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KURZZUSAMMENFASSUNG. Huybrechts zeigt in [18], daB die Eulercharakteri-
stik eines holomorphen Geradenbiindels L auf einer irreduziblen kompakten
Hyperkshlermannigfaltigkeit durch x(X, L) = 3-}7_, a2k /(2k)!lq(L)* gegeben
ist, wobei die agj universelle Konstanten sind, welche nur von X abhéingen
und ¢ die (nicht normalisierte) Beauville-Bogomolov-Form von X ([3]) ist.

Nach den Ideen von Hitchin und Sawon ([15]) machen wir von der Theory
der Rozansky-Witten-Invarianten Gebrauch, um eine geschlosse Formel zu ge-
winnen, welche die agy, durch polynomiale Ausdriicke in gewissen Chernzahlen
von X ausdriickt. Unsere Methoden kénnen benutzt werden, um diejenigen
Anteile gewisser charakteristischer Klassen von X zu bestimmen, welche in
dem von H2(X, C) erzeugten Unterring im Kohomologiering liegen.

Ein Kapitel dieser Arbeit beschéftigt sich mit der Berechnung der Chern-
zahlen der verallgemeinerten Kummervarietiiten ([3]). Wir geben eine Formel
an, welche sie zu den Chernzahlen der Hilbertschemata von Punkten auf einer
Flache in Beziehung setzt. Wir verwenden diese Formel, um die Chernzah-
len der verallgemeinerten Kummervarietdten bis zur Dimension zwanzig zu
bestimmen.

ABSTRACT. Huybrechts showed in [18] that the Euler characteristic of a holo-
morphic line bundle L on an irreducible compact hyperkédhler manifold X is
given by x(X,L) = Yp_, ask/(2k)!q(L)* where the agy, are universal con-
stants depending only on X, and ¢ is the (unnormalised) Beauville-Bogomolov
form of X ([3]).

Similar to the ideas of Hitchin and Sawon ([15]), we use the theory of
Rozansky-Witten invariants to develop a closed formula that expresses the
asy by polynomial expressions in certain Chern numbers of X. Our methods
can be used to determine those components of certain characteristic classes of
X that lie in the subring generated by H2(X, C) inside the cohomology ring.

One chapter of this thesis is concerned with the calculation of the Chern
numbers of the generalised Kummer surfaces ([3]). We give a formula that
links them to the Chern numbers of Hilbert schemes of points on a surface.
We use this formula to compute the Chern numbers of all generalised Kummer
varieties up to dimension twenty.
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Zusammenfassung

Kompakte Kéhlermannigfaltigkeiten, welche eine (eindeutige) holomorphe sym-
plektische 2-Form tragen, scheinen relativ selten zu sein. In der Dimension zwei ist
das einzige Beispiel dieser irreduziblen holomorphen symplektischen Mannigfaltig-
keiten die wohlbekannte K3-Fliche. In den Dimensionen vier, sechs, acht, und so
weiter sind jeweils nur zwei oder drei Typen holomorpher symplektischer Mannig-
faltigkeiten bekannt.

Es ist wiinschenswert, moglichst viele Eigenschaften zu kennen, die alle ho-
lomorphen symplektischen Mannigfaltigkeiten gemeinsam haben und die sie von
anderen kompakten Ké#hlermannigfaltigkeiten unterscheiden. Vielleicht wird das
schlieBlich zu einem Klassifikationstheorem fiir holomorphe symplektische Mannig-
faltigkeiten fithren. Die Theorie begann sich erst richtig mit Beauvilles Artikel [3] zu
entfalten. Er definierte eine quadratische Form auf der zweiten Kohomologiegrup-
pe einer holomorphen symplektischen Mannigfaltigkeit, welche als Verallgemeine-
rung der Schnittpaarung auf der mittleren Kohomologie einer K3-Flidche angesehen
werden kann, und bewies schon das , Lokale Torelli-Theorem®. Von den folgenden
Jahren an bis heute ist eine allgemeine Theorie um diese Mannigfaltigkeiten ent-
standen, welche zu einem grofien Teil der Theorie der K3-Flichen entspricht (zu
dieser Theorie findet sich viel in [4]).

Holomorphe symplektische Mannigfaltigkeiten kénnen von differential-geome-
trischen Objekten, den sogenannten kompakten Hyperkihlermannigfaltigkeiten kon-
struiert werden. Nach dem Holonomieprinzip besitzt jede Riemannsche Mannig-
faltigkeit (X, g) mit einer U(n)-Holonomie eine komplexe Struktur, so dal X ei-
ne Kéhlermannigfaltigkeit mit K#&hlermetrik g wird. Eine (irreduzible) kompakte
Hyperkihlermannigfaltigkeit ist eine Riemannsche Mannigfaltigkeit (X, g) mit der
symplektischen Gruppe Sp(n) als Holonomiegruppe. Es folgt, dafl eine ganze 2-
Sphére komplexer Strukturen auf X existiert, fiir die jeweils X eine K&hlerman-
nigfaltigkeit mit Kéhlermetrik g ist. Dariiber hinaus zeigt eine lokale Rechnung,
daf alle diese komplexen Mannigfaltigkeiten irreduzible holomorphe symplektische
Mannigfaltigkeiten sind. Auf der anderen Seite i3t sich mit dem Existenzsatz tiber
Calabi-Yau-Metriken ([31]) zeigen, daf alle irreduziblen holomorphen symplekti-
schen Mannigfaltigkeiten auf diese Weise entstehen. Aufgrund dieser Verbindung
zwischen kompakten Hyperkéhler- und holomorphen symplektischen Mannigfaltig-
keiten, ist es wichtig zu wissen, welche der Eigenschaften irreduzibler holomorpher
symplektischer bzw. kompakter Hyperkahlermannigfaltigkeiten topologische, holo-
morphe oder Riemannsche sind.

Meine Arbeit fiir diese Dissertation ist durch die allgemeine Theorie der kom-
pakten Hyperkéhler- bzw. der holomorphen symplektischen Mannigfaltigkeiten an-
geregt worden. Die von mir erhaltenen Ergebnisse, welche in dieser Arbeit enthalten
sind, sind groftenteils kohomologischer Natur. Ich mochte jetzt den Inhalt dieser
Dissertation genauer beschreiben:
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Sowohl, um es dem Leser einfacher zu machen, als auch um die nétigen Bezeich-
nungen einzufithren, habe ich Kapitel 2 eingebunden. Es enthélt die exakte Defini-
tion einer kompakten Hyperkihlermannigfaltigkeit, einer holomorphen symplekti-
schen und ihre oben erwéhnte Verbindung, sowie eine Aufstellung aller bekannten
Beispiele. Es enthilt auflerdem einen Abschnitt {iber die Chernklassen dieser Man-
nigfaltigkeiten. Dort wird gezeigt, dafl diese eigentlich topologische Invarianten sind.
Alle Ergebnisse dieses Abschnittes sind wohlbekannt und zum Beispiel auch in [18]
zu finden.

Das niichste Kapitel (Kapitel 3) befafit sich mit der Beauville-Bogomolov-Form,
welche auf jeder irreduziblen kompakten Hyperkahlermannigfaltigkeit existiert. Ein
wichtiges Anliegen in diesem Kapitel ist es zu zeigen, dafl diese Form eine topologi-
sche Invariante ist. Das ist zwar schon bekannt, ich habe dieses Resultat aber nir-
gendwo explizit gefunden. Die quadratische Form kann dazu verwendet werden, den
von allen Klassen der zweiten Kohomologiegruppe einer kompakten Hyperkéhler-
mannigfaltigkeiten erzeugten Unterring SH2 des Kohomologieringes zu beschreiben.
Es wird gezeigt, daf der Raum der Kohomologieklassen in SH?, welche konstanten
Hodge-Typs (24,27) auf jeder Deformation sind, eindimensional ist. Es finden sich
einige explizite Berechnungen in diesem Kapitel, welche zum Beispiel in Verbindung
mit den Ergebnissen aus Kapitel 6 dazu verwendet werden kénnen, zu entscheiden,
ob die zweite Chernklasse cy in SH? liegt.

Huybrechts zeigte (in [18]), daf fiir jede irreduzible holomorphe symplektische
Mannigfaltigkeit der komplexen Dimension 2n ein Polynom Px vom Grad n iiber C
existiert, so daf} die Eulercharakteristik eines holomorphen Geradenbiindels L auf
X durch

X(X, L) = Px(q(c1(L))) (1)

gegeben ist, wobei ¢ die (nicht normalisierte) Beauville-Bogomolov-Form von X ist.
Eines der wichtigsten Ergebnisse dieser Dissertation ist die Bestimmung von Px fiir
gegebenes X. Es zeigt sich, daBl Py nur von den charakteristischen Zahlen von X
abhéngt, d.h. von seiner komplexen Kobordismusklasse. Kapitel 4-6 drehen sich
um den Beweis einer geschlossenen Formel fiir Px in Termen der charakteristischen
Zahlen von X. Die Formel ist

(oo}

Px(\) = / exp <_22b2k52ka (1 + %)) ; (2)
X k=1

wobei die bog die modifizierten Bernoulli-Zahlen, die so; die Komponenten des

Cherncharakters von X (also Polynome in den Chernklassen) und die T}, die Tsche-

byscheff-Polynome sind.

Der Beweis folgt den Ideen, die Hitchin und Sawon in [15] benutzten, um
einen Ausdruck fiir die L2-Norm des Riemannschen Kriimmungstensors einer irre-
duziblen kompakten Hyperkahlermannigfaltigkeit zu beweisen. Er macht von der
Theorie der Rozansky- Witten-Invarianten kompakter Hyperkdhlermannigfaltigkei-
ten, welche in [27] eingefithrt wurden, ausfiihrlichen Gebrauch. Jeder eckenorien-
tierte unitrivalente Graph I', in dieser Dissertation ein Jacobi-Diagramm genannt,
kann zusammen mit der Atiyahklasse einer holomorphen symplektischen Mannig-
faltigkeiten benutzt werden, um eine Kohomologieklasse RW(I") kanonisch zu defi-
nieren. Wie Hitchin und Sawon bemerkten, entstehen alle Chernklassen auf diese
Art und Weise. Es gibt eine bestimmte Homologierelation auf dem Raum aller
Jacobi-Diagramme. Zwei homologe Graphen liefern dieselben Rozansky-Witten-
Invarianten. Das wird in dieser Dissertation benutzt, um Relationen auf der Ebene
der Graphenhomologie auf die Ebene der Kohomologie einer holomorphen symplek-
tischen Mannigfaltigkeit zu driicken. Eine wichtige Graphenhomologie-Relation ist
durch das ,, Wheeling Theorem* (in [29]) gegeben.
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In Kapitel 4 fiihren wir den Raum der Graphenhomologie ein, welcher Ob-
jekt vielfaltiger mathematischer Untersuchungen ist. Wir werden einen umfassenden
Formalismus entwickeln, welcher sich aber in den folgenden Kapiteln als sehr vorteil-
haft herausstellen wird. Das ,, Wheeling Theorem* liefert uns viel mehr Relationen
auf der Graphenhomologie als wir fiir die Beweise unserer Resultate in den néichsten
Kapiteln benotigen. Deswegen habe ich in Kapitel 4 das Theorem 3 aufgenommen,
welches in gewisser Weise ein Korollar des ,, Wheeling Theorem* ist. Allerdings ist es
mir gelungen, das Theorem 3 mittels elementarer Methoden zu beweisen, wihrend
das ,,Wheeling Theorem* mit Mitteln der Knotentheorie bewiesen wird. Daher ent-
schied ich mich, Theorem 3 zusammen mit seinem Beweis in diese Dissertation
einzubinden. Am Ende von Kapitel 4 wird eine gewisse slo-Operation auf einem
erweiterten Graphenhomologieraum untersucht. Momentan weif} ich nicht, ob das
irgendwelche Implikationen fiir die Theorie der Graphenhomologie nach sich zieht.
Auf der anderen Seite ist diese Struktur mit einer bestimmten slo-Operation auf
der Kohomologie einer irreduziblen holomorphen symplektischen Mannigfaltigkeit
vertraglich.

Kapitel 5 befafit sich mit der Definition der Rozansky- Witten-Klassen einer
irreduziblen holomorphen symplektischen Mannigfaltigkeit und mit ihren Eigen-
schaften. Bisher ist in der Literatur nur die Bezeichnung von Rozansky- Witten-
Invarianten aufgetaucht. Diese sind im Prinzip Integrale iiber Produkte von Rozan-
sky-Witten-Klassen, wie sie hier definiert sind, mit der holomorphen symplektischen
Form und ihrem komplex-Konjugierten. Fiir jede holomorphe Mannigfaltigkeit X
zusammen mit einer fixierten holomorphen 2-Form o erhalten wir eine lineare Ab-
bildung RW : B — H* (X, %), wobei B der Raum der Graphenhomologie ist. Beide
Réaume, Definitions- und Wertebereich von RW, tragen zusétzliche Strukturen: bei-
de sind doppelt-graduierte Q-Algebren, besitzen eine bestimmte Bilinearform und
sind auf kanonische Weise slo-Moduln. Wir zeigen, dafl die Abbildung RW mit
diesen Strukturen vertriglich ist.

Unter Benutzung der Theorie, die in den zwei vorhergehenden Kapiteln ent-
wickelt worden ist, kénnen wir in Kapitel 6 den Beweis der Formel (2) fiir die holo-
morphe Eulercharakteristik eines Geradenbiindels prisentieren. Wir beweisen sogar
einiges mehr. Zusammen mit den Ergebnissen aus Kapitel 3 kénnen wir die Anteile
gewisser charakteristischer Klassen in SH? berechnen. Auflerdem, quasi als Neben-
produkt, zeigen wir die Existenz der Beauville-Bogomolov-Form in diesem Kapitel.
Das ist natiirlich kein neues Resultat. Es wird lediglich mit einer vollstdndig anderen
Methode als der iiblichen bewiesen.

Das letzte Kapitel dieser Dissertation (Kapitel 7) ist mehr oder weniger in
sich abgeschlossen und nicht eng mit den vorhergehenden Kapiteln verwoben. Das
Hauptresultat hier ist eine Formel, welche benutzt werden kann, um eine Chernzahl
einer verallgemeinerten Kummervarietdt universell in Termen von Chernzahlen der
Hilbertschemata von Punkten einer gegebenen Fliche X mit [ (X )2 # 0 auszu-
driicken. Die verallgemeinerten Kummervarietéiten bilden zusammen mit den Hil-
bertschemata von Punkten einer K3-Fliche die beiden Beispielserien irreduzibler
holomorpher symplektischer Mannigfaltigkeiten. Das Wissen der Chernzahlen einer
irreduziblen holomorphen symplektischen Mannigfaltigkeit scheint wichtig zu sein,
da zum Beispiel das oben erwiihnte Polynom Px nur von den Chernzahlen von X
abhéngt. Nach einem Ergebnis von Milnor ([23]) und Hirzebruchs Arbeit [14] ist
das Wissen aller Chernzahlen einer kompakten komplexen Mannigfaltigkeit dqui-
valent mit dem Wissen ihrer rationalen komplexen Kobordismusklasse.

