UML. We pro-
vide a type inference system and a big-step operational semantics for
the OCL 1.4 that treat UML static structures and UML object models
abstractly and accommodate for additional declarations; the operational
semantics satisfies a subject reduction property with respect to the type
inference system. We also discuss an alternative, non-operational inter-
pretation of let-declarations as constraints.

1 Introduction

The “Object Constraint Language” (OCL) allows to define constraints, like in-
variants and pre- and post-conditions, for models of the “Unified Modeling Lan-
guage” (UML). The language has been extensively employed in the specification
of the UML meta-model itself throughout UML 1.1. However, the meta-model
constraints rely on the possibility of declaring auxiliary (meta-)class features,
which was not provided for explicitly in OCL up to version 1.3. For example [12,
p. 2-66], two additional features parent and allParents are declared for the
meta-class GeneralizableElement in order to express the constraint that the
inheritance relationship of a UML model must be acyclic. The OCL 1.4 specifica-
tion [12, Ch. 6] defines the let-construct to introduce so-called pseudo-features
for (meta-)classes, such that the acyclicity constraint could now be recast as:

context GeneralizableElement inv:
let parent : Set(GeneralizableElement) =

self.generalization.parent
let allParents : Set(GeneralizableElement) =

self.parent->union(self.parent.allParents)
in not self.allParents->includes(self)

Though this let-construct is rather different from its conventional usage in func-
tional languages like SML [10], the OCL specification does not provide a pre-
cise semantics, let alone for the whole language. In particular, it is not clear
how let-declarations interfere with inheritance and whether arbitrary recursive
defining expressions are allowed (cf. a comparable requirement on recursive post-
conditions [12, p. 6-59]). Moreover [13], are additional features like allParents
to be interpreted operationally (leading to non-termination when evaluated over
a cyclic inheritance relationship) or should declarations of auxiliary features be
regarded as a constraint?
� Current affiliation: Fraunhofer Institute for Experimental Software Engineering.

 119

Several formal semantics for OCL have already been presented, in particular
by Bickford and Guaspari [2], Hamie, Howse, and Kent [7], and Richters and
Gogolla [14,16] for OCL 1.1 and by Clark [4] and the authors [3] for OCL 1.3.
The let-construct of the previous OCL versions is neglected by all these seman-
tics, with the exception of [3] where it is treated as an SML-style declaration.
Moreover, these semantics show deficiencies in handling the OCL types OclAny
and OclType [14,7], the OCL flattening rules [2,7], empty collections [14,4], un-
defined values [7,4], non-determinism [2,7,14], and overridden properties [2,7,14,
4]. Also, several OCL implementations have been provided, most noteworthy
the Bremen USE tool [15], the Dresden OCL tool [8], and the pUML “Meta-
Modelling Tool” (MMT [9]). These differ e.g. in their handling of collections and
oclAsType; the USE tool does not include let, the Dresden tool and MMT also
seem to handle the let-construct as an SML-style declaration.

We provide an improved and more comprehensive formal semantics of the
OCL 1.4 including its main novelty, the possibility of declaring pseudo-features.
We axiomatise UML static structures and UML object models such that the
semantics is parametric in the treatment of declarations. We introduce a type
inference and annotation system for OCL terms (Sect. 2) and define a big-step
operational semantics that evaluates annotated terms (Sect. 3); the operational
semantics satisfies a subject reduction property with respect to the type infer-
ence system. Finally, we discuss an alternative, non-operational interpretation
of declarations as model constraints (Sect. 4). We conclude with some remarks
on future work.

We assume a working knowledge of the OCL syntax and informal semantics.
The concrete syntax of the OCL sub-language that we consider can be found
in Table 1; in particular, we omit navigation to association classes and through
qualified associations, templates, package pathnames, enumerations, the types
OclExpression and OclState, the functions that can be defined by iterate,
pre- and in-fix syntax, and pre- and post-conditions.

Table 1. OCL syntax fragment

Term ::= Constr | Inv | Decl | Expr
Constr ::= contextType inv: Inv {inv: Inv}

Inv ::= [Decl {Decl} in]Expr
Decl ::= letName [(Var :Type {,Var :Type})] :Type =Expr
Expr ::= Literal | self | Var | Type |

(Set | Bag | Sequence) { [Expr {,Expr}] } |
ifExpr thenExpr elseExpr endif |
Expr -> iterate (Var :Type ;Var :Type =Expr |Expr) |
Expr . oclAsType (Type) | Type . allInstances () |
Expr . and (Expr) | Expr . or (Expr) |
Expr .Name [([Expr {,Expr}])] | Expr ->Name ([Expr {,Expr}])

Literal ::= IntegerLiteral | RealLiteral | BooleanLiteral | StringLiteral
Type ::= Name | (Set | Bag | Sequence | Collection) (Name)
Var ::= Name

120

2 Type System

The type of an OCL term depends on information from an underlying UML static
structure, its classifiers, structural and query behavioural features, generalisation
relationship, opposite association ends, &c., and the built-in OCL types and
properties. We abstractly axiomatise this information as a static basis which is
parametric in the classifiers and the generalisation relationship and provides an
extension mechanism by pseudo-features; the axiomatisation also captures the
declaration retrieval of (overloaded) features and properties that is only vaguely
described in the UML specification by full-descriptors [12, p. 2-75]. We present a
type inference system for OCL terms over such a static basis that also annotates
the terms for later evaluation of overloaded features and properties and pseudo-
features; the type system entails unique annotations and types.

2.1 Static Bases

A static basis Ω defines types, a type hierarchy, functions for declaration re-
trieval, and an extension mechanism for declarations.

Types. The (compile-time) types TΩ of a static basis Ω are defined as follows:

TΩ ::= AΩ | S (AΩ) B ::= Integer | Real | Boolean | String
AΩ ::= AΩ | OclType S ::= S | Collection
AΩ ::= Void | B | CΩ | OclAny S ::= Set | Bag | Sequence

where the set parameter CΩ represents a set of classifiers, that does not contain
Integer, Real, Boolean, String, Void, OclAny, and OclType.

The set B contains all built-in simple OCL types, the basic types. The type
Void is not required by the OCL specification; it denotes the empty type. The
set AΩ comprises Void, the basic types, the classifier types, and OclAny, which
is the common super-type of all basic and classifier types. The type OclType is
the type of all types (as used in impredicative polymorphism [11]). Finally, the
set S defines the concrete collection type functions yielding, when applied to a
type parameter, a concrete collection type; S adds the abstract collection type
function Collection that yields the abstract collection type.

Each Literal l has a type, written as type(l), such that type(n) = Integer
if n is an IntegerLiteral, &c. The type parameter of a collection type σ(τ) may
be recovered by base(σ(τ)) = τ ; for simplicity, we set base(τ) = τ if τ is not a
collection type.

Type hierarchy. The subtype relation ≤Ω of a static basis Ω is defined as the
least partial order that satisfies the following axioms:

1. for all τ ∈ TΩ , Void ≤Ω τ
2. for all α ∈ AΩ , α ≤Ω OclAny
3. Integer ≤Ω Real

 121

4. for all ζ1, ζ2 ∈ CΩ , if ζ1 ≤CΩ
ζ2, then ζ1 ≤Ω ζ2

5. for all σ ∈ S and α ∈ AΩ , σ(α) ≤Ω Collection(α)
6. for all σ ∈ S and α1, α2 ∈ AΩ , if α1 ≤Ω α2, then σ(α1) ≤Ω σ(α2)

where the partial order parameter ≤CΩ
denotes the generalisation hierarchy on

the classifier types CΩ .
In particular, OclType �≤Ω OclAny (in contrast to [9]) and σ(τ) �≤Ω OclAny.

