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1. Introduction

Because of the technical nature of the traded good, electricity markets rank among the most
complex of all markets operated at present. Supply and demand have to be balanced in real time,
considering transmission limits and unit commitment constraints. The electricity sector is
characterized by multiple interlinked markets: fuel markets, markets for day-ahead scheduling
and those for real-time dispatch or balancing energy, bilateral trading and auxiliary markets e.g.
for emission allowances. Many energy firms are vertically integrated and act on several markets
simultaneously, thus further complicating their trading strategies. Besides, and given the
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oligopolistic structure of almost all electricity markets, participants have the potential to exert
market power in many of these markets.

These complexities drive most classical modeling methods to their limits. Equilibrium models
either do not consider strategic bidding behavior or assume that players have all relevant information
about the other players' characteristics and behavior; they also disregard the consequences of
learning effects from daily repeated interaction (Rothkopf, 1999). Game theoretical analysis is
usually limited to stylized trading situations among few actors, and places rigid – oftentimes
unrealistic – assumptions on the players’ behavior. Human-subject experiments can be applied to
electricity market research only with difficulties, because some expertise is necessary to realistically
imitate the bidding behavior of a power generator. Thus, for many questions relevant in electricity
market research, human-subject experiments are not an appropriate method.

Given the complexity of the electricity sector and also its high importance for a competitive
economy, researchers and practitioners are increasingly willing to try new modeling methods in
order to gain insights into various aspects of power markets. Agent-based (AB) modeling is one
appealing new methodology that has the potential to overcome some shortcomings of traditional
methods. Within the last ten years, more and more researchers have been developing electricity
market models with adaptive software agents. This field of research is still growing and maturing.
Some first attempts have already been revoked, others have gained popularity.

As the number of AB electricity models that have been published in journals starts to increase,
and given the high attractiveness of agent-based approaches among researchers, this survey might
help to get a sense of the state-of-the-art of the whole research field.1 This literature review is
supposed to guide newcomers or interested researchers through the intricate research field and
points out the weaknesses and open issues that current approaches face. It is structured as follows:
Section 2 gives a brief introduction to the methodology of Agent-Based Computational
Economics (ACE); Section 3 presents the approaches and findings of relevant scientific papers in
ACE electricity market research, and Section 4 summarizes the contributions made by the papers,
points out some shortcomings of the current state-of-the-art, and suggests some lines of future
work in the research field. Finally, Section 5 concludes.

2. Methodology of Agent-Based Computational Economics

2.1. Motivation for AB methods in economics

The electricity sector, and economies in general are characterized by difficult real-world
aspects, such as asymmetric information, imperfect competition, strategic interaction, collective
learning, and the possibility of multiple equilibria (Tesfatsion, 2006). Many of these factors can
not – or only with difficulties – be accounted for with traditional economic modeling techniques.
Analytical approaches usually have to put strong and constraining assumptions on the agents that
make up the economic system under study, in order to set up elegant formal models.

When the concept of complexity came up, the focus in economic analysis shifted from rational
behavior and equilibrium towards heterogeneity and adaptivity (a famous early example being the
simulations of Axelrod, 1997). At the same time, the tremendous availability of computational
resources made it possible to set up large-scale and detailed computational models that allow a

1 We attempt to give a very broad overview of AB electricity market models and present the most relevant work in detail.
The nature of a fast-growing and young research field entails the difficulty to account for all existing research; although great
care has been taken to consider as many papers as possible, it cannot be guaranteed that the survey at hand is exhaustive.

1729                                                  



                      

high degree of design flexibility. AB models offered the possibility of not only describing
relationships in complex systems, but growing them in an artificial environment (Epstein and
Axtell, 1996). AB simulation is, thus, a third way between fully flexible linguistic models and
more transparent and precise but highly simplified analytical modeling (Richiardi, 2004); the
resulting models are dynamic and executable, so that their evolving behavior can be observed step
by step (Holland and Miller 1991).

2.2. Procedure and main concepts

ACE researches the two-way feedback between regularities on the macro level and interaction
of economic actors on the micro level. The actors are modeled as computational agents. The
concept of (computational or soft-ware) “agents” stems from the fields of Distributed Artificial
Intelligence (DAI) andMulti-Agent Systems (MAS). Common definitions of the term characterize
them as autonomous, reactive, goal-oriented, or socially able, just to cite a few (for a discussion of
the term, see e.g. Franklin and Graesser, 1997). However, as Drogoul et al. (2003) correctly
annotate, these features do not all translate into computational properties in agent-based
simulations. Most ABmodels do not require agents to exhibit all the characteristics of the software
agents from the DAI orMASworld; instead, the most important features of agents in ABmodels is
that they are goal-oriented and adaptive. All agents are assigned a value, like e.g. payoff, fitness, or
utility, the amount of which is dependent on their actions in the environment they are placed in.
Under goal-oriented, we understand that agents seek tomaximize this value; adaptivity refers to the
ability to learn which actions to take in order to increase this value over time, and so reach the goal.

In AB electricity simulations, the most common agents that make up the population are
generators, load serving entities, and a market/system operator. Depending on the research
questions, the simulation can also contain regulator agents, a transmission system representation,
retail customers, or others. Agents can also be composed of other agents, thus permitting
hierarchical constructions like utilities.

Another important aspect of agents inABmodels is heterogeneity. ABmodelers are not restricted
to equally sized or symmetric firms, or to other constraints that arise from the limits of analytical
modeling. Instead, every agent making up the modeled economy can be designed independently.
The economy then evolves as a result of the interplay of these heterogeneous agents, i.e. from the
bottom-up. The modeling procedure can be described as follows (Tesfatsion, 2002): After having (i)
defined the research questions to resolve, theACEmodeler (ii) constructs an economy comprising an
initial population of agents and subsequently (iii) specifies the initial state of the economy by
defining the agents’ attributes (e.g. type characteristics, learning behavior, knowledge about itself
and other agents) and the structural and institutional framework of the electricity market within
which the agents operate; the modeler then (iv) lets the economy evolve over time without further
intervention— all events that subsequently occur must arise from the historical time-line of agent-
agent interactions, without extraneous coordination; this procedure is followed by (v) a careful
analysis of simulation results and an evaluation of the regularities observed in the data.