In [9] zeigen Ellingsrud, Géttsche und Lehn daf die komplexe Kobordismus-
klasse des Hilbertschematas X[ der nulldimensionalen Unterschemata der Linge
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n einer glatten projektiven Fliche X iiber den komplexen Zahlen nur von der Ko-
bordismusklasse von X, d.h. von ¢;(X)? und ¢2(X) abhingt. (Hier und spéter
sind Top-Schnittprodukte auf Fldchen als Schnittzahlen zu verstehen.) Die Auto-
ren zeigen, wie dieses Resultat benutzt werden kann, um die Chernzahlen eines
jeden solchen Hilbertschemas X[ zu berechnen, wenn die Chernzahlen der Va-
rietiten (P2)* und (P' x P')I*¥] bekannt sind, welche wiederum mittels der Bott-
schen Restformel (dazu [10] und [11]) berechnet werden kénnen. Damit kénnen die
Chernzahlen der Hilbertschemata von Punkten einer K3-Fléiche effizient berechnet
werden. Allerdings ist keine explizite Formel bekannt. Diese Zahlen kénnen zum
Beispiel benutzt werden, um die Vermutung von [8] iiber das elliptische Geschlecht
der Hilbertschemata X¥ zu {iberpriifen, wobei X eine K3-Fliiche ist.

Durch die Resultate im Kapitel 7 haben wir eine Methode, um die Chernzahlen
der verallgemeinerten Kummervarietiten zu berechnen. Bisher sind nur Teilergeb-
nisse in dieser Richtung in der Literatur verdffentlicht worden. Die x,-Geschlechter
der verallgemeinerten Kummervarietiten sind von Gottsche und Soergel ([13]) be-
rechnet worden. Indem wir mit der Hirzebruch-Riemann-Roch-Formel dieses Ge-
schlecht in Termen der Chernzahlen ausdriicken, erhalten wir geniigend Informa-
tionen, um alle Chernzahlen der verallgemeinerten Kummervarietdten bis zur Di-
mension sechs zu bestimmen. Unter Benutzung der Theorie der Rozansky-Witten-
Invarianten ist es Sawon gelungen, eine weitere Relation zu bestimmen, welche es
ihm erlaubt hat, alle Chernzahlen bis zur Dimension acht zu bestimmen. Die Chern-
zahlen der zehndimensionalen Kummervarietét sind von M. Britze und mir in [5]
mit Hilfe des Hauptresultates aus Kapitel 6 dieser Arbeit berechnet worden. J. Sa-
won hat uns informiert, daf er ebenfalls diese Zahlen berechnet hat. Insgesamt sind
aber alle diese Methoden nicht ausreichend, um alle Chernzahlen in Dimensionen
zwolf oder hoher zu bestimmen.

Wir haben die in Kapitel 7 entwickelte Formel benutzt, um die Chernzah-
len aller verallgemeinerten Kummervarietéiten bis zur Dimension zwanzig aus den
Chernzahlen der Hilbertschemata von Punkten der projektiven Ebene zu gewin-
nen, welche wiederum mit Hilfe der Bottschen Restformel gewonnen wurden. Die
Ergebnisse sind in Anhang B aufgenommen worden. Es sei beachtet, dafl wir diese
Methode im Prinzip nutzen kénnen, um die Chernzahlen einer beliebigen verallge-
meinerten Kummervarietit zu bestimmen.
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CHAPTER 1

Introduction

Compact Kéhler manifolds that possess a (unique) holomorphic symplectic two-
form seem to be relatively rare. In dimension two, the only example of these irre-
ducible holomorphic symplectic manifolds is the well-known K3 surface. In every
dimension four, six, eight, and so on, only two or three types of holomorphic sym-
plectic manifolds are known.

It is desirable to know many of the properties that all holomorphic symplectic
manifolds have in common, and that distinguish them from other compact Kéahler
manifolds. Maybe this will eventually lead to a classification theorem for holomor-
phic symplectic manifolds. The theory really started with Beauville’s article [3].
He defined a quadratic form on the second cohomology group of holomorphic sym-
plectic manifolds that can be seen as a generalization of the intersection pairing
on the middle cohomology group of a K3 surface, and already proved the “Local
Torelli Theorem”. In the following years up to now a general theory around these
manifolds has been developed, which resembles to a large extent the theory of the
K3 surfaces (for this theory, see for example [4]).

Holomorphic symplectic manifolds can be constructed from differential-geo-
metric objects, namely from compact hyperkdihler manifolds. By the holonomy prin-
ciple, every Riemannian manifold (X, ¢) with U(n)-holonomy possesses a complex
structure such that X is a Kéhler manifold with Kéhler metric g. An (irreducible)
compact hyperkahler manifold is a Riemannian manifold (X, g) with holonomy the
symplectic group Sp(n). It follows that there is a two-sphere of complex structures
on X for which X is a Kéahler manifold with K&hler metric g. Moreover, a lo-
cal calculation shows that all these complex manifolds are irreducible holomorphic
symplectic manifolds. On the other hand, by the existence theorem on Calabi-Yau
metrics ([31]), one can prove that all irreducible holomorphic symplectic mani-
folds arise in this way. Due to this connection between compact hyperkédhler and
holomorphic symplectic manifolds, it is important to know which properties of ir-
reducible holomorphic symplectic manifolds resp. compact hyperkéhler manifolds
are really topological properties or of holomorphic or Riemannian nature.

My work for this thesis has been inspired by the general theory of compact
hyperkahler manifolds resp. holomorphic symplectic manifolds. The results I have
obtained and which are included in this thesis are mostly of cohomological nature.
Let me now describe the contents of this thesis in detail.

For convenience of the reader and to introduce the necessary notions, I included
chapter 2. It contains the precise definition of a compact hyperkéhler manifold, and
a holomorphic symplectic one, their connection mentioned above, and the list of
all known examples. It also includes a section on Chern classes of these manifolds.
There is shown that these are actually topological invariants. All the results of this
section are well-known and can be found for example also in [18].

The next chapter (chapter 3) is dedicated to the Beauville-Bogomolov quadratic
form which exists on every irreducible compact hyperkahler manifold. One main
purpose of this chapter is to show that it is actually a topological invariant. This
has been known before, although I haven’t found this result stated explicitely. One

1
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can use the quadratic form to determine the subring SH? generated by all classes
in the second cohomology of a compact hyperkéhler’s cohomology ring. It is shown
that the space of cohomology classes in SH? that are of constant Hodge type (27, 2j)
on every deformation is one-dimensional. There are some explicit calculations in
this chapter, which together with the results in chapter 6 can be used to determine
e.g. if the second Chern class ¢ is in SH?.

Huybrechts has shown (see [18]) that for every irreducible holomorphic sym-
plectic manifold X of complex dimension 2n, there exists a polynomial Px of degree
n over C such that the Euler characteristic of a holomorphic line bundle L on X is
given by

X(X, L) = Px(q(c1(L))) (3)

where ¢ is the (unnormalised) Beauville-Bogomolov quadratic form on X. One of
the main issues of this thesis is the determination of Py for given X. It turns
out that Py depends only on the charactistic numbers of X, i.e. on its complex
cobordism class. Chapters 4-6 are concerned with the proof of a closed formula for
Px in terms of the characteristic numbers of X. The formula is

Px(\) = /X exp <—2ib2k82ka (1 + %)) (4)

k=1

where the by are the modified Bernoulli numbers, the so; are the components of
the Chern character of X (i.e. polynomials in the Chern classes), and the Ty are
the Chebyshev polynomials.

The proof goes along the ideas Hitchin and Sawon used in [15] to prove an
expression for the L2-norm for the Riemannian curvature tensor of an irreducible
compact hyperkahler manifold. It makes heavy use of the theory of Rozansky-
Witten invariants of compact hyperkdhler manifolds, introduced in [27]. Every
vertex-oriented unitrivalent graph I', called a Jacobi diagram in this thesis, can
be used to form from the Atiyah class of a holomorphic symplectic manifold a
cohomology class RW(I"). As Hitchin and Sawon remarked, all the Chern classes
arise in this way. There is a certain homology relation on the space of Jacobi
diagrams. Two homologous graphs yield the same Rozansky-Witten invariants.
This will be used in this thesis to push down relations on the level of graph homology
to the level of the cohomology of a holomorphic symplectic manifold. An important
graph homology relation is given by the “Wheeling Theorem” (see [29]).

In chapter 4 we introduce the graph homology space, which has been subject to
many research activities. We develop quite an amount of formalism here which will
prove to be very handy in the following chapters. The Wheeling Theorem gives us
much more relations on the graph homology space than we need for the proofs of
our results in the following chapters. Therefore, in chapter 4 I included Theorem 3,
which is somewhat a corollary of the Wheeling Theorem. However, I managed to
proof Theorem 3 by elementary methods while the Wheeling Theorem is proven by
means of knot theory. This is the reason why I decided to include Theorem 3 with
its proof in this thesis. At the end of chapter 4 a certain sls-action on an enlarged
space of graph homology is exhibited. At the moment, I don’t know if this will
have any implications for the theory of graph homology. On the other hand, this
structure nicely compares with a certain sls-structure on the cohomology space of
an irreducible holomorphic symplectic manifold.

Chapter 5 is dedicated to the definition of the Rozansky-Witten classes of ir-
reducible holomorphic symplectic manifolds and their properties. In the literature
so far, only the notion of Rozansky- Witten invariants occures. These are basi-
cally integrals over products of the Rozansky-Witten classes as defined here with
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the holomorphic symplectic form and its complex-conjugate. For a holomorphic
symplectic manifold X together with a fixed holomorphic symplectic form o, we
obtain a linear map RW : B — H* (X,Q%), where B is the space of graph homology.
Both spaces, the domain and the codomain of RW, have additional structures: they
are double-graded QQ-algebras, possess a certain bilinear form, and are canonically
slo-modules. We show that the map RW respects these properties.

Using the theory developed in the two previous chapters, we can present in
chapter 6 the proof of the expression (4) for the holomorphic Euler characteristic of
a line bundle. In fact, we prove even more. Together with the results of chapter 3
we can compute the components of certain characteristic classes that lie in SH2.
Furthermore, as a byproduct, we show the existence of the Beauville-Bogomolov
quadratic form in this chapter. Of course, this is no new result. It is just proven
by a completely different method than usual.

The last chapter of this thesis (chapter 7) is more or less self-contained and
not deeply linked with the previous chapters. The main result here is a formula
which can be used to express a Chern number of a generalised Kummer variety
universally in terms of Chern numbers of the Hilbert schemes of points on a given
surface X with [y ¢(X )2 # 0. The generalised Kummer varieties together with
the Hilbert schemes of points on a K3 surface form the two main series of examples
of irreducible holomorphic symplectic manifolds. Knowledge of the Chern numbers
of an irreducibe holomorphic symplectic manifold seems to be important as, for
example, the polynomial Px mentioned above depends only on the Chern numbers
of X. By a result of Milnor ([23]) and Hirzebruch’s work [14], the knowledge of all
Chern numbers of a compact complex manifold is equivalent with the knowledge of
its rational complex cobordism class.

In [21] Ellingsrud, Gottsche and Lehn proved that the complex cobordism class
of the Hilbert scheme X [™ of zero-dimensional subschemes of length n on a smooth
projective surface X over the complex numbers depends only on the cobordism class
of the surface X, i.e. on ¢;(X)? and cp(X). (Here and later on, top intersections on
surfaces are to be understood as intersection numbers.) The authors showed how
this result can be used to calculate the Chern numbers of any such Hilbert scheme
X" if one knows the Chern numbers of the varieties (P?)[* and (P! x P1)[¥], which
in turn can be calculated by means of Bott’s residue formula (cf. [10] and [11]).
Therefore, the Chern numbers of the Hilbert schemes of points on a K3 surface can
be efficiently calculated though no explicit formula is known. These numbers can,
for example, be used to check the conjecture of [8] about the elliptic genus of the
Hilbert schemes X ¥ where X is a K3 surface (see [9]).

Due to the results of chapter 7, we have a method for computing the Chern
numbers of the generalised Kummer varieties. Only partial results in this direction
have appeared in the literature so far: The x,-genera of the generalised Kummer
varieties have been calculated by Gottsche and Soergel ([13]). Expressing this genus
in terms of Chern numbers by using the Hirzebruch-Riemann-Roch formula gives
us enough information to deduce the Chern numbers for all generalised Kummer
varieties of dimension less or equal six. Using the theory of Rozansky-Witten
invariants, Sawon [28] produced a further relation that allowed him to compute
all the Chern numbers for dimensions up to eight. The Chern numbers of the
ten-dimensional generalised Kummer variety were calculated by M. Britze and me
in [5] using the main result of chapter 6 of this work. J. Sawon informed us that he
also had computed these numbers. However, all these methods are not sufficient to
compute all Chern numbers for dimensions twelve or higher.

We used the formula developed in chapter 7 to compute all Chern numbers of
the generalised Kummer varieties up to dimension twenty from the Chern numbers
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of the Hilbert schemes of points on the projective plane which have been calculated
by means of Bott’s residue formula. The results are included in Appendix B. Note
that, in principle, we can use these methods to compute the Chern numbers of an
arbitrary generalised Kummer variety.



CHAPTER 2

Compact hyperkahler manifolds

In this chapter, we will define our main topic of interest, compact hyperkdhler
manifolds, and review some of their properties. There are two ways to look at
these manifolds, from a differential-geometric and from a complex-geometric point
of view.

Our presentation is based on the first chapters of [17], resp. [18].

1. Compact hyperkahler manifolds as Riemannian manifolds

DEFINITION 1. A 4n-dimensional Riemannian manifold (X, g) is called an (irre-
ducible) compact hyperkahler manifold if it is compact and its holonomy is contained
in (equals) Sp(n).

REMARK 1. Mainly for simplicity, we will only work with irreducible compact
hyperkéahler manifolds. By abuse of notion, we will omit the adjective “irreducible”,
i.e. from now on, by a compact hyperkédhler manifold, we will always mean a man-
ifold with holonomy equal to Sp(n). This is no big limitation since there is the
decomposition theorem for compact Ricci-flat Kéhler manifolds (see [18]).

By the holonomy principle, on any compact hyperkéhler manifold (X, g), there
are three complex structures 7, J and K with

1J=K=-JI, JK=1=-K/J, and Kl=J=-IK (5)

such that g is a Kéhler metric with respect to all of these structures. These struc-
tures correspond to the three complex structures on the quaternions. With respect
to these structures, the holonomy is contained in SU(n); therefore, X has a trivial
canonical bundle with respect to all the structures I, J and K. Note that this
implies ¢1(X) = 0.

2. Irreducible holomorphic symplectic manifolds

DEFINITION 2. An irreducible holomorphic symplectic manifold X is a sim-
ply connected compact Kéhler manifold such that H(X, Q%) is generated by an
everywhere non-degenerate holomorphic two-form o. Here, we call o everywhere
non-degenerate if o induces an isomorphism 7y — Qx.

It follows that every irreducible holomorphic symplectic manifold X has trivial
canonical bundle whose sections are multiples of ¢™, and, therefore, vanishing first
Chern class.

The following theorem due to Beauville (see [3], or [17], [18]) shows that com-
pact hyperkéahler manifolds and irreducible holomorphic symplectic manifolds are
basically the same objects:

THEOREM 1. If X is an irreducible holomorphic symplectic manifold and w €
H2(X,R) is a Kdhler class, then there exists a unique Kdhler metric g with Kdihler
class w such that (X, g) is a compact hyperkdhler manifold.

5
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If (X, g) is a compact hyperkihler manifold, then X is an irreducible holomor-
phic symplectic manifold with respect to any of the complex structures I, J and K
given on X.

REMARK 2. We do not want to reproduce the proof of this theorem, which
makes use of Yau’s theorem on the existence of Ricci flat metrics for compact
complex manifolds with vanishing first Chern class ([31]).

However, given a compact hyperkahler manifold (X, g), we want to describe
how the symplectic form o on X with respect to I can be constructed:

Since (X, g) is Kéhler with respect to I, J and K, there are three corresponding
Kahler forms wy, wy and wg. By alocal computation, one shows that o := wy+iwg
is an everywhere non-degenerate holomorphic two-form for X with respect to I.

3. Examples

In this section we collect all examples of deformation types of compact hy-
perkéhler manifolds known up to now (April 2002):

ExaMPLE 1 (K3 surfaces). The only irreducible holomorphic symplectic man-
ifolds of dimension two are the K3 surfaces.

PrOOF. By definition, a K3 surface is a surface with trivial canonical bundle,
and vanishing first Betti number ([4]). Therefore, every irreducible holomorphic
symplectic manifold of dimension two has to be a K3 surface. On the other hand,
every K3 surface is simply-connected and Kéhler ([4]). Note further that H2 of a
K3 surface is spanned by a holomorphic two-form ¢. That the induced morphism
T — Q is an isomorphism, follows directly from the triviality of the canonical
bundle. 0

The following two series of examples are due to Beauville ([3]).

ExAMPLE 2 (Hilbert schemes of points on K3 surfaces). For every K3 surface
X the Hilbert scheme X of zero-dimensional subspaces & of X of length n is an
irreducible holomorphic symplectic manifold of dimension 2n ([3]). Its second Betti
number is always 23 except for the case n = 1, when the Hilbert scheme is just the
K3 surface itself, and therefore by = 22.

REMARK 3. The Hilbert scheme X" is a scheme only if X is algebraic. Oth-
erwise, it is just a complex space, also called the Douady-space of X.

For the next series of examples, let us briefly recall the construction of the
generalised Kummer varieties.

For X a smooth complex surface, the Hilbert scheme X" can be viewed as
a resolution p : XM — X () of the n-fold symmetric product X := X"/&,, of
X. The morphism p, sending closed points, i.e. subspaces of X, to their support
counting multiplicities, is called the Hilbert-Chow morphism.

Now, let n be a positive integer. If A is a complex torus of dimension two,
there is an obvious summation morphism A — A. We denote its composition
with the Hilbert-Chow morphism p : A"l — A by ¢ : Al — A,

DEFINITION 3. The n'* generalised Kummer variety Al™! is the fibre of o over
0e A

For n = 2, the generalised Kummer variety coincides with the Kummer model
of a K3 surface (therefore the name). For n > 2, we have by(Al") = 7.

ExXAMPLE 3 (Generalised Kummer varieties). For every complex torus A of
dimension two, the generalised Kummer variety Al is an irreducible holomorphic
symplectic manifold of dimension 2n — 2 ([3]).
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Besides these two series, only two further examples of non-deformation equiv-
alent compact hyperkahler manifolds are known:
(1) O’Grady’s 6-dimensional example [26] with by = 8, and
(2) O’Grady’s 10-dimensional example [25] with by > 24.
In all examples given, we included the value of the second Betti number. This
shows that the example manifolds are really in different deformation classes.
In chapter 7 of this work, we will look at the cobordism class of the generalised
Kummer varieties.

4. Characteristic classes of hyperkihler manifolds

Let us take a brief look at the (rational) Chern classes of irreducible holo-
morphic symplectic manifolds. We have already seen that ¢; vanishes since the
canonical bundle is trivial. In fact, all odd Chern classes vanish up to two-torsion.

PROPOSITION 1. Let X be an irreducible holomorphic symplectic manifold. For
all i € Ny, the Chern classes ca;11(X) vanish modulo two-torsion.

PrOOF. Remember that 7x is isomorphic to its dual bundle 7§ = Qx by
means of the holomorphic two-form o € HY(X,Q%). Then we use that cx(E) =
(—1)*¢c;,(E*) for any holomorphic vector bundle E on any complex manifold.

Putting this together yields:

c2i4+1(X) = c2ip1(Tx) = —c2i41(Tx) = —c2i+1(X),
and therefore, 2c2;11(X) = 0 as to be proven. O

The rational Chern classes of an irreducible holomorphic symplectic manifold
X are actually topological invariants. This can be seen by relating them to the
Pontrjagin classes of X.

DEFINITION 4. Let X be any differentiable manifold with tangent bundle TX.
Following [14], we define the i*" Pontrjagin class p;(X) of X to be

pz(X) = (—1)i02i(TX ® (C) € H4i(X, (C), (6)
where TX ® C is the complexified tangent bundle of X.

REMARK 4. Apparently, the Pontrjagin classes are invariants of the differen-
tiable structure. In fact, they are topological invariants, i.e. they cannot distinguish
between different differentiable structures on the topological manifold X since they
only fix the oriented cobordism class of X which is a topological invariant.

On a complex manifold, the Pontrjagin classes are linked to the Chern classes
as follows:

PROPOSITION 2. Let X be a complex manifold. For i € Ny we have
2i
pi(X) = (1) (= 1)Fer(X)ezir(X). (7)
k=0
PrOOF. Let 7x be the holomorphic tangent bundle. We have:
pz(X) Z(—l)iCQi(TX X (C) = (—1)i62i(TX EBTx)
2i 2i
=(=1)" Y (T x)eaiw(Tx) = (1) D (1) ex (T )i r(Tx)
k=0 k=0
2
=(=1)"> (=1 ex(X)eai—k(X),
k=0
by the Whitney sum formula for the Chern classes. O
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COROLLARY 1. For a complex manifold X, the collection of its Chern classes
determine the Pontrjagin classes of the underlying differentiable manifold.

EXAMPLE 4. For a complex manifold X, we have

po(X) = 17 pl(X) = _ZCQ(X) + C%(X%
p2(X) = 2¢4(X) = 2e3(X)er(X) + A(X), ... (8)

On an irreducible holomorphic symplectic manifold, we can invert these rela-
tions:

PRrROPOSITION 3. Let X be an irreducible holomorphic symplectic manifold. The
rational Pontrjagin classes of the underlying differentiable manifold determine the
rational Chern classes of X.

PROOF. Since the odd rational Chern classes of X vanish (see Proposition 1),
we just have to express the even rational Chern classes in terms of the rational
Pontrjagin classes. Looking at (7), we see that

—1)¢
en(X) = S0 (3) 4 Plea(X).. encal(X)), ()
where P is a polynomial in ¢ — 1 variables over Q. Inductively, we can therefore
express the co;(X) in terms of the p(X). O

REMARK 5. It follows that the rational Chern classes of an irreducible holo-
morphic symplectic manifold are in fact (differential-)topological invariants. So
every other structure of an irreducible holomorphic symplectic manifold on the dif-
ferentiable manifold X leads to the same rational Chern classes. In particular, the
rational Chern classes of a compact hyperkédhler manifold are well-defined: Just
take the rational Chern classes of any associated irreducible holomorphic symplec-
tic manifold structure. Of course, it also follows that the Chern classes modulo
two-torsion cannot distinguish between different compact hyperkahler structures
on X.

At the end of this section, we want to introduce one more notation, which will
be of use in chapter 5 and chapter 6.

Let u be any formal power series in the “universal Chern classes” ¢; over C.
For any a € C, we define

u(a) == Zuio/, (10)

where u; is the component of u that is of total weight i. Later, we will apply this
definition to td*/ 2 the square root of the universal Todd genus.

5. A well-known result on the second cohomology group

This section contains a well-known result on the second cohomology group of a
compact hyperkahler manifold, which we will need later on. Due to its importance
for our results, a proof is included.

PROPOSITION 4. Let X be a 4n-dimensional differentiable manifold which can
be equipped with the structure of a compact hyperkdhler manifold. Let further f :
H2(X,C) — C be any homogeneous polynomial over C such that

flo+5)=0 (11)
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for all o € H?(X, C) such that there exists a structure of an irreducible holomorphic
symplectic manifold on X for which o is the cohomology class of the symplectic
form. Then

fla)=0 (12)
for all « € H?(X,C), i.e. f is zero.

PROOF. Let ¥ C H2(X,C) be the set of all cohomology classes o such that a
structure of an irreducible holomorphic symplectic manifold exists on X for which
o is the class of the symplectic form. We have to show that the Zariski closure of
the set U := {[o + 7]|o € £} in P(H?(X,C)) is the whole projective space.

Equip X with a structure of a compact hyperkéhler manifold. Let X — Def(X)
be the universal deformation (which exists since H°(X,7x) = 0, and is unob-
structed since ¢1(X) = 0; see e.g. [18]). One has the period map Px : Def(X) —
P(H?(X,C)), which maps a t € Def(X) to [0¢], where o; is up to a multiple
constant the unique holomorphic symplectic two-form of the fibre A} of ¢. Let
g:H}(X,C) - C,a fX a?". By considering the holomorphic degree of o; in any
fibre, it follows that the image of Px is contained in an irreducible component @ x
of the hypersurface defined by g in P(H?(X, C)). Now the “Local Torelli Theorem”
(Beauville, [3]) says that Px : Def(X) — Qx is a local isomorphism. To show this,
one calculates the differential of Px which happens to be injective. By comparing
dimensions (dim Def(X) = dim H' (X, 7x) = by(X) — 2 = dim Qx), one concludes
the Local Torelli Theorem.

It follows that the Zariski closure of {[o]|oc € ¥} in P(H?(X,C)) is the whole
hypersurface Qx. Let [0] be in Qx. Then [0 + 7] lies in the Zariski closure U of
U. Substituting o with e=%/2¢, it follows that for all ¢ € R, the element [0+ ¢*?5]
lies in U and therefore, [0 + 26] € U for all z € C. In particular, Qx C U.

Furthermore, [0 + 20| ¢ Q@x for all z # 0, so the codimension of U is strictly less
than the codimension of @ x, which is one. This proves U = P(H?(X, C)). O

6. An sly-action on the cohomology of an irreducible holomorphic
symplectic manifold

We want to introduce an sly-action on the cohomology of any irreducible sym-
plectic manifold besides the usual Lefschetz action defined by the Kahler class w.
Let X be such a manifold and o its symplectic form which induces a symplectic
form o, on each vector space W := A" Txz ® A for x € X with A := N TX,Q:-
As shown in Appendix A there are operators II,, and ¢, on W ((V, o) of Appendix
A corresponding to (7x,s,0,) here) such that (o, —dz,IL;) acts as an sly-triple
on W, i.e. these three operators obey the commutator relations of the standard
sly-generators X, Y and H. On the level of cohomology, these operators induce an
operator Ly, which is multiplication by o, an operator A,,4 := —d, which is up to
a sign the contraction by o, and II, which maps a € HP4(X,C) for p,q € Ny to
(p —n)a. It follows that (Ls, A, 4,II) acts as an slo-triple on H**(X, C).

REMARK 6. The operator A, /4 is one-forth of the operator A, introduced by
Huybrechts in [17], [18].

REMARK 7. The sly-action we have exhibited so far, is part of the Lie algebra-
action of the Lie algebra so(qx @ H), where H is the hyperbolic plane, on H*(X, C),
described by Looijenga and Lunts ([22]). (¢x will be defined in the next chapter.)






CHAPTER 3

The Beauville-Bogomolov quadratic form

In this chapter, we want to introduce the Beauville-Bogomolov quadratic form
of compact hyperkéhler manifolds. It consists of two sections. The first one is
dedicated to general facts about quadratic forms, the second section contains ap-
plications of these results to the case of compact hyperkahler manifolds.

1. Linear and multilinear algebra of quadratic forms

DEFINITION 5. Let V be a finite-dimensional R-vector space and ¢: V — R a
non-degenerate quadratic form on V. For every n € N, we define a linear form

g™ SV S R,

1
vy Van = GXG: q(Vr(1); Vr(2) * A(Vr(2n-1) Vr(2n))
™ 2n

(13)

on the (2n)'" symmetric power of V.

REMARK 8. The linear forms ¢(™) are normalised in such a way that ¢(™ (v*") =
q(v)™ for every v € V.

Let us equip the vector space S™V with the following canonical non-degenerate
scalar product

1
01t = o) g ) (1)
' mEG,
Le. for v € V and n € N, we have (v",v") = ¢(™ (v2").

DEFINITION 6. Let V be a finite-dimensional vector space equipped with a non-
degenerated quadratic form q. We define the Casimir (element) ¢ of the quadratic
form g to be the unique element § € SV such that

<U7 d> = q(l)(v)
for all v € S2V.

PROPOSITION 5. Let eq,...,e; be an orthonormal basis for the non-degenerate
quadratic form (V,q), i.e. e1,...,e; is a basis with q(e;,e;) = 0 for i # j and
q(ei) =¢€; € {—1, 1}.

Then the Casimir element is given by

1
qg= Zz—:ie?. (15)
i=1

PrROOF. For v € V we have

l
(V,q) = e (v?,e}) = Z&q(w ei)” = q(v) = ¢M (%)

i=1
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REMARK 9. From this representation of ¢, one easily concludes that q(l)((j) =
l=dimV.

PROPOSITION 6. Let be k,n € Ny with k <n. We have

k .
l4+2n—2i
(n) (,,2n—2k sk\ _ n—k 16
g™ (v qv) <¢I=I1 %1 1) q(v) (16)
for every v € V, where | :==dim V.

PRrROOF. First, we show that (16) holds for £ = 1. Using the representation of
¢ in terms of an orthonormal basis given as in Proposition 5, one calculates

(n) 2n 2 qu(n) 2n—2 2)

=2m<1 0" ale) + 2o (e

By linear extension,
N [+2n—2 , _ ok Ak
q(n)( 2n— 2qu) q(n 1)(1}271 quk 1).
2n —1
From this, the general formula follows easily by induction over n. ([l
Later, we want to apply our results on quadratic forms to quadratic forms

defined on cohomology groups. Therefore, it is convenient to introduce the following
notion:

DEFINITION 7. A graded R-Frobenius algebra of degree d is a finite dimen-
sional (super-)commutative graded R-algebra A = @Z:o A? together with a degree-
preserving linear form [ : A — R[d] (i.e. [ vanishes on A" for k # d) such that the
induced Poincaré pairing

A®A—>R[d],a®a'n—>/(aa')

is non-degenerate.

EXAMPLE 5. Let X be a differentiable manifold of dimension d. The cohomol-
ogy ring H*(X,R) is a graded R-Frobenius algebra of degree d.

PROPOSITION 7. Let A be a graded R-Frobenius algebra of degree 4n, n € Ny.
Let A? be equipped with a non-degenerate quadratic form q such that there exists a
positive real constant C > 0 with

/ﬁ”:Cqmw (17)

for all a € A%. Let SA? be the graded subalgebra of A generated by A% and p :
S% A2 — (SA)** the canonical multiplication.

We have
(1) € =1IIim B [ @)
(2) A =SA?a@ (SA%)*, where (SAQ)J- is the orthogonal complement of SA?

with respect to the Poincaré pairing. Equivalently, [ restricted to SA? is
non-degenerate.
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(3) For all k € {0,...,n}, there exists ezactly one element ¢ € (SA%)** such
that the linear forms

V1 *+ " Vop—2k > /Ul ..... Von—2k * C (18)
and
g M (19)

on S2=2kV coincide.
We can express ¢ by

c-(,H ”2’;“) @ [ nar (20

i=k+1

PROOF. The formula for C follows from (16) with k& = n.

The non-degeneracy of [ restricted to SA? is a direct consequence of (17) and
the fact that the quadratic form ¢ is non-degenerate.