According to [12, p. 6-54] collection types are basic types, following [12, pp. 6-
75f.] these types are not basic types (cf. [1]). We choose the second defini-
tion (in contrast to [14]), avoiding the Russell paradox that could arise from
Set(OclAny) ≤Ω OclAny (see [2]); however, note, that thus none of the prop-
erties of OclAny, like inequality or oclIsKindOf, is immediately available for
collections. Moreover, τ ≤Ω base(τ) if, and only if τ ∈ AΩ .

We denote by
⊔

Ω{τ1, . . . , τn} the least upper bound of types τ1, . . . , τn with
respect to ≤Ω ; simultaneously, when writing

⊔
Ω{τ1, . . . , τn} we assume this least

upper bound to exist (which may not be the case in the presence of multiple
inheritance). Note that

⊔
Ω ∅ = Void.

Declaration retrieval. The retrieval of (overridden) properties, features, pseudo-
features, and opposite association ends in a static basis Ω is defined by two
suitably axiomatised maps yielding declarations in

DΩ ::= TΩ . Name : TΩ | TΩ . Name : T ∗
Ω → TΩ .

Given a name a and a type τ , the partial function fdΩ : Name×TΩ ⇀ DΩ yields,
when defined, a declaration τ ′.a : τ ′′ such that τ ≤Ω τ ′. The type τ ′ represents
a type that shows a structural (pseudo-)feature or an opposite association end
with name a of type τ ′′. If fdΩ(a, τ) is defined, then fdΩ(a, τ ′) is defined for all
τ ′ ≤Ω τ , i.e., a is inherited to all subtypes of τ .

Analogously, given a name o, a type τ , and a sequence of types (τi)1≤i≤n the
partial function fdΩ : Name×TΩ ×T ∗

Ω ⇀ DΩ yields, when defined, a declaration
τ ′.o : (τ ′

i)1≤i≤n → τ ′
0 such that τ ≤Ω τ ′ and τi ≤Ω τ ′

i for all 1 ≤ i ≤ n.
The type τ ′ represents a type that shows a query behavioural (pseudo-)feature
or a property with name o, parameter types τ ′

1, . . . , τ
′
n, and return type τ ′

0. If
fdΩ(o, τ, (τi)1≤i≤n) is defined, then fdΩ(o, τ ′, (τi)1≤i≤n) is defined for all τ ′ ≤Ω τ .

Table 2 shows some sample axioms for OCL properties, where α, α′ ∈ AΩ and
α, α′ ∈ AΩ ; all other OCL properties [12, Sect. 6.8] may be added analogously.
We require these axioms for all static bases Ω.

Extensions. We require that a static basis Ω be extendable by a declaration of a
structural pseudo-feature ζ.a : τ with ζ ∈ CΩ , if fdΩ(a, ζ) is undefined, and by
a declaration of a behavioural pseudo-feature ζ.o : (τi)1≤i≤n → τ0 with ζ ∈ CΩ ,
if fdΩ(o, ζ, (τi)1≤i≤n) is undefined. Such an extension Ω′ of Ω must again be
a static basis. For the extension by a declaration δ = ζ.a : τ we require that
fdΩ′(a, ζ) = δ and that fdΩ′(a′, ζ ′) is the same as fdΩ(a′, ζ ′) if a′ �= a; and by
a declaration δ = ζ.o : (τi)1≤i≤n → τ0 that fdΩ′(o, ζ, (τi)1≤i≤n) = δ and that

122

Table 2. Typing of sample built-in OCL properties

fdΩ(=, α, α′) = α.= : α′ → Boolean

fdΩ(oclIsKindOf, α, OclType) = α.oclIsKindOf : OclType → Boolean

fdΩ(first, Sequence(α)) = Sequence(α).first : → α

fdΩ(including, σ(α), α′) = σ(α).including : α′ → σ(
⊔

Ω{α, α′})
fdΩ(union, σ(α), σ(α′)) = σ(α).union : σ(α′) → σ(

⊔
Ω{α, α′})

fdΩ′(o′, ζ ′, (τ ′
i)1≤i≤n) is the same as fdΩ(o′, ζ ′, (τ ′

i)1≤i≤n) if o′ �= o. Moreover, we
must have TΩ′ = TΩ and ≤Ω′ = ≤Ω .

These requirements only weakly characterise possible extension mechanisms
for declarations. We assume that some scheme of extending static bases is fixed
and we write Ω, δ for the extension of a static basis Ω by the declaration δ
according to the chosen scheme.

2.2 Type Inference

The type inference system on the one hand allows to deduce the type of a given
OCL term over a given static basis. On the other hand, the inference system
produces a normalised and annotated OCL term adding type information on
declarations and overridden properties for later evaluation.

The grammar for annotated OCL terms transforms the grammar in Ta-
ble 1 by consistently replacing Term, Constr, Inv, Decl, and Expr by A-Term,
A-Constr, A-Inv, A-Decl, and A-Expr, respectively; furthermore, the original
clauses

letName [(Var :Type {,Var :Type})] :Type =Expr
Expr .Name [([Expr {,Expr}])] | Expr ->Name ([Expr {,Expr}])

are replaced by

letNameType [(Var :Type {,Var :Type})] :Type =A-Expr
A-Expr .NameType [([A-Expr {,A-Expr}])] |
A-Expr ->NameType ([A-Expr {,A-Expr}])

The annotations by Type for let and ẽ.a record the defining class, the anno-
tations for ẽ.o(. . .) and ẽ->o(. . .) the expected return type. Annotations are
written as subscripts.

A type environment over a static basis Ω is a finite sequence Γ of variable
typings of the form x1 : τ1, . . . , xn : τn with xi ∈ Var ∪ {self} and τi ∈ TΩ for
all 1 ≤ i ≤ n; we denote {x1, . . . , xn} by dom(Γ), and τi by Γ (xi) if xj �= xi for
all i < j ≤ n. The empty type environment is denoted by ∅, concatenation of
type environments Γ and Γ ′ by Γ, Γ ′.

The type inference system consists of judgements of the form Ω;Γ � t � t̃ : θ
where Ω is a static basis, Γ is a type environment over Ω, t is a Term, t̃ is an
A-Term, and θ ∈ TΩ ∪ DΩ . When writing such a judgement, we assume that

 123

self, oclAsType, allInstances, and, and or are reserved names and that Var
and TΩ ⊆ Type are disjoint. The empty type environment may be omitted.

The judgement relation � is defined by the rules in Tables 3–4; a rule may
only be applied if all its constituents are well-defined. The meta-variables that
are used in the rules and which may be variously decorated range as follows:
l ∈ Literal; α ∈ AΩ , α ∈ AΩ , ζ ∈ CΩ , σ ∈ S, σ ∈ S, τ ∈ TΩ , δ ∈ DΩ ; x ∈ Var;
a, o ∈ Name; e ∈ Expr, ẽ ∈ A-Expr, d ∈ Decl, d̃ ∈ A-Decl, p ∈ Inv, p̃ ∈ A-Inv.

The rules follow the OCL specification [12, Ch. 6] as closely as possible.
The (Invτ) and (Declτ1–Declτ2) rules in Table 3 treat let-declarations as being
simultaneous; dependent declarations may be easily introduced (cf. [10]). The
rule (Collτ) provides a unique type for the empty concrete collections (in contrast
to [4]) and for “flattening” nested collections; for a motivation see [12, p. 6-67],
though the least upper bound is not directly justified by the specification (in
particular, Schürr [17] suggests to employ union-types instead; [4,15] require
homogenous collections; the typing rules of [8] depend on the expression order;
[9] shows no flattening). The type of a conditional expression, as given by the
(Condτ) rule, differs from what is stated in [12, p. 6-83]: there, independently of
the type of e2, the (evaluation) type of e1 is assumed to be the type of the whole
expression ([14] requires comparable types, [4] a single type). For the casting
rule (Castτ) see [12, pp. 6-56, 6-63f., 6-77] ([14] requires that the new type is
smaller than the original type; not present in [7,4]); note, however, that this rule
does not allow for arbitrary expressions resulting in a type as the argument for
oclAsType, since this would imply term-dependent types as, for example, in

5.oclAsType(if 1.=(2) then Real else Integer endif) .

