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Abstract. An extension of the “Object Constraint Language” (OCL)
for modeling real-time and reactive systems in the “Unified Modeling
Language” (UML) is proposed, called OCL/RT. A general notion of
events that may carry time stamps is introduced providing means to
describe the detailed dynamic and timing behaviour of UML software
models. OCL is enriched by satisfaction operators @n for referring to
the value in the history of an expression at the instant when event n
occurred, as well as the modalities always and sometime. The approach
is illustrated by several examples. Finally, an operational semantics of
OCL/RT is given.
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1 Introduction

The “Object Constraint Language” (OCL [25]) provides means to constrain re-
alisations of software models in the “Unified Modeling Language” (UML [3]) by
textual specifications in a formal, navigational expression language. OCL spec-
ifications complement UML models where constraints for defining meaningful
realisations can not or not conveniently be stated diagrammatically. The OCL
focusses on the axiomatic specification of consistent system states by invariants
and the transformations of system states by means of pre- and post-conditions
for operations.

As it stands, OCL thus seems to be well-suited for describing constraints on
UML models for conventional business applications [8,2], but shows distinct lim-
itations for specifying reactive, embedded, or real-time systems as the language
does not feature time or signal handling constructs, nor is capable of expressing
general liveness properties of systems conveniently. Moreover, performance as-
pects, which play an important role in today’s software systems, cannot be easily
expressed in the OCL. On the other hand, employment of the UML for describing
systems where time, performance, or reactive behaviour is in focus has gained
considerable interest [6,7,10] building on the general impact of object-oriented
technology in real-time software engineering [21]. In fact, the UML shows some
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support for these kinds of systems by including a signal and an event concept,
timed state machines, and collaborations with timing annotations. Moreover,
specialised real-time language extensions and profiles have been devised [22,17].
However, most of these UML notions have only been provided with an intuitive
semantics and have no formal counterpart. Methodologically, UML reactive and
timing specifications, like state machines, tend to be rather concrete; the inter-
spersing of modelling and constraint diagrams may make it hard to grasp the
proof obligations.

What therefore may be called for is an enhancement of the OCL by con-
structs for time and signals in order to also complement UML real-time models
by formal and abstract specifications. We propose such an extension to the OCL,
called “OCL for real-time” (OCL/RT). In OCL/RT, time evolution as well as
signal occurrences are captured by a generalised notion of UML events that
carry a time stamp. In accordance with the design principles of the OCL, events
are viewed on locally and are associated to instances. Based on this event con-
cept, special satisfaction operators @7 enable referring to the system state at
the occurrence of an event 7 and thus provide control over a history of sys-
tem states. Furthermore, the modalities always and sometime provide means
to specify safety as well as liveness properties. This proposal takes up some of
the ideas present in Lano’s “Real-time Action Logic” (RAL) for formal object-
oriented software development [13] and the work by Trentelman and Huisman
on extending the “Java Modeling Language” (JML) by temporal logic [24].

Related work. Several approaches to coping with time and events in OCL and
related specification languages for the UML have already been reported in the
literature: Conrad and Turowski [5] extend OCL by temporal modalities but do
not consider real-time systems proper. Kleppe and Warmer [12], in the same
vein as Alvarez et. al. [1] and the “Action Semantics for the UML” integrated
with the UML 1.4 specification [19], define a dynamic semantics of UML and
its actions using OCL. Though they capture history by local snapshots, they
neither provide a notion of time nor a notion of event. These concepts are in-
vestigated in detail in the response to the request for proposals “Schedulability,
Performance, and Time for the UML” [17], but an extension to the OCL is not
discussed. Lavazza, Quaroni, and Venturelli [14] propose the use of “TRIO” real-
time specifications to capture the semantics of UML state machines with time
annotations; this approach, along the techniques introduced by Lano [13], in-
deed provides a powerful specification language, but lacks tight integration with
conventional notations for UML.