That ¢ is unique in case of its existence, follows from the fact that the Poincaré
pairing restricted to SA? remains non-degenerate. Therefore, the linear forms on
(SA2)4n=4F correspond exactly to elements of (SA)**

Eventually, for v € A%, using (16), we calculate

/’UQn_Qk,u((j)k — /M(UQn 2k Ak) Cq(n)( 2n— quk)
k .
B l+2n—2i ek
=C <Hl 2n—2i—|—1> a0,

which proves the expression given for c. ([

2. The quadratic form on a compact hyperkahler manifold

Let us apply the results of the last section to the Beauville-Bogomolov qua-
dratic form of compact hyperkahler manifolds which we will define by the following
proposition:

PRrROPOSITION 8. Let X be a 4dn-dimensional compact differentiable manifold.
Then there exists at most one quadratic form
qx : H*(X,R) = R (21)
with the following properties:
(1) qx is induced by a primitive quadratic form on H?(X,Z).
(2) There exists an o € H?(X,R) with gx(a) # 0, and for all « € H?(X,R)
with gx (o) # 0, we have that

( /X pl(X)a2n_2> Jax ()"t < 0. (22)

(3) There exists a positive real constant ¢ > 0 such that gx (o)™ = cfX
for all o € H2(X,R).
In case of the existence of such a qx, we call gx the Beauville-Bogomolov
quadratic form of X.

PROOF. Note first that there exists up to a sign at most one gx which fulfills
(3) with ¢ = 1. This can be seen by the following consideration: In the ring
S*H?(X,R)*, there are at most n solutions x of the equation

n:y
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for a fixed y € S?"H?(X,R)*. Since all these solutions differ only be a n''-root of
unity, there is actually up to sign at most one x with ™ = y. We apply this to
Y= (042" — fX a2n) c SQ"HQ(X, R)*.

Thus, we know that gx — if it exists — is unique up to a rational constant.
Property (1) fixes this constant up to a sign, property (2) fixes this sign if n is even,
property (3) fixes this sign if n is odd. O

EXAMPLE 6. Let X be a four-manifold. Then X possesses a Beauville-Bogo-
molov form exactly when sign(X) < 0, where sign(X) = b (X) — by (X) is its
signature. Its Beauville-Bogomolov form is given by the intersection pairing

H?*(X,R) x H*(X,R) — R, (o, ) — / aUpB. (23)
X

PROOF. By property (3) we know that gx has to be a positive multiple of the
intersection pairing. Since the intersection pairing on the real cohomology comes
from a primitive pairing on the cohomology with Z-coefficients, by property (1),
gx has to be the intersection pairing, at least up to a sign. The only condition,
property (2) imposes, is that fX p1(X) < 0 which is, by the Hirzebruch signature
theorem ([, p1(X) = sign(X)/3, see [14]) equivalent to sign(X) < 0 (from which
the existence of & € H*(X,R) with [ o? # 0 follows). O

EXAMPLE 7. Let n € N be an integer. The projective space P4 has a Beauville-
Bogomolov quadratic form given by

gon (H) = 1, (24)
where H is the class of a hyperplane.

In the literature, the notion “Beauville-Bogomolov quadratic form” appears
only for compact hyperkahler manifolds. In the hyperkahler case, such a quadratic
form always exists, and to be honest, I don’t know if the notion of a Beauville-
Bogomolov form on an arbitrary manifold is of any further use.

THEOREM 2. If X can be equipped with the structure of a compact hyperkdhler
manifold, it possesses a Beauville-Bogomolov quadratic form.

This theorem is due to Beauville, Bogomolov and Fujiki. Later (Remark 22) we
will give a non-standard proof of this theorem, which makes use of Rozansky-Witten
classes.

REMARK 10. For every compact hyperkéhler manifold X, the second cohomol-
ogy group H?(X,7Z) is a free Z-module.

To prove the existence of ¢x, it suffices to show that there exists a rational
quadratic form ¢ : H3(X,Q) — Q with properties (2) and (3) since then there
exist exactly one ¢ € Q¢ such that cq is induced by a primitive integral form on
H2(X,7Z).

We will now cite some of the properties of this quadratic form that we will need
in the following:

PrOPOSITION 9. The Beauville-Bogomolov quadratic form of a compact hy-
perkahler manifold is definite and of index (3,ba — 3), where by is the second Betti
number of X.

PROOF. (See, e.g. [18].) The result can be proven by the Hodge-Riemann
bilinear relations for the Kéahler form w; and using the defining properties of the
quadratic form. O



2. THE QUADRATIC FORM ON A COMPACT HYPERKAHLER MANIFOLD 15

Because the quadratic form of a compact hyperkahler manifold is definite, we
can form the Casimir element §x € S?H?(X, Q). By abuse of notion, we also denote
its image under the canonical multiplication map S?H?(X,Q) — H*(X,Q) by gx.

PROPOSITION 10. Let a € H¥ (X, C) be of type (24,25) on all small deforma-
tions on X. Then there is a constant c, € C, depending on «, such that

/ a2 = caqx (B) . (25)
X

PROOF. See, e.g. [18]. O

REMARK 11. Of course, the proposition remains true if we replace gx by a non-
vanishing multiple. This also holds true for the following Propositions 12 and 13.

ExAMPLE 8. The Chern classes cg;(X) of X are examples of such classes which
are of type (27,27) on all small deformations of X. This is due to the fact that
c2;(X) = c9j(X’) for X' being an deformation of X (see Remark 5).

PROPOSITION 11. Let X be an irreducible holomorphic symplectic manifold,
and q : H*(X,Q) — Q a quadratic form that fulfills property (3). Then, (2) is
fulfilled by q whenever q(o 4+ &) > 0, with o being the holomorphic symplectic form
of X.

PROOF. Let g be such a form, i.e. ¢ is up to a non-vanishing rational factor
the Beauville-Bogomolov quadratic form.
Let o € H2(X,R) be any class with g(a) # 0. We have to show that

/ e2(X)a?2 /q(a)™ ! > 0
X

(remember that cz(X) = —1p;(X)).
By Proposition 10 we know that there exists a constant ¢ € C with

/ C2()()0427172 _ cq(a)”fl
X
and

/ 2 (X) (0 + 3)202 = cqo + 5)" L.
X

Therefore, we have to show that ¢ > 0, which is equivalent to [y ¢2(X)(0+05)*" "2 >
0. This inequality follows from a remark of Hitchin and Sawon [15] (see Remark 21
of this thesis). 0

Next, we want to ask which cohomology classes in H*(X, C) fulfill the assump-
tion of Proposition 10. As the full cohomology ring of a compact hyperkéhler man-
ifold is not well understood yet, we will restrict ourselves to classes in SH?(X, C).
For these classes, we can give a definite answer:

PROPOSITION 12. Let X be a 4n-dimensional manifold which can be equipped
with the structure of a compact hyperkihler manifold. The subring of all classes
in SH?(X, C) which are of type (2j,2j) with respect to all structures of irreducible
holomorphic symplectic manifolds we can impose on X is generated by ¢x and

canonically isomorphic to C[gx]/(g%).

PROOF. We apply Proposition 7 to the Frobenius algebra H*(X,C): Let «
be any class in (SH2(X,C))%* which is of Hodge type (27,2j) with respect to all
irreducible holomorphic symplectic structures on X. By Proposition 10 the form
H?*(X,C) — C,B — [y af* 27 is a multiple of ¢’y *. By Proposition 7, it follows
that « is a multiple of (jg(.
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It remains to show that ¢x is of Hodge type (2, 2) with respect to all irreducible
holomorphic symplectic structures on X. This can be seen as follows: Let 7 :
H*(X,C) — SH?(X,C) be the orthogonal projection. It is compatible with the
Hodge decomposition. By the considerations made so far, we know that m(ca2(X))
is a non-vanishing multiple of §x. This proves the claim about the Hodge type of
x- O

Let 7 : H*(X,C) — SH?(X,C) be the orthogonal projection again. Propo-
sition 12 implies that for any class @ € H%(X,C) which is of constant Hodge
type (27, 25) with respect to all irreducible holomorphic symplectic structures there
exists a real number u with 7(a) = ucjg(. Calculating with Proposition 7 yields:

PROPOSITION 13. Let X be a 4n-dimensional differentiable manifold which can
be equipped with the structure of a compact hyperkahler manifold and j € {0,...,n}.
Let o € HY (X, C) be a cohomology class such there exist a constant ¢ € C with

[ ag = = (o (26)
for all 3 € H?(X,C). Then

J . n .
c 2n—2i+1\ c l4+2n—27 )
7r(Oé)——< 7_) 7 Il :—— & (27)
i=1

X~ 7 . X
c Jx @% g 221

where C is the positive constant with [ o®™ = Cqx (a)™ for all a € H*(X,C).



CHAPTER 4

Graph homology

This chapter is concerned with the space of graph homology classes of unitriva-
lent graphs. A very detailed discussion of this space and other graph homology
spaces can be found in [2]. Further aspects of graph homology can be found in [29],
and, with respect to Rozansky-Witten invariant, in [15].

1. The graph homology space

In this thesis, graph means a collection of vertices connected by edges, i.e.
every edge connects two vertices. We want to call a half-edge (i.e. an edge together
with an adjacent vertex) of a graph a flag. So, every edge consists of exactly two
flags. Every flag belongs to exactly one vertex of the graph. On the other hand, a
vertex is given by the set of its flags. It is called univalent if there is only one flag
belonging to it, and it is called trivalent if there are exactly three flags belonging
to it. We shall identify edges and vertices with the set of their flags. A graph is

e

U1 V2
U3 V4
Uy U2

FiGure 1. This Jacobi diagram has four trivalent vertices
v1,..., Vs, and two univalent vertices u; and us, and e is one of its
7 edges.

called vertez-oriented if, for every vertex, a cyclic ordering of its flags is fixed.

DEFINITION 8. A Jacobi diagram is a vertex-oriented graph with only uni-
and trivalent vertices. A connected Jacobi diagram is a Jacobi diagram which is
connected as a graph. A trivalent Jacobi diagram is a Jacobi diagram with no
univalent vertices.

We define the degree of a Jacobi diagram to be the number of its vertices. It is
always an even number.

We identify two graphs if they are isomorphic as vertex-oriented graphs in the
obvious sense.

EXAMPLE 9. The empty graph is a Jacobi diagram, denoted by 1. The unique
Jacobi diagram consisting of two univalent vertices (which are connected by an
edge) is denoted by £.

REMARK 12. There are different names in the literature for what we call a
“Jacobi diagram”, e.g. unitrivalent graphs, chord diagrams, Chinese characters,
Feynman diagrams. The name chosen here is also used by Thurston in [29]. The
name comes from the fact that the IHX relation in graph homology defined later is
essentially the well-known Jacobi identity for Lie algebras.

17
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Ui

U2

F1GURE 2. The Jacobi diagram ¢ with its two univalent vertices
uy and us.

With our definition of the degree of a Jacobi diagram, the algebra of graph
homology defined later will be commutative in the graded sense. Further, the map
RW that will associate to each Jacobi diagram a Rozansky-Witten class will respect
this grading. But note that often the degree is defined to be half of the number of
vertices which still is an integer.

We can always draw a Jacobi diagram in a planar drawing so that it looks like
a planar graph with vertices of valence 1, 3 or 4. Each 4-valent vertex has to be
interpreted as a crossing of two non-connected edges of the drawn graph and not
as one of its vertices. Further, we want the counter-clockwise ordering of the flags
at each trivalent vertex in the drawing to be the same as the given cyclic ordering.

/ X

FIGURE 3. These two graphs depict the same one.

In drawn Jacobi diagrams, we also use a notation like - - - 2 fora part of a
graph which looks like a long line with n univalent vertices (“legs”) attached to it,
for example ... L 11 ... for n = 3. The position of n indicates the placement of the
legs relative to the “long line”.

DEFINITION 9. Let S be a totally ordered set with n elements. We set
g(9) := slA---AsnE/\QS. (28)

Here, s1,...,8, are the elements of S in increasing order. (For the definition of
Ao S, see appendix A.)

DEFINITION 10. Let S be a cyclicly ordered set with an odd number n of
elements. We set

£(9) := 81/\~-~/\sn6/\Q5. (29)

Here, s1,..., s, are the elements of S in an order compatible with the given cyclic
one. The Definition of £(S) does not depend on this order as long as the compati-
bility condition is fulfilled.

ExaMPLE 10. If ¢ is a trivalent vertex in a Jacobi diagram, it makes sense to
write £(t) because we have said that we identify a vertex with the set of the flags
belonging to it, for which a cyclic ordering has been fixed.

DEFINITION 11. Let ' be a Jacobi diagram with k& trivalent and [ univalent
vertices, so m := % is the number of its edges. Let F' be the set of its flags, F
the set of its edges, T the set of its trivalent vertices, and U the set of its univalent
vertices.
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A choice of total orderings of the sets T, U and every set e € E (recall that
an edge is identified with the set of the two flags belonging to it) is said to be
compatible with the orientation of T if the equality

e(ti) A Ne(te) Nur A A =e(er) A~ Ae(em) (30)

holds in the Gramann algebra /\Q F generated by the elements of F. Here,
t1,...,t, are the elements of T in increasing order, uy, ..., u; are the elements of U
in increasing order, and eq, ..., e,, are all the edges in arbitrary order. (Changing
the order of the edges E does not change the right hand side of (30) since the e(ex)
are of even degree.)

DEFINITION 12. We define B to be the Q-vector space spanned by all Jacobi
diagrams modulo the THX relation

T=H-X (31)
and the anti-symmetry (AS) relation
Y+ ¥ =0, (32)

which can be applied anywhere within a diagram. (For this definition see also [2]
and [29].) Two Jacobi diagrams are said to be homologous if they are in the same
modulo the THX and AS relation.

Furthermore, let B’ be the subspace of B spanned by all Jacobi diagrams not
containing ¢ as a component, and let B be the subspace of B’ spanned by all
trivalent Jacobi diagrams. All these are graded and double-graded. The grading
is induced by the degree of Jacobi diagrams, the double-grading by the number of
univalent and trivalent vertices.

The completion of B (resp. B, resp. B*) with respect to the grading will be
denoted by B (resp. B, resp. Bt)

We define By to be the subspace of B generated by graphs with & trivalent
and [ univalent vertices. By ; and B} := Bj, , are defined similarly.

All these spaces are called graph homology spaces and their elements are called
graph homology classes or graphs for short.

REMARK 13. The subspaces By, of B spanned by the Jacobi diagrams of degree
k are always of finite dimension. The subspace By is one-dimensional and spanned
by the graph homology class 1 of the empty diagram 1.

REMARK 14. We have B = [1x >0 Br,- Further, B = B'[[(]]. Due to the AS
relation, the spaces By ; are zero for [ > k. Therefore, B = | 69;6:0 By ;-

ExaMPLE 11. If 7 is a graph which has a part looking like - - - L -, it will
"~ if we substitute the part --- T by --- —--- due to the anti-

n

become (—1)

symmetry relation.

2. Operations with graphs and special graphs
DEFINITION 13. Disjoint union of Jacobi diagrams induces a bilinear map
BxB—B,(1,9)—yUy. (33)
By mapping 1 € Qto 1 € l§, the space B becomes a graded Q-algebra, which

has no components in odd degrees. Often, we omit the product sign “U”. B, B,
Bt, and so on are subalgebras.
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DEFINITION 14. Let k£ € N. We call the graph homology class of the Jacobi
2k
diagram () the 2k-wheel wag, i.e. we = ©, wy = X, and so on. It has 2k univalent

and 2k trivalent vertices. The expression wy will be given a meaning later, see

section 4.
k1

For ki, ks € Ny, we call the graph homology class of the Jacobi diagram k@ a
2

double-wheel, denoted by wy, k,. In particular, wg o = ©.

FIGURE 4. These double-wheel w; 5.

REMARK 15. The wheels wy with k odd and the double-wheels wy, r, with
k1 + ko odd vanish in B due to the ITHX and AS relations.

Next, we define a very special element € of the graph homology space with very
remarkable properties, which have been proven by Bar-Natan, Le and Thurston
(see [29]).

DEFINITION 15. Let the series (bay ) € CNo of the modified Bernoulli numbers
(c.f. [29]) be defined by

o0 .
1 h
> b = Sn e (34)
k=0 2
(Actually, all the by, are rational numbers.) Let © € B’ be the image of the element

exp <Z bzﬁ%) € Q[[(w2k)ren]] (35)
k=1
under the morphism Q[[(x:)]] — B’ of Q-algebras that maps x;, to way,.
For any p € C we set Q(u) := > po Quep”, where Q) is the homogeneous
component of degree 2k of Q. (Note that Qi = 0 for odd k.) The element £ lies in

the ring B ®qg C. In what follows, by abuse of notion, we will use symbol B for the
ring as defined so far as well for the base-changed ring B ®gq C. This should not
lead to any confusion.

The following remark has already been stated in [29].

REMARK 16. The modified Bernoulli numbers are connected to the usual
Bernoulli numbers By, Bo, Bs, ... via

Boy,
bog, = 36
T 4k(2k)! (36)
for all £ € N. In addition to this, by = 0.
The generating function of the (usual) Bernoulli numbers is given by

. By t

Dkgk

i t 1 (37)
k=0

Note that By = 0 for £ > 1 and k& odd. Furthermore, By =1 and By = —%.
The connection between the Bernoulli numbers and the modified ones can be
proven easily by considering the two defining power series.
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Let T" be a Jacobi diagram and wu,u’ be two different univalent vertices of T
These two should not be the two vertices of a component £ of I'. Let v (resp. v’)
be the vertex u (resp. u') is attached to. The process of gluing the vertices u and
1’ means to remove u and u’ together with the edges connecting them to v resp. v’
and to add a new edge between v and v’. Thus, we arrive at a new graph I'/(u, u'),
whose number of trivalent vertices is the number of trivalent vertices of I' and whose
number of univalent vertices is the number of univalent vertices of I' minus two. To
make it a Jacobi diagram we define the cyclic orientation of the flags at v (resp. v')
to be the cyclic orientation of the flags at v (resp. v’) in T with the flag belonging
to the edge connecting v (resp. v') with u (resp. u') replaced by the flag belonging

to the added edge.
w’/ \ o @

FIGURE 5. Gluing the two univalent vertices u and u’ of the left
graph produces the right one.

For example, gluing the two univalent vertices of ws leads to the graph ©.
Of course, the process of gluing two univalent vertices given above does not
work if u and u’ are the two univalent vertices of £, thus our assumption on T

DEFINITION 16. Let I', T be two Jacobi diagrams, at least one of them without

¢ as a component and U = {uq,...,uy} resp. U’ the sets of their univalent vertices.
We define
0T = ) CUT)/(ur, f(w)/ - [ (tn, f(un)), (38)
fU=U’
injective

viewed as an element in 5.
This induces for every v € B a B*-linear map

4B — B,y = A>). (39)

EXAMPLE 12. Set 0 := %é It is is an endomorphism of B’ of degree —2. For
Example, 0o = ©. By setting

(7,7") == 0(yUy) =a(y) Uy —yUI() (40)

for v,~' € B, we have the following formula for all v € B’
n n n— n n—
o0 = (7)o + () ot (an)

This shows that 9 is a differential operator of order two acting on B

Acting by 0 on a Jacobi diagram means to glue two of its univalent vertices in
all possible ways, acting by 9(:,-) on two Jacobi diagrams means to connect them
by gluing a univalent vertex of the first with a univalent vertex of the second in all
possible ways.

For example, we have

2k—2

O(war) =k Z Wp,2k—2—n (42)

n=0
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for k € N, and by the IHX relation,

O(wag, , Wak, ) = 8k1kawak, —1,2k,—1 (43)
for kl, ko € N.

DEFINITION 17. Let I',T” be two Jacobi diagrams, at least one of them without
¢ as a component, and U = {uq, ..., un} resp. U’ the sets of their univalent vertices.
We define

(0T = > (CUT)/(ur, f(w))/ -/ (tn, fun)), (44)
f:U—=U’
bijective

viewed as an element in Bt.
This induces a B-bilinear map

() : B xB— B, (45)
which is symmetric on B’ x B'.

Note that (I',T”) is zero unless T' and I have equal numbers of univalent ver-
tices. In this case, the expression is the sum over all possibilities to glue the univa-
lent vertices of I' with univalent vertices of I”.

PROPOSITION 14. The map (1,-) : B — Bt is the canonical projection map, i.e.
it removes all non-trivalent components from a graph. Furthermore, for v € B’ and
~' € B, we have

14
<% §v’> =(07.7). (46)
For v,~' € B”, we have the following (combinatorial) formula:

(exp(9)(vY'), 1) = (exp(9), exp(9)Y') . (47)

PROOF. The formula (46) should be clear from the definitions.
Let us investigate (47) a bit more. We can assume that v and + are Jacobi
diagrams with [ resp. I’ univalent vertices and [ + 1’ = 2n with n € Ny. So we have

to prove
o = om o™
= 2 <m% m7'> ,

m,m’=0
l—2m=l"—2m'
since (-, 1) : B — B* means to remove the components with at least one univalent
vertex. Recalling the meaning of (-, ), it should be clear that (47) follows from the
fact that applying ak_;: on a Jacobi diagram means to glue all subsets of 2k of its
univalent vertices to k pairs in all possible ways. ([

3.  as an eigenvector of the operator 9

As said in the previous section, the element €2 plays a central role in the “Wheel-
ing Theorem” (see [29], where Bar-Natan, Le and Thurston gave a knot theoretical
proof of this theorem). Hitchin and Sawon ([15]) discovered that this Theorem
together with the ideas of Rozansky and Witten ([27]) can be used to deduce some
interesting facts about characteristic classes on irreducible holomorphic symplectic
manifolds.

There is actually a second product “x” on the space B of graph homology,
which coincides with the previously defined product “U” on the space Bt of trivalent
graphs. The Wheeling Theorem says that the map

QO (B,U) — (B, %) (48)
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is an isomorphism of algebras. Therefore, the map
O (B,U) = (B,0),7 ~ (2,0) = (), 1) (49)

is a homomorphism of algebras. This corollary has been used by Hitchin and Sawon
to express [y c2a®""% in terms of [ o®" and [ td? (X) for any a € H2(X,C) on
any irreducible holomorphic symplectic manifold X.

We want to extend the methods of Hitchin and Sawon in the next chapter.
This will eventually lead to a general Hirzebruch-Riemann-Roch formula for line
bundles on irreducible holomorphic symplectic manifolds. Like Hitchin and Sawon
we shall not need the full Wheeling Theorem. In fact, we only need the corollary
of the “Wheeling Theorem” given as Theorem 3 below to prove our results. Simi-
larly, everything stated in [15] that is based on the Wheeling Theorem can also be
based on the following Theorem 3. It is a direct corollary of Lemma 6.2 in [29].
Nevertheless, we give another proof here, which does not use any knot theory.

THEOREM 3. For each p € C, the graph Q(p) is an eigenvector of the endo-
morphism O : B — B to the etgenvalue %@, i.e.

o) = L=o0(w). (50)

The proof goes along the following idea: We apply a certain linear map P
from the space of graph homology to a polynomial algebra to both sides of (50).
In general, such a linear form on the space of graph homology is called a weight
system. We show that the images of the left and the right hand side under the map
P are equal. If we have chosen P to be injective, the theorem is proven.

Let us say a few words about the construction of the map P. Given a Lie alge-
bra g together with an adg-invariant symmetric non-degenerate bilinear form o and
a representation, a weight system can be constructed from this data. This construc-
tion is analogous to the construction of Rozansky-Witten classes (see Chapter 5)
with the Atiyah class substituted by the Lie bracket [-,:] € g®3. Here we have
identified g* with g using o.

For our purposes, we take for g the Lie algebra gl(N) for large N, and set
o(z,y) = tr(zy). Instead of working with a specific representation, we use universal
Casimir elements x; accounting for all representations at once.

This gives us a map P as described above. Chmutov and Duzhin calculated
this map on a certain subspace of graph homology in [6]. We will only need their
result on how P acts on double-wheels, so we do not have to go into more detail on
the construction of P as a Lie algebra weight system here.

LEMMA 1. Let W be the subspace ofB that is spanned by all graphs w; ; with
i,j € No. Let P: W — S ((zn)nen,) be defined by
P(wi j) = 2 Zzoﬂ’L:O(_]‘)ler (;) (Y{L)xlxmxﬂrj*lfm fOT Z +] even, (51)
’ 0 for i+ j odd.

Then P is a well-defined, injective map.

PrOOF. First, we show that P is well-defined. For every n € Ny, let W,, be
the subspace of W spanned by all w; ; with ¢4 j = n. It is enough to show that for
all n € Ng there exists an injective map P, : W,, — Sé((mn)neNo) that fulfills (51).
Further, we can restrict ourselves to the case of even n due to Lemma 6.2 of [7],
which says that w; ; is homologous to zero for odd n. (This follows at once from
the anti-symmetry relation.)
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For any N > n, the map Py(y) defined in section 3.1 of [6] fulfills (51) when
restricted to W,,. This is because of Proposition 4.5 of [6], where it is shown that
Pgi(ny evaluated at w; ; equals the right hand side of (51).

It remains to show that P, is injective. This can be proven by a dimension
argument: By Lemma 6.2 and Lemma 6.8 of [7] the image of W,, under P, has at
least the dimension of W,,, so P, is injective. O

The following lemma is also of combinatorial nature.

LEMMA 2. Let By, B1,Bs,... denote the Bernoulli numbers. The following
Jormula holds in S{((xn)nen,):

oo k— 00
Z % Z Z l+m ( ) (k _:,L_ n) TITmTf—2—1—m
k=2 n=01[1,m=

o0 [e'e]
Bi B o (1= 1) (71 1,
Z_]_ z; ' ( )( m )mlxmxi+j—2—l—mzﬁ$0. (52)

1,j=2

PrOOF. In Q[X1, X2, X3], we calculate

k—2—
(S0 S5 e (1) (42wt

TESS n=01,m=0
Bi B & . i—1\/j—1 o i
Di By —1)itm XL Xm, xiti-2siem
+AZQ gl 70( ) I m )R )
1,]=
o) k
By n k—2—n
-¥ (z—.z = Xet0)” (i~ X
T€G3 \k=2  n=0
>, B; B; ; :
+ ) Z,—,lT,J(Xw(g) - Xr)' Xz — XTr(Z))j1>
A= !
1 ad Bk k
w2 71 (X — Xn)
S < 1 Koo Ko 5 W
B X)) — Xr(2) 1 B
€S R ZEkix X k
o — X ;2 7 (Xne) = Xo)

+
(Xa@) = Xa1) (Xr@) — Xa@)

. <§: % (X — Xw(l))k> (i % (X - X’T(Q))k»

k=2 k=2
1 - 1
S < exp (Xn(z) = Xr(2)) =1 Xa(z) — Xn(2)
7_ 1 1
S\ Ke) — X ;

exp (X7r(3) - Xw(1)) -1 X)) —Xrq)
L +1
- Xry) — 1 Xw(:a) Xw(l) 2

+
(eXP (Xx3)

1 1
<eXP (Xn(3) — Xne) —1 Xw(:a) Xn@) 2 )
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This proves the lemma because there is a well-defined Q-linear map
SB(zn)neny) = QX1, Xo, X, mizjap — | Xiy XI5 Xhg,
TESS
which is injective. U

PROOF OF THEOREM 3. Since 9 is a linear operator of degree —2 on B’ and
Qp) =D pe g Qopp?®, we can assume that g = 1. Set T':= 3" | bogwar. We have

00N =0exp(l') = i o)

- (ar + %a(r,r)) Q,

so we see that € is an eigenvector. (The above calculation is actually based only
on the fact that 0 is a differential operator of order two.)
Now, we have to calculate the eigenvalue:

1 = = O(wa;, wa,
or + 58(1—‘,1_‘) = ZbgkaU)Qk + Z bgibgj%

bl
=

ij=1

2k—2
E Wp,2k—2—n + E 415bo;ibajwa; 1,251
n=0 i,7=1

2k— o0

1 Ba; DBsj
Z W, 2k—2—n + 1 i]zzjl 2i)! (2j)!w21—1,23—1

Mg i

W
=~

n=0

-2
Z Wnk—2-n 1 7 Z 0 j| Wi—1,5-1-

1,j=2

Il
=~ =
ANgE:
w|tu

E
Il

Applying the (injective) map P of Lemma 1, and using Lemma 2 yields

9] k—2 9]
1 1 By, B; B;
P (8F + 58(F,F)> = ZP kZZQ 7 nzz:own’k727n + Z Wﬁ’uﬁ—l,jfl

1,j=2

1, 1 1

Because of the injectivity of P, this proves the theorem. O

4. An sly-action on the space of graph homology

In this short section we want to extend the space of graph homology slightly.
This is mainly due to two reasons: When we defined the expression f‘(I‘) for two
Jacobi diagrams I' and IV, we restricted ourselves to the case that T or IV does not
contain a component with an ¢. Secondly, we have not given the zero-wheel wy a
meaning yet.

We do this by adding an element () to the various spaces of graph homology.

DEFINITION 18. The extended space of graph homology is the space B[[Q]]
Further, we set wg := (), which, at least picturally, is in accordance with the
definition of wy, for k > 0.
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Note that this element is not depicting a Jacobi diagram as we have defined it.
Nevertheless, we want to use the notion that () has no univalent and no trivalent
vertices, i.e. the homogeneous component of degree zero of B[[Q]] is C[[Q)]].

When defining I'/(u, v’) for a Jacobi diagramm I' with two univalent vertices
u and o/, i.e. gluing u to u/, we assumed that « and ' are not the vertices of one
component ¢ of I'. Now we extend this definition by defining I'/(u,u’) to be the
extended graph homology class we get by replacing ¢ with (), whenever u and v’
are the two univalent vertices of a component ¢ of T'.

Doing so, we can give the expression 4(7’) € B[[O]] a meaning with no restric-
tions on the two graph homology classes v, € B, i.e. every v € B[[O]] defines a
B[[O])-linear map

4 : B[[O]] — BlOl- (53)
ExAMPLE 13. We have

90 = O. (54)
REMARK 17. We can similarly extend (-,-) : B’ x B — B* to a B*[[O]]-bilinear

form
(-,) : B[[O]] x B[[O]] — B[[O))- (55)

Both ¢/2 and 0 are two operators acting on the extended space of graph homol-
ogy, the first one just multiplication with ¢/2. By calculating their commutator,
we show that they induce a natural structure of an sly-module on B[[Q)]].

PROPOSITION 15. Let H : B[[Q]] — B[[Q]] be the linear operator which acts
on v € Br[[Ol] by

Hey = (% O +z> ). (56)
We have the following commutator relations in End B[[O]):
[0/2,0] = —H, (57)
[H,£/2] =2-¢/2, (58)
and
[H,0] = —20, (59)

i.e. the triple (0/2,—8, H) defines a sly-operation on B[[Q]].

PRrROOF. Equations (58) and (59) follow from the fact that multiplying by O
commutes with £/2 and 9, and from the fact that ¢/2 is an operator of degree 2
with respect to the grading given by the number of univalent vertices, whereas 0 is
an operator of degree —2 with respect to the same grading.

It remains to look at (57). For v € By [[O]], we calculate
[¢, 0]y = £d(7) — O(ty) = LO(y) — ()Y — LO(7) = O(£,7) = — Oy — 2ly = —2H~.

(60)
O

REMARK 18. Since B[[()]] is infinite-dimensional, we have unfortunately diffi-
culties to apply the standard theory of sls-representations to this sls-module. For
example, there are no eigenvectors for the operator H.