By the same argument, (Instτ) does not allow allInstances to be called on ar-
bitrary expressions, but only type literals. The annotation in (Featτ1) in Table 4
accounts for the retrieval of an overridden structural feature or opposite associ-
ation end [12, pp. 6-63f.] (not present in [14,4]); the annotations in (Featτ2) and
(Propτ) are necessary, since we do not require any return type restrictions for
query behavioural features and properties (in contrast to [4]). The rules (Singτ

1–
Singτ

2) in Table 4 are the so-called “singleton” rules, see [12, pp. 6-60f.], allowing
to apply collection properties to non-collection expressions (not present in [14,
4]). The (Shortτ1–Short

τ
2) rules define the shorthand notation for features on

members of collections [12, p. 6-71] combined with flattening [12, p. 6-67] (not
present in [2,7,14,4]). There is no subsumption rule; such a rule would interfere
with the overriding of properties and features (cf. e.g. [5]).

The type inference system entails unique annotations and types:

Proposition 1. Let Ω be a static basis, Γ a type environment, and t a Term.
If Ω;Γ � t � t̃ : τ and Ω;Γ � t � t̃′ : τ ′ for some A-Term’s t̃ and t̃′ and types τ
and τ ′, then t̃ = t̃′ and τ = τ ′.

Proof. By induction on the term t.

We also write Ω;Γ � t̃ : τ if Ω;Γ � t � t̃ : τ where t ∈ Term is obtained from
t̃ ∈ A-Term by erasing the annotations; t and t̃ are called well-typed.

124

Table 3. Type inference system I

(Ctxtτ)
(Ω; Γ, self : ζ � pi � p̃i : Boolean)1≤i≤n

Ω; Γ � context ζ (inv: pi)1≤i≤n �

context ζ (inv: p̃i)1≤i≤n : Boolean

(Invτ)

(Ω, (δj)1≤j≤n; Γ � di � d̃i : δi)1≤i≤n

Ω, (δj)1≤j≤n; Γ � e � ẽ : τ

Ω; Γ � (di)1≤i≤n in e � (d̃i)1≤i≤n in ẽ : τ

(Declτ1)
Ω; Γ � e � ẽ : τ ′

Ω; Γ � let x : τ = e � let xζ : τ = ẽ : ζ.x : τ

if τ ′ ≤Ω τ and where ζ = Γ (self)

(Declτ2)
Ω; Γ, (xi : τi)1≤i≤n � e � ẽ : τ ′

Ω; Γ � let x(x1 : τ1, . . . , xn : τn) : τ = e �

let xζ(x1 : τ1, . . . , xn : τn) : τ = ẽ : ζ.x : (τi)1≤i≤n → τ

if τ ′ ≤Ω τ and where ζ = Γ (self)

(Litτ) Ω; Γ � l � l : type(l) (Selfτ) Ω; Γ � self � self : Γ (self)

(Varτ) Ω; Γ � x � x : Γ (x) (Typeτ) Ω; Γ � τ � τ : OclType

(Collτ)
(Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω; Γ � σ{e1, . . . , en} �

σ{ẽ1, . . . , ẽn} : σ(α)

where α =
⊔

Ω{base(τi) | 1 ≤ i ≤ n}

(Condτ)

Ω; Γ � e � ẽ : Boolean
(Ω; Γ � ei � ẽi : τi)1≤i≤2

Ω; Γ � if e then e1 else e2 endif �

if ẽ then ẽ1 else ẽ2 endif : τ

where τ =
⊔

Ω{τ1, τ2}

(Iterτ)

Ω; Γ � e � ẽ : σ(α′) Ω; Γ � e′ � ẽ′ : τ ′

Ω; Γ, x : α, x′ : τ � e′′ � ẽ′′ : τ ′′

Ω; Γ � e->iterate(x : α; x′ : τ = e′ | e′′) �

ẽ->iterate(x : α; x′ : τ = ẽ′ | ẽ′′) : τ

if α′ ≤Ω α and
τ ′, τ ′′ ≤Ω τ

(Castτ)
Ω; Γ � e � ẽ : τ

Ω; Γ � e.oclAsType(τ ′) � ẽ.oclAsType(τ ′) : τ ′ if τ ≤Ω τ ′ or τ ′ ≤Ω τ

(Instτ) Ω; Γ � τ.allInstances() � τ.allInstances() : Set(base(τ))

(Andτ)
(Ω; Γ � ei � ẽi : Boolean)1≤i≤2

Ω; Γ � e1.and(e2) �

ẽ1.and(ẽ2) : Boolean

(Orτ)
(Ω; Γ � ei � ẽi : Boolean)1≤i≤2

Ω; Γ � e1.or(e2) �

ẽ1.or(ẽ2) : Boolean

 125

Table 4. Type inference system II

(Featτ
1)

Ω; Γ � e � ẽ : τ

Ω; Γ � e.a � ẽ.aτ ′ : τ ′′ if fdΩ(a, τ) = τ ′.a : τ ′′

(Featτ
2)

Ω; Γ � e � ẽ : τ

(Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω; Γ � e.o(e1, . . . , en) �

ẽ.oτ ′
0
(ẽ1, . . . , ẽn) : τ ′

0

if fdΩ(o, τ, (τi)1≤i≤n) =
τ ′.o : (τ ′

i)1≤i≤n → τ ′
0

(Propτ)

Ω; Γ � e � ẽ : σ(α)

(Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω; Γ � e->o(e1, . . . , en) �

ẽ->oτ ′
0
(ẽ1, . . . , ẽn) : τ ′

0

if fdΩ(o, σ(α), (τi)1≤i≤n) =
τ ′.o : (τ ′

i)1≤i≤n → τ ′
0

(Singτ
1)

Ω; Γ � e � ẽ : α′ Ω; Γ � e′ � ẽ′ : τ ′

Ω; Γ, x : α, x′ : τ � e′′ � ẽ′′ : τ ′′

Ω; Γ � e->iterate(x : α; x′ : τ = e′ | e′′) �

Set{ ẽ }->iterate(x : α; x′ : τ = ẽ′ | ẽ′′) : τ

if α′ ≤Ω α and
τ ′, τ ′′ ≤Ω τ

(Singτ
2)

Ω; Γ � e � ẽ : α

(Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω; Γ � e->o(e1, . . . , en) �

Set{ ẽ }->oτ ′
0
(ẽ1, . . . , ẽn) : τ ′

0

if fdΩ(o, Set(α), (τi)1≤i≤n) =
τ ′.o : (τ ′

i)1≤i≤n → τ ′
0

(Shortτ
1)

Ω; Γ � e � ẽ : σ(α)

Ω; Γ � e.a � ẽ->iterate(i : α; a : σ(α′) = σ{} |

a->unionσ(α′)(σ{i.aτ})) : σ(α′)

if fdΩ(a, α) = τ.a : α′ and
(σ �= Sequence, σ = Bag) or (σ = σ = Sequence)

or fdΩ(a, α) = τ.a : σ(α′)

(Shortτ
2)

Ω; Γ � e � ẽ : σ(α) (Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω; Γ � e.o(e1, . . . , en) �

ẽ->iterate(i : α; a : σ(α′) = σ{} |

a->unionσ(α′)(σ{i.oτ ′
0
(ẽ1, . . . , ẽn)})) : σ(α′)

if fdΩ(o, α, (τi)1≤i≤n) = τ.o : (τ ′
i)1≤i≤n → α′ = τ ′

0 and
(σ �= Sequence and σ = Bag) or (σ = σ = Sequence)

or fdΩ(a, α, (τi)1≤i≤n) = τ.o : (τ ′
i)1≤i≤n → σ(α′) = τ ′

0

126

3 Operational Semantics

The result of an OCL term depends on information from an underlying UML
object model, the instances and their types, the values of structural features, and
the implementations of query behavioural features of instances, as well as the
implementations of the built-in OCL properties. We abstractly summarise this
information in a dynamic basis which is the dynamic counterpart of static bases
and is axiomatised analogously. We define a big-step operational semantics for
annotated OCL terms and a conformance relation between static and dynamic
bases, such that the semantics satisfies a subject reduction property with respect
to the type system of the previous section.