Outline. In Sect. 2 we briefly review the OCL syntax, intended semantics, and
expressiveness. The OCL/RT notion of event as well as its relationship to time
is motivated in Sect. 3. In Sect. 4 the concepts and syntax of OCL/RT are
introduced. We illustrate our proposal in Sect. 5 by means of several typical
examples. Sect. 6 defines the formal semantics of OCL/RT. Finally, in Sect. 7,
we conclude by drawing advantages and disadvantages of our proposal and hint
at possible directions of future work.
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2 OCL

We briefly summarise the syntax and semantics of the OCL by means of an
example. An introduction to OCL is provided by Warmer and Kleppe [25], the
syntax and semantics of OCL 2.0 is discussed in more detail in [16]. The overview
of the OCL semantics given here is based on the operational semantics for OCL
expressions by the authors [4].

The UML class diagram in Fig. 1 represents the static structure of a (over-
simplified) model of several automatic teller machines (ATMs) connected to a
single bank showing an association with according multiplicities between the
classes ATM and Bank. An ATM has a depot attribute, holding the current
amount of money it can spend; the identification number of the card currently
put in, with cardld set to, say, zero if it holds no card; and a state indicating
whether an error has occurred during processing. An ATM may spend an amount
of money when operation spend is called on it. The bank offers two operations:
credit withdraws an amount of money from the card holder’s account if this
amount is covered; requestRefill registers ATMs whose depots are running low.

ATM atms bank Bank
depot : Integer " 1
cardld : Integer credit(cardld : Integer,
state : { #tok, #error } amount : Integer) : Boolean
requestRefill(atm : ATM)
spend(amount : Integer)

Fig. 1. UML class diagram for ATMs

2.1 Invariants, Pre-/Post-conditions, and Definitions

In OCL, a class invariant specifies a condition that has to be satisfied throughout
the whole life-time of instances of the class. An OCL invariant for ATMs may
require that, whenever the state of an ATM does not indicate an error, there is
enough money to spend:

context ATM
inv: (self.state = #ok) implies (self.depot >= 100)

OCL uses the dot-notation for navigation to attributes and via associations
(as well as for operation calls). The OCL expression self denotes the instance
the constraint is evaluated on and may be omitted if the navigation reference
remains unambiguous. Each OCL type, like Enumeration (for #ok), Integer
or the types of the underlying UML static structure, shows a special undefined
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value undef; an expression can be tested whether it results in undef using the
predefined function isUndef ().

An aziomatic specification for an operation defines the behaviour of the op-
eration by a pre-/post-condition pair. An OCL axiomatic specification for op-
eration spend on an ATM may require that whenever spend is called, the ATM
must not be in an error state, it must hold some card, the amount of money to
be withdrawn is positive, and the depot covers the withdrawal. After spend has
been executed, the right amount of money must have been spent or some error
has occurred:

context ATM: :spend(amount : Integer)
pre: (state = #ok) and (cardld <> 0) and
(amount > 0) and (depot > amount+100)
post: (depot = depot@pre-amount) or (state = #error)

The post-condition expression makes use of the OCL operator @pre that yields
an expression’s value at pre-condition time.

OCL also provides a mechanism to introduce auxiliary attributes and (arbi-
trarily recursive) operations not specified in the underlying UML model. A bank
may define an operation calculating the sum of the depots in its ATMs:

context Bank
def: depotsSum() : Integer =
self.atms->iterate(i : ATM;
sum : Integer = O | sum+i.depot)

The expression self.atms evaluates to a set of instances of class ATM, reflecting
the multiplicity of atms. The OCL predefined operation iterate iterates through
a given collection and accumulates the result of evaluating an expression with
an iterator variable bound to the current element and an accumulator variable
bound to the previous result. Like for all collection operations, e.g., select,
reject, or collect, a special arrow notation is used.

2.2 Actions

Kleppe and Warmer [11] have proposed an extension of the original OCL by
action clauses for classes and operations; see also [16].

An action clause for classes requires that whenever a condition becomes
satisfied, an operation has to be called. For example, if an ATM is about to run
out of money, it has to request a refill from its bank:

context ATM
action: depot < 1000 ==> bank.requestRefill(self)

An action clause for operations specifies that, when some condition is sat-
isfied at post-condition time, certain other operation calls must have happened
while executing the operation. For example, during execution of spend operation
credit must have been called on the bank with the current card identification
and the amount of money to be withdrawn:
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context ATM::spend(amount : Integer)
action: true ==> bank.credit(cardld, amount)

An action clause for operations implicitly assumes the pre-condition of the op-
eration.