2.3. Applications and open issues

Following Tesfatsion (2006), current ACE research can be divided into four strands: The
empirical, or descriptive strand seeks to understand why and how global regularities result from
the interplay of agents on the micro scale. Normative ACE research uses AB models as
laboratories for economic design alternatives in order to test which policies, institutions, or
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processes perform best in an environment of self-seeking agents. A third strand is theory
generation, i.e. the structured analysis of dynamical behaviors of economic systems under
alternative initial conditions, in order to find necessary conditions for global regularities to
evolve. Finally, ACE researchers continually seek to improve the methodology itself and develop
tools that facilitate setting up computational AB models. Most electricity related research is
centered around the second strand, i.e. normative research with the aim of determining good
market designs that leave little opportunity to exercise market power.

Given the great flexibility that AB modeling allows, and given its potential to represent complex
economic systems, ACE can possibly become one important pillar of electricity sector research.
Besides its advantages, however, some problems exist that researchersmust be aware of and tackle in
the future. Among the current weaknesses of the methodology, Tesfatsion (2006) states that it is not
yet clear how ACE models will be able to scale up to provide empirically and practically useful
models of large-scale systemswithmany thousands of agents. Besides, she annotates the difficulty of
validating ACE model outcomes against empirical data. Especially the last point can clearly be
observed when surveying the agent-based electricity modeling literature (see also discussion in
Section 4, where some suggestions for further research into this problem are given).

3. Paper summaries

The modeling approaches and findings described in the most relevant studies are reviewed in
the following. This review concentrates on AB simulation models for the analysis of market
structures and market design in wholesale electricity trading. Aside from this, some researchers
have applied agent- based methods for examining electricity consumer behavior at the retail level,
e.g. Hämäläinen et al. (2000), Roop and Fathelrahman (2003), Yu et al. (2004), or Müller et al.
(2007); others provide agent-based decision support tools for power market participants, e.g. Praça
et al. (2004), Bernal-Agustín et al. (2007), or Harp et al. (2000). These will not be discussed here.

3.1. Simulations applying model-based adaptation algorithms

Some of the first AB simulation models of electricity systems define their own representation
of how agents adapt to the system they are placed in. These learning representations are usually
tailored for the specific design of the simulated market(s). They do not explicitly rely on findings
from psychological research about learning or on developments from the DAI or MAS fields of
agent learning. These – usually naïve or intuitive formulations – are termed model-based
adaptation algorithms here. The most prominent work in this field has been conducted at the
London Business School; other approaches, such as those by Visudhiphan and Ilić, have also
attracted interest by researchers.

3.1.1 Analyzing trading arrangements in England and Wales — Bower, Bunn et al.
Bower and Bunn (2000) present an AB simulation model of the England and Wales electricity

market. The simulation is designed to compare different market mechanisms, i.e. daily versus
hourly bidding and uniform versus discriminatory pricing.2 Generator agents apply a simple

2 The study is motivated by the proposition that the mandatory pool-based spot market, which existed since 1990, should
be replaced by direct bilateral trading between generators and suppliers. This drastic change in the structure of wholesale
electricity trading in England and Wales had been proposed by the Office of Electricity Regulation as part of the Revised
Electricity Trading Arrangements in 1998, in an initiative to prevent the generating firms from exercising market power.
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reinforcement learning algorithm which is driven by the goal to simultaneously maximize profits
and reach a target utilization rate of the own power plant portfolio. The agents adjust their bidding
strategies according to their last round's success; they either lower, raise, or repeat their last bid
price, depending on whether their utilization and profit targets have been met in the last round, or
not. The demand side of the market is modeled as a static aggregate load curve with limited price
sensitivity. Transmission constraints or costs are neglected.

The results from different scenarios show that simulated market clearing prices are lowest in
the case of daily bidding with uniform pricing, and highest in the case of hourly bidding with
discriminatory pay-as-bid settlement. The authors explain this result by two phenomena: (i) in the
pay-as-bid case, base load generators are forced to bid closer to the market clearing price in order
to maximize profits (in contrast, they bid at prices close to zero in the uniform pricing case); this
reduces competitive pressure on the mid-merit plants; (ii) hourly bidding allows generators to
effectively segment demand into peak load and base load hours and, thus, to extract a greater
portion of the consumer surplus than under daily bidding.

Another finding that the authors report from the simulation results is that for all simulated
scenarios, bid prices fall as the target rate of utilization – which is a simple representation of the
agents’ hedging activity in the forward market – rises. At a target utilization rate of 100%, which
can be assumed for a plant for which the output has already been contracted on the forward market,
prices fall to marginal cost. This observation is consistent with theoretical considerations, i.e. that
the optimal bidding strategy for a hedged power plant is to bid at short-run avoidable costs.

As generator agents in the model also learn across their portfolios and can transfer successful
bidding strategies from one plant to all others, small agents with few power plants have an
informational disadvantage over large firms who can submit more bids and, consequently, gather
more market price information. In their simulation results, the authors find that agents with few
plants perform better in a uniform price setting than they do in the pay-as-bid case. This can be
explained by the fact that, in the uniform case, all agents receive the information of the system
marginal price, i.e. the result of the industry's collective learning; thus the informational
advantage that large generators have in the case of discriminatory pricing is mitigated.

In Bower and Bunn (2001) the computational analysis described above is complemented by a
validation of the simulation model against classical models of monopoly, duopoly, and perfect
competition. The mean simulated market clearing prices for pay-as-bid and uniform pricing are
very close to the corresponding theoretical results in the monopoly and perfect competition
models. In the case of duopoly, however, the difference between pay-as-bid average prices and
uniform system marginal prices is much smaller in the simulation model than in the theoretical
benchmark (£ 279.39 versus £ 262.10 in the simulation, £ 340.00 versus £ 257.50 in the
theoretical model). The similar results for simulated and theoretical prices in the two extreme
cases of monopoly and perfect competition gives confidence in the simulation model
implementation. Nonetheless, it is not clear which conclusions the authors draw from the
comparison of simulation and theory in duopoly and what their results imply for an oligopoly
model (the reader would also have been interested in an evaluation of a simulated oligopoly case
and whether prices in this case are closer to the competitive equilibrium or to the duopoly case).