3.1 Dynamic Bases

A dynamic basis ω defines values, results, a typing relation, implementation
retrieval functions, and an extension mechanism for implementations.

Values and results. The values Vω and results Rω of a dynamic basis ω are
defined as follows:

Rω ::= Vω | ⊥
Vω ::= Nω | (Set | Bag | Sequence) { [Nω {,Nω}] }
Nω ::= Literal | Tω | Oω

The (run-time) types Tω are defined as TΩ for a static basis Ω in Sect. 2.1, but
replacing CΩ by a set parameter Cω, again representing classifiers. The finite set
parameter Oω represents the instances in a model, disjoint from Literal and Tω.

The result ⊥ represents “undefined”. Values of the form σ{. . . } with σ ∈
S = {Set, Bag, Sequence} are collection values, the values in Nω are simple
values. We assume suitably axiomatised arithmetical, boolean, &c. functions
and relations on values such that, e.g., 1 + 1 = 2, false ∧ true = false,
Set{ 1, 2 } = Set{ 2, 1, 1 }, 1 ≤ 2, &c.

For collection values, we use a function flattenω : Vω → N∗
ω to sequences

of simple values, stipulating that flattenω(σ{v1, . . . , vn}) = v1 · · · vn and
that flattenω(v) = v, if v ∈ Nω. Collection values are constructed by a map
makeω : S × V ∗

ω → Vω such that makeω(σ, v1 · · · vn) = σ{v1, . . . , vn} if σ ∈ S
and vi ∈ Nω for all 1 ≤ i ≤ n, and, if vi ∈ Vω \ Nω for some 1 ≤ i ≤ n then
makeω(σ, v1 · · · vn) = makeω(σ,flattenω(v1) · · · flattenω(vn)); if σ = Set, repe-
titions in flattenω(v1) · · · flattenω(vn) are discarded, such that only the leftmost
occurrence of a value remains. If n = 0, we write makeω(σ, ∅); more generally,
for a set M = {v1, . . . , vn}, we let makeω(σ,M) denote makeω(σ, v1 · · · vn).

A collection value v = σ{v1, . . . , vn} has a sequence value representation v′,
written as v ❀ v′, if makeω(Sequence,flattenω(makeω(σ,flattenω(v′′)))) = v′

for some v′′ = v. In general, a collection value has several different sequence
value representations; e.g. Set{1, 2} ❀ Sequence{1, 2} and also Set{1, 2} ❀

Sequence{2, 1}; but not Set{1, 2} ❀ Sequence{1, 1, 2}.

 127

Typing relation. We require a relation :ω ⊆ Vω × Tω between values and types
defined by the least left-total relation satisfying the following axioms:

1. For v ∈ Literal, v :ω type(v)
2. For v ∈ Tω, v :ω OclType
3. For v ∈ Oω, if v :Oω τ then v :ω τ
4. σ{} :ω σ(Void)
5. If v :ω Integer then v :ω Real

6. If vi :ω α ∈ Aω for 1 ≤ i ≤ n,
then σ{v1, . . . , vn} :ω σ(α)

7. If v :ω σ(α)
then v :ω Collection(α)

8. If v :ω α ∈ Aω then v :ω OclAny

where the left-total relation parameter :Oω ⊆ Oω×Cω denotes the typing relation
between instances and classifiers.

In particular, by rule (6), we have that if v :ω τ and flattenω(v) = v1 · · · vn

then vi :Ω base(τ) for all 1 ≤ i ≤ n. Note, however, that there is no v ∈ Vω with
v :ω Void and no type τ ∈ Tω such that Set{1, Boolean} :ω τ .

We write τ ≤ω τ ′ if, and only if v :ω τ implies v :ω τ ′ for all v ∈ Vω. Given a
type τ ∈ Cω∪{Void, Boolean, OclType} we denote the finite set {v ∈ Vω | v :ω τ}
by ω(τ); for all other types τ , ω(τ) is undefined.

Implementation retrieval. The retrieval of implementations of (overridden) prop-
erties, features, pseudo-features, and opposite association ends in a dynamic basis
ω is defined by two partial maps yielding implementations in

Iω ::= Tω .Name ≡ (A-Expr | Rω) | Tω .Name (Var∗) ≡ (A-Expr | Rω) : Tω .

Given a name a, a type τ (the annotation), and a value v, the partial function
implω : Name× Tω × Vω ⇀ Iω yields, when defined, an implementation τ.a ≡ ψ
with v :ω τ , representing the implementation of a structural (pseudo-)feature or
an opposite association end with name a, defined in τ , as required by the an-
notation. If ψ ∈ A-Expr\Rω, then τ ∈ Cω, accounting for class pseudo-features.
If implω(a, τ, v) is defined, then implω(a, τ, v′) is defined for all v′ such that
v :ω τ ′ implies v′ :ω τ ′, i.e., a is present for all values with the same types as v.

Analogously, given a name o, a type τ (the annotation), a value v, and a
sequence of values (vi)1≤i≤n, the partial function implω : Name×Tω×Vω×V ∗

Ω ⇀
Iω yields, when defined, an implementation τ ′.o((xi)1≤i≤n) ≡ ψ : τ with v :ω τ ′,
representing the implementation of a query behavioural (pseudo-)feature or a
property with name o, defined with a return type as required by the annotation.
If ψ ∈ A-Expr \ Rω, then τ ′ ∈ Cω. If implω(o, τ, v, (vi)1≤i≤n) is defined, then
implω(o, τ, v′, (vi)1≤i≤n) is defined for all v′ such that v :ω τ ′ implies v′ :ω τ ′.

Table 5 contains some sample axioms for the retrieval of the implementation
of built-in OCL properties. Generally, we write the types for implω as subscripts
and omit the types and name for implementations that do not show an annotated
expression.

Extensions. We require that a dynamic basis ω be extendable by an implemen-
tation ζ.a ≡ ψ with ζ ∈ Cω, if implω(aζ , v) is undefined for all v :ω ζ, and by
an implementation ζ.o((xi)1≤i≤n) = ψ : τ if implω(oτ , v, (vi)1≤i≤n) is undefined
for all v :ω ζ and all v1, . . . , vn ∈ Vω. Such an extension ω′ of ω must again

128

Table 5. Semantics of sample built-in OCL properties

implωΩ(=Boolean, v, v′) = (v = v′)

implωΩ(oclIsKindOfBoolean, v, τ) = v :ω τ

implωΩ(firstSequence(α), Sequence{v1, . . . , vn}) = v1

implωΩ(includingσ(α), v, v′) = makeω(σ, v v′)

implωΩ(unionσ(α), v, v′) = makeω(σ, v v′)

be a dynamic basis. For the extension by an implementation ι = ζ.a ≡ ψ we
require that implω′(aζ , v) = ι for all v :ω ζ and that implω′(a′

ζ′ , v) is the same
as implω(a′

ζ′ , v) if a′ �= a; and by an implementation ι = ζ.o((xi)1≤i≤n) ≡ ψ : τ
that implω′(oτ , v, (vi)1≤i≤n) = ι for all v :ω ζ and some v1, . . . , vn ∈ Vω and
that implω′(o′

τ ′ , v′, (vi)1≤i≤n) is the same as implω(o′
τ ′ , v′, (vi)1≤i≤n) if o′ �= o.