2.3 Semantics

Formally, the semantics of evaluating an OCL ezpression in a system state may
be captured as follows: System states are formalised by dynamic bases. A dy-
namic basis comprises an implementation of the predefined OCL types and their
operations as well as the set of current instances of classes together with their
attribute valuations, connections to other instances, and implementations of op-
erations. Moreover, a dynamic basis can be extended by implementations of
auxiliary, user defined operations. Given an OCL expression e to be evaluated
over a dynamic basis w and a variable environment -y assigning values to variables
(including self), we write w;y F e | v for the judgement that e evaluates in this
situation to the value v. Structural operational rules [4] define the procedure of
evaluating an OCL expression.

bank T bank
bank : Bank
atms atms | bank atms
atml : ATM atm2 : ATM atm3 : ATM
depot = 10000 depot = 2000 depot = 800
cardld =0 cardld = 4711 cardld = 0
state = F#fok state = #ok state = F#fok

Fig.2. UML object diagram for a sample ATM configuration

For example, the evaluation of a call to the auxiliary operation depotsSum
on the bank bank over a dynamic basis w corresponding to the system state
described by the object diagram in Fig. 2 is given by the judgement:

w; self — bank - self.depotsSum() | 12800
Moreover, the ATM invariant above is satisfied for all instances of ATM, i.e., for
1<1<3:

w; self — atmi - self.state = #ok implies self.depot >= 100 | true

OCL constraints, i.e., invariants, pre-/post-conditions, and action clauses,
restrict the runs of systems modelled in UML. These constraints specify safety



395

properties of a system, such that if a constraint is satisfied by a system run, all
finite initial segments of the system run satisfy the constraint. Roughly speaking,
an OCL constraint has to hold for a (potentially infinite) sequence of dynamic
bases & = wg,w1,... where wy represents the initial system state and w, is
transformed into w,41 by a step of the system. However, the OCL semantics
does not prescribe at which states of such a run an invariant has to hold indeed
— an instance’s invariant may be violated if an operation is currently executed
on this instance (see, e.g., [15]). Taking some w,, to be the system state where an
operation is called and w,, with m < n the system state where this operation call
terminates, a pre-/post-condition pair for this operation holds (cf. [20]) when-
ever a true pre-condition over w,, implies a true post-condition over w,, with
expressions of the form e@pre evaluated over w,,. But it is unclear how system
states are to be identified where an operation is called or where an operation
terminates. The interpretation of action clauses shows similar problems.

3 Time and Events

Though the OCL provides sufficient means to describe the functional behaviour
of software systems modelled in the UML, its expressiveness is rather limited
when it comes to either timing and performance issues or reaction to (external)
signals. To some extent, this deficiency can be countered by employing UML
diagrams as specifications; however, the lack of formal underpinning of the UML
remains a main impediment.

3.1 Time and Signals in OCL and UML

In software systems, time plays a particular role when it is desirable or even
absolutely necessary that a service be finished within certain time bounds. For
example, the period to be waited for when asking for money at an automatic
teller machine, i.e. calling spend on an ATM in the example of the previous
section, must not exceed a certain predefined time limit. An OCL solution to
such a requirement would be to define an explicit clock attribute requiring the
clock to be reset to zero in the pre-condition of spend and putting a constraint
on the clock’s value in the post-condition:

context ATM::spend(amount : Integer)
pre: (clock = 0) and (state = #ok) and ...
post: (clock <= T) and ...

Such a solution may become unwieldy when several dependent timing constraints
are required. Alternatively, a UML sequence diagram with timing annotations as
suggested in the UML specification [18, Sect. 3.64] may be employed, see Fig. 3.
The precise meaning, however, is undefined.