Bower et al. (2001) apply the same basic model to the case of the German electricity sector. It is
simulated as a day-ahead market in which plants are dispatched centrally and remunerated on a
pay-as-bid basis. The target utilization rate is 60% for the major players and 100% for 14 small
generator agents. The authors analyze the impact of four mergers of large German utilities that
were probable at the time of the study (and have actually taken place shortly after). They find that
electricity prices rise considerably as an effect of the mergers. Simulated prices are 16% higher in
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on-peak and 5% in off-peak times when the two larger mergers take place. When all four mergers
are realized, prices rise by 54% on-peak and 45% off-peak. When the merged firms also seek to
rationalize their portfolios and shut down about 6% of the total system capacity, the effect on prices
is even more severe: a 100% price rise in off-peak times and a 300% rise during winter peaks.

Bunn and Oliveira (2001) present a more detailed model of the New Electricity Trading
Arrangements of England and Wales (NETA). In contrast to the approach described above, the
authors explicitly model an active demand side and the interactions between two different
markets, i.e. the bilateral market and the balancing mechanism. Trading in both markets is
modeled as a call market with pay-as-bid settlement. Both generators and suppliers seek to
maximize individual daily profits and simultaneously minimize the difference between their
exposure to the balancing mechanism (BM) and their (fixed) objective for BM exposure. They
learn to set mark-ups on their bid prices in both markets through reinforcement learning; the
mark-up for the bilateral market is set relative to the price bid in the bilateral market price in the
previous day, and the mark-up for the BM is set in relation to the bilateral market bid price of the
same day. Consequently, all generator (supplier) agents learn three different policies for setting
three different prices: the offer (bid) price for the bilateral market, and the bid prices of,
respectively, increments and decrements for the balancing mechanism. In order to avoid
inconsistent behavior during the learning process, the authors impose some “lower bounds of
rationality” on the agents' bidding strategies through the introduction of operational rules.
Suppliers, for example, make sure that a more flexible power plant never undercuts the offer of a
less flexible plant of their same portfolio.

The learning algorithm applied in the model is tailored for this specific trading arrangement.
The range of actions that an agent can choose from, i.e. the possible mark-ups, differ for suppliers
and generators (as an example suppliers can set mark-ups between 0.95 and 1.2 in the bilateral
market, whereas generators choose from a range between −0.15 and 1.15 in the same market); the
intervals are each partitioned into ten discrete mark-up values. At each trading day, agents
calculate the expected daily profit and the expected acceptance rate of each possible mark-up
using exponential smoothing of the previous days’ trading results. The expected reward for each
mark-up is the product of the expected profit and acceptance rate. These expected rewards are
ranked in descending order; the perceived utility of each mark-up j is calculated on the basis of its
rank(j) as follows:

Utilj ¼ U � Search Propensity� n
Search Propensity

� �Rank jð Þ�1

:

The search propensity parameter expresses whether an agent has a rather conservative utility
function (low value) or whether it is more adventurous in trying different mark-ups (high value); it is
set to four for all agents in all simulations. U is equal to 1000 and n has a value of three. The
probability of choosingmark-up j is defined on the basis of its perceived utility in the following way:

Polj ¼ UtiljP
k Utilk

:

Unfortunately, the authors do not describe how the agents make sure not to violate the
operational rules that have been defined, and to what extent the agents’ behavior results from
the learned policy or from these operational rules. Moreover, one shortcoming of the rein-
forcement learning algorithm applied by the authors seems to be that the absolute values of Utilj
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are the same in every round, but distributed on different mark-ups, as only the ranks are taken into
account for its calculation. As a consequence, an agent has no information on how much better
one mark-up is than the next best one. Also, as the rank of a mark-up enters exponentially into the
determination of Utilj, the best mark-up has a very high probability of being chosen again (75% in
the simulations presented in the paper), whereas for the last four mark-ups, this probability is
close to zero.

The simulation model is run with power plant data that represents the UK wholesale electricity
market. The authors observe very high prices in those 2 h of the day in which demand is highest.3

Another observation is that a wide spread between the System Buy Price and the System Sell Price
emerges in the balancing mechanism and that the average bilateral price is centrally located
between them. This corresponds to the intuitive system behavior.

An extension of the model and further analysis is presented by Bunn and Oliveira (2003).
Here, the research question to be analyzed is whether two specific generation companies in the
England and Wales electricity market are capable of manipulating market prices in order to
increase their profits. The authors first analyze a simplified version of the bilateral market in the
form of a one-shot pay-as-bid Betrand game with capacity constraints. Based on the calculated
results, they argue that this model does not allow evaluation individual market power abuse and
that it neglects the impact of learning in repeated games, which might also be an important factor
in market power analysis. Given these arguments, they apply the simulation model described
above in order to find out whether the two generators can influence market prices to their own
advantage. They compare six different withholding strategies, including the case of no with-
holding (benchmark), cases in which only one of the two generators withholds capacity, and one
where both simultaneously withhold parts of their capacity. The reported results indicate that only
one of the two generators, whose ability to influence market prices was studied, is capable of
increasing electricity prices unilaterally. If both companies act together, they can also significantly
increase power exchange prices. The second generator had no ability to manipulate prices alone.
Moreover, prices in the balancing mechanism are found to be robust against manipulation from
the two players.

One interesting remark that the authors state in their conclusion is that in these types of AB
models, i.e. where agents learn to adapt their behavior to a stable environment, the potential for
agents to collude on higher than marginal costs can be overestimated. In real markets where
varying demand, fuel costs, and transmission constraints change the state of the world con-
tinuously, this coordination behavior might be harder to achieve.

An agent-based analysis of technological diversification and specialization is presented in
Bunn and Oliveira (in press). The question that the authors want to answer in this paper is
whether strategic generator agents in the electricity markets evolve into diversified players
with a mix of base load, shoulder and peak load plants, or into specialized players that seek to
dominate the market in their segment. They develop a model in which generators trade
generating capacity among themselves and then, in a second stage, trade electricity from their
plants, applying a Cournot strategy. Two mechanisms are compared: single-clearing and multi-
clearing. The first mechanism corresponds to a power pool where one uniform price is set for
every hour of the day; the latter is supposed to replicate trading in bilateral markets. In the
multi-clearing setting, base load, shoulder, and peak load are traded separately in three
different markets.