Moreover, we must have Tω′ = Tω and :ω′ = :ω.
As the requirements for extensions of static bases, the constraints on exten-

sions of dynamic bases only weakly characterise possible extension mechanisms
for implementations. We assume that some scheme of extending dynamic bases
is fixed and we write ω, ι for the extension of a dynamic basis ω by the imple-
mentation ι according to this scheme.

3.2 Operational Rules

The operational semantics evaluates annotated OCL terms in the context of a
dynamic bases and some variable assignments.

A variable environment over a dynamic basis ω is a finite sequence γ of
variable assignments of the form x1 �→ v1, . . . , xn �→ vn with xi ∈ Var ∪ {self}
and vi ∈ Vω for all 1 ≤ i ≤ n; we denote {x1, . . . , xn} by dom(γ) and vi by γ(xi)
if xi �= xj for all i < j ≤ n. The empty variable environment is denoted by ∅,
concatenation of variable environments γ and γ′ by γ, γ′.

The operational semantics consists of judgements of the form ω; γ � t̃ ↓ ρ
where ω is a dynamic basis, γ is a variable environment over ω, t̃ is an A-Term,
and ρ ∈ Rω ∪ Iω. The empty variable environment may be omitted.

The judgement relation � is defined by the rules in Tables 6–7; a rule may
only be applied if all its constituents are well-defined. The meta-variables range
as follows: l ∈ Literal; α ∈ Aω, ζ ∈ Cω, σ ∈ S, τ ∈ Tω, ι ∈ IΩ ; x ∈ Var;
a, o ∈ Name; v ∈ Vω, v ∈ Rω; ẽ ∈ A-Expr, d̃ ∈ A-Decl, p̃ ∈ A-Inv.

We additionally adopt the following general strictness convention that applies
to all rules with the single exception of the rules (And↓

1–And↓
3) and (Or↓

1–Or↓
3)

in Table 6: if ⊥ occurs as a result in a judgement of a premise of some rule, the
whole term evaluates to ⊥.

The operational rules are presented in close correspondence to the typing
rules in Tables 3–4. All rules, except the rules (And↓

2–And↓
3) and (Or↓

2–Or↓
3) in

Table 6 require of all sub-terms to be fully evaluated and to result in a value

 129

Table 6. Operational semantics I

(Ctxt↓)
(ω; γ, self 	→ v � p̃i ↓ vi,v)1≤i≤n,v∈ω(ζ)

ω; γ � context ζ (inv: p̃i)1≤i≤n ↓ ∧
i,v vi,v

(Inv↓)

(ω; γ � d̃i ↓ ιi)1≤i≤n

ω, (ιi)1≤i≤n; γ � ẽ ↓ v

ω; γ � (di)1≤i≤n in ẽ ↓ v

(Decl↓1) ω; γ � let xζ : τ = ẽ ↓ ζ.x = ẽ

(Decl↓2) ω; γ � let xζ(x1 : τ1, . . . , xn : τn) : τ = ẽ ↓ ζ.x((xi)1≤i≤n) = ẽ : τ

(Lit↓) ω; γ � l ↓ l (Self↓) ω; γ � self ↓ γ(self)

(Var↓) ω; γ � x ↓ γ(x) (Type↓) ω; γ � τ ↓ τ

(Coll↓)
(ω; γ � ẽi ↓ vi)1≤i≤n

ω; γ � σ{ẽ1, . . . , ẽn} ↓ makeω(σ, v1 · · · vn)

(Cond↓)

ω; γ � ẽ ↓ v

(ω; γ � ẽi ↓ vi)1≤i≤2

ω; γ � if ẽ then ẽ1 else ẽ2 endif ↓ v′
if v = true and v′ = v1 or

v = false and v′ = v2

(Iter↓)

ω; γ � ẽ ↓ v ω; γ � ẽ′ ↓ v′
0

(ω; γ, x 	→ vi, x
′ 	→ v′

i−1 � ẽ′′ ↓ v′
i)1≤i≤n

ω; γ � ẽ->iterate(x : α; x′ : τ = ẽ′ | ẽ′′) ↓ v′
n

if v ❀ Sequence{v1, . . . , vn}

(Cast↓)
ω; γ � ẽ ↓ v

ω; γ � ẽ.oclAsType(τ) ↓ v

if v :Ω τ and v = v or
v � :Ω τ and v = ⊥

(Instτ) ω; γ � τ.allInstances() ↓ makeω(Set, ω(base(τ)))

(And↓
1)

(ω; γ � ẽi ↓ vi)1≤i≤2

ω; γ � ẽ1.and(ẽ2) ↓ v1 ∧ v2
(Or↓

1)
(ω; γ � ẽi ↓ vi)1≤i≤2

ω; γ � ẽ1.or(ẽ2) ↓ v1 ∨ v2

(And↓
2)

ω; γ � ẽi ↓ false

ω; γ � ẽ1.and(ẽ2) ↓ false
(Or↓

2)
ω; γ � ẽi ↓ true

ω; γ � ẽ1.or(ẽ2) ↓ true

where i = 1 or i = 2 where i = 1 or i = 2

(And↓
3)

(ω; γ � ẽi ↓ vi)1≤i≤2

ω; γ � ẽ1.and(ẽ2) ↓ ⊥ (Or↓
3)

(ω; γ � ẽi ↓ vi)1≤i≤2

ω; γ � ẽ1.or(ẽ2) ↓ ⊥
if v1 �= false and v2 = ⊥ or

v1 = ⊥ and v2 �= false
if v1 �= true and v2 = ⊥ or

v1 = ⊥ and v2 �= true

130

Table 7. Operational semantics II

(Feat↓
1)

ω; γ � ẽ ↓ v

ω; γ � ẽ.aτ ↓ v′ (Feat↓
2)

ω; γ � ẽ ↓ v

ω; γ, self 	→ v � ẽ′ ↓ v′

ω; γ � ẽ.aτ ↓ v′

if implω(aτ , v) = v′ if implω(aτ , v) = ζ.a ≡ ẽ′

(Feat↓
3)

ω; γ � ẽ ↓ v

(ω; γ � ẽi ↓ vi)1≤i≤n

ω; γ � ẽ.oτ(ẽ1, . . . , ẽn) ↓ v′ if implω(oτ , v, (vi)1≤i≤n) = v′

(Feat↓
4)

ω; γ � ẽ ↓ v (ω; γ � ẽi ↓ vi)1≤i≤n

ω; γ, self 	→ v, (xi 	→ vi)1≤i≤n � ẽ′ ↓ v′

ω; γ � ẽ.oτ(ẽ1, . . . , ẽn) ↓ v′
if implω(oτ , v, (vi)1≤i≤n) =

ζ.o((xi)1≤i≤n) ≡ ẽ′ : τ

(Prop↓)

ω; γ � ẽ ↓ v

(ω; γ � ẽi ↓ vi)1≤i≤n

ω; γ � ẽ->oτ(ẽ1, . . . , ẽn) ↓ v′ if implω(oτ , v, (vi)1≤i≤n) = v′

in Vω in order to deliver a result for a term. In particular, this makes for a
strict conditional; on the other hand, the (And↓) and (Or↓) rules yield parallel
Boolean properties and and or; see [12, Sect. 6.4.10] (not treated in [2,14,4]).
The only rules that introduce the undefined result ⊥ are the (Cast↓) rule in
Table 6 (cf. [12, p. 6-56]) and, possibly, (Feat↓1), (Feat

↓
3), and (Prop↓) in Table 7.

The (Iter↓) allows for considerable non-determinism if applied to a collection
value that is not a sequence (in contrast to [14,16]; not present in [2]).

3.3 Subject Reduction

We define a relation between dynamic and static bases ensuring that, on the one
hand, the compile-time and run-time types and type hierarchies are compatible
and, on the other hand, that implementations respect declarations. A dynamic
basis ω conforms to a static basis Ω if TΩ = Tω and ≤Ω = ≤ω and

1. for every a ∈ Name such that fdΩ(a, τ) = τ ′.a : τ ′′, implω(aτ ′ , v) is defined
for all v ∈ Vω with v :ω τ . If implω(aτ ′ , v) is τ ′.a ≡ v′ with v′ ∈ Vω then
v′ :ω τ ′′; if implω(aτ ′ , v) is τ ′.a ≡ ẽ thenΩ; self : τ ′ � ẽ : τ ′′′ with τ ′′′ ≤Ω τ ′′.

2. for every o ∈ Name such that fdΩ(o, τ, (τi)1≤i≤n) = τ ′.o : (τ ′
i)1≤i≤n → τ ′

0,
implω(oτ ′

0
, v, (vi)1≤i≤n) is defined for all v, v1, . . . , vn ∈ Vω with v :ω τ and

vi :ω τi for all 1 ≤ i ≤ n. If implω(oτ ′
0
, v, (vi)1≤i≤n) is τ ′′.o((xi)1≤i≤n) ≡ v′ :

τ ′
0 with v′ ∈ Vω then v′ :Ω τ ′

0; if implω(oτ ′
0
, v, (vi)1≤i≤n) is τ ′′.o((xi)1≤i≤n) ≡

ẽ : τ ′
0 then τ ′′ ≤Ω τ ′ and Ω; self : τ ′, (xi : τ ′

i)1≤i≤n � ẽ : τ ′′
0 with τ ′′

0 ≤Ω τ ′
0.

Even when typing and annotating an OCL term over a static basis and
evaluating the annotated term over a dynamic basis that conforms to the static

 131

basis, the operational semantics turns out to be not type sound in the strict sense,
i.e., converging well-typed terms do not always yield a result of the expected type.
For example,

Set{1, 1.2}->iterate(i : OclAny;
a : Sequence(OclAny) = Sequence{} |
a->including(i))->first.oclAsType(Integer)

may evaluate (after annotation) to 1, if Set{1, 1.2} is chosen to be represented
by Sequence{1, 1.2}; or it may evaluate to ⊥, if Set{1, 1.2} is represented
by Sequence{1.2, 1}.

However, if the operational semantics reduces an OCL term of inferred type τ
to some value then this value is indeed of type τ , i.e., the operational semantics
in Sect. 3.2 satisfies the subject reduction property with respect to the type
inference system in Sect. 2.2. In order to state and prove this result, we say that
a variable environment γ over ω conforms to a type environment Γ over Ω if
dom(γ) ⊇ dom(Γ) and γ(x) :ω Γ (x) for all x ∈ dom(γ).

Proposition 2. Let Ω be a static basis and ω a dynamic basis conforming to
Ω; let Γ be a type environment over Ω and γ a variable environment over ω
conforming to Γ ; let t be a Term and t̃ an A-Term; let τ ∈ TΩ and v ∈ Vω. If
Ω;Γ � t � t̃ : τ and ω; γ � t̃ ↓ v, then v :ω τ .

Proof. By induction on the proof tree for Ω;Γ � t � t̃ : τ .

4 Constraint Semantics

The operational semantics, as detailed in the previous section, suggests that an
(annotated) OCL constraint c̃ = context ζ (inv: p̃)1≤i≤n over a static basis Ω
is satisfied by a dynamic basis ω conforming to Ω if, and only if ω; � c̃ ↓ true;
and thus, that c̃ is not satisfied by ω if either ω; � c̃ ↓ false, or ω; � c̃ ↓ ⊥, or
when the operational evaluation of c̃ over ω does not terminate.

The possibility of non-termination can be tracked down to the introduction of
recursive pseudo-features in OCL 1.4: When the operational evaluation of a con-
straint c̃ does not involve applications of rules (Feat↓2) or (Feat↓4), the evaluation
will always terminate and yield a result. In fact, it may even be shown [3], that
expressions of either OCL 1.3 or OCL 1.4 over empty UML static structures,
that is, where no additional features other than built-in OCL properties are
available, represent exactly all primitive recursive functions. Thus, when eval-
uated operationally, the declaration of pseudo-features increases the expressive
power of OCL 1.4 over OCL 1.3 considerably.

Non-termination is illustrated by the acyclicity constraint on the generalisa-
tion relationship stated in the introduction: Assuming two classes A and B, such
that A is the parent of B and, vice versa, B is the parent of A, the operational
evaluation of allParents on A or B will loop. However, declarations may be
interpreted differently, when taking the acyclicity constraint to be read as

132

context GeneralizableElement inv:
self.parent = self.generalization.parent

and self.allParents = self.parent->union(self.parent.allParents)
and not self.allParents->includes(self)

over an extended static and dynamic basis, where GeneralizableElement shows
the features parent and allParents. This reading would only require constraints
on the implementation of parent and allParents. For the cyclic generalisation
relation above parent of A must yield B, parent of B must yield A; the imple-
mentations of allParents for A and B are only required to result in a fix-point,
e.g., both could yield Set{A, B} or both could yield ⊥.

More generally, we call a dynamic basis ω a result dynamic basis if all im-
plementation retrieval functions implω yield only implementations showing a
result in Rω. Given an annotated declaration of a structural pseudo-feature
let aζ : τ = ẽ we say that a result dynamic basis ω has a fix-point for aζ if

ω; self �→ v � ẽ ↓ implω(aζ , v)

for all v ∈ ω(ζ); and likewise for an annotated declaration of a query behavioural
pseudo-feature let oζ(x1 : τ1, . . . , xn : τn) : τ = ẽ.

The constraint semantics interprets a constraint over result dynamic bases
showing fix-points for all declarations occurring in the given constraint: Let
c̃ = context ζ inv: (d̃i)1≤i≤n in ẽ be a constraint annotated and typed over a
static basis Ω such that Ω′; self : ζ � d̃i : δi for all 1 ≤ i ≤ n for the static
basis Ω′ extending Ω. Then c̃ holds in a dynamic basis ω conforming to Ω with
respect to the constraint semantics if, and only if ω′; self �→ v � ẽ ↓ true for all
result dynamic bases ω′ conforming to Ω′, which extend ω and show fix-points
for all declarations d̃i with 1 ≤ i ≤ n, and all v ∈ ω′(ζ).

This constraint semantics employs all fix-point dynamic bases; it may be
desirable to restrict attention only to least fix-points.

5 Conclusions

We have presented a type inference system and a big-step operational semantics
for the OCL 1.4 including the possibility of declaring additional pseudo-features;
the operational semantics satisfies a subject reduction with respect to the type
inference system. The corrections and additions to previous formal approaches to
OCL 1.1/3 are pervasive. We have also discussed an alternative, non-operational
interpretation of the declaration of pseudo-features as model constraints.

On the one hand, the semantics may form a new, more comprehensive basis
for the treatment of OCL pre- and post-conditions, cf. Richters and Gogolla [16];
global pseudo-feature declarations using the def: stereotype may be easily in-
corporated. On the other hand, we have abstractly axiomatised UML static
structures and UML object models, stating only some sufficient conditions such
that OCL terms can be typed uniquely and evaluated type-safely. In particular,
we have not treated the more complex UML template types, which have been in-

 133

vestigated by Clark [4] though making additional assumptions on the inheritance
relationship and contra-variance. However, this axiomatisation may contribute
to the necessary clarification of the overall UML type system.

Acknowledgements. We thank Hubert Baumeister for pointing out the con-
straint interpretation of let-declarations and careful proof-reading.

References

1. T. Baar and R. Hähnle. An Integrated Metamodel for OCL Types. In R. France,
editor, Proc. OOPSLA’2000 Wsh. Refactoring the UML: In Search of the Core,
Minneapolis, 2000.

2. M. Bickford and D. Guaspari. Lightweight Analysis of UML. Draft NAS1-
20335/10, Odyssey Research Assoc., 1998. http://cgi.omg.org/cgi-bin/doc?ad/98-
10-01.

3. M. V. Cengarle and A. Knapp. On the Expressive Power of Pure OCL. Technical
Report 0101, Ludwig–Maximilians–Universität München, 2001.

4. T. Clark. Type Checking UML Static Diagrams. In R. B. France and B. Rumpe,
editors, Proc. 2nd Int. Conf. UML, volume 1723 of Lect. Notes Comp. Sci., pages
503–517. Springer, Berlin, 1999.

5. S. Drossopoulou and S. Eisenbach. Describing the Semantics of Java and Proving
Typing Soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,
volume 1523 of Lect. Notes Comp. Sci., pages 41–82. Springer, Berlin, 1999.

6. A. Evans, S. Kent, and B. Selic, editors. Proc. 3nd Int. Conf. UML, volume 1939
of Lect. Notes Comp. Sci. Springer, Berlin, 2000.

7. A. Hami, J. Howse, and S. Kent. Interpreting the Object Constraint Language. In
Proc. Asia Pacific Conf. Software Engineering. IEEE Press, 1998.

8. H. Hußmann, B. Demuth, and F. Finger. Modular Architecture for a Toolset
Supporting OCL. In Evans et al. [6], pages 278–293.

9. http://www.cs.york.ac.uk/puml/mmf/mmt.zip.
10. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard

ML (Revised). MIT Press, Cambridge, Mass., 1997.
11. J. C. Mitchell. Foundations for Programming Languages. Foundations of Comput-

ing. MIT Press, Cambridge, Mass.–London, England, 1996.
12. Object Management Group. Unified Modeling Language Specification, Version 1.4.

Draft, OMG, 2001. http://cgi.omg.org/cgi-bin/doc?ad/01-02-14.
13. http://www.cs.york.ac.uk/puml/puml-list-archive.
14. M. Richters and M. Gogolla. On Formalizing the UML Object Constraint Language

OCL. In T. W. Ling, S. Ram, and M. L. Lee, editors, Proc. 17th Int. Conf. Con-
ceptual Modeling, volume 1507 of Lect. Notes Comp. Sci., pages 449–464. Springer,
Berlin, 1998.

15. M. Richters and M. Gogolla. Validating UML Models and OCL Constraints. In
Evans et al. [6], pages 265–277.

16. M. Richters and M. Gogolla. OCL — Syntax, Semantics and Tools. In T. Clark
and J. Warmer, editors, Advances in Object Modelling with the OCL, Lect. Notes
Comp. Sci., pages 38–63. Springer, Berlin, 2001.

17. A. Schürr. New Type Checking Rules for OCL (Collection) Expressions. In
T. Clark and J. Warmer, editors, Proc. UML’2000 Wsh. UML 2.0 — The Fu-
ture of OCL, York, 2000.

	UML 2001 - The Unified Modeling Language.Modeling Languages, Concepts, and Tools
	Preface
	Organization
	Sponsors
	Table of Contents
	The Preacher at Arrakeen
	An Action Semantics for MML
	Introduction
	The Basics of the MML Model

	Principles of the New Action Semantics
	New Basic Concepts
	Time

	Actions
	Concepts
	Instances

	Primitive Actions
	Null Action
	Variable Actions
	Object Actions
	Slot Actions

	Compound Actions
	Group Actions
	Clauses
	Conditional Actions
	Loop Actions

	Changes in Current MML
	Conclusions and Future Work

	The Essence of Multilevel Metamodeling
	Introduction
	Symptoms of Shallow Instantiation
	Ambiguous Classification
	Replication of Concepts

	Compensating for Shallow Instantiation
	PowerTypes
	Prototyipcal Concept Pattern
	Nested Metalevels with Context Sensitive Queries

	Deep Instantiation
	Potency
	Single and Dual Fields
	Modeling with Deep Instantiation
	Metamodel for Multiple Metalevels

	Conclusion

	Mapping between Levels in the Metamodel Architecture
	1. Introduction
	2. The Meta-modeling Language
	3. Strict Metamodeling and the Four-Layer Architecture
	4. Mapping between Metalevels
	5. Application of the G Mapping
	6. Conclusion
	References

	An Execution Algorithm for UML Activity Graphs
	Introduction
	Workflow Systems
	Syntax
	Semantics
	Related Work
	Conclusion

	Timing Analysis of UML Activity Diagrams
	Introduction
	UML Activity Diagrams with Timing Constraints
	Formalizing UML Activity Diagrams
	Checking Simple UML Activity Diagrams by Linear Programming Techniques
	Checking UML Activity Diagrams Using Integer Time Verification Techniques
	Basic Algorithm
	Improved Algorithm

	Conclusion
	Proof of Theorems

	UML Activity Diagrams as a Workflow Specification Language
	Introduction
	Overview o Activity Diag ams
	States and Trans t ons
	Forks and Joins
	Synch States
	Dynamic Invocations

	Capturing Synchronisation Patterns
	The Discriminator
	N-out-of-M Join
	Multiple Instances Requiring Synchronisati on

	Capturing State-Based Patterns
	Deferred Choice
	Interleaved Parallel Routing

	Produce -Consumer Patterns
	Producer-Consumer Pattern with Terminat on Activi ty
	Producer-Consumer with Bounded Queue

	Related Work
	Conclusion
	References

	On Querying UML Data Models with OCL
	Introduction
	Relational Data Modellin g
	Example
	OCL as a Query Language (QL)
	UML and OCL as a Query Language
	LinkObjects as Tuples
	Cartesian Product Using UML and OCL
	Project Using UML and OCL
	Solution to the Example Problem

	Extending OCL to Be a Fully Expressive Query Language
	Creating Tuples in OCL
	Definition of a Product Opera tion
	Definition of a Project Opera tion
	Ideal Solution for Example P roblem

	Conclusion
	References

	OCL as a Specification Language for Business Rules in Database Applications
	Introduction
	Approaches Supporting OCL Constraints in Object-Relational Applications
	Discussion of Different Approaches
	The VIEW Approach

	Extended OCL Toolset
	Experience with the OCL-to-SQL Pattern Catalogue
	Design
	XML Coded Pattern Refinement
	SQL Code Generator
	CASE Tool Integration

	Conclusion

	A Formal Semantics for OCL 1.4
	Introduction
	Type System
	Static Bases
	Type Inference

	Operational Semantics
	Dynamic Bases
	Operational Rules
	Subject Reduction

	Constraint Semantics
	Conclusions

	Refactoring UML Models
	Introduction
	Refactoring in a Nutshell
	Motivation
	Class Diagram Example
	Statechart Example

	Refactoring Class Diagrams
	Add, Remove, and Move
	Generalization and Specialization

	Refactoring Statecharts
	State
	Composite State

	Conclusion
	Appendix: Statechart Refactorings
	Unfold Exit Action
	Group States
	Fold Outgoing Transition
	Unfold Outgoing Transition
	Move State into Composite
	Move State out of Composite
	Same Label

	UML Support for Designing Software Systems as a Composition of Design Patterns
	1 Introduction
	Stringing versus Overlapping Patterns
	Pattern-Oriented Analysis and Design with UML
	Related Work
	5 Conclusion and Future Work
	References

	Integrating the ConcernBASE Approach with SADL
	Introduction
	The ConcernBASE Approach
	Structural Viewpoint
	Structural Concern Space
	Static View
	Behavioral View
	Configuration View

	Compiler Example
	Overview of SADL
	Mapping ConcernBASE to SADL
	Mapping Data Types
	Mapping Architectural Components
	Mapping Component Interfaces
	Stream Interface Type
	Operational and Signal Interface Types

	Mapping Connections
	Putting It All Together

	Tool Support
	Conclusion and Future Work
	References

	The Message Paradigm in Object-Oriented Analysis
	1 Introduction
	2 Messages with One and with More than One Object Involved
	Messages with No Objects Involved
	4 Conclusion
	5 Further Research
	References