CHAPTER 5

Rozansky-Witten classes

The idea to associate to every graph I' and every hyperkdhler manifold X a
cohomology class RW x(I") is due to Rozansky and Witten (c.f. [27]). Kapranov
showed in [20] that the metric structure of a hyperkédhler manifold is not nesses-
sary to define these classes. It was his idea to build the whole theory upon the
Atiyah class and the symplectic structure of an irreducible holomorphic symplectic
manifold. We will make use of his definition of Rozansky-Witten classes in this
section. A very detailed text on defining Rozansky-Witten invariants is the thesis
by Sawon [28].

1. Rozansky-Witten classes in general

Let k be a field of characteristic zero, V' a finite-dimensional k-vector space,
A=@;2,A; aZ-graded (super-)commutative k-algebra and o a symplectic form
on V.

We shall use this general setting later in the case when V = 7x , will be the
holomorphic tangent space of a complex manifold X at a point z and A = ﬁ;m
the Gralmann algebra of anti-holomorphic forms at x.

For every Jacobi diagram I' with k trivalent and [ univalent vertices, and every
a € 3V ®, A1, we define an element

l
RW,o(T) € /\ V*® A (61)

by the following procedure:

Let T denote the set of trivalent vertices, U the set of univalent vertices, E
the set of edges, and F the set of flags of I'. So I = |U|, and k = |T'|. The Jacobi
diagram I' defines a map

O (°V @ A1)*T @ (End V)*Y L <® V®t> ® APT @ VOU g (V*)®U
teT
ﬂ) Ver ® (V*)®U ®A?T
ﬂ, ® Ve g (V*)®U ® A?T
ecE

2 (e o (V)® @ (4)F
l
BN v e AL
(62)
where

(1) is induced by the inclusions of the symmetric tensors S*V in the spaces
V@ with t € T (note again that ¢ is a set of three elements), and the
canonical identification EndV =V ® V*,

27
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(2) is induced by the canonical bijection U II [[,.,t — F which is on each
t € T the inclusion of the subset ¢ in F' and which maps each u € U to
the flag belonging to wu,

(3) is induced by the associativity of the tensor product (note that [[..5e =
P),

(4) is induced by choosing an arbitrary ordering of the set E, and total order-
ings of the sets e € F, the set U and the set T that are compatible with
the orientation of the graph I', and

(5) is given by ((v1®v2)®- - @ (V3 41-1@V35+1)) R (1@ - Ry R (a1 Q- - -Ray)
= o(vi,vg) - O (V3k1—1,V3k41) - (@1 A - Aay) @ (ag - -+ - - a).

The map ®! is independent of the specific choices made in (4). Especially chang-
ing the ordering of E does not change the map though the ordering of E is not
mentioned in the compatibility condition.

Further, we define

dO : k- k,1+— —dimV, (63)
the “Jacobi diagram” () being the element used in the construction of the extended
graph homology space.

One defines

RWo.o(I) = @7 (a®" @ (idy)*"); (64)
in particular,
RW, o(O) = —dimV. (65)

The following proposition summarises some of the properties of the maps &
we need later on. All of them follow directly from the definitions.

PROPOSITION 16. Identifying the set of the univalent vertices of £ with the set
{1,2}, we have

EndV /\ ’111 X )\1) (’UQ X /\2) — 0’(’()1,’[}2) . (/\1 A /\2) (66)

for all vi,ve €V, A1, Ag € V*.

Let k € N. Identifying both the set of the univalent vertices and the set of
the trivalent vertices of the wheel waoy (viewed as a Jacobi diagram) with the set
{1,...,2k}, we have

o2k : (SPV ® A;)%%* @ (End V)®?F — /\ ) ® Aag,

2k 2k

®(U?®ai)®®(wi®)\i) = — H (o(vi, vig1) - o(vi, w;)) /\/\ ®Haz
i=1 i=1 i€Z/(2k)

(67)

for allvi,w; € V, \; € V* and a; € Ay.
Let T and TV be two Jacobi diagrams with univalent vertices U and U’ and
trivalent vertices T and T'. Let the cardinalities of T, T', U, U’ be k, k', 1, I.
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Then the diagram

((S*V ® A1)®T @ (End V)®Y)

2 oo (/\QI(V*) ? A2k>

® ((5'V @ 4)° @ (End V)*"") ® (/\QZI(V*) ® Azk/>

| l

(SV © AT @ (End V)SUI)  —— AP (V) @ Ay,

prur’

(68)
where the vertical maps are the canonical ones, and the diagram
a.
((S*V ® A1)®T ® (End V)®Y) - (/\ (V) ® A2k>
/ ’ E— ,
® ((8°V @ 41)°7 @ (End V)°V") o (A% Ve AQk’)
(S3V ® A1)®T @ (S3V @ A;)®T — As(tir

> T,/

(69)

where the left vertical map is induced by tensoring with the identity on V and the
right one is just (137) (see Appendiz A), commute. If both T' and I' contain a
component £, we have, of course, to work in the extended space of graph homology.

2. Rozansky-Witten classes of irreducible holomorphic symplectic
manifolds

Let X be an irreducible holomorphic symplectic manifold, and o a fixed holo-
morphic symplectic form on X. We denote by A¥(X, E) the space of differentiable
(0, k)-forms with values in a holomorphic vector bundle E. We set AY*(X) :=
AR(X, Q).

Let & € AY(X, Qx ® End Tx) be a Dolbeault representative of the Atiyah class
of X, i.e. & represents the extension class of the sequence

0 —— Qx®Tx — J7x Tx 0 (70)

in Extﬁ( (Tx,Qx ®Tx) = HY(X,Qx ®End Tx). Here, J!7x is the bundle of one-jets
of sections of Ty (for more on this, see [20]). The Atiyah class can also be viewed
as the obstruction for a global holomorphic connection to exist on 7x.

We can use o to identify the tangent bundle 7x of X with the cotangent
bundle Qx. Doing this, & can be viewed as an element of A(X, T)?B). Now the
point is that it & is not any such element: The following proposition was proven by
Kapranov in [20].

PROPOSITION 17. The representative & can be chosen to lie in A*(X,S37Tx),
i.e. the values of & are symmetric tensors.

From now on, let & be such an element.

DEFINITION 19. For every Jacobi diagram I' with k trivalent and [ univalent
vertices, one defines

RW,(I') € H* (X, Q) (71)
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to be the Dolbeault cohomology class of the (9-)closed (I, k)-form
(z = RWo, o, (I) € A" (X), (72)

where
= (73)
o= —a.
2m
For a C-linear combination « of Jacobi diagrams, RW,(vy) is defined by linear
extension.

REMARK 19. That the form defined in (72) is 0-closed follows from the fact
that o and « are O-closed.

Similarly, changing a by an d-exact form leaves RW,(T') invariant up to an
0-exact form. Therefore, RW,(I") depends only on the cohomology class of a.

In [20], Kapranov also showed the following Proposition, which is crucial for
the next definition. It follows from a Bianchi-identity for the Atiyah class.

ProrosITION 18. If v is a Q-linear combination of Jacobi diagrams that is
zero modulo the anti-symmetry and IHX relations, then RW, () = 0.

DEFINITION 20. We define a double-graded linear map
RW, : B — H*(X,Q"), (74)

which maps By, into H*(X, Q!) by mapping a homology class of a Jacobi diagram
I to RW, (I).

The values of the just defined map RW, are called Rozansky-Witten classes of
the irreducible holomorphic symplectic manifold X .

We can extend the Definition of Rozansky-Witten classes associated to graph
homology classes to the extended space of graph homology by setting RW, (wy) =
RW,(0O) = —1k(7x) = —dim X in accordance with the definition of ®©. Doing
so, we extend RW, to a double-graded map

RW, : B[O] — H* (X, Q%). (75)

3. Examples of Rozansky-Witten classes
Let X and o be as before.

EXAMPLE 14. The Dolbeault cohomology class [0] € H*%(X) is a Rozansky-
Witten class; more precisely, we have

RW, (£) = 20, (76)
which follows from (66).

The following example is due to Hitchin and Sawon [15]. It is of great impor-
tance for their and our results.

EXAMPLE 15. Let ch(X) = Y77 sox/(2k)!, s2 € H?*2%(X), be the Chern
character of X. Then

RWU (wzk) = —S9k (77)

for all £ € Ny. (Note that for a holomorphic symplectic manifold, ch(X) has no
term in degree (k, k) for k odd as said in chapter 2.)

Since the algebra of characteristic classes of X is spanned by the classes sof,
every characteristic class is a Rozansky-Witten class due to Proposition 19 below.
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A proof of (77) is given by Hitchin and Sawon in [15], where the Rozansky-
Witten invariants are defined by using the Riemann curvature tensor of a hy-
perkédhler metric of X instead of the Atiyah class. An idea of the proof in our
context is given below.

IDEA OF THE PROOF OF (77). We can assume k > 0 (the case that is consid-
ered by Hitchin and Sawon) since the statement for k£ = 0 follows directly from the
definitions.

As remarked in [20] by Kapranov, a Dolbeault representative of the Atiyah class
a € AY(X,Qx®End Tx) on every Kihler manifold X is related to the characteristic
classes sg, € H2M2K(X) of X in the following way: A Dolbeault representative of
s, is given by Alt(tr(a)). Here, of € A*(X, Q9" @ End Ty ) means taking the k-th
product of a viewed as (0, 1)-form, giving an element of A*(X, Q%* @ x (End Tx)®*),
and then using the associative algebra structure of End 7x. Further, tr means
taking the trace on End 7x, and Alt is induced by the canonical projection Q}e}k —
k= A Qx.

That this procedure on holomorphic symplectic manifolds is essentially (i.e.

up to a sign) the same as taking the Rozansky-Witten class of a wheel follows
from (67). O

EXAMPLE 16. The Todd genus of a holomorphic symplectic manifold X is given
by

td(X) = exp (—2 i b2k52k> ; (78)
k=0

with bag, being a modified Bernoulli number (see [15] for this statement). Thus,
td(X) = RW,(Q?) (79)
and
6 (1) (X) = RW, (Q(n)) (80)

for all 4 € C (see (10)). Here, we have used the following Proposition 19.

4. Properties of Rozansky-Witten classes

PROPOSITION 19. The map RW,, : B[O] — H**(X) is a morphism of graded
Q-algebras.

PROOF. The statement follows from (68). d

PROPOSITION 20. Let ,~" € B[O] such that {,v') € B[QO] C B[[Q]]. Then
RW, ((7,7") = (RW,(7), RW, (7)) , (81)
where (y,7') is given by (28) lifted on the level of cohomology.

PROOF. The statement follows from (69). d

The following proposition is also stated in [15] in a slightly different notation.
With the formalism we have introduced so far, we can give a compact proof.

PROPOSITION 21. For the Rozansky-Witten class of ©, we have

_ 2 [ c2(X)exp(o + 7)
n [y exp(o + )

RW,(©) -[a]. (82)
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PROOF. Due to the irreducibility of X, i.e. H?*(X, Ox) = C-[5]* for all k € Ny,

we can write

_ Jx aexp(o+ )
- n [ exp(o+0)
for all € H*2(X). Using this, we have

(67

o] (83)

RW,(©) = RW, (% <w2,€>) _ % (RW 5 (ws), RW 5 (£))

2 [ (c2(X),expo) exp(o + 7)
n [y exp(o +a)
which proves the proposition because of Proposition 29 (in Appendix A). (]

= (—s2,0) = 2(ca(X),expo) = -[o], (84)

Inspecting the action of the graph homology operator d on the level of cohomol-
ogy, we see that it is just contracting by the symplectic form (see also appendix A).
Therefore, the following diagram commutes:

BO] —%  BO]

RW, lRWo (85)
H (X, 05) —— (X, 0%).
Since also the diagrams
BO] —F~ B0
RW(,J( lRW(, (86)

H*(X, Q%) - H* (X, Q%)

o

and

BO] —— B[O
l [ 7
H*(X,Q}) T) H*(X,Q})

RW,

commute, the following proposition is proven:

PROPOSITION 22. The map RW, : B[O] — H*(X,Qx) is a morphism of sla-
modules where the sly-module structure on B[Q)] is given by (£/2,—9, H), and the
sly-module structure on H*(X,Qx) is given by (Lo, Ay /s, H).



CHAPTER 6

The Euler characteristic of a line bundle in terms
of the quadratic form

1. Some calculations in the graph homology space

For convenience of the reader, we recall the definition of the Chebyshev poly-
nomials:

DEFINITION 21. For every n € Ny the n* Chebyshev polynomial is that poly-
nomial with Q-coefficients that fulfills

T, (x) = cos(n arccos x) (88)
for all x € R for which arccosz is defined.
We shall need the Chebyshev polynomials due to the following fact:
LEMMA 3. Let be q,z € C such that
q+ q*1 = z. (89)
Then
¢ +q7F =21 () (90)
for all k € Ny.

PROOF. We can assume that z € [—2,2]. Then ¢ = e*** with z = arccos 2.
Therefore,

¢" +q7F = e 4 e7* = 2 cos(kx) = 2 cos(k arccos g) = 2T} (E) .

2
O
COROLLARY 2. Let o, B, \, u € C such that
() + (B/m)* = o + % + A, (91)
It follows that
a® + 5%+ )
(o + (30 = 20T (5552 (92)

REMARK 20. Note that the right hand side of (92) is a polynomial in a?, 32, A
of degree 2k since T} is an odd (if k is odd) or an even (if k is even) polynomial of
degree k.

PROOF. We can assume that o, 3 # 0. Set ¢ := (a/B)u?. It follows that
q+q ' =a/B+B/a+ )N/ (af). Now use Lemma 3 and multiply both sides of (90)
with (a3)*. O

33
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PROPOSITION 23. Let a, B, A € C. In B, we have

fa)s).exn(t/2) e  150)
= <eXp (2;b2kw2k(aﬁ)k7’k (%)) ,eXp(€/2)>. (93)

PRrROOF. Without loss of generality, we can assume that «, 3 # 0. Let us choose
a p € C with

(ap)® + (B/1) 72 = ® + % + X,

Note that (Q(a), Q(8)) = (Qaw),2(B/p)). By Proposition 14, Theorem 3, and
the preceeding Corollary 2:

fa)).exn(t/2) e  150)

= (exp(0)Q(«), exp(9)Q(3) eXP( ) 48

+62+A9>

(8)) exp (M@

— (o), Q) exp ( (exp(9)Q2ap). exp(D)U5/ )

o0

= (Qap)UB/ 1), exp(€/2)) = <6XP (Z bogway, ((ap)®* + (ﬂ/u)%)> ,exp(£/2)>

k=1

= <eXp <22 bgkwgk(aﬁ)ka (%)) 7e){p(€/2)> .

k=1
(94)

O

2. Applications to irreducible holomorphic symplectic manifolds

Let X be an irreducible holomorphic symplectic manifold with symplectic form
o, dim X = 2n.

DEFINITION 22. For every a € H2(X, C) let us define

Jx c2(X) exp(a) ’ (95)

A@) 2AnJexp(e) e ol defined
Q) =
0 otherwise.

For L a line bundle on X, we set A(L) := A1 (L)).
REMARK 21. Expressing (82) in terms of \ gives

Ao +0)

m EWe(©) =Ial. (96)

Here, we have used that [, c2(X)exp(oc + ) > 0 since this expression equals
the L2-norm of the Riemann curvature tensor of X (having been equipped with a
hyperkéahler metric compatible with the given symplectic structure) up to a positive
constant (see [15]). But if the Riemann curvature tensor vanished, X would be a
torus, which contradicts the assumption on irreducibility. Therefore A(c + &) > 0.

Applying Proposition 23 to Rozansky-Witten classes of X leads to the following;:
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THEOREM 4. For all a, 3 € C and all w € H*(X,C), we have

/X % (0) (X)td ¥ (8)(X) exp(w)

= [ exp| — S sok(aB)” —a2+52+)\(w)
—/X P( 2;6% ok (a3) Tk( Y )) (97)

PROOF. We calculate step by step:
[ @t ()X exp(o +)
by (80) and Proposition 29 (in Appendix A):
— [ B (@), exp () explo +0)
due to (76), (81), Remark 21, and Proposition 19:
= [ row, (@) exn/yen (226 ) o)

by applying Proposition 23:

:/X RW, <<exp <2ib2kw2k(a6)ka <a2 * 522—;;(0 * 5)>> ,exp(€/2)>> .

k=1

- exp(0)
by (77), (81), and Proposition (19):

St 2 2 o+o
:/Xexp <—2k§:1b2k82k(aﬂ)ka (a +5 2—;2( + )>> exp(o)

by degree reasons:

oo ) , )
A )

Thus, we have proven the proposition for the case w = 0 + . Due to Proposition 4
and the deformation invariance of the Chern classes, this suffices to prove that the
proposition holds for all w € H?(X,C) (by scaling o + & we can split the equation
in its homogeneous parts). O

COROLLARY 3. For all w € H?(X,C) we have

oo
/ £} (X) exp(w) = / exp [ =S basar(1 4+ @) | = (1+ )\(w))”/ td}(X)
X X 1 X
(98)
PROOF. Set o =1, 8 = 0in (97). Then use Ty (z) = 2*~1z¥ + ... (up to terms
of lower degree) for k > 0. This proves the first equality. The second follows from

the fact that integrals over products of the so vanish if the total degree doesn’t
sum up to the dimension of X. O

COROLLARY 4. For allw € H?(X,C) we have

/ td? (X)w? = 2n\(w) / td? (X), (99)
X

X
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and

/Xw " (2n)!/\(w)"/ 1} (X). (100)

X
In particular, [ td? (X) # 0.

PROOF. Just substitute w in (98) by tw, expand the left and the right side in
t, and compare coeflicients. O

REMARK 22. Firstly, (99) shows us that A defines a quadratic form on H2(X, C)
which is induced by a rational quadratic form

A H2(X,Q) — Q

since td? (X) is a rational cohomology class.

Secondly, by (100) the n*'-power of ) is up to a positive multiple (Jx td? (X) >
0, see [15]) the top intersection product of classes in H?(X,C).

Since A(c+37) > 0 (Remark 21), we have proven Theorem 2 in 3 (see Remark 10
and Proposition 11).

We will call A the unnormalised Beauville-Bogomolov quadratic form of X.

REMARK 23. Let us plug (99) back into (98). This gives us

(b o) =) (o) () om

for all k € {0,...,n}, a formula which has been used by Huybrechts in [16].

REMARK 24. By decomposing (97) in homogenous parts with respect to w, we

see that the constant ¢ 1 1 in (25) (here, we work with the unnormalised
td2 (X)optd2 (X))o

Beauville-Bogomolov form) with o = td? (X)a,td? (X)y for k,1 € Ny is given by a
universal polynomial in certain Chern numbers of X. Together with Proposition 13
this can be used to determine W(td%(X)thd%(X)Ql). For example, m(c2(X)) can
be calculated. If the Chern number [ c2(X)" does not equal [ m(cp)" =u" [ PR

where m(c2(X)) = ul, one knows that ¢y(X) is not entirely contained in SH2.

COROLLARY 5. For all w € H?(X,C) we have

/Xtd(X) exp(w) = /X exp <—2ib2k32ka <1 + ¥)> . (102)

k=1
PROOF. Set « =3 =1 1in (97). O

3. A Hirzebruch-Riemann-Roch formula

The following theorem is actually an application of Corollary 5 for w being the
first Chern class of a line bundle.

THEOREM 5. Let X be an irreducible holomorphic symplectic manifold. For
every line bundle L on X, the Euler characteristic of L can be expressed as

x(L) = /Xexp (—Zibng%Tk (1 + @)) , (103)

k=1
which is a universal (i.e. depending only on X ) polynomial in the (unnormalised)
Beauwille-Bogomolov form of the first Chern class of L.

ProoOF. Using the usual Hirzebruch-Riemann-Roch formula for the Euler char-
acteristic of line bundles on compact complex manifolds and the fact that ch(L) =
exp(c1(L)), we see that the theorem is an immediate consequence of Corollary 5. [
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EXAMPLE 17. Let us write A for A(L) in this example. Then the integrand of
the right hand side of (103) is given by

14 (gt 2ep-a
12\ 3%

1 7
720 (302 —ca+ (503 - 2C4> A+ < - —04) >
9
2

. 9 41 53
(503 — 50204 + cs> + ( 02 —CoCy + — ) A

1 4 4

30240 93 33 31 11 1
(Ecg — 10204 + 306) A2+ (32 3 §6264 + 566) A3

(104)

_|_...7

where the ¢; denote the Chern classes of X.
There are (at least) two possibilities to write (103) in another form. One is to
define “deformed Todd genera” tde, € € C:

DEFINITION 23. Let X be an irreducible holomorphic symplectic manifold. We
set

tde(X) = exp <—QZ borsarkTr(1 + 5)) ; (105)
fe. tdo(X) = td(X). -

Applying this definition to equation (103), it becomes

X(L):/Xtde(X) (106)

with e = A(L)/2.

The other possibility is to speak of a deformed tangent bundle: Let us recall
some facts about the Grothendieck ring K"(X) of complex vector bundles over
X (see for Example [1]). After tensoring with C, the Chern character gives us a
ring homomorphism ch : K°(X,C) — H*(X,C) and taking the Todd class gives
us a group homomorphism td : K%(X,C) — 1+ H*>%(X,C). Furthermore, there
are the Adams operations ¢? : K°(X,C) — K% X,C), p € N, which are ring
homomorphisms with ¢?(L) = LP for every line bundle L. The ¢? commute, and we
can write K°(X,C) = @72, Gr**K°(X,C) where Gr**K°(X,C) is the eigenspace
of ¥P (for p > 2) to the eigenvalue p*. Using this grading on K°(X,C), the Chern
character becomes a homomorphism of graded rings.

If M = @ieNo M; is a graded R-module, R a commutative ring, and (\;);en, is
a sequence in R, we define a morphism of graded modules (\;)ien,- : M — M, m €
M; — )\; - m. This definition will be applied to K°(X, C):

DEFINITION 24. For every complex number ¢ € C and complex manifold X,
one defines a homomorphism

¢ 1 KO(X,C) —» K*(X,C), E — (T;/5(1 + 5))@0 -E (107)

with T(9j11)/2 for j € Ny defined arbitrarily.
Applying this definition to our irreducible holomorphic symplectic K&hler man-
ifold X, the equation (103) becomes

X(L) = /X td(6e(Tx)) (108)
with & = A(L)/2.






CHAPTER 7

The Chern numbers of generalised Kummer
varieties

In this chapter we will develop a formula which links the genera of the Hilbert
schemes of points on surfaces with the genera of the generalised Kummer varieties,
leading to a method for calculation the Chern numbers of the generalised Kummer
varieties.

1. More on the generalised Kummer varieties

In chapter 2, we introduced the generalised Kummer varieties. These will be
the objects of interest in this chapter.

Let us recall the notation: For X a smooth projective surface over the field
of complex numbers, we denote by X" the Hilbert scheme of zero-dimensional
subschemes of X of length n. By a result of Fogarty ([12]), this scheme is smooth
and projective of dimension 2n. We continue to write p : X[ — X® for the
Hilbert-Chow-morphism, where X = X" /&, is the n*-symmetric product of
X.

For A being an abelian surface, the generalised Kummer variety A" was
defined to be the fibre of the summation morphism o : A" — A over 0, where ¢
factorises over p : A"l — A,

Now we want to study the Hilbert schemes of points on surfaces and the gen-
eralised Kummer varieties a little bit more deeply. Let us start with the following
observation:

Let A be an abelian surface again. Since A acts on itself by translation, there
is also an induced operation of A on the Hilbert schemes AM. Let us denote
the restriction of this operation to the generalised Kummer variety Al™! by v :
A x AllMl — A"l The following diagram is cartesian:

Ax Alnll ¥, Aln]
w | | (109)

A — A

Here, n : A — A,a — na is the (multiplication by n)-morphism. It is a Galois
covering of degree n*. Therefore, also v is a Galois covering of degree n?.

Next, we want to introduce certain line bundles on the Hilbert schemes and gen-
eralised Kummer varieties that are constructed from line bundles on the underlying
surface:

Each line bundle L on a smooth projective surface X gives us a line bundle L,,
on X[ in the following way: L¥" is a &, -invariant line bundle on the n**-product
X" of X. Therefore, we can define the sheaf L™ := (7, (L¥"))®" of &,-invariant
sections of 7, (L") on X (™ where 7 : X™ — X (") is the canonical projection. The
pull-back L, := p*L{™ by the Hilbert-Chow morphism is a line bundle on X[,
Note that Pic(X) — Pic(X!"™), L — L, is a homomorphism of groups.

39
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This construction has already appeared for example in [9] and [5]. If X is
an abelian surface, we denote by L[™! the restriction of L, to the generalised
Kummer variety X"l € X", By using the seesaw principle (cf. [24]) together
with H'(X["]), it can be shown that

v*L, = L" X L[] (110)
(cf. [5]).

Besides L, one can define certain further sheaves on X" that are constructed
from sheaves on X. They are called tautological sheaves of X[ (cf. [21]). The
construction is as follows: Since X [™ represents a functor, there is a universal family
2, C X[l x X of zero-dimensional subschemes over X[™. Let us denote by O, its
structure sheaf. For any locally free sheaf F' of rank r on X, we define the sheaf
FI = p, (0, ® ¢*F) on X" where p: X" x X - X" and ¢: XM x X — X
are the canonical projections. FI[™ is again locally free of rank nr.

The connection between L,, and L™ is as follows: As noted in section 5 of [9],
we have

det(FI") = det(F), ® (det OF ) F (111)

for any locally free sheaf F' of constant rank on X. Applying this to F' = L leads
to

Ly, = det(L") @ det (071 (112)

2. Complex genera in general

Let Q := QY ® Q denote the (rational) complex cobordism ring. By a result
of Milnor ([23]), it is generated by the cobordism classes [X] of all complex mani-
folds, and two complex manifolds X and Y lie in the same cobordism class if and
only if they have the same Chern numbers, i.e. the Chern numbers determine the
cobordism class and vice versa. Recall that the sum in the ring is induced by the
disjoint union of manifolds, and the product by the cartesian product of manifolds.

A complex genus ¢ is a ring homomorphism ¢ :  — R into any Q-algebra
R. By Hirzebruch’s theory of genera and multiplicative sequences ([14]), the R-
valued complex genera are in one-to-one correspondence with the formal power
series fy € R[[z]] over R with constant coefficient 1. The correspondence is given
as follows:

o) = [ TLsot) (113

for all complex manifolds X, where n is the dimension of X, and 71, ..., are the
Chern roots of its tangent bundle.

Since the cobordism class is known if one knows the value of all genera (it
suffices to know the value of the universal genus idg : Q — ), the knowledge of
the values of all genera implies the knowledge of all Chern numbers.

Now, let us slightly generalise the notion of a genus.

DEFINITION 25. Let ¢ be a complex genus. For a complex manifold X together
with a line bundle L on X we define

wxm:Aﬂ@Hmm (114)
=1

as the genus ¢ of the pair (X, L).
REMARK 25. Obviously, ¢(X,0x) = ¢(X).
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ExaMPLE 18. If td(X) denotes the Todd genus of X, and x(X, L) the holo-
morphic Euler characteristic of the line bundle L on X, we have by the Hirzebruch-
Riemann-Roch Theorem that

td(X, L) = x(X, L). (115)

The genera of pairs (X, L) have the following properties, which follow directly
from the appropriate properties of Chern classes/roots.

PROPOSITION 24. Let ¢ : Q2 — R be any complex genus with values in R. We
have
(1) (X xY, LR M) =¢(X,L)-d(Y, M) for two complex manifolds X and
Y together with a line bundle L resp. M.
(2) ¢(X,v*L) = deg(v) - ¢(Y, L) for any Galois covering v: X —Y and any
line bundle L onY .

Given a genus, we can deform it in the following sense to get a new genus:

DEFINITION 26. Let ¢ be a complex genus with values in the ring R. By ¢; we
denote the genus with values in R[¢] given by

n

(X)) := /X H (folvi)e™) (116)

for any complex manifold X.

REMARK 26. For any integer n, we have ¢,(X) = ¢(X, K{"), where Kx is
the canonical line bundle on X.

ExXAMPLE 19. Let x, be Hirzebruch’s x,-genus, and x,. the twisted x,-genus
(see [30]). In our notation, xy. = (Xy)=-

3. Complex genera of Hilbert schemes of points on surfaces

In this section we want to cite some of the results of [9] and give some corollaries
which will be used later on.
Let X be a smooth projective surface. Following [9], we define

[e )

Hy =Y [XIM]zn (117)
n=0

as an (invertible) element in the formal power series ring €2[[z]]. Analogously we
define

K =y [Alln]zn (118)
n=1

in Q[[z]] where A is any abelian surface. The cobordism class does not depend on
the choice of A since the generalised Kummer varieties deform with A. We can
reformulate our task to determine the Chern numbers of the generalised Kummer
varieties by asking: What is the value ¢(K) € R|[[z]] for any complex genus ¢ : 2 —
R?

The following lemma is a generalization of Theorem 4.2 in [9] for line bundles.

LEMMA 4. Let k be a nonnegative integer, my,...,my € Z, and ¢ : Q@ — R
be a genus. Then there exist uniquely determined universal power series A;; €
R[[z],1 <i<j<k,and By,...,By € R[[z]], and C, D € R|[[z]] depending only on
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¢ and my, ..., my such that for every smooth projective surface X, and line bundles
Li,...,Lg on X, we have

i ( ,det(L H) ®~~®det(LLn])m’“)z”

=exp Z ( A”_‘_ch B —|—Cl( )20+CQ(X)D

1<i<j<k
(119)

(Remember that top intersection products on surfaces are to be understood as in-
tersection numbers.)

PROOF. First note that for £ = 1 the statement of the lemma is just Theo-
rem 4.2 of [9] for the case of line bundles with ¥ (in the notation of [9]) being the
Chern character of the mi® power of the determinant.

Theorem 4.2 of Elhngsrud Gottsche and Lehn, and the proof presented by
them can be easily generalised for more than one bundle, i.e. for k£ > 1. Therefore,
our lemma as a specialization of this generalization is proven. O

From the lemma we conclude the following:

PROPOSITION 25. Let ¢ : 2 — R be a genus. Then there exist uniquely de-
termined universal power series Ay, By, Cy, Dy € R[[2]] depending only on ¢ such
that for every smooth projective surface X together with a line bundle L on it, we
have

o(Hx,r) Z ¢ ( X, Ln) 2" (120)
= exp (cl(L)2A¢ +c1(L)er(X)Bg + e1(X)?Cy + e2(X)Dg) . (121)

PROOF. We use (112). By the previous lemma,

HXL i ( det [n])®det(0[)?])71) z
e c1(L)? A1 + e1(L)e1(Ox)Arz + ¢1(Ox ) Asz
Pt ci(D)e(X) By + e1(0x)er (X) Bs + e1(X)?C + s (X)D

for certain power series A, ;, B;, C, D independent of X and L. Since ¢1(Ox) =0,
this proves the proposition with Ay = A11, By = B1,Cy = C and Dy = D. O

It is possible to express the power series A, in terms of genera of Hilbert
schemes of points on surfaces:

PROPOSITION 26. Let ¢ : 0 — R be any genus. For every smooth projective
surface X,

_ 1, ¢1(Hx)é 1 (Hx) (122)

PROOF. In [19], it is proven that the canonical bundle of X[ is K, where K
denotes the canonical bundle on X. It follows K™ = (K~™),.
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Using this we have by Proposition 25 that

In ¢ (Hx) 1n2¢m ":1ni¢(X”
n=0

= m2A¢cl (K) — mB¢cl (K)Cl (X) + C¢Cl (X)2 + D¢CQ(X)
= (m2A¢ + mB¢ + C¢)Cl (X)2 + D¢02(X) (123)

for all integers m, which proves the proposition. (I

4. Complex genera of the generalised Kummer varieties

In this section, we will relate the (generalised) complex genera of Beauville’s
generalised Kummer varieties to the complex genera of Hilbert schemes of points
on a surface, which we studied in the previous section.

The first step in this direction is the following:

PROPOSITION 27. Let ¢ : Q@ — R be a complex genus with values in the Q-
algebra R. For every abelian surface A together with a line bundle L on it, we
have

c1 (D)2 (A Ly = 9n2p(AM  1,) (124)

for all positive integers n.

PROOF. We will make use of (110). Recall that v is a Galois covering of degree
n*. By Proposition 24 we have

o(A, L") (Al LIy = (A x Alln] e g Ll
= ¢(A x A ["]]71/*Ln) — ’I’L4¢(A["],Ln), (125)

which proves the proposition, once we have shown that ¢(A, L™) = %2c1(L)2. This
follows from the fact that the Chern classes of an abelian surface are trivial:

L 1 (Ln)Q n2
o041 = [ ottt = | AT~ Tawe, o
A A
where we have used that f4 is a power series with constant coefficient 1. O

In [5], M. Britze and the author expressed the (holomorphic) Euler charac-
teristic of the line bundle L™ in terms of the Euler characteristic of L in order
to deduce a formula for the Euler characteristic of an arbitrary line bundle M on
All" as a polynomial in the Beauville-Bogomolov quadratic form of ¢;(M). By
using the analogous expression of the Euler characteristic of the line bundle L,
on A" (see [9]), we get the mentioned result of [5] as a corollary of the previous
proposition:

COROLLARY 6 ([5]). The holomorphic Euler characteristic of the line bundle
L on Al Gs given by
A L)+n—1
Al piy — o (XA , 12
XAl L) = (XL BT (127)

PROOF. By Lemma 5.1 of [9] we have
a1 - (A8

n
Using this, the corollary follows from the proposition applied to the case for ¢ being
the Todd genus (remember Example 18). Also note that x(A, L) = +¢1(L)? by the
Hirzebruch-Riemann-Roch formula. (]

(128)
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From this and our results of the previous chapter, we can conclude an explicit
formula for the Euler characteristic of a line bundle L on All"l as a polynomial in

A(L):
PROPOSITION 28. Forn € N and L a line bundle on Al we have

BA(L) +n— 1)7

(Al )y = n<4 R (129)

where X is the unnormalised Beauville-Bogomolov form of Al (see remark 22).

PRrROOF. Since we know that the Euler characteristic of L can be expressed by a
polynomial formula, all we have to show is that ZA(MM) = (A, M) = ¢1(M)?/2
for all line bundles M on A.

By [3], one knows that A(M ™) coincides up to a positive factor with ¢;(M)2.
We just have to calculate the factor. Note that for m € Ny, we have

er (™)) = ) ((MI)™) = ey (M170),

By the Hirzebruch-Riemann-Roch Theorem in its classical form:

X(A[[nn,(Mnnn)m):mznfz/ ch(MI)
Allnl]

(]
+m2n—4/ 2 iy 4
Al 12

Compare this with (128) for L = M™. This formula gives:

n

([n]] (lpllymy — gp2n—2____ "

(e (M)?)"

n?(n —
+ m2"472n_1((n _11))! (cr(M)*)" 24 ...

Comparing coefficients of m?"~2 and m?"~4, we find

24(n — 1) [y ch(MM) 2
Ay — Alln) = Ze (M)
X ) Laran c2(Al)ch (71T 7161( )

This proof has already appeared in [5], and is due to M. Britze and the author.
O

If we are interested in the usual genera of the generalised Kummer varieties,
i.e. the genera of the pairs (A[["”,(’) Alln)), We cannot use Proposition 27 directly
since for L = O 4 it just states 0 = 0.

However, it is still possible to make use of the proposition. We have to look at
all generalised Kummer varieties at the same time. Doing so, we get the following
main result of this chapter:

THEOREM 6. Let ¢ : Q2 — R be a complex genus with values in the Q-algebra
R. For every smooth projective surface X with fX c1(X)2#£0,

1 <d>21n¢1(HX)¢—1(HX).

oK) = a0 \Fa ()’ (130)
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PrOOF. Let L be any line bundle on A. We have

[eS) 00 d 2
c1(L)? Z¢(A[[n]]’L[[n]])Zn = 22n2¢(A[”],Ln)z" =2 (Z&> d(HaL)
n=1 n=1

=2 (z%) exp (c1(L)*Ag + c1(L)c1(A)By + c1(A)*Cy + c2(A) Dy )

=2 <z%> exp (e1(L)*Ag) =2 <z%> e1(L)?44 + O ((c1(L)?)?), (131)

which together with Proposition 26 proves the theorem, since there are line bundles
on A with ¢;(L) # 0. O

Let idg : © — Q be the universal genus. Like any other genus, we can deform
it to a genus (idg): : @ — Q[t]. If X € Q is a rational complex cobordism class, we
write

X := (idq)«(X) € Q[t]. (132)
With this notation, we can express the cobordism class K by
__1 (.4 an (Hx)1(Hx)-1
c(X)2 \"dz H%
for all surface X with ¢;(X)? # 0.

(133)

REMARK 27. Of course, everything in this chapter still holds true if we replace
the abelian surfaces A from which we constructed the generalised Kummer varieties,
by an arbitrary complex torus of dimension two.

We used Theorem 6 to produce a table of all Chern numbers of the generalised
Kummer varieties up to dimension twenty. It can be found in Appendix B.






APPENDIX A

Some linear algebra

In this appendix, let k denote a field of characteristic zero, V' a k-vector space
and A a k-algebra.

We identify the exterior algebra A V* ®; A with the space @.'_, Alt"(V, A) of
alternating multilinear forms on V' with values in A as vector spaces by setting

(a1 A ANay) @ a)(vr, ..., vp) = det((ai(v)))i5) - @ (134)
for aq,...,a,. € V*, v1,...,v, € V and a € A.

DEFINITION 27. We call an element o € /\2 V* a symplectic form on V and V
together with o a symplectic k-vector space if the map

I,:V—=V*v—o(,v) (135)
is an isomorphism of vector spaces.
REMARK 28. A symplectic vector space is always of even dimension.

If o is a fixed symplectic form on V, we will identify V and V* using the
isomorphism I,. In particular, we have an induced dual symplectic form o* € /\2 \%
on V*.

For the rest of this section, let o be a fixed symplectic form on a 2n-dimensional
k-vector space V.

DEFINITION 28. We define a pairing
<.,.>:(/\v* ®kA) ok (/\V* ®kA) ~A (136)
by setting
(1A Nar)®a,(Bi A+ ABs) @b) = brsdet((0™ (a5, 55))ij) - ab (137)
for a1,...,00,01,...,08s € V* and a,b € A, where 4, is Kronecker’s 9.

This defintion and the following proposition is used in the case that V is the
holomorphic tangent space of a complex manifold at a point p, and A is the algebra
of anti-holomorphic forms at p.

PROPOSITION 29. Let o be a symplectic form on 'V and [ : AN(V*) @ A —

/\2"(V*) ®p A the canonical projection onto the forms of top degree.
For every a € A(V*) we have

/(a ANexpo) = /((a,exp o) €expo). (138)

PrROOF. We can assume that A = kand o = a3 A -+ ANagp € A*P(V*) with
p € Ny, a; € V*. So we have to prove

_ |
aAo=P = (Z' : 7}:') (o, 0P) 0"

47
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Let eq,...,ea, be a symplectic basis of V and 9',...,9%" the corresponding dual
basis of V*, i.e. 0 = Y i 9271 A9? and 0% = Y1 | e2i—1 A €g;. It follows that
o =nl- 9P A A9 T s

<a/\0(”7p),0">

=nl(n —p)! Z
1<i1 < <ip—p<n
=nl(n —p)! Z <C¥1/\"'/\042p,192j171/\192j1 /\.../\192jp71/\192jp>
1<j1<<jp<n
| — )l
= n(n —p)! (o, o).
p!

{ar Ao Aagy NOPITEADPEN L
c AN9Fr T A P2in—e 9L AL /\192">

Since o™ spans /\2n(V*) and (0™, 0™) = n!2, this proves the proposition. |

REMARK 29. Hitchin and Sawon have stated this result for « being a two-form
n [15]. Note that they identify the exterior algebra over V* with the alternating
forms on V' in a different way than we do.

Extending their formula to allow an arbitrary degree of « is crucial for this
work.

For every v € V', we also denote by v : AV*®r A — AV*®y A the contraction
by v, i.e.

T

vl A ANay)®@a) = <Z(—1)i_1ai(v) cap A s ANQG A A ozr> ®a (139)

i=1
for ag,...,a, € V* and a € A. Note that v is an operator of degree —1. On the
other hand, every o € V* defines an operator of degree 1 on A V* ®; A just by

exterior multiplication. Let us denote this operator also by «a.
There are the following (super-)commutator relations between these operators:

ProrosITION 30. Let a, 5 € V* and v,w € V. We have
[a, 8] = 0, [v,w] =0, and [, v] = a(v). (140)

Note that the commutators are to be understood in the graded sense, i.e. we
are actually talking about anti-commutators here.

PROOF. To prove a commutator relation, just apply both sides to an element of
A V*®; A, and show that you get both times the same. This is straightforward. O

DEFINITION 29. Let 6 : AV* ®; A — A V* ®x A be the contraction by o, i.e.
(a1t A~ ANay) ®a) (141)

_ zn: Z (_1)l+m71 (al (62i71)am(62i) - al(egi)am(egifl)) 2a (142)
i '041/\"'/\al/\"'/\am/\"'/\04r
for ay,...,a, € V* and a € A. Here, e, ..., e, is again a symplectic basis for V.
REMARK 30. We have § = E?:l €2i_1€2;.

Left multiplication with o defines an operator of degree two on A V* ® A,
which we also want to denote by o.
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PrOPOSITION 31. The commutator of o and ¢ is given by
[0, 0] = —1I, (143)
with the operator 1 acting on \'V @, A by multiplying with p — n.

Proor. We have

[0’, 5] = Z [192i_1192i, egj_legj]
i,j=1

n <—192i162j1[192i, e2j] + 1921‘71[1921" 62j1]€2j> 2n

. . . ] = (]. - 197;61‘) = —H,
—egj 1 [0%7 e 0% 4 [0 eg; 1] €00 Z

ij=1 i=1

where we have used Proposition 30, and that 21221 Vie; acts on A\ V* @ A by
multiplying with p. O

REMARK 31. Since [II, 0] = 20 and [II, 6] = —2§, we see that (o, —d,1I) is an
slo-triple on A\ V* @y A.

We have applied this result to the situation where V' is the holomorphic tangent
space at a point of a complex manifold. This leads to an sly-action on the level of
cohomology of an irreducible holomorphic symplectic manifold.

The following definition has nothing to do with the preceeding.

DEFINITION 30. For every set S, we denote by A, S the Grafmann algebra
generated by the elements of S over k. If S’ is a subset of S, we view A, (S’)
canonically as a subalgebra of A\, S. We denote by S}!S the n-th symmetric product
of the k-vector space spanned by the elements of S.






APPENDIX B

The Chern numbers of the generalised Kummer
varieties of dimension up to twenty

We have used Theorem 6 to compute all Chern numbers of the generalised
Kummer varieties of dimension up to twenty from the Chern numbers of the Hilbert
schemes of points on the projective plane. Our results are as follows:

Chern number Evaluated on Al*]]
Co 24
c% 756
C4 108
cg 30208

CoCy 6784
Cg 448
0‘21 1470000

6304 405000
cﬁ 111750

CoCgq 37500
Cs 750
cg 84478464

ciey 26220672

cacd 8141472

c3cq 3141504

C4Cq 979776

CoCsg 142560
C10 2592
S 5603050432

caca 1881462016

c%cﬁ 631808744
ci 212190776

c%cﬁ 268796752

C2C4Cq 90412056
c% 12976376

C%Cg 17075912

c4cg 5762400

C2C10 441784
C12 2744
cg 421414305792

0304 149664301056

c%ci 53149827072

cacs 18874417152

C%CG 24230756352

030466 8610545664
cicﬁ 3059945472
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Chern number | Evaluated on All*]]
cocl 1397121024
cies 1914077184

cac4C8 681332736
c6C8 110853120
c3cro 71909376
C4C10 25700352
C2C12 1198080

C14 7680
S 35447947999488
Sey 13129602781824
cic2 4862661530400
cici 1800797040144
ci 666853820172
c5ce 2332758616128

c3cqce 864167470848

cac3cg 320117226120
c3ck 153694101888
cac? 56953381608
cacs 215605377504

c3eycs 79938804096
cleg 29638792620

Co2CgCg 14239224576

c? 1322820801

c3eo 10441752768

C2C4C10 3878495784
CeC10 692780364
c3crn 254566800
C4C12 94850190
C2C14 2685636

C16 9477
3 3297871360000000
chey 1262135680000000
c5cd 482990816000000
el 184814229440000
cach 70712975120000
Sce 240910720000000

cieacs 92197363200000

c3cice 35281909440000
cice 13500841600000
cscd 17605804800000

cacaCh 6738177040000

c 1287476640000
c3cs 25082624000000

c3eqcs 9603236160000

caciey 3676588120000

c3cges 1835380960000

C4C6C8 702799360000
cac? 191623650000
cacio 1459909120000

c3eqcip 559476160000
ccio 214406248000
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Chern number

Evaluated on Al*]]

C206C10 107096280000
csC10 11208918000
ciern 46722720000

C2C4C12 17937420000
C6C12 3443000000
(35(314 774480000
c4C14 298344000
C2C16 6090000

C1s 18000
30 336252992654447616
cSeq 132107428736160768
Se? 51898082311033728
cach 20386379301294336
cic} 8007472661159664
4 3144990890482320
cleg 26693534659013376

cheace 10486371945354624
cicice 4119203015724192
cacice 1617975749261520
cacd 2119158341714304
cieac? 832451953404192
cick 326987093337168
cacl 168265889899008
Ses 3051655882366080
cscacs 1199055419079936
c3cics 471105410929296

cies 185086417093248
c3cqcs 242424490790592
C2C4C6C8 95252580881040
cies 19264369884144
c3ck 27756335356332
cacl 10909113168228
cSero 204371090647680

cieqcio 80342429404512

caciero 31583103012912

c3cgcio 16258455456144

C4CeC10 6391906873440

C2C8C10 1864193494284

3 125480168748
chcio 8013253087488

cieqcio 3153305609256
ciern 1240853563488

C2C6C12 639144656040
Cc8C12 73457352276
cieiy 178626056400

C2C4C14 70412082840
CsC14 14310113400
cieie 2116210140
c4C16 836469612
C2C18 11419980

20 15972
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It is a remarkable fact that all Chern numbers of the varieties Al with n < 11
are positive and divisible by n3. As the known Chern numbers of Hilbert schemes
of points on K3 surfaces are also positive, one can wonder if, given an irreducible
compact hyperkéhler manifold X, all Chern numbers of X are positive.
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