Towards OCL/RT

Marfa Victoria Cengarle’* and Alexander Knapp?

! Technische Universitit Miinchen
cengarle@in.tum.de
2 Ludwig-Maximilians—Universitit Miinchen
knapp@informatik.uni-muenchen.de

Abstract. An extension of the “Object Constraint Language” (OCL)
for modeling real-time and reactive systems in the “Unified Modeling
Language” (UML) is proposed, called OCL/RT. A general notion of
events that may carry time stamps is introduced providing means to
describe the detailed dynamic and timing behaviour of UML software
models. OCL is enriched by satisfaction operators @n for referring to
the value in the history of an expression at the instant when event n
occurred, as well as the modalities always and sometime. The approach
is illustrated by several examples. Finally, an operational semantics of
OCL/RT is given.

Keywords. Real-time systems, OCL, UML, events

1 Introduction

The “Object Constraint Language” (OCL [25]) provides means to constrain re-
alisations of software models in the “Unified Modeling Language” (UML [3]) by
textual specifications in a formal, navigational expression language. OCL spec-
ifications complement UML models where constraints for defining meaningful
realisations can not or not conveniently be stated diagrammatically. The OCL
focusses on the axiomatic specification of consistent system states by invariants
and the transformations of system states by means of pre- and post-conditions
for operations.

As it stands, OCL thus seems to be well-suited for describing constraints on
UML models for conventional business applications [8,2], but shows distinct lim-
itations for specifying reactive, embedded, or real-time systems as the language
does not feature time or signal handling constructs, nor is capable of expressing
general liveness properties of systems conveniently. Moreover, performance as-
pects, which play an important role in today’s software systems, cannot be easily
expressed in the OCL. On the other hand, employment of the UML for describing
systems where time, performance, or reactive behaviour is in focus has gained
considerable interest [6,7,10] building on the general impact of object-oriented
technology in real-time software engineering [21]. In fact, the UML shows some

* This research has partially been carried out while at Fraunhofer Institut Experi-
mentelles Software Engineering.

391

support for these kinds of systems by including a signal and an event concept,
timed state machines, and collaborations with timing annotations. Moreover,
specialised real-time language extensions and profiles have been devised [22,17].
However, most of these UML notions have only been provided with an intuitive
semantics and have no formal counterpart. Methodologically, UML reactive and
timing specifications, like state machines, tend to be rather concrete; the inter-
spersing of modelling and constraint diagrams may make it hard to grasp the
proof obligations.

What therefore may be called for is an enhancement of the OCL by con-
structs for time and signals in order to also complement UML real-time models
by formal and abstract specifications. We propose such an extension to the OCL,
called “OCL for real-time” (OCL/RT). In OCL/RT, time evolution as well as
signal occurrences are captured by a generalised notion of UML events that
carry a time stamp. In accordance with the design principles of the OCL, events
are viewed on locally and are associated to instances. Based on this event con-
cept, special satisfaction operators @7 enable referring to the system state at
the occurrence of an event 7 and thus provide control over a history of sys-
tem states. Furthermore, the modalities always and sometime provide means
to specify safety as well as liveness properties. This proposal takes up some of
the ideas present in Lano’s “Real-time Action Logic” (RAL) for formal object-
oriented software development [13] and the work by Trentelman and Huisman
on extending the “Java Modeling Language” (JML) by temporal logic [24].

Related work. Several approaches to coping with time and events in OCL and
related specification languages for the UML have already been reported in the
literature: Conrad and Turowski [5] extend OCL by temporal modalities but do
not consider real-time systems proper. Kleppe and Warmer [12], in the same
vein as Alvarez et. al. [1] and the “Action Semantics for the UML” integrated
with the UML 1.4 specification [19], define a dynamic semantics of UML and
its actions using OCL. Though they capture history by local snapshots, they
neither provide a notion of time nor a notion of event. These concepts are in-
vestigated in detail in the response to the request for proposals “Schedulability,
Performance, and Time for the UML” [17], but an extension to the OCL is not
discussed. Lavazza, Quaroni, and Venturelli [14] propose the use of “TRIO” real-
time specifications to capture the semantics of UML state machines with time
annotations; this approach, along the techniques introduced by Lano [13], in-
deed provides a powerful specification language, but lacks tight integration with
conventional notations for UML.

Outline. In Sect. 2 we briefly review the OCL syntax, intended semantics, and
expressiveness. The OCL/RT notion of event as well as its relationship to time
is motivated in Sect. 3. In Sect. 4 the concepts and syntax of OCL/RT are
introduced. We illustrate our proposal in Sect. 5 by means of several typical
examples. Sect. 6 defines the formal semantics of OCL/RT. Finally, in Sect. 7,
we conclude by drawing advantages and disadvantages of our proposal and hint
at possible directions of future work.

392
2 OCL

We briefly summarise the syntax and semantics of the OCL by means of an
example. An introduction to OCL is provided by Warmer and Kleppe [25], the
syntax and semantics of OCL 2.0 is discussed in more detail in [16]. The overview
of the OCL semantics given here is based on the operational semantics for OCL
expressions by the authors [4].

The UML class diagram in Fig. 1 represents the static structure of a (over-
simplified) model of several automatic teller machines (ATMs) connected to a
single bank showing an association with according multiplicities between the
classes ATM and Bank. An ATM has a depot attribute, holding the current
amount of money it can spend; the identification number of the card currently
put in, with cardld set to, say, zero if it holds no card; and a state indicating
whether an error has occurred during processing. An ATM may spend an amount
of money when operation spend is called on it. The bank offers two operations:
credit withdraws an amount of money from the card holder’s account if this
amount is covered; requestRefill registers ATMs whose depots are running low.

ATM atms bank Bank
depot : Integer " 1
cardld : Integer credit(cardld : Integer,
state : { #tok, #error } amount : Integer) : Boolean
requestRefill(atm : ATM)
spend(amount : Integer)

Fig. 1. UML class diagram for ATMs

2.1 Invariants, Pre-/Post-conditions, and Definitions

In OCL, a class invariant specifies a condition that has to be satisfied throughout
the whole life-time of instances of the class. An OCL invariant for ATMs may
require that, whenever the state of an ATM does not indicate an error, there is
enough money to spend:

context ATM
inv: (self.state = #ok) implies (self.depot >= 100)

OCL uses the dot-notation for navigation to attributes and via associations
(as well as for operation calls). The OCL expression self denotes the instance
the constraint is evaluated on and may be omitted if the navigation reference
remains unambiguous. Each OCL type, like Enumeration (for #ok), Integer
or the types of the underlying UML static structure, shows a special undefined

393

value undef; an expression can be tested whether it results in undef using the
predefined function isUndef ().

An aziomatic specification for an operation defines the behaviour of the op-
eration by a pre-/post-condition pair. An OCL axiomatic specification for op-
eration spend on an ATM may require that whenever spend is called, the ATM
must not be in an error state, it must hold some card, the amount of money to
be withdrawn is positive, and the depot covers the withdrawal. After spend has
been executed, the right amount of money must have been spent or some error
has occurred:

context ATM: :spend(amount : Integer)
pre: (state = #ok) and (cardld <> 0) and
(amount > 0) and (depot > amount+100)
post: (depot = depot@pre-amount) or (state = #error)

The post-condition expression makes use of the OCL operator @pre that yields
an expression’s value at pre-condition time.

OCL also provides a mechanism to introduce auxiliary attributes and (arbi-
trarily recursive) operations not specified in the underlying UML model. A bank
may define an operation calculating the sum of the depots in its ATMs:

context Bank
def: depotsSum() : Integer =
self.atms->iterate(i : ATM;
sum : Integer = O | sum+i.depot)

The expression self.atms evaluates to a set of instances of class ATM, reflecting
the multiplicity of atms. The OCL predefined operation iterate iterates through
a given collection and accumulates the result of evaluating an expression with
an iterator variable bound to the current element and an accumulator variable
bound to the previous result. Like for all collection operations, e.g., select,
reject, or collect, a special arrow notation is used.

2.2 Actions

Kleppe and Warmer [11] have proposed an extension of the original OCL by
action clauses for classes and operations; see also [16].

An action clause for classes requires that whenever a condition becomes
satisfied, an operation has to be called. For example, if an ATM is about to run
out of money, it has to request a refill from its bank:

context ATM
action: depot < 1000 ==> bank.requestRefill(self)

An action clause for operations specifies that, when some condition is sat-
isfied at post-condition time, certain other operation calls must have happened
while executing the operation. For example, during execution of spend operation
credit must have been called on the bank with the current card identification
and the amount of money to be withdrawn:

394

context ATM::spend(amount : Integer)
action: true ==> bank.credit(cardld, amount)

An action clause for operations implicitly assumes the pre-condition of the op-
eration.

2.3 Semantics

Formally, the semantics of evaluating an OCL ezpression in a system state may
be captured as follows: System states are formalised by dynamic bases. A dy-
namic basis comprises an implementation of the predefined OCL types and their
operations as well as the set of current instances of classes together with their
attribute valuations, connections to other instances, and implementations of op-
erations. Moreover, a dynamic basis can be extended by implementations of
auxiliary, user defined operations. Given an OCL expression e to be evaluated
over a dynamic basis w and a variable environment -y assigning values to variables
(including self), we write w;y F e | v for the judgement that e evaluates in this
situation to the value v. Structural operational rules [4] define the procedure of
evaluating an OCL expression.

bank T bank
bank : Bank
atms atms | bank atms
atml : ATM atm2 : ATM atm3 : ATM
depot = 10000 depot = 2000 depot = 800
cardld =0 cardld = 4711 cardld = 0
state = F#fok state = #ok state = F#fok

Fig.2. UML object diagram for a sample ATM configuration

For example, the evaluation of a call to the auxiliary operation depotsSum
on the bank bank over a dynamic basis w corresponding to the system state
described by the object diagram in Fig. 2 is given by the judgement:

w; self — bank - self.depotsSum() | 12800
Moreover, the ATM invariant above is satisfied for all instances of ATM, i.e., for
1<1<3:

w; self — atmi - self.state = #ok implies self.depot >= 100 | true

OCL constraints, i.e., invariants, pre-/post-conditions, and action clauses,
restrict the runs of systems modelled in UML. These constraints specify safety

395

properties of a system, such that if a constraint is satisfied by a system run, all
finite initial segments of the system run satisfy the constraint. Roughly speaking,
an OCL constraint has to hold for a (potentially infinite) sequence of dynamic
bases & = wg,w1,... where wy represents the initial system state and w, is
transformed into w,41 by a step of the system. However, the OCL semantics
does not prescribe at which states of such a run an invariant has to hold indeed
— an instance’s invariant may be violated if an operation is currently executed
on this instance (see, e.g., [15]). Taking some w,, to be the system state where an
operation is called and w,, with m < n the system state where this operation call
terminates, a pre-/post-condition pair for this operation holds (cf. [20]) when-
ever a true pre-condition over w,, implies a true post-condition over w,, with
expressions of the form e@pre evaluated over w,,. But it is unclear how system
states are to be identified where an operation is called or where an operation
terminates. The interpretation of action clauses shows similar problems.

3 Time and Events

Though the OCL provides sufficient means to describe the functional behaviour
of software systems modelled in the UML, its expressiveness is rather limited
when it comes to either timing and performance issues or reaction to (external)
signals. To some extent, this deficiency can be countered by employing UML
diagrams as specifications; however, the lack of formal underpinning of the UML
remains a main impediment.

3.1 Time and Signals in OCL and UML

In software systems, time plays a particular role when it is desirable or even
absolutely necessary that a service be finished within certain time bounds. For
example, the period to be waited for when asking for money at an automatic
teller machine, i.e. calling spend on an ATM in the example of the previous
section, must not exceed a certain predefined time limit. An OCL solution to
such a requirement would be to define an explicit clock attribute requiring the
clock to be reset to zero in the pre-condition of spend and putting a constraint
on the clock’s value in the post-condition:

context ATM::spend(amount : Integer)
pre: (clock = 0) and (state = #ok) and ...
post: (clock <= T) and ...

Such a solution may become unwieldy when several dependent timing constraints
are required. Alternatively, a UML sequence diagram with timing annotations as
suggested in the UML specification [18, Sect. 3.64] may be employed, see Fig. 3.
The precise meaning, however, is undefined.

Time also plays a role when, the other way round, the occurrence of some
(external) signal is waited for during a certain period, and if nothing happens
the system has to react in a predefined way. For instance, when inserting the

396

Fig. 3. Sequence diagram with timing constraints for ATM: :spend

ATM

spend(amount : Integer)
<signal> card(cardld : Integer)
<signal> pin(PIN : Integer)

(a) ATM with signals

card(cardld) pin(PIN)

EnterPIN EnterAmount

after(t)

RetainCard

(b) Timed state machine for ATM with signals (fragment)

Fig. 4. UML specifications for ATMs with signals

bank card in an automatic teller machine, if the card holder does not enter the
corresponding personal identification number (PIN) within a reasonable time,
the card may be retained by the automatic teller machine, which is now ready to
accept another card. In order to accommodate for this requirement, in Fig. 4(a)
two signals card and pin for class ATM are introduced by defining appropriate
UML receptions (which are meant to be asynchronous in contrast to synchronous
operations). But OCL does not offer any convenient means to handle the occur-
rence of signals and thus to specify the intended behaviour. In UML, the deadline
for entering the PIN may be expressed by using a state machine with time trig-

397

gers for class ATM as suggested in the UML specification [18, Sect. 3.74], see
Fig. 4(b). However, the precise meaning is unclear and the specification may be
too concrete in introducing state machines for classes.

3.2 Event Concept

The concepts of starting and finishing time of a service can be used to measure
the duration of fulfilling the service by a system. In the same vein, when waiting
for a signal for a limited amount of time, the occurrence time of a signal can
be used to decide whether the signal arrived in time. It seems natural to reify
these concepts in a system model as events that may be accompanied by a time
stamp.

In fact, UML introduces several kinds of events as sub-classes of the meta-
class Event that, however, cannot be marked with the time of their occurrence:
meta-class CallEvent for operation calls, meta-class SignalEvent for signal oc-
currences, and meta-class ChangeEvent for changing of conditions. The UML
meta-class TimeEvent for the running down of a timer that is started when a
state of a state machine is entered cannot be linked to other events. Furthermore,
also other kinds of events may be of interest in real-time or reactive systems: For
example, an assignment to an attribute may be an event. In an object-oriented
environment, an operation invocation may be subdivided into several events,
e.g., an event originated by the caller (i.e., to send a message), an event origi-
nated by the run-time support (i.e., to place the message in the input queue of
the callee), and an event originated by the callee (i.e., to choose the message for
its process). In general, it is only up to the system specifier which are the events
of discourse.

4 OCL/RT

In order to open up the event and thus the time perspective for OCL, language
primitives for handling events, their occurrence time, and their sequence have
to be introduced. The detailed structure of the available events may depend on
the system’s nature.

4.1 Events

OCL/RT is based on a modification and extension of the original UML abstract
meta-class Event as depicted in Fig. 5. Each event (instance) shows the time
at which it occurred by a link to the new primitive data type Time that repre-
sents the global system time. We assume that Time comes with a total ordering
relation < for comparing time values, an associative and commutative binary
operation + for adding time values, and a class attribute now that always yields
the current system time. Events are associated to instances (of classifiers), such
that an instance is linked to all its current events. Similar to UML, an event may
carry a list of actual parameters.

398

ModelElement
’ <primitive>
events 1 Time
Instance " Event
at | now : Time
arguments | * { ordered }

Fig. 5. Event meta-class

We extend OCL by the new types Event and Time that correspond to Event
and Time, respectively and that reify their structure in OCL/RT. Each sys-
tem state complying to an UML model based on the OCL/RT extension thus
has to show a current time, which can be accessed by the OCL/RT expression
Time.now. For each of the instances in such a system state a set of current events
for this instance has to be present, which can be accessed by the OCL/RT ex-
pression e.events if e evaluates to an instance. The set of current events is
accumulative, i.e., over a system run all events that have been raised for the
instance value of e are present in e.events.

4.2 Constraints

For the definition of OCL/RT constraints, which are evaluated over a sequence
of systems states, we introduce a new clause

context C
constr: c¢

where C is a classifier and ¢ an OCL/RT constraint expression. OCL/RT con-
straint expressions comprise all boolean OCL/RT expressions, but may also show
the modality always such that always ¢ for a OCL/RT constraint expression
is satisfied over a system run when c evaluates to true in all states of the run.
As is customary in modal logic, we define a modality sometime by abbrevi-
ating not (always (not ¢)) to sometime c. Finally, OCL/RT expressions may
include satisfaction operators @n that when applied to an expression correspond
to evaluating the expression at the system state where event n occurred.

4.3 Invariants, Pre-/Post-conditions, and Action Clauses

The OCL/RT constraint language is expressive enough to subsume (interpre-
tations of) the original OCL invariant, pre-/post-condition, and action clause
constraints. Accepting those interpretations, inv:, pre:, post:, and action:
can be used as convenient abbreviations in OCL/RT.

399

Operation Event
1 | operation A
1 start 1 termination
CallEvent StartEvent TerminationEvent
call 1 start 0..1
1 | instance
sender 1 1
Instance
instance
receiver 1

(a) Events for operations

Event

T

ChangeEvent

participants

Instance

expression : String
I’

(b) Events for changes

Fig. 6. Event model for OCL

We define a suitably expressive hierarchy of events, i.e. an event model for
OCL in Fig. 6. For operations, see Fig. 6(a), we assume that a CallEvent (in-
stance) occurs when a sender instance issues a call on operation operation to a
receiver instance; it is visible to its sender and receiver. A StartEvent is raised,
whenever instance is about to start executing the operation; it is visible to
instance. Finally, a TerminationEvent occurs when the execution of an opera-
tion is finished; it is again visible to instance. CallEvent and StartEvent show as
arguments the actual parameters of the operation call. All three event types are
linked: A StartEvent can refer to its causing CallEvent, a TerminationEvent to its
causing StartEvent. Moreover, if an operation call terminates, the StartEvent cor-
responding to starting execution of the operation has to show a link termination
to a TerminationEvent. For changes, see Fig. 6(b), we assume that arbitrary ex-
pressions can be tested over a system state, and that whenever the expression
value changes from false to true, a ChangeEvent occurs; a ChangeEvent is vis-
ible to all the instances of the system state.

400

Invariants. An OCL specification of an invariant

context C
inv: nv

may be interpreted as: inv must be satisfied for an instance of C, whenever
an operation is called on the instance from outside; cf. [15]. In OCL/RT this
interpretation, taking calls from the outside to be calls of public operations,
reads as follows:

context C
def: publicCalls() : Event
events->select(e |
e.isType0Of (StartEvent) and
e.call.operation.visibility = #public)
constr: always (publicCalls()->forAll(s | inv@s))

In particular, an invariant may be violated during execution of an operation.

Pre-/post-conditions. OCL pre-/post-condition specifications

context C::0(x1 : T1, .., Ty : Tn)
pre: pre
post: post

can be expressed by

context C
def: startso() : Event
events->select(e |
e.isTypeOf (StartEvent) and
e.call.operation.name = "o")
constr: always (startso()->forAll(s |
(pre@s and (not isUndef(s.termination)))
implies
5a§©(s.termination)))

The OCL/RT translations pre and post of the OCL expressions pre and post
replace each reference to a parameter x; by s.arguments->at (i), i.e. the ith
argument of event s representing the start of an operation execution. Moreover,
in order to obtain post, each occurrence of @pre is replaced by @s.

Action clauses for classes. An OCL action clause for a class

context C
action: cond ==> e.m(ey, ..., €x)

conveys that whenever condition cond becomes satisfied, an operation call on
m has to be sent to the instance value of e. In OCL/RT this can be specified
as follows, assuming that a short amount of time & may pass between cond
becoming satisfied and calling m:

401

context C
def: changes() : Event
events->select(e | e.isTypeOf(ChangeEvent) and
e.expression = "cond")
def: callsm() : Event
events->select(e |
e.isTypeOf (CallEvent) and e.operation.name = "m")
constr: always (changes()->forAll(c | sometime
(callsm()->exists(m |
m.sender = self and m.receiver = e@c and
m.arguments->at (1) = e;0c and ... and
m.arguments->at (k) = e;@c and
c.at <= m.at and m.at <= c.at + €))))

Action clauses for operations. An OCL action clause for an operation

context C::0(xy : T, ..., Tp : Tp)
action: cond ==> e.m(ey, ..., €x)

means that if at termination time of an operation execution for o the condition
cond holds, then an operation call for operation m on the instance value of e has
been raised between the events of starting the operation o and its termination.
This can be expressed by the following OCL/RT specification:

context C::o0(x1 : T1, ...y Ty : Tpn)
def: terminateso() : Event
events->select(e | e.isTypeOf (TerminationEvent) and

e.operation.name = "o")
def: callsm() : Event
events->select(e |
e.isTypeOf (CallEvent) and e.operation.name = "m")

constr: always (terminateso()->forAll(t | (condet implies
callsm()->exists(m | sometime
(m.sender = self and m.receiver = €@t and
m.arguments->at(1) = €;0t and ... and
m.arguments->at (k) = €,0t and
t.start.at <= m.at and m.at <= t.at)))))

where €, €1,..., ¢, are defined as above.

5 Examples

We illustrate the use of OCL/RT by modelling common real-time paradigms, in
particular deadlines and timeouts, for UML systems, as discussed in Sect. 3. A
deadline requires that something must occur before a specified point in time is
reached. Similarly, a timeout expects that something can occur before a specified
point in time is reached and, if this is not the case, then something will occur.

402

5.1 Deadlines for Operations

We define an OCL/RT constraint for the desired deadline for the operation spend
of class ATM (see Fig. 1) in the ATM example of Sect. 3.1: Executions of the
operation spend have to be finished within a certain time 7". The post-condition
of spend (see Sect. 2.1) is rewritten as follows:

context ATM: :spend(amount:Integer)
pre: ...
post: (depot = depot@pre - amount and
Time.now <= Time.now@pre+1) or (state = #error)

This specification makes use of the abbreviation introduced in Sect. 4.3.

5.2 Deadlines for Reactions to Signals

Deadlines for signals pose a similar problem as the previous example. The essen-
tial difference resides in the fact that post-conditions not necessarily are available
for signals. We define an OCL/RT event model for signals in Fig. 7. A SignalEvent
is raised on instance if signal is received by this instance; it is visible to instance.

Event
] signal % instance
Signal) SignalEvent U Instance

Fig. 7. Event model for signals

Assume a railway level crossing with an automatically controlled gate. When-
ever a sensor signals the approach of a train, the gate has to be completely closed
within a certain time limit. After the train has crossed, the gate starts opening.
It may happen that the gate is opening when the next train is detected by the
sensor; in this case, the gate has to stop opening and close again. This example
is taken from [14]. A UML model for gate controllers is given in Fig. 8.

We specify constraints on the reactions to the open and close signals. In
order to enhance readability of these constraints, we introduce several auxiliary
attributes in the context of Gate that collect the signal events for close, the
change events that are raised when angle becomes 0, and the change events that
are raised when angle becomes Real.pi, respectively:

context Gate
def: closeSignals : Set(SignalEvent) =
events->select(e |
e.isTypeOf (SignalEvent) and e.signal.name = "close")

403

Gate

angle : Integer
timeLimit : Time

<signal> open()
<signal> close()

Fig. 8. UML class diagram for gate controllers

def: gateDownEvents : Set(ChangeEvent) =
events->select(e |
e.isTypeOf (ChangeEvent) and e.expression = "angle=0")
def: gateUpEvents : Set(ChangeEvent) =
events->select(e | e.isTypeOf (ChangeEvent) and
e.expression = "angle=Real.pi")

The following constraint checks that, for any close signal, within timeLimit
after the signal has arrived the gate is indeed closed. Furthermore, we require
that between these two events, namely the arrival of a signal close and the gate
reaching a horizontal position, the gate does not become open.

context Gate
constr: always (closeSignals->forAll(cs |
sometime (gateDownEvents->exists(gd |
cs.at < gd.at and gd.at <= cs.at+timelimit
and not gateUpEvents->exists(gu |
cs.at < gu.at and gu.at < gd.at)))))

For a constraint stating that the gate be opened within timeLimit after a open
signal occurred, we could write a dual expression. However, we must ensure that,
if the signal close arrives while opening the gate, the gate must start closing
immediately. Similarly as for the case of close, we define an abbreviation for the
set of open signals.

context Gate
def: openSignals : Set(SignalEvent) =
events->select(e |
e.isTypeOf (SignalEvent) and e.name = "open")

The desired constraint reads as follows:

context Gate
constr: always (openSignals->forAll(os |
sometime (gateUpEvents->exists(gd |
os.at < gu.at and gu.at <= os.at+timeLimit and
not gateDownEvents->exists(gd |
os.at < gd.at and gd.at < gu.at))))

404

xor
sometime (closeSignals->exists(cs |
cs.at < os.at+timeLimit)))

5.3 Timeouts

Timeouts are illustrated using an example consisting of an auctioneer and a set
of bidders, such that goods are offered one after the other for a minimum bid.
Bidders may place a bid greater than the current one for the item now being
offered. Each item is sold to the person who offers the most money for it. The
auction is closed by the auctioneer when no new bid has been placed for certain
period, which represents a timeout. The auctioneer does this by hammering three
times; this closing procedure can be interrupted by a bidder placing a new bid,
and again that certain period where no bid is placed has to elapse in order for
the auctioneer to be able to restart closing the auction. In other words, this
setting presents two nested timeouts. This example is taken from [23]. Let the
UML class Auctioneer be defined as shown in Fig. 9.

Auctioneer

open : Boolean
actualBid : Money
timeLimit : Time

open(min : Money)
acceptBid(m : Money)
close()

Fig. 9. UML class diagram for auctioneers

The following OCL/RT invariant constraint requires every auction to remain
open as long as the constant timelLimit has not elapsed with no bid placed.
Moreover, it triggers the operation close if timeLimit elapsed with no valid bid
placed.

context Auctioneer
def: lastEvent(se : Set(Event)) : Event =
se->iterate(e; r = undef |
if r.isUndef() then e
else if r.at < e.at then e else r endif endif)
def: openEvents : Set(Event) =
events->select(e |
e.isTypeOf (CallEvent) and e.operation.name = "open")
def: validBids : Set(Event) =

405

self.events—->select(e |
e.isTypeOf (CallEvent) and
e.operation.name = "acceptBid" and
e.at > lastEvent(openEvents).at and
e.arguments->at (1) > actualBid@e)
def: lastBidOrOpen =
if lastEvent(validBids).isUndef ()
then lastEvent (openEvents)
else lastEvent(validBids)
endif
inv: (not open) iff (lastBidOrOpen.at+timelLimit < Time.now)
action: lastBidOrOpen.at+timelLimit < Time.now
==> self.close()

Note that the invariant forbids closing if at regular intervals a joker adds one
cent to the last bid.

A further constraint is set on the operation close, which presupposes that
the auction is open and that timeLimit has elapsed with no new bid having been
placed. The post-condition simply states that the auction is indeed closed.

context Auctioneer: :close()
pre: open and lastBidOrOpen.at+timeLimit >= Time.now
post: not open

The situation for timeouts on ATMs (see Fig. 4) can be easily specified along
the same lines.

6 Semantics

We define an operational semantics for OCL/RT constraints that are evaluated
over system runs. This semantics conservatively extends the operational seman-
tics for OCL expressions presented in [4], as sketched in Sect. 2.3.

6.1 Semantic Domains

Given a UML model, we denote by X' the semantic domain of dynamic bases w
over the UML model. We use a map w(({) that for each class type in the UML
model yields all instances of ¢ that exist in w.

The semantic domain F reflects a given event model such that, in particular,
for each event the occurrence time and its arguments can be retrieved by suitable
maps at and arguments. Moreover, we assume a map relevant that, given a set
M of events in F and an instance v of a dynamic basis in Y, yields all those
events in M that are relevant or visible for v.

A system run or trace p is a finite or infinite sequence of pairs of dynamic
bases and finite sets of events

(wo, H()), (wl, H1)7 (wg,]‘12)7 ... E (Z X pSwE)* @] (Z X pgwaXJ

406

such that at(n) < at(n’) for all n € H;, n’ € H; with ¢ < j. The dynamic
basis wg defines the initial system state; w,, is transformed into w, 11 by a single
system step where exactly the events in H, occur. We denote by w(p), the
nth dynamic basis in p, by H(p), the nth event set in p, that is w, and H,,
respectively. Moreover, w(p), denotes the dynamic basis where n occurred and
i(p), the index of this state, i.e., w(p), is wy with n € Hy_; and i(p), is k.
Finally, we write i(p), for the first state where instance v exists.

Further requirements on traces may be necessary for particular event models.
For the OCL event model in Sect. 4.3, call, start, and termination events linked
by call and start, respectively, must occur in this order.

6.2 Operational Rules
The operational semantics derives judgements of the form

(pyi);yFelw

where p is a trace, ¢ is an index in the trace, 7 a variable environment, ¢ an
OCL/RT constraint, and v a value. Such a judgement conveys the fact that ¢
evaluates to v at the ith system state in the trace p using the variable environ-
ment 7.

To begin with, the operational rules for deriving OCL/RT judgements com-
prise all rules of OCL as defined in [4], but generalising these rules to traces.
For example, the rules for evaluating self and retrieving an attribute a of an
instance originally read:

(Selft)
w;y F self | vy(self)

(Feat*)
wiykFelw

w;y ke.alimpl,(a,v)

where impl,(a,v) yields the value of attribute a on instance v in the dynamic
basis w. For OCL/RT, these rules become

(Self+*)
(p,i);y F self | y(self)
(Feat**)
(pi)iyFelw
(psi);y = e.adimpl, ., (a,v)

In particular, all rules are relativised to the event instance at which an expression
currently is to be evaluated.

407

Furthermore, we define rules for evaluating OCL/RT constraints that contain
the special OCL/RT instance attribute events, or one of the new operators @7
and always:

(Evt+)
(pi)iykelw
(p,i);v I e.events | relevant(Uy< ;<; H(p)j,v)
(At+)

(p)iyEeLn (pilp)y)ivbelw
(pyi);y Feee Lv

(Alwt*)
((p,#");v F el v)icw
(p,i);y F always c

Thus e.events comprises all events relevant for an instance e that have occurred

up to the current state. An expression e@e’ evaluates e at the state where event

e’ occurred. A constraint always ¢ must hold at all states after the current state.
Finally, a rule for general OCL/RT constraints is defined as follows:

(Constrt*)
((pi(p)2); v e d v2)zeUy e, wip)i(0)
(p,i);v F context ¢ constr: ¢ | A, v.

Hence, an OCL/RT constraint has to hold for all instances z of a class ¢ at the
state where z is created.

7 Conclusions and Outlook

OCL/RT extends OCL by a general notion of events accompanied by time
stamps, satisfaction operators on expressions, and modal operators. This exten-
sion enables the specification of several common real-time paradigms for UML
models. Moreover, OCL/RT provides means to clarify the semantics of OCL
invariants, pre-/post-conditions, and action clauses.

Being based on a trace semantics for systems and on a notion of global time,
OCL/RT neither takes into account the possibility that events be only partially
ordered nor the concept of different observers with local time, as discussed, e.g.,
in [17]. Partial orderings may turn indispensable for modelling true concurrency,
the notion of observer could prove useful for modelling distributed systems.
Though, it might be difficult to reconcile these two notions, since different ob-
servers may equip event instances with incompatible partial orderings.

The event models presented for OCL and for signals serve as a basis for the
development of the chosen examples, but we do not claim them to be complete.
Further event notions like assignment events and return events may have to be

408

included. The specification of events could be refined by adding conditions that
e.g. ensure that events get meaningful time stamps and are placed in time at the
right place. In general, the relation between OCL/RT events and UML actions
has to be clarified.

Moreover, OCL/RT does not offer means to specify which events force a state
transition in the semantic trace. Right now, a successor state has more events,
but apart from the obvious choice of change events that cause a state transition,
it might also make sense to choose further events for provoking a state transition
as well. For instance, close signals of the Gate example can be such kind of events;
in this way, the constraint for the gate closed within a certain time after a close
signal has arrived may be written just for the last close signal and not for all of
them. Given that such a constraint has to hold always, i.e., in any state of the
semantic trace, then this new constraint will be enough as well as more compact.
However, for this proposal to make sense, we have to solve the question of two
state changing events occurring simultaneously. Independently, OCL/RT may
be further improved by including abbreviations that make it easier to write and
read constraints. More ambitiously, a modal logic for reasoning on OCL/RT and
UML may be devised.

Acknowledgements. We would like to thank the anonymous referees for their
insightful comments.

References

1. José M. Alvarez, Tony Clark, Andy Evans, and Paul Sammut. An Action Semantics
for MML. In Gogolla and Kobryn [9], pages 2-18.
2. Thomas Baar. Experiences with the UML/OCL-Approach to Precise Software
Modeling. In Proc. Net.ObjectDays, Erfurt, 2000.
http://il2www.ira.uka.de/ key/doc/2000/baar00.pdf.gz.
3. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison—-Wesley, Reading, Mass., &c., 1998.
4. Maria Victoria Cengarle and Alexander Knapp. A Formal Semantics for OCL 1.4.
In Gogolla and Kobryn [9], pages 118-133.
5. Stefan Conrad and Klaus Turowski. Temporal OCL: Meeting Specification De-
mands for Business Components. In Keng Siau and Terry Halpin, editors, Unified
Modeling Language: Systems Analysis, Design and Development Issues, chapter 10,
pages 151-166. Idea Publishing Group, 2001.
Bruce P. Douglass. Real-Time UML. Addison-Wesley, Reading, Mass., &c., 1998.
Bruce P. Douglass. Doing Hard Time. Addison-Wesley, Reading, Mass., &c., 1999.
8. Desmond F. D’Souza and Alan C. Wills. Object, Components, Frameworks with
UML: The Catalysis Approach. Addison-Wesley, Reading, Mass., &c., 1998.
9. Martin Gogolla and Cris Kobryn, editors. Proc. 4 Int. Conf. UML, volume 2185
of Lect. Notes Comp. Sci. Springer, Berlin, 2001.
10. Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Systems with
UML. Addison-Wesley, Reading, Mass., &c., 2000.
11. Anneke Kleppe and Jos Warmer. Extending OCL to Include Actions. In Andy
Evans, Stuart Kent, and Bran Selic, editors, Proc. 8@ Int. Conf. UML, volume
1939 of Lect. Notes Comp. Sci., pages 440-450. Springer, Berlin, 2000.

o

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

409

Anneke Kleppe and Jos Warmer. Unification of Static and Dynamic Semantics of
UML. Technical report, Klasse Objecten, 2001.
http://www.cs.york.ac.uk/puml/mmf/KleppeWarmer.pdf.

Kevin Lano. Formal Object-Oriented Development. Formal Approaches to Com-
puting and Information Technology. Springer, London, 1995.

Luigi Lavazza, Gabriele Quaroni, and Matteo Venturelli. Combining UML and
Formal Notations for Modelling Real-Time Systems. In 8" Europ. Conf. Software
Engineering, Wien, 2001.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, New York,
&ec., 1988.

Response to OMG RfP ad/00-09-03 “UML 2.0 OCL”. Submission, OMG, 2001.
http://cgi.omg.org/cgi-bin/doc?ad/01-08-01.

Response to OMG RfP ad/99-03-13 “Schedulability, Performance, and Time”. Re-
vised submission, OMG, 2001. http://cgi.omg.org/cgi-bin/doc?ad/01-06-14.
Object Management Group. Unified Modeling Language Specification, Version 1.4.
Specification, OMG, 2001. http://cgi.omg.org/cgi-bin/doc?formal/01-09-67.
Object Management Group. Unified Modeling Language Specification (Action
Semantics), Version 1.4. Specification, OMG, 2002.
http://cgi.omg.org/cgi-bin/doc?ptc/02-01-09.

Mark Richters and Martin Gogolla. OCL — Syntax, Semantics and Tools. In
Tony Clark and Jos Warmer, editors, Advances in Object Modelling with the OCL,
volume 2263 of Lect. Notes Comp. Sci., pages 38—63. Springer, Berlin, 2002.
Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented Mod-
eling. John Wiley & Sons, New York, 1994.

Bran Selic and James Rumbaugh. Using UML for Modeling Complex Real-Time
Systems. White paper, Rational Software Corp., 1998.
http://www.rational.com/media/whitepapers/umlrt.pdf.

Shane Sendall and Alfred Strohmeier. Specifying Concurrent System Behavior and
Timing Constraints Using OCL and UML. In Martin Gogolla and Cris Kobryn,
editors, Proc. 4% Int. Conf. UML, volume 2185 of Lect. Notes Comp. Sci., pages
391-405. Springer, Berlin, 2001.

Kerry Trentelman and Marieke Huisman. Extending JML Specifications with Tem-
poral Logic. In Proc. 9" Int. Conf. Algebraic Methodology And Software Technol-
ogy, 2002. To appear.

Jos Warmer and Anneke Kleppe. The Object Constraint Language. Addison—
Wesley, Reading, Mass., &c., 1999.

	FME 2002: Formal Methods - Getting IT Right
	Preface
	Organization
	Table of Contents
	Little Engines of Proof
	Introduction
	Propositional Logic
	Equality and Inequality
	The Combination Problem
	Challenges
	Conclusions
	References

	Automated Boundary Testing from Z and B
	Introduction
	Overview of the BZ-TT Test Generation Method
	Principles of the Method

	Specification Model
	Differences between B and Z
	How We Use B and Z
	Translation Architecture
	Process Scheduler Example

	Boundary Goal Calculation
	Partition Analysis
	Boundary Goals

	Test Generation
	Preamble Computation
	Input Variable Boundary Analysis and Body Computation
	Identification and Postamble
	Observability and Executable Test Scripts Reification

	Conclusion
	Negative Test Cases for the Scheduler Example
	References

	Improvements in Coverability Analysis
	Introduction
	Definitions
	Background
	Coverability Analysis via Model Checking
	Attainability of All the Values of a Variable
	Statement Coverability Analysis

	Improvements in Coverability
	Optimizing Coverability Analysis by Reducing the Rules to Be Checked
	Faster Execution of Rules
	Combining Heuristics

	CAT --- Coverability Analysis Tool
	Using CAT
	Supporting Software
	Environment Modeling

	Experiments
	Conclusions
	References

	Heuristic-Driven Test Case Selection from Formal Specifications. A Case Study
	Introduction
	General Definitions and Notation
	Labelled Transition Systems
	Formal Testing Concepts
	Risk, Coverage, Cost, and Efficiency
	A Priori and a Posteriori Values

	Test Case Selection
	Enriched Transition Systems
	An Algorithm for Risk-Driven Test Case Selection

	A Case Study: Auction Protocol for Mobile Auction Facilities
	System Description
	Protocol Discussion
	System Modelling in LOTOS
	Tuning up the Testing Process
	Testing the Automated Auction System

	Conclusions
	References

	UniTesK Test Suite Architecture
	Introduction
	Goals of Testing Determine Test Suite Structure
	Details of UniTesK Test Suite Architecture
	Comparison with Existing Approaches
	Conclusion
	References

	Hoare Logic for NanoJava: Auxiliary Variables, Side Effects, and Virtual Methods Revisited
	Introduction
	Related Work

	NanoJava
	Abstract Syntax
	Terms
	Declarations
	Operational Semantics
	Program State
	Evaluation Rules
	Hoare Logic Concepts
	Assertions

	Side Effects

	Auxiliary Variables
	Hoare Logic Rules
	Structural Rules

	Standard Rules
	Object-Oriented Rules
	Example
	Equivalence of Operational and Axiomatic Semantics
	Validity
	Soundness
	(Relative) Completeness

	Concluding Remarks
	References

	Do Not Read This
	Introduction
	Examples of the Relevance of Read Frames
	Read Frames and Refinement
	Objective

	Language
	Abstract Syntax

	Interpreting the Read Frame
	Termination and Read Frames

	Interpreting Substitutions with Read and Write Frames
	Non-interference

	Refinement with Read Frames
	Semantics for Substitutions with Refinement
	Semantics of Refinement
	Consistency

	Examples
	Filtering of Refinements
	Read Frames and Non-interference
	Read Frames and Initialisation
	Read Frames and Encapsulation
	Read Frames and Underspecification
	Read Frames and Refinement

	Further Work and Conclusions
	Introducing Write-Only Variables
	Weakest Precondition Semantics
	Proof Rules for Read-Respecting Refinement
	Specification Structuring and Read-Respecting Refinement

	References

	Safeness of Make-Based Incremental Recompilation
	Introduction
	Notation
	Syntax of Makefiles
	Commands and Files
	Brute Force Building
	Satisfiability
	Semantics of {tt Make}
	Derivability
	Safeness
	Discussion
	Conclusion
	References
	Appendix
	Algebra of Commands
	Permutations of Commands in Brute-Force Builds
	Safeness: Proposition T @ref {prop:safeness}
	Editing Constraints: Proposition T @ref {prop:editing}

	An Algorithmic Approach to Design Exploration
	Introduction
	Comparison to Related Work
	Design Exploration -- Basic Principles
	The Visual Specification Formalism
	Controlling Input Behavior

	Tuning Model Checking to Support Exploration
	Basic On-the-Fly Model Checking
	Maximal Partial Trace
	Disjoint Multiple Traces
	Interactive Design Exploration
	Reconstruction and Simulation

	A Case Study
	Conclusion and Future Directions
	References

	Mechanical Abstraction of CSP z Processes
	Introduction
	Overview of CSP(_{Z})
	Semantics and Refinement
	A Normal Form for CSP(_{Z}) Processes

	Data Independence
	Abstract Interpretation
	CSP(_{Z}) Data Abstraction

	Guidelines for CSP(_{Z}) Data Abstraction
	Algorithm
	Conclusion
	References

	Verifying Erlang Code: A Resource Locker Case-Study
	Introduction
	Ericsson's AXD 301 Switch
	Erlang Software Components
	Generic Server Component
	Supervisor Component

	The Resource Locker Algorithm
	Code of the Client
	Code of the Locker

	Translating Erlang into Process Algebra
	Checking Properties with a Model Checker
	Mutual Exclusion
	Non-starvation

	Conclusions
	References

	Towards an Integrated Model Checker for Railway Signalling Data
	Introduction
	SSI's Geographic Data
	Geographic Data Specifying Routes
	Verification of Geographic Data
	Automated Verification of Geographic Data

	gdlSMV: A Symbolic Model Checker for Geographic Data
	Adapting NuSMV for the Verification of Geographic Data
	Modelling the Operations Specified by Geographic Data
	Verifying Safety Properties

	Improving Efficiency and Usability
	Efficiency
	Usability

	Evaluation and Conclusions
	References

	Correctness by Construction: Integrating Formality into a Commercial Development Process
	 Background
	 The Development Approach
	 Overview
	 Requirements
	 Specification and Architecture
	 Detailed Design
	Code
	 Testing

	 The Formal Deliverables
	 Formal Security Policy Model
	 The Formal Top Level Specification
	 Formal Module Specification
	 Process Design

	4	Relationships between Deliverables
	 Tracing
	 Relating Formal Deliverables
	 Relating Formal and Informal Deliverables

	Conclusions
	Acknowledgements. The author would like to thank John Beric of Mondex International for his permission to publish this paper.
	References

	VAlloy - Virtual Functions Meet a Relational Language
	Introduction
	Example
	Modeling Equals in Alloy
	Overriding
	Modeling Equals in VAlloy
	Checking VAllo Specifications

	VAlloy
	Translation Example
	General Class Hierarchy
	Summary

	Collections
	Sets
	Maps
	Trees

	Extensions
	Related Work
	Conclusions
	References
	Alloy
	Signature Paragraphs
	Formula Paragraphs
	Functions, Facts, and Assertion
	Alloy Analyzer

	Verification Using Test Generation Techniques
	Introduction
	Symbolic Test Generation
	Verifying Invariants of IOSTS Using PVS
	Verification by Components
	Case Study: An Electronic Purse System
	Conclusion, Related Work, and Future Work
	References

	Formal Specification and Static Checking of Gemplus' Electronic Purse Using ESC/Java
	Introduction
	General Outline of the Electronic Purse
	Static Checking of Java Programs
	ESC/Java Pragmas to Specify Method and Class Behaviour
	Specification Expressions

	Specification of the Electronic Purse
	The General Specification Approach
	Interesting Aspects of the Specification

	On the Use of ESC/Java
	Conclusions
	References

	Development of an Embedded Verifier for Java Card Byte Code Using Formal Methods
	Introduction
	The B Method
	Byte Code Verification
	The Structural Verification
	The Type Verification
	Adaptation to Embedded Devices
	Formal Studies on Byte Code Verification

	Modeling a Type Verifier in B
	The Type Verifier: A Part of a Complete Verifier
	The Type Verifier Model
	B Architecture of the Interface
	Detailed Specification
	Sun VM Specification

	Metrics on the Byte Code Verifier and Its Development
	Conclusion
	References

	Deriving Cryptographically Sound Implementations Using Composition and Formally Verified Bisimulation
	Introduction
	Reactive Systems in Asynchronous Networks
	General System Model and Simulatability
	Standard Cryptographic Systems
	Composition

	Secure Message Transmission in Correct Order
	The Abstract Specification
	The Split Ideal System
	The Real System

	Proving Security of the Real Ordered System
	Formal Verification of the Bisimulation
	Defining the Machines in PVS
	Proving the Bisimulation
	Verification Effort

	Summary and Future Work
	References

	Interference Analysis for Dependable Systems Using Refinement and Abstraction
	Motivation
	The Notation
	The Command and Specification Languages
	The Inference Framework

	The Needham-Schroeder Protocol Specification

	Properties of the Needham-Schroeder Protocol
	Refinement and Abstraction
	Refinement
	Abstraction and Testing

	Authentication Analysis
	The Protocol
	The Adversary
	The Analysis
	Testing

	Confidentiality and Integrity Analysis
	The Protocol
	The Adversary
	The Analysis

	Related Work
	Conclusions
	References

	The Formal Classification and Verification of Simpson's 4-Slot Asynchronous Communication Mechanism
	Introduction
	A Critique of Lamport's Hierarchy of Asynchronous Registers
	An Abstract Specification of Atomic ACMs
	Simpson's 4-Slot ACM
	A Formal Model of the 4-Slot ACM
	The Retrieve Relation between the Models
	A Retrieve Function?
	The Retrieve Relation
	Correctness Proofs

	Conclusions
	References
	The Retrieve Relation between the Two Models in PVS

	Timing Analysis of Assembler Code Control-Flow Paths
	Introduction
	Related Work
	High-Level Language Timing Constraint Analysis
	Assembler Code Analysis
	A Brief Review of Some Pipelining Principles
	Timing Constraint Analysis
	Worst-Case Execution Time Analysis

	Conclusion
	References

	Towards OCL/RT
	Introduction
	OCL
	Invariants, Pre-/Post-conditions, and Definitions
	Actions
	Semantics

	Time and Events
	Time and Signals in OCL and UML
	Event Concept

	OCL/RT
	Events
	Constraints
	Invariants, Pre-/Post-conditions, and Action Clauses

	Examples
	Deadlines for Operations
	Deadlines for Reactions to Signals
	Timeouts

	Semantics
	Semantic Domains
	Operational Rules

	Conclusions and Outlook
	References

	On Combining Functional Verification and Performance Evaluation Using CADP
	Introduction
	The Proposed Approach
	Interactive Markov Chains
	Using LOTOS to Express Interactive Markov Chains
	Minimisation of Interactive Markov Chains
	Compositional Generation of Interactive Markov Chains
	Numerical Analysis of Interactive Markov Chains

	The SCSI-2 Bus Arbitration Protocol
	Performance Model Aspects
	SCSI-2 Timing Parameters
	Performance Results
	An SVL Session with CADP

	Concluding Remarks
	Conclusions
	References

	The Next 700 Synthesis Calculi
	Synthesizing Certified Code
	Introduction
	Background
	Property Verification
	Proof-Carrying Code
	Program Synthesis
	Why Certify Synthesized Code?

	System Architecture
	Safety Policy
	The Verification Condition Generator
	Annotations and Their Propagation
	The Automated Prover
	Related Work
	Conclusions

	References

	Refinement in Circus
	Introduction
	{sf slshape Circus}
	Refinement Notions
	Refinement Laws
	Process Splitting
	Process Indexing

	Refining the Reactive Buffer
	A Centralised Ring Buffer
	Isolate Access to the Ring Component
	Split Centralised Buffer into a Controller and a Ring
	The Ring Process as a Promotion of Ring Cells
	A Distributed Cached-Head Ring Buffer

	Related and Future Work
	References

	Forward Simulation for Data Refinement of Classes
	Introduction
	Syntax, Semantics, and Refinement
	Language and Typing
	Refinement
	Semantics

	Forward Simulation
	Soundness
	Conclusion
	References

	A Formal Basis for a Program Compilation Proof Tool
	Introduction
	Program to Be Compiled
	Computational Types

	Intermediate Language
	Target Assembler Code
	Assembler Model

	Data Refinement in Cogito
	Generalisation
	Extended Abstract Context
	Data Refinement Laws

	Sum Window Inference
	Programs

	Verified Compilation
	Compiling the Loop
	Compiling the Loop Body

	Conclusion
	References

	Property Dependent Abstraction of Control Structure for Software Verification
	Introduction
	Language
	Syntax
	Semantics
	Concrete Model

	Abstraction
	Abstract Model
	Composition
	Algorithm

	Example
	Conclusion
	References

	Closing Open SDL-Systems for Model Checking with DTSpin
	Introduction
	Embedding Chaos
	Semantics
	Abstracting Data
	Program Transformation

	Extending the Vires Toolset
	Experimental Results
	Simple Motivating Examples
	Case Study: A Wireless ATM Medium-Access Protocol

	Conclusion
	References

	A Generalised Sweep-Line Method for Safety Properties
	Introduction
	Background
	Regress-Edges and Generalised Progress Measures
	State Space Exploration
	Persistence Predicates
	Experimental Results
	Conclusion and Future Work
	References

	Supplementing a UML Development Process with B
	Introduction
	Overview of the B-Method
	Overview of UML
	UML Classes
	Associations

	Example
	Identifying Analysis Classes
	Building a Class Diagram
	Mapping UML to B

	General Principles and Open Issues
	Related Work
	References

	Semantic Web for Extending and Linking Formalisms
	Introduction
	Semantic Web for Formal Specifications
	Semantic Web Environment --- RDFS/DAML for Z
	Semantic Web Environment --- RDFS/DAML for CSP
	Extending Z to Object-Z
	Extending CSP to TCSP

	Semantic Web for Linking Formalisms
	$Class mathrel =mathrel {mkern -3mu}Rightarrow Process$
	$Operation Leftarrow mathrel {mkern -3mu}Rightarrow Process$

	Specifiation Comprehension
	Inter-class Queries
	Intro-class Queries

	Related Work, Conclusion, and Further Work
	References

	A Language for Describing Wireless Mobile Applications with Dynamic Establishment of Multi-way Synchronization Channels
	Introduction
	LOTOS and Its Applicability to Mobile Systems
	Outline of LOTOS
	Problems for Describing Mobile Systems in LOTOS

	Proposal of LOTOS/M
	Definition of LOTOS/M
	Semantics of LOTOS/M

	Describing Wireless Mobile Systems in LOTOS/M
	Routing in Wireless Ad Hoc Networks

	Implementation of LOTOS/M Specifications and Experimental Results
	LOTOS/M Compiler
	Experimental Results

	Conclusion
	References

	Author Index