	A UML-Based Approach to System Testing
	Introduction
	Overview of the TOTEM System Test Methodology
	Generating System Test Requirements at the Completion of Analysis
	Generating Use Case Sequences
	Identifying Use Case Scenarios
	Expressing Sequence Diagrams as Regular Expressions
	Identifying Path Realization Conditions for Product Terms
	Specifying Operation Sequences
	Identifying Test Oracles
	Constructing Decision Tables

	Generating Variant Sequences

	Testability Issues
	Conclusion and Future Work
	Acknowledgements. Lionel Briand and Yvan Labiche were in part supported by NSERC operational grants. This work was further supported by the CSER consortium and Mitel Networks. We are also grateful to Michelle Wang for her support.
	References

	UML Modelling and Performance Analysis of Mobile Software Architectures
	1 Introduction
	2 UML and Mobility
	2.1 UML Standard Approach
	2.2 Suggested Extension

	3 MRP and MDP Models
	4 Performance Model Generation from UML Diagrams
	4.1 Elementary Rules
	4.2 State Space Generation
	4.3 MDP Generation

	5 Related Work
	6 Conclusions
	References

	Appendix

	Extending UML for Object-Relational Database Design
	Introduction
	Previous Concepts
	UML Extensions for Object-Relational Database Design
	The Object-Relational Model: SQL:1999 and Oracle8i
	Object-Relational Extension for UML

	Integrating the UML Extension in a Methodology for
	Example

	Conclusions and Future Work
	References

	Understanding UML - Pains and Rewards
	A Formal Semantics of UML State Machines Based on Structured Graph Transformation
	Introduction
	State Machines
	Graph Transformation
	Formalization of UML State Machines
	Conclusion

	A Visualization of OCL Using Collaborations
	Introduction
	The Running Example

	Constraints on Properties of Objects Based on Collaborations
	Object Attributes
	Operations and Methods
	Navigation through Associations

	Collections and Operations on Collections
	Query Operations
	Further Operations on Collections

	Visualized Logical Expressions
	Adaptation of the OCL Meta Model
	Related Work
	Conclusion

	Rule-Based Specification of Behavioral Consistency Based on the UML Meta-model
	Introduction
	UML Protocol Statecharts and Inheritance
	Mapping Protocol Statecharts to CSP
	Specifying and Analyzing Behavioral Constraints
	Conclusion

	A New UML Profile for Real-Time System Formal Design and Validation
	1. Introduction
	2. Related Work
	3. RT-LOTOS
	4. TURTLE: A Real-Time UML Profile
	4.1. Gate Abstract Type
	4.2. Tclass Stereotype
	4.3. Composer Abstract Type
	4.4. Tclass Behavior Description
	4.5. Validation Process

	5. Application
	5.1. Class Diagram
	5.2. Generating RT-LOTOS Code
	5.3. Validating with the RTL Tool

	6. Conclusions and Future Work
	References

	Representing Embedded System Sequence Diagrams as a Formal Language
	Introduction
	Terminology and Related Work
	Scenarios
	Sequence Diagrams and Message Sequence Charts
	Composition of Scenarios
	Finite State Machines and Statecharts
	Statechart Synthesis

	Sequence Diagram Composition

	Diagram Content
	Deterministic Grammar
	State Information
	Data
	Timing Information
	ATM Example

	Conclusions
	References

	Scenario-Based Monitoring and Testing of Real-Time UML Models
	Introduction
	Related Work
	Structure

	The PBX System
	Sequence Diagrams
	Monitoring and Testing
	Early Prototype
	First Full Implementation
	Adding Functionality

	Implementation
	Conclusion
	References

	Semantics of the Minimum Multiplicity in Ternary Associations in UML
	Introduction
	Definition of Multiplicity in UML
	Definition of Cardinality in Entity-Relationship Models
	Paradoxes and Ambiguities of Ternary Multiplicities
	A Place for the Participation Constraint
	Conclusions
	References

	Extending UML to Support Ontology Engineering for the Semantic Web
	Introduction and Motivation
	DAML Background
	Properties of Mappings
	UML to DAML Mapping
	Representing DAML Properties
	Representing DAML Instances
	Representing Facets of Properties

	Incompatibilities between UML and DAML
	Containers and Lists
	Universal Classes
	Constraints
	Property
	Cardinality Constraints
	Transitivity
	Subproperties
	Namespaces

	Semantics of Constraints
	Recommendations
	Property Semantics
	Restriction Semantics

	Conclusion

	On Associations in the Unified Modelling Language
	Introduction
	Associations in the UML1.4 Standard
	Dynamic or Static?
	Tuple or Model Element?
	Multiplicity and Multiple Links
	Links, Associations, and Collaborations

	Associations and Generalisation
	Associations between Generalised/Specialised Classifiers
	Association as GeneralizableElement

	Relationship with AssociationClass
	Related Work
	Conclusions and Implications

	iState: A Statechart Translator
	Introduction
	An Event-Centric Translation Scheme
	The Statechart Model
	Normalized and Flawed Statecharts
	Legal Statecharts
	Refinement of the Statechart Model
	Example
	Discussion

	Specifying Concurrent System Behavior and Timing Constraints Using OCL and UML
	Introduction
	Auctioning System Case Study
	Modeling Timing Constraints
	Modeling Concurrent Operations by Schemas
	Related Work
	Conclusion
	References

	Formalization of UML-Statecharts
	Introduction
	UML-Statecharts versus Classical Statecharts
	Syntax
	Prerequisites for the Semantics Definition
	Semantics
	Intuition
	General Approach for the Semantics Definition
	Entry and Exit Actions
	Computing the Next State
	Semantics Definition

	Related Work
	Conclusions and Further Work

	UML for Agent-Oriented Software Development: The Tropos Proposal
	1 Introduction
	2 Early Requirements with i*
	3 Other Phases
	3.1 Late Requirements Analysis
	3.2 Architectural Design
	3.3 Detailed Design

	4 Tropos Models in UML
	5 Conclusion and Discussion
	References

	A UML Meta-model for Contract Aware Components
	Introduction
	Component Contracts
	Contract Relationships
	Contract Selection and Negotiation
	Designing Contracts

	Development Phases
	Phase Transitions
	Modelling Phase Transitions

	Modelling Contracts with the UML
	Component Modelling in UML 1.x
	Meta-model Extensions
	Notation
	Backward Compatibility
	Example
	Catalysis

	Conclusion

	A Specification Model for Interface Suites
	Introduction
	The ISpec Approach
	A Case Study with an Interface Suite
	The Specification Model for Interface Suites
	Another Look at Our Model

	The Link between the Views and Our Model
	Role View
	Statecharts and other Interaction Diagrams

	Specification Tool

	Against Use Case Interleaving
	Use Case Interleaving Semantics from Jacobson to UML v1.2
	Understanding Use Cases as UML Classifiers
	Named and Unnamed Use Case Methods

	Interleaving Semantics Considered Harmful
	Changes Made in UML v1.3 and Remaining Inconsistencies
	Interleaving Violates UML Classifier Encapsulation
	Goal-Based Use Cases
	Goals and Interaction
	Use Cases as Contracts of System Behaviour

	Interleaving Violates Continuity of Interaction Sequence and
	Solution Proposals and Remaining Problems
	UML Metamodel Element UseCase
	Semantics of the Use Case Relationships «Include» and «Extend»

	References

	Estimating Software Development Effort Based on Use Cases-Experiences from Industry
	Introduction
	The Use Case Points Method
	Related Work
	Reported Experiences with Estimation Based on Use Cases
	Methods and Tools for Use Case Estimation
	Use Case Points and Function Points

	Data Collection
	Results
	Lessons Learned
	The Impact of the Structure of a Use Case Model
	Assigning Values to Technical and Environmental Factors
	Time Sheets
	Using Use Case Estimates

	Threats to Validity
	Conclusions and Future Work
	References
	Appendix A

	Workshops and Tutorials at the UML 2001 Conference
	Workshops
	Tutorials

	Author Index