Time also plays a role when, the other way round, the occurrence of some
(external) signal is waited for during a certain period, and if nothing happens
the system has to react in a predefined way. For instance, when inserting the
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Fig. 3. Sequence diagram with timing constraints for ATM: :spend

ATM

spend(amount : Integer)
<signal> card(cardld : Integer)
<signal> pin(PIN : Integer)

(a) ATM with signals

card(cardld) pin(PIN)

EnterPIN EnterAmount

after(t)

RetainCard

(b) Timed state machine for ATM with signals (fragment)

Fig. 4. UML specifications for ATMs with signals

bank card in an automatic teller machine, if the card holder does not enter the
corresponding personal identification number (PIN) within a reasonable time,
the card may be retained by the automatic teller machine, which is now ready to
accept another card. In order to accommodate for this requirement, in Fig. 4(a)
two signals card and pin for class ATM are introduced by defining appropriate
UML receptions (which are meant to be asynchronous in contrast to synchronous
operations). But OCL does not offer any convenient means to handle the occur-
rence of signals and thus to specify the intended behaviour. In UML, the deadline
for entering the PIN may be expressed by using a state machine with time trig-
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gers for class ATM as suggested in the UML specification [18, Sect. 3.74], see
Fig. 4(b). However, the precise meaning is unclear and the specification may be
too concrete in introducing state machines for classes.

3.2 Event Concept

The concepts of starting and finishing time of a service can be used to measure
the duration of fulfilling the service by a system. In the same vein, when waiting
for a signal for a limited amount of time, the occurrence time of a signal can
be used to decide whether the signal arrived in time. It seems natural to reify
these concepts in a system model as events that may be accompanied by a time
stamp.

In fact, UML introduces several kinds of events as sub-classes of the meta-
class Event that, however, cannot be marked with the time of their occurrence:
meta-class CallEvent for operation calls, meta-class SignalEvent for signal oc-
currences, and meta-class ChangeEvent for changing of conditions. The UML
meta-class TimeEvent for the running down of a timer that is started when a
state of a state machine is entered cannot be linked to other events. Furthermore,
also other kinds of events may be of interest in real-time or reactive systems: For
example, an assignment to an attribute may be an event. In an object-oriented
environment, an operation invocation may be subdivided into several events,
e.g., an event originated by the caller (i.e., to send a message), an event origi-
nated by the run-time support (i.e., to place the message in the input queue of
the callee), and an event originated by the callee (i.e., to choose the message for
its process). In general, it is only up to the system specifier which are the events
of discourse.

4 OCL/RT

In order to open up the event and thus the time perspective for OCL, language
primitives for handling events, their occurrence time, and their sequence have
to be introduced. The detailed structure of the available events may depend on
the system’s nature.

4.1 Events

OCL/RT is based on a modification and extension of the original UML abstract
meta-class Event as depicted in Fig. 5. Each event (instance) shows the time
at which it occurred by a link to the new primitive data type Time that repre-
sents the global system time. We assume that Time comes with a total ordering
relation < for comparing time values, an associative and commutative binary
operation + for adding time values, and a class attribute now that always yields
the current system time. Events are associated to instances (of classifiers), such
that an instance is linked to all its current events. Similar to UML, an event may
carry a list of actual parameters.
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ModelElement
’ <primitive>
events 1 Time
Instance " Event
at | now : Time
arguments | * { ordered }

Fig. 5. Event meta-class

We extend OCL by the new types Event and Time that correspond to Event
and Time, respectively and that reify their structure in OCL/RT. Each sys-
tem state complying to an UML model based on the OCL/RT extension thus
has to show a current time, which can be accessed by the OCL/RT expression
Time.now. For each of the instances in such a system state a set of current events
for this instance has to be present, which can be accessed by the OCL/RT ex-
pression e.events if e evaluates to an instance. The set of current events is
accumulative, i.e., over a system run all events that have been raised for the
instance value of e are present in e.events.

4.2 Constraints

For the definition of OCL/RT constraints, which are evaluated over a sequence
of systems states, we introduce a new clause

context C
constr: c¢

where C is a classifier and ¢ an OCL/RT constraint expression. OCL/RT con-
straint expressions comprise all boolean OCL/RT expressions, but may also show
the modality always such that always ¢ for a OCL/RT constraint expression
is satisfied over a system run when c evaluates to true in all states of the run.
As is customary in modal logic, we define a modality sometime by abbrevi-
ating not (always (not ¢)) to sometime c. Finally, OCL/RT expressions may
include satisfaction operators @n that when applied to an expression correspond
to evaluating the expression at the system state where event n occurred.

4.3 Invariants, Pre-/Post-conditions, and Action Clauses

The OCL/RT constraint language is expressive enough to subsume (interpre-
tations of) the original OCL invariant, pre-/post-condition, and action clause
constraints. Accepting those interpretations, inv:, pre:, post:, and action:
can be used as convenient abbreviations in OCL/RT.
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Operation Event
1 | operation A
1 start 1  termination
CallEvent StartEvent TerminationEvent
call 1 start 0..1
1 | instance
sender 1 1
Instance
instance
receiver 1

(a) Events for operations

Event

T

ChangeEvent

participants

Instance

expression : String
I’

(b) Events for changes

Fig. 6. Event model for OCL

We define a suitably expressive hierarchy of events, i.e. an event model for
OCL in Fig. 6. For operations, see Fig. 6(a), we assume that a CallEvent (in-
stance) occurs when a sender instance issues a call on operation operation to a
receiver instance; it is visible to its sender and receiver. A StartEvent is raised,
whenever instance is about to start executing the operation; it is visible to
instance. Finally, a TerminationEvent occurs when the execution of an opera-
tion is finished; it is again visible to instance. CallEvent and StartEvent show as
arguments the actual parameters of the operation call. All three event types are
linked: A StartEvent can refer to its causing CallEvent, a TerminationEvent to its
causing StartEvent. Moreover, if an operation call terminates, the StartEvent cor-
responding to starting execution of the operation has to show a link termination
to a TerminationEvent. For changes, see Fig. 6(b), we assume that arbitrary ex-
pressions can be tested over a system state, and that whenever the expression
value changes from false to true, a ChangeEvent occurs; a ChangeEvent is vis-
ible to all the instances of the system state.
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Invariants. An OCL specification of an invariant

context C
inv: nv

may be interpreted as: inv must be satisfied for an instance of C, whenever
an operation is called on the instance from outside; cf. [15]. In OCL/RT this
interpretation, taking calls from the outside to be calls of public operations,
reads as follows:

context C
def: publicCalls() : Event
events->select(e |
e.isType0Of (StartEvent) and
e.call.operation.visibility = #public)
constr: always (publicCalls()->forAll(s | inv@s))

In particular, an invariant may be violated during execution of an operation.

Pre-/post-conditions. OCL pre-/post-condition specifications

context C::0(x1 : T1, .., Ty : Tn)
pre: pre
post: post

can be expressed by

context C
def: startso() : Event
events->select(e |
e.isTypeOf (StartEvent) and
e.call.operation.name = "o")
constr: always (startso()->forAll(s |
(pre@s and (not isUndef(s.termination)))
implies
5a§©(s.termination)))

The OCL/RT translations pre and post of the OCL expressions pre and post
replace each reference to a parameter x; by s.arguments->at (i), i.e. the ith
argument of event s representing the start of an operation execution. Moreover,
in order to obtain post, each occurrence of @pre is replaced by @s.

Action clauses for classes. An OCL action clause for a class

context C
action: cond ==> e.m(ey, ..., €x)

conveys that whenever condition cond becomes satisfied, an operation call on
m has to be sent to the instance value of e. In OCL/RT this can be specified
as follows, assuming that a short amount of time & may pass between cond
becoming satisfied and calling m:
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context C
def: changes() : Event
events->select(e | e.isTypeOf(ChangeEvent) and
e.expression = "cond")
def: callsm() : Event
events->select(e |
e.isTypeOf (CallEvent) and e.operation.name = "m")
constr: always (changes()->forAll(c | sometime
(callsm()->exists(m |
m.sender = self and m.receiver = e@c and
m.arguments->at (1) = e;0c and ... and
m.arguments->at (k) = e;@c and
c.at <= m.at and m.at <= c.at + €))))

Action clauses for operations. An OCL action clause for an operation

context C::0(xy : T, ..., Tp : Tp)
action: cond ==> e.m(ey, ..., €x)

means that if at termination time of an operation execution for o the condition
cond holds, then an operation call for operation m on the instance value of e has
been raised between the events of starting the operation o and its termination.
This can be expressed by the following OCL/RT specification:

context C::o0(x1 : T1, ...y Ty : Tpn)
def: terminateso() : Event
events->select(e | e.isTypeOf (TerminationEvent) and

e.operation.name = "o")
def: callsm() : Event
events->select(e |
e.isTypeOf (CallEvent) and e.operation.name = "m")

constr: always (terminateso()->forAll(t | (condet implies
callsm()->exists(m | sometime
(m.sender = self and m.receiver = €@t and
m.arguments->at(1) = €;0t and ... and
m.arguments->at (k) = €,0t and
t.start.at <= m.at and m.at <= t.at)))))

where €, €1,..., ¢, are defined as above.

5 Examples

We illustrate the use of OCL/RT by modelling common real-time paradigms, in
particular deadlines and timeouts, for UML systems, as discussed in Sect. 3. A
deadline requires that something must occur before a specified point in time is
reached. Similarly, a timeout expects that something can occur before a specified
point in time is reached and, if this is not the case, then something will occur.



402

5.1 Deadlines for Operations

We define an OCL/RT constraint for the desired deadline for the operation spend
of class ATM (see Fig. 1) in the ATM example of Sect. 3.1: Executions of the
operation spend have to be finished within a certain time 7". The post-condition
of spend (see Sect. 2.1) is rewritten as follows:

context ATM: :spend(amount:Integer)
pre: ...
post: (depot = depot@pre - amount and
Time.now <= Time.now@pre+1) or (state = #error)

This specification makes use of the abbreviation introduced in Sect. 4.3.

5.2 Deadlines for Reactions to Signals

Deadlines for signals pose a similar problem as the previous example. The essen-
tial difference resides in the fact that post-conditions not necessarily are available
for signals. We define an OCL/RT event model for signals in Fig. 7. A SignalEvent
is raised on instance if signal is received by this instance; it is visible to instance.

Event
] signal % instance
Signal ) SignalEvent U Instance

Fig. 7. Event model for signals

Assume a railway level crossing with an automatically controlled gate. When-
ever a sensor signals the approach of a train, the gate has to be completely closed
within a certain time limit. After the train has crossed, the gate starts opening.
It may happen that the gate is opening when the next train is detected by the
sensor; in this case, the gate has to stop opening and close again. This example
is taken from [14]. A UML model for gate controllers is given in Fig. 8.

We specify constraints on the reactions to the open and close signals. In
order to enhance readability of these constraints, we introduce several auxiliary
attributes in the context of Gate that collect the signal events for close, the
change events that are raised when angle becomes 0, and the change events that
are raised when angle becomes Real.pi, respectively:

context Gate
def: closeSignals : Set(SignalEvent) =
events->select(e |
e.isTypeOf (SignalEvent) and e.signal.name = "close")
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Gate

angle : Integer
timeLimit : Time

<signal> open()
<signal> close()

Fig. 8. UML class diagram for gate controllers

def: gateDownEvents : Set(ChangeEvent) =
events->select(e |
e.isTypeOf (ChangeEvent) and e.expression = "angle=0")
def: gateUpEvents : Set(ChangeEvent) =
events->select(e | e.isTypeOf (ChangeEvent) and
e.expression = "angle=Real.pi")

The following constraint checks that, for any close signal, within timeLimit
after the signal has arrived the gate is indeed closed. Furthermore, we require
that between these two events, namely the arrival of a signal close and the gate
reaching a horizontal position, the gate does not become open.

context Gate
constr: always (closeSignals->forAll(cs |
sometime (gateDownEvents->exists(gd |
cs.at < gd.at and gd.at <= cs.at+timelimit
and not gateUpEvents->exists(gu |
cs.at < gu.at and gu.at < gd.at)))))

For a constraint stating that the gate be opened within timeLimit after a open
signal occurred, we could write a dual expression. However, we must ensure that,
if the signal close arrives while opening the gate, the gate must start closing
immediately. Similarly as for the case of close, we define an abbreviation for the
set of open signals.

context Gate
def: openSignals : Set(SignalEvent) =
events->select(e |
e.isTypeOf (SignalEvent) and e.name = "open")

The desired constraint reads as follows:

context Gate
constr: always (openSignals->forAll(os |
sometime (gateUpEvents->exists(gd |
os.at < gu.at and gu.at <= os.at+timeLimit and
not gateDownEvents->exists(gd |
os.at < gd.at and gd.at < gu.at))))
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xor
sometime (closeSignals->exists(cs |
cs.at < os.at+timeLimit)))

5.3 Timeouts

Timeouts are illustrated using an example consisting of an auctioneer and a set
of bidders, such that goods are offered one after the other for a minimum bid.
Bidders may place a bid greater than the current one for the item now being
offered. Each item is sold to the person who offers the most money for it. The
auction is closed by the auctioneer when no new bid has been placed for certain
period, which represents a timeout. The auctioneer does this by hammering three
times; this closing procedure can be interrupted by a bidder placing a new bid,
and again that certain period where no bid is placed has to elapse in order for
the auctioneer to be able to restart closing the auction. In other words, this
setting presents two nested timeouts. This example is taken from [23]. Let the
UML class Auctioneer be defined as shown in Fig. 9.

Auctioneer

open : Boolean
actualBid : Money
timeLimit : Time

open(min : Money)
acceptBid(m : Money)
close()

Fig. 9. UML class diagram for auctioneers

The following OCL/RT invariant constraint requires every auction to remain
open as long as the constant timelLimit has not elapsed with no bid placed.
Moreover, it triggers the operation close if timeLimit elapsed with no valid bid
placed.

context Auctioneer
def: lastEvent(se : Set(Event)) : Event =
se->iterate(e; r = undef |
if r.isUndef() then e
else if r.at < e.at then e else r endif endif)
def: openEvents : Set(Event) =
events->select(e |
e.isTypeOf (CallEvent) and e.operation.name = "open")
def: validBids : Set(Event) =
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self.events—->select(e |
e.isTypeOf (CallEvent) and
e.operation.name = "acceptBid" and
e.at > lastEvent(openEvents).at and
e.arguments->at (1) > actualBid@e)
def: lastBidOrOpen =
if lastEvent(validBids).isUndef ()
then lastEvent (openEvents)
else lastEvent(validBids)
endif
inv: (not open) iff (lastBidOrOpen.at+timelLimit < Time.now)
action: lastBidOrOpen.at+timelLimit < Time.now
==> self.close()

Note that the invariant forbids closing if at regular intervals a joker adds one
cent to the last bid.

A further constraint is set on the operation close, which presupposes that
the auction is open and that timeLimit has elapsed with no new bid having been
placed. The post-condition simply states that the auction is indeed closed.

context Auctioneer: :close()
pre: open and lastBidOrOpen.at+timeLimit >= Time.now
post: not open

The situation for timeouts on ATMs (see Fig. 4) can be easily specified along
the same lines.

6 Semantics

We define an operational semantics for OCL/RT constraints that are evaluated
over system runs. This semantics conservatively extends the operational seman-
tics for OCL expressions presented in [4], as sketched in Sect. 2.3.

6.1 Semantic Domains

Given a UML model, we denote by X' the semantic domain of dynamic bases w
over the UML model. We use a map w(({) that for each class type in the UML
model yields all instances of ¢ that exist in w.

The semantic domain F reflects a given event model such that, in particular,
for each event the occurrence time and its arguments can be retrieved by suitable
maps at and arguments. Moreover, we assume a map relevant that, given a set
M of events in F and an instance v of a dynamic basis in Y, yields all those
events in M that are relevant or visible for v.

A system run or trace p is a finite or infinite sequence of pairs of dynamic
bases and finite sets of events

(wo, H()), (wl, H1)7 (wg, ]‘12)7 ... E (Z X pSwE)* @] (Z X pgwaXJ
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such that at(n) < at(n’) for all n € H;, n’ € H; with ¢ < j. The dynamic
basis wg defines the initial system state; w,, is transformed into w, 11 by a single
system step where exactly the events in H, occur. We denote by w(p), the
nth dynamic basis in p, by H(p), the nth event set in p, that is w, and H,,
respectively. Moreover, w(p), denotes the dynamic basis where n occurred and
i(p), the index of this state, i.e., w(p), is wy with n € Hy_; and i(p), is k.
Finally, we write i(p), for the first state where instance v exists.

Further requirements on traces may be necessary for particular event models.
For the OCL event model in Sect. 4.3, call, start, and termination events linked
by call and start, respectively, must occur in this order.

6.2 Operational Rules
The operational semantics derives judgements of the form

(pyi);yFelw

where p is a trace, ¢ is an index in the trace, 7 a variable environment, ¢ an
OCL/RT constraint, and v a value. Such a judgement conveys the fact that ¢
evaluates to v at the ith system state in the trace p using the variable environ-
ment 7.

To begin with, the operational rules for deriving OCL/RT judgements com-
prise all rules of OCL as defined in [4], but generalising these rules to traces.
For example, the rules for evaluating self and retrieving an attribute a of an
instance originally read:

(Selft)
w;y F self | vy(self)

(Feat*)
wiykFelw

w;y ke.alimpl,(a,v)

where impl,(a,v) yields the value of attribute a on instance v in the dynamic
basis w. For OCL/RT, these rules become

(Self+*)
(p,i);y F self | y(self)
(Feat**)
(pi)iyFelw
(psi);y = e.adimpl, ., (a,v)

In particular, all rules are relativised to the event instance at which an expression
currently is to be evaluated.
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Furthermore, we define rules for evaluating OCL/RT constraints that contain
the special OCL/RT instance attribute events, or one of the new operators @7
and always:

(Evt+)
(pi)iykelw
(p,i);v I e.events | relevant(Uy< ;<; H(p)j,v)
(At+)

(p)iyEeLn (pilp)y)ivbelw
(pyi);y Feee Lv

(Alwt*)
((p,#");v F el v)icw
(p,i);y F always c

Thus e.events comprises all events relevant for an instance e that have occurred

up to the current state. An expression e@e’ evaluates e at the state where event

e’ occurred. A constraint always ¢ must hold at all states after the current state.
Finally, a rule for general OCL/RT constraints is defined as follows:

(Constrt*)
((pi(p)2); v e d v2)zeUy e, wip)i(0)
(p,i);v F context ¢ constr: ¢ | A, v.

Hence, an OCL/RT constraint has to hold for all instances z of a class ¢ at the
state where z is created.

7 Conclusions and Outlook

OCL/RT extends OCL by a general notion of events accompanied by time
stamps, satisfaction operators on expressions, and modal operators. This exten-
sion enables the specification of several common real-time paradigms for UML
models. Moreover, OCL/RT provides means to clarify the semantics of OCL
invariants, pre-/post-conditions, and action clauses.

Being based on a trace semantics for systems and on a notion of global time,
OCL/RT neither takes into account the possibility that events be only partially
ordered nor the concept of different observers with local time, as discussed, e.g.,
in [17]. Partial orderings may turn indispensable for modelling true concurrency,
the notion of observer could prove useful for modelling distributed systems.
Though, it might be difficult to reconcile these two notions, since different ob-
servers may equip event instances with incompatible partial orderings.

The event models presented for OCL and for signals serve as a basis for the
development of the chosen examples, but we do not claim them to be complete.
Further event notions like assignment events and return events may have to be
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included. The specification of events could be refined by adding conditions that
e.g. ensure that events get meaningful time stamps and are placed in time at the
right place. In general, the relation between OCL/RT events and UML actions
has to be clarified.

Moreover, OCL/RT does not offer means to specify which events force a state
transition in the semantic trace. Right now, a successor state has more events,
but apart from the obvious choice of change events that cause a state transition,
it might also make sense to choose further events for provoking a state transition
as well. For instance, close signals of the Gate example can be such kind of events;
in this way, the constraint for the gate closed within a certain time after a close
signal has arrived may be written just for the last close signal and not for all of
them. Given that such a constraint has to hold always, i.e., in any state of the
semantic trace, then this new constraint will be enough as well as more compact.
However, for this proposal to make sense, we have to solve the question of two
state changing events occurring simultaneously. Independently, OCL/RT may
be further improved by including abbreviations that make it easier to write and
read constraints. More ambitiously, a modal logic for reasoning on OCL/RT and
UML may be devised.

Acknowledgements. We would like to thank the anonymous referees for their
insightful comments.
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