3 Note that electricity contracts are settled separately for every hour of the day in the model, but agents only learn one
mark-up for the whole day and, in consequence, submit the same bids for all 24 h of the day.
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Generators aim at maximizing the value of their whole portfolios. The plant trading game
consists of three stages. In the Initialization stage, the Cournot game is solved, which gives the
initial valuations of each plant. Then, in the Identification stage, the agents estimate which plants
are most likely to be traded, in order to simplify the coordination problem. In the Adaptation
stage, players decide which plants they will actually attempt to buy or sell; the resulting bids and
offers are cleared in the Trading stage. Finally, the algorithm recalculates the capacities owned by
each player and the respective cost structure in the Updating stage. The identification of the most
likely trades is based on past observations. The adaptation procedure is based on stochastic search
and learning. An inertia element of the adaptation algorithm defines whether the agent searches
for new strategies or stays with the old ones; it decreases over the course of a simulation. New
strategies are defined as the Best-Response to the given situation; the Best-Response action
maximizes the sum of the utility (profit/reward) of an action and the discounted portfolio value.

The simulation model is run with plant data from the England and Wales electricity market. In
the first set of simulations, base, shoulder and peak load plants are separated among three different
players. The single-clearing mechanism leads to high concentrations in this setting: a single
player (the base load player) becomes a monopolist, while the others sell all their capacity and are
become extinct after less than 2000 iterations. In the multi-clearing case, several players coexist;
the base load and shoulder players own most of the capacity at equal share, whereas the peak load
player retains some capacity at the end of 2000 iterations. Prices are also higher in the single-
clearing than in the multi-clearing case. In a second scenario, all three players have similar initial
portfolios. In this case, the difference between the two clearing mechanisms is rather small. The
authors conclude from this observation that if the industry is at a state of great diversification, it
will tend to remain so, independently of the market-clearing mechanism.

3.1.2. Comparing different adaptation algorithms — Visudhiphan and Ilić
Another research initiative using AB models of wholesale electricity trading has been started by

two researchers at theMassachusetts Institute of Technology. A first model implementation has been
described inVisudhiphan and Ilić (1999). Here, three strategically interacting generator agents apply
some form of Derivative Follower strategy (Greenwald et al., 1999) for learning to set profit-
maximizing bid prices. In their extremely simplified model, the authors can show that in a market
with price-inelastic load, generators extensively exercise market power, while a price-responsive
demand side leads generators to bid more competitively, resulting in lower market prices.

In a later paper, Visudhiphan and Ilić (2001) report on simulation results from a model in
which agents can strategically withhold capacity when their expected profit is higher than without
withholding. Each agent records data about the market outcome in previous market rounds. The
outcomes are each mapped to predefined discrete load ranges, so that each agent's memory can be
represented as a matrix with rows corresponding to the different load ranges and columns
corresponding to the market rounds. Agents also distinguish whether the resulting market price in
one round has been a result of strategic or competitive behavior, and store this information like-
wise. Bid quantities and prices are defined separately in a two-step decision process. Each agent is
assigned one out of six proposed strategies for setting the bid prices of anticipated marginal units:
it can be set equal to (i) the maximum, (ii) the mean, or (iii) the minimum of historic prices, to (iv)
the sum of weighted historic prices, (v) the last bid price plus the difference between the last
market price and the last bid price, weighted by a constant β, or to (vi) a target price plus the
absolute value of the difference between the last market price and this target price, weighted by a
constant β; the value of β depends on the success in the previous round. Simulation results are
presented for two scenarios of available capacity. For each of the capacity scenarios, strategic and
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competitive (i.e. marginal-cost) prices are compared. The authors come to the conclusion that
generators are able to raise market prices if they bid strategically. This is observed not only for
hours of high electricity demand, but also for low-demand hours. However, a distinction between
the success of different price or quantity bidding strategies is not provided.

A more in-depth discussion of agent bidding representations is provided in Visudhiphan
(2003). The thesis explores three different learning algorithms or bid selection strategies: (i) a
modification of an algorithm formulated by Auer et al. (2002), (ii) a simple reinforcement
learning algorithm using a Boltzmann distribution for defining the probabilities of choosing each
action, and (iii) a model-based algorithm similar to the one presented in Visudhiphan and Ilić
(2001). The Auer et al.'s algorithm assigns a probability pt(i) to each of the K possible actions.
This probability is a mixture of a uniform distribution (γ/K) and a function of the weight factor
wt(i) associated to each action i.:

Pt ið Þ ¼ 1� gð Þ wt ið ÞPK
j¼1 wt jð Þ þ

g

K
:

The weight wt(i) is adjusted in every round, based on the rewards received from the chosen
actions:

wtþ1 jð Þ ¼ wt tð Þ � exp g

3K
x̂t jð Þ þ a

pt jð Þ ffiffiffiffiffiffiffi
KT

p
!!

:

Here, x̂t( j) is set to xt( j)/pt( j) if j= it, and 0 otherwise, where xt( j) is the reward of the chosen
action j in round t. Agents learn bid prices and bid quantities separately through applying this
algorithm.

Similarly, agents learn prices and quantities separately in simulations applying a simple
reinforcement learning algorithm where the probability of choosing an action j is defined as:

pt jð Þ ¼ eRt jð Þ=sPK
h¼1 e

Rt hð Þ=s :

The estimate value Rt( j) of action j is updated in every round in the following way:

Rtþ1 jð Þ ¼ 1� að ÞRt jð Þ þ a �Pt jð Þ if j ¼ it
Rt jð Þ otherwise

:

�

Various simulation runs with differing parameter combinations have been tested with these
three algorithms, and results are compared. What is striking about the simulation results is that the
daily load cycle seems to have a much stronger influence on resulting market prices than the
learning representation. In all simulations, daily price cycles can clearly be distinguished, while
for most of the learning algorithms prices do not exhibit any longer-term trends. The author does
not provide any discussion about which learning algorithm is most appropriate for realistically
modeling real-world behavior. She also concludes that her results cannot be validated against
market results observed in any real-world market, because information on marginal-cost
functions, bilateral contract obligations, operating constraints or other power system
characteristics is not sufficiently available. Moreover, the thesis reports on comparative results
from uniform versus pay-as-bid pricing; the conclusion of the result evaluation is that outcomes
significantly depend on the learning algorithms that the agents employ.
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With no quality measure for assessing the learning algorithms and with-out validation against
empirical data, it becomes difficult to judge whether the model is appropriate for realistic
electricity market modeling. It would have been desirable also to have a discussion of why the
authors have obviously abandoned some of the concepts presented in their earlier papers. Among
these is another publication by Visudhiphan and Ilić (2002), which describes an interesting
approach to simulate distinct time scales of electricity trading (short-term bidding strategies,
medium-term maintenance scheduling, and long-term new entry and shut-down or merger
strategies). It has obviously not been implemented. As these authors have started to build an
agent-based electricity market model very early, their experience – also with unsuccessful
approaches – might be helpful for other researchers who are new in this field.

Two further publications by one coauthor describe results from another simulation model for
analyzing market dynamics that arise from individual agent decision making. The strategic agents
are two/three generators in a transmission system with and without congestion, respectively
(Ernst et al., 2004b); other runs also include a profit-maximizing transmission line owner (Ernst
et al., 2004a). Here, agents strategically set the bid price that will maximize their payoff under the
assumption that the other agents repeat the same actions as in the precedent trading round. This
approach seems to be a renunciation from the earlier approaches presented. Unfortunately, no
discussion of the reasons for this turning away is provided.

3.2. Simulations applying genetic algorithms

Genetic algorithms (GA) are a class of heuristic search methods which are inspired by the
biological process of evolution. In (electricity)market simulations, strategies thatmarket participants
can choose to apply are encoded into bitstrings which can be thought of as chromosomes. Most
successful (or “fittest”) strategies are passed from one generation to the next by a mating process in
which parent chromosomes produce offsprings. Bymimicking crossover andmutation, GAs exploit
the genetic dynamics underlying natural evolution to succeed in their environment.

Some AB models apply genetic algorithms for agents to search for optimal bidding strategies
in electricity markets. Curzon Price (1997) has demonstrated the usefulness of GAs for simple
standard games such as Bertrand and Cournot competition, price choice of a monopolist and a
chain of monopolists, and also for very simplistic electricity market settings. In the following,
some GA simulation models designed specifically for electricity market research are summarized.

3.2.1 Early GA approaches — Richter, Petrov, Sheblé et al.
Richter and Sheblé (1998), Petrov and Sheblé (2000), Lane et al. (2000), and Nicolaisen et al.

(2000) present simple electricity market models that use genetic algorithms for representing the
agents’ bidding behavior. The simulated market in the cited papers takes the form of a double
auction where executable supply and demand bids are matched pairwise. Prices are determined as
the midpoint between two matched bids or as a competitive equilibrium price.

The learning task for the agents differs in the cited papers. In Richter and Sheblé (1998) only
generation companies are part of the GA population. They have three distinct evolving parts, or
genes: one for determining the offer quantity, another for selecting the offer price and a third one
for choosing a price forecast method. The latter includes strategies like e.g. moving average or
linear regression. On the basis of the respective technique coded in their genes, agents determine
their forecast price, then choose a bid price between their generating cost and the forecast
equilibrium price, and determine an offer quantity between 0 and their maximum generation
capacity. Standard GA methods are used for the evolution of the population.
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Petrov and Sheblé (2000) propose a model where only one agent applies a genetic algorithm
for evolving its trading strategy. All other agents display a very simple trading behavior: in a ten
round auction, electricity sellers (buyers) increase (decrease) their bid price by one increment if
the last offer was accepted; in the opposite case, they decrease (increase) their bid price for the
next round. The GA agent develops more sophisticated trading strategies based on her last
round's bid price and the equilibrium price. The strategy has the form of a decision tree whose
functions comprise algebraic and logical operators (e.g. summation, division, greater, “if-then-
else”). The authors find that the GA agent consistently surpass the fixed rule agents during all
separate runs of the simulation.

In Nicolaisen et al. (2000) and Lane et al. (2000) both buyer and seller strategies evolve with
the help of a genetic algorithm. The GA is used to determine the agents’ bid and ask prices.
Possible bid (ask) prices are in the range of marginal cost and marginal cost+40 $ (marginal
revenue−40 $ and marginal revenue); the bitstring representing the agent's gene codes a floating
point number in the interval [0, 1]) which is then multiplied by a dollar constant, resulting in the
admissible bid (ask) price. The authors are interested in measuring the individual market power of
buyers and sellers. When discussing their simulation results (most of which do not confirm their
formulated hypotheses and even contradict theoretical economic considerations), the authors
admit that their very simple GA implementation might not realistically represent human behavior
in real markets. They propose to try other learning representations which allow agents to learn on
the basis of their individual experience in the trading process.

The learning representations chosen in the aforementioned models are indeed very simplistic
and do not deliver satisfactory results. For this reason, reinforcement learning is used for
representing the agent behavior in AB electricity market models in later studies by the authors
(Petrov and Sheblé, 2001; Nicolaisen et al., 2001; see Section 3.3.1).

3.2.2 Models of the Australian National Electricity Market — Cau et al.
Cau and Anderson (2002) develop a wholesale electricity market model similar to the

Australian National Electricity Market. In Cau (2003), the model is developed further. It covers
two bidding structures, i.e. stepwise and piece-wise linear bidding. In both cases, agents assign
bid quantities to a number M of given price segments. In the piecewise linear case, bidding
schedules are formed by linear interpolation between two bid points, whereas quantities are kept
constant between two points in the stepwise case. The agents' task is to find the strategies that
maximize their individual payoffs. A strategy is a set of bidding schedules for the possible
environmental states. A state is defined by the previous spot market price, the past market demand
and the forecast market demand. Demand is price-inelastic and can be classified as either high or
low, while there is some uncertainty about the exact level. With two possible demand levels, the
total number of states is 2×2× the number of possible prices or price bands. Starting from
randomly created bidding strategies, the agents evaluate their fitness (i.e. average payoff when the
strategy has been played) and select the best strategies for further rounds. Standard evolutionary
operations, such as crossover and mutation, are also effected on the population.

Simulations are run for a duopoly with two equally sized generators, one having lower
marginal generation costs than the other. The authors observe that tacitly collusive strategies can
be learned by the agents in this co-evolutionary environment, both in the stepwise and piecewise
linear bidding structure. Cau (2003) further explores the effect of some market demand and
market structure measures on the agents’ ability to achieve tacit collusion. The author finds that
on the demand side, high overall demand, high uncertainty and low price elasticity facilitates tacit
collusion (measured as the joint profit ratio). On the supply side, situations in which tacit
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collusion is easier to achieve are characterized by symmetry in cost and capacity, and small
hedging contract quantity. Also, the influence of the number of competing generator agents on the
success of collusive strategies is examined. As expected, the author finds that an increasing
number of agents makes it more difficult for them to collude in a sustainable way. However, even
in cases with many competing generators, tacit collusion can still occur.

3.3. Simulations applying Erev–Roth reinforcement learning

Based on psychological findings on human learning, Erev and Roth (1998) have developed a
three parameter reinforcement learning algorithm. This learning model has gained much attention
by ABmodelers. Also, a considerable number of papers describing agent-based electricity models
applying this learning algorithm can be found and are summarized in the following.

The learning formulation integrates the aspects of experimentation and forgetting:4

qnj t þ 1ð Þ ¼
1� /ð Þqnj tð Þ þ R xð Þ 1� eð Þ if j ¼ k

1� /ð Þqnj tð Þ þ R xð Þ e
M � 1

if j p k
:

(

The choice of an action is probabilistic, and choice probabilities are derived from the
propensities pnj for action j in the next round in the following way (referred to as proportional
action selection here):

pnj t þ 1ð Þ ¼ qnj t þ 1ð ÞPM
k¼1 qnk t þ 1ð Þ :

Some researchers propose to determine the choice probabilities based on a Boltzmann
distribution with a Temperature parameter T:5

pnj t þ 1ð Þ ¼ eqnj tþ1ð Þ=TPM
k¼1 e

qnk tþ1ð Þ=T :

Following Sutton and Barto (1998), this formulation will be referred to as Softmax action
selection in this paper.

3.3.1 Developing the Erev and Roth algorithm — Nicolaisen, Petrov, Sheblé et al.
Petrov and Sheblé (2001) and Nicolaisen et al. (2001) present simple electricity market models

applying Erev–Roth reinforcement learning. Both papers describe one problematic feature of the
original algorithm formulation, i.e. that no propensity update occurs when profits are zero
(or close to zero). Another flaw of the original algorithm formulation is accentuated by
Koesrindartoto (2002): for some parameter combinations of ε and M, no learning occurs. These

4 Here, qnj corresponds to the propensity of agent n to choose action j, R(x) is the reinforcement from the last chosen
action (k), M is the number of possible actions; f and ε denote the recency (or forgetting) experimentation parameters.
5 The Temperature parameter – also referred to as cooling parameter – determines the degree to which generator i

focuses on actions with high propensity values. Usually, the temperature is decreased over the course of a simulation in
order to allow more exploration at the beginning, while focusing on exploitation later on.
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considerations lead to the formulation of the Modified Roth-Erev algorithm (MRE) (Nicolaisen
et al., 2001):

qnj t þ 1ð Þ ¼
1� /ð Þqnj tð Þ þ R xð Þ 1� eð Þ if j ¼ k

1� /ð Þqnj tð Þ þ qnj tð Þ e
M � 1

if j p k
:

(

The MRE is used to simulate a double auction electricity market with discriminatory pricing.
The aim of the study is to analyze market power and efficiency as a function of relative
concentration and capacity of the market.

The simulation results do not support the hypotheses that the market power of sellers increases
when relative capacity increases or when relative concentration decreases. However, the
hypothesis that market efficiency (total auction profits in relation to total profits in competitive
equilibrium) is high receives support by the simulation results. The authors compare their results
to the market efficiency observed in simulations using genetic algorithms (Nicolaisen et al., 2000,
see also Section 3.2.1) and come to the conclusion that individual MRE learning leads to higher
market efficiency than GA social mimicry learning, because each agent learns to make his own
bidding strategies on the basis of his own profits instead of mimicking strategies of structurally
distinct traders.

3.3.2 Wholesale market reliability testing with AMES — Tesfatsion et al.
Based on the work at Iowa State University, Koesrindartoto and Tesfatsion (2004),

Koesrindartoto et al. (2005), and Sun and Tesfatsion (2007) describe an electricity market
model that encompasses the core features of the Wholesale Power Market Platform, a market
design that has been proposed by the U.S. Federal Energy Regulatory Commission (FERC). The
current implementation of their AMES model (Agent-based Modeling of Electricity Systems), as
described in Sun and Tesfatsion (2007), comprises a two-settlement system consisting of a day-
ahead market and a real-time market which are both cleared by means of locational marginal
pricing. The market clearing is managed by an independent system operator (ISO) agent who
operates an AC transmission grid.6 The authors report on initial simulation results that are run
with a 5-node transmission grid test case and with only 1 day-ahead market (the real-time market
is inactive). The demand side is simplified to a fixed and price insensitive daily load profile
submitted to the ISO.

The generator agents learn to optimize a supply function. While reporting their true production
limits (minimum and maximum capacity) to the ISO, they strategically set the prices (reported
marginal costs) at these capacity levels;7 thus they have the ability to submit supply functions that
are above their true marginal generating costs. The reinforcement learning algorithm applied in
the described simulations is the MRE algorithm with Softmax action selection.

The simulation results show that all five generator agents learn to successfully submit bids
above their true marginal cost. This leads to total variable costs of operation that are about three
times higher then they are in the case in which generators report their true marginal costs. The
authors conclude that the Wholesale Power Market Platform design features do not prevent the
considerable exercise of market power by generators. Further extensions of the AMES model are

6 The representation of the transmission grid in this model is approximated by a bid-based DC optimal power flow
(OPF) problem which is described in more detail in Sun and Tesfatsion (2006).
7 The resulting supply function is determined through linear interpolation between the prices at the minimum and

maximum capacity.
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envisaged. To encourage these extensions, the developers of the AMES test bed have released it
as free open-source (Java) software.8

3.3.3 Vertical integration in the energy sector — Rupérez Micola et al.
Rupérez Micola et al. (2006) present a model that consists of three sequential oligopolistic

energy markets representing a wholesale gas market, a wholesale electricity market and a retail
electricity market. They analyze the effect of reward interdependence in vertically integrated
energy firms. Trading in all three markets is modeled as a uniform-price auction with fixed
inelastic demand to which seller agents submit their bids. Firms in each of the three tiers are
identical and have constant marginal costs, normalized to 0. Agents always bid their full capacity
and only choose bid prices; possible actions (prices) range from 0 to an upper price ψ in the retail
market, which is cleared first. The possible bid price range in the wholesale electricity market is
set from 0 to the resulting retail market price; in the gas market, which is cleared last, it goes from
0 to the resulting wholesale electricity market.

Vertically integrated firms are modeled as two agents that each trade in one market, and whose
rewards are interdependent. The two agents can be thought of as two strategic business units
within the same firm. In the case of vertical integration, the reinforcement that an agents perceives
from trading results in one market is only partly based on the profit earned in this market; the other
part consist of a fraction of the profits earned in the other market. The size of this fraction is
expressed through the reward interdependence parameter α={0, 0.01, 0.02, …, 0.5}. Agents
learn to set their bids with the help of a slightly modified Erev–Roth learning algorithm:

qinj t þ 1ð Þ ¼
1� /ð Þqinj tð Þ þ Ri xð Þ if j ¼ k
1� /ð Þqinj tð Þ þ 1� dð ÞRi xð Þ if j ¼ k p 1
1� /ð Þqinj tð Þ if j p k and j p k F 1

:

8<
:

The index i, i ∈ {r, e, g} indicates that propensities are build separately for each of the three
markets. The parameter δ, 0bδb1 determines the degree of local experimentation (through
reinforcement of similar strategies). Proportional action selection is applied. The authors also
introduce the aspect of “extinction in finite time”, which means that actions are removed from the
action domain when their probability of being chosen falls below a fixed value µ.

Simulation runs are conducted with two gas shippers, three wholesale electricity traders, and
four retail electricity traders. The reward interdependence parameter is varied from α=0 (no
reward interdependence) to α=0.5 (strong reward interdependence) in 51 discrete steps. Results
show that the presence of vertically integrated firms generally raises prices in at least two of the
three markets considered. In the case of reward interdependence between a gas shipper and a
wholesale generator, prices in the gas market (wholesale electricity market) rise from 59 (83) to 63
(93) units when α is increased from 0 to 0.5. The authors show that the vertically integrated firm
can increase its overall profits. What the authors do not mention is that the other, not integrated
firms in the gas and wholesale electricity market taken together can also increase their profits, to
an extent even slightly higher than the integrated firm. So, all firms profit from the higher prices in
the scenarios with high reward interdependence.

The question then is why the firms can achieve higher prices in the case in which one firm is
vertically integrated. Here, the authors presume that agents coordinate overall profits in both
markets and conclude that “vertically integrated firms give up profits downstream [in the

8 Available at http://www.econ.iastate.edu/tesfatsi/AMESMarketHome.htm.
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wholesale electricity market] in order to increase the scope for upstream profits [in the gas
market]”. However, as the agents learning algorithm in this model is not designed in a way so as to
allow agents to develop strategies across several markets, it is not convincing that agents really
coordinate overall profits. A closer look on the results reveals that profits are generally higher in
the gas market than in the electricity market. As a consequence, vertically integrated gas shipper
agents, whose reinforcements only contain a part of the profits earned in the gas market (the other
part coming from the electricity market), are inevitably less satisfied with their trading results than
their (otherwise identical) rivals. Thus, they search for other ways of attaining higher profits,
which can lead to higher prices in the gas market. Inversely, the vertically integrated agent “feels”
better off than his rivals in the electricity market. However, when prices in the gas market rise,
margins in the wholesale electricity market shrink, so agents may seek to compensate this loss
through higher bid prices. It seems more appropriate to explain observed market prices on a level
that can be deduced directly from the agents’ learning tasks than interpreting them as higher level
strategies.9

3.3.4. Further approaches applying Erev–Roth reinforcement learning
Bin et al. (2004) report on simulation results comparing three different pricing methods in

electricity auctions. Agents in their model submit bids for their whole installed capacity; they
learn to bid mark-ups on top of their marginal costs. The learning algorithm applied is similar to
the Erev–Roth reinforcement learning algorithm with proportional action selection. The authors
compare uniform pricing, pay-as-bid pricing and a mechanism called Electricity Value Equivalent
(EVE) pricing. Simulations are carried out for two cases, i.e. one in which each generator agent
owns only one power plant and the second where the same capacity belongs to less generators,
each owning more than one power plant.10 Both the model and the result presentation are rather
brief and in parts confusing; the conclusion of the simulation results is that EVE pricing leaves
less room for generators to exercise market power than the other two considered pricing methods.

Cincotti et al. (2005) model a day-ahead electricity market which takes the form of a clearing-
house double auction with uniform pricing. While the authors have used the original formulation
of the Erev–Roth reinforcement learning algorithm in earlier work (Cincotti and Guerci, 2005),
they now propose a new algorithm, which they say is inspired by Erev's and Roth's original work.
The learning formulation they propose not only evaluates the profits gained from chosen actions,
but also evaluates potential profits that would have been realized had other actions been chosen.11

Propensities fs(t) for those strategies s that would have yielded a higher than the actual profit at
time t are updated according to the simple rule

fi t þ 1ð Þ ¼ 1� rð Þ � fs tð Þ þ Gs tð Þ
where r is a recency parameter and Gs(t) is the potential profit. Propensities of strategies whose
potential profits are lower than the realized profit are set to 0 and will, thus, not be considered in
further rounds. Agents in this model learn to bid price quantity pairs that maximize their profits;
bid prices can range from the generator's marginal cost to the maximum admissible price, and bid

9 Following the same argument, it is not surprising that the authors do not find evidence for “raising rivals' cost”
behavior. Agents do not perceive the other agents' costs and have no reasoning capability that allows them to devise such
strategies.
10 It is not specified in the paper how agents strategically bid a portfolio of power plants in the second case.
11 Potential profits are calculated under the (questionable) assumption that an agent would have sold the total bid volume
if his bid price had been less than or equal to last round's market clearing price.
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quantities range from 0 to the generator's maximum installed capacity, both in steps of 1 EUR,
or 1 MW respectively.12 The authors conduct experiments for different cases of supply side
competition; the number of generator agents is varied from 10 to 100, and the supply/demand
ratio from 1.25 to 2. All generators have the same installed capacity and marginal costs. Among
the findings is that prices quickly converge to the competitive equilibrium value (i.e. marginal
cost) in most cases. The authors find that the equilibrium outcome is reached faster when the
number of competing generators is small. This finding is rather unintuitive; it may be an indicator
for the model not being a realistic representation of the market under study.

In Cincotti et al. (2006) a similar model is run with a learning algorithm as formulated by
Marimon and McGrattan (1995). This algorithm assigns a strength Si,t to every action that an
agent i can take, which is updated in every round as follows:

Si;t aið Þ ¼ Si;t�1 aið Þ � 1
gi;t�1 aið Þ � Si;t�1 aið Þ �Pi;t�1 aið Þ� �

if i plays ai

Si;t�1 aið Þ otherwise

8<
:

ηi,t(αi) is the number of times that strategy αi has been played. The algorithm comprises some
element of inertia, which means that agents can keep their mixed strategies constant over some time:

Pri;t aið Þ ¼ ri;t�1 aið Þ � exp Si;t�1 aið Þ� 	
P

ri;t�1 aið Þexp Si;t�1 aið Þ� 	 with probability qi;t

ri;t�1 aið Þ with probability 1� qi;t

:

8<
:

The probability to choose a certain action in the next round is finally given by the following
formula, which ensures that every action has at least a minimum probability εi,t ∈ (0, 1) to be
chosen:

ri;t aið Þ ¼
ei;t if Pri;t aið Þ V ei;t

Pri;t aið ÞPPri;t aið Þ 1� ei;t � j Pri;t aið Þ V ei;t

 �j otherwise:

�8<
:

The authors conduct experiments for a duopoly case in which both generators have the same
installed capacity but different (constant) marginal costs. The domain of possible action contains
only bid prices in one case (agents offer their maximum capacity), and both bid quantities and
prices in second case; for both options, the two levels of low demand (one generator can satisfy
demand alone) and high demand (both generators are called into operation) are distinguished.
Uniform price and pay-as-bid mechanisms are compared on the basis of several simulation runs.
The authors find that if agents compete only on the basis of prices, market efficiency, i.e. long-run
profits gained by the two sellers, does not depend on the auction mechanism. However in the

12 A few critical notes are in order about this learning representation: The proposed formulation has some similarities with
the concept of experience-weighted attraction (EWA) (Camerer and Ho, 1999), in that it also partly bases its strategy
evaluation on hypothetical payoffs. This raises the question why the authors have not considered to employ the EWA
algorithm, which is better established and has been evaluated for different kinds of learning tasks, e.g. Arifovic and Ledyard
(2004). Moreover, the early distinction of strategies once they do not perform better than the currently played strategy leads
to a rapid and unjustified constriction of the action space and may hinder agents from finding the best strategies. As the bid
price is set to 36 EUR for both agents in the first round, prices never rise above this level, as all higher bid price actions are
eliminated after the first round. Finally, it should be noted that the proposed learning algorithm formulation does not have
much left in common with the reinforcement learning algorithm formulated by Erev and Roth.
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price-quantity bidding case, results for uniform and pay-as-bid pricing differ: for low demand, the
uniform price auction offers higher profits for both generators. In the pay-as-bid auction, more
competitive strategies are played more often, and profits are especially lower for the less efficient
generator. In the high demand case, the uniform price auction also yields higher profits for the
more efficient generator, but for the less efficient generator, profits are almost equal in pay-as-bid
and uniform price auctions.

Weidlich and Veit (2006) simulate two markets that are cleared sequentially – a day-ahead
electricity market and a market for balancing power. Agents place bids in both markets and
evaluate their individual success in one market by integrating the opportunity cost of profits that
could have been obtained in the other market. They learn from trading results using modified Erev
and Roth reinforcement learning algorithm with proportional action selection. The day-ahead
market is modeled as a call market with a fixed and price-insensitive demand side. The balancing
power market replicates the rules in place in Germany. Both pay-as-bid and uniform price
settlement have been simulated. The authors show that the order of market execution plays a
significant role in resulting market prices: if the day-ahead market is cleared first, agents still have
more available capacity to offer in the auction. Hence, competition is increased and prices are
lower as compared to the case in which some generators have already sold (parts of) their capacity
in the balancing power market. As potential profits that could have been earned on the day-ahead
market play a more important role for setting bid prices in the balancing power market than vice
versa, low prices in the day-ahead market also lead to lower prices in the balancing power market.
When the balancing power market is cleared first, prices are higher in both markets. The authors
also observe that agents tend to bid lower prices in the case of uniform pricing; however, resulting
(average) prices are lower in the pay-as-bid case.

Veit, Weidlich, Yao, and Oren (2006) study the dynamics in two-settlement electricity markets.
In these markets, energy producers sign strategic contracts in the forward market, and engage in
oligopolistic competition in the spot market. While transmission constraints are ignored in the
forward market (however, electricity is traded in different forward trading zones of the network),
the spot market considers an underlying transmission network in form of a lossless DC power
flow optimization problem. In the spot market, electricity is paid at nodal prices; forward
contracts are settled at spot zonal settlement prices.

Agents in this model learn to set profit maximizing bids on the spot and forward market
separately. They apply a modified Erev and Roth reinforcement learning algorithm with
proportional action selection. Propensity update for spot bids is effected on the basis of achieved
spot market profits. Bids are evaluated for each power plant and for each possible spot market state
individually. The propensities for possible bids on the forward market are updated on the basis of
the generators’ total profit; these bids are evaluated globally, i.e. learning is not differentiated for
single plants. The agents’ learning task is to set profit maximizing bid quantities on both markets
(Cournot game). The load is modeled as a linear demand function, so some price-responsiveness is
assumed. Simulation results from this model demonstrate that the introduction of a forward market
influences the supply agents’ bidding strategies in the spot market. Forward trading leads to a more
competitive behavior of the suppliers in the spot market, and thus to lower spot electricity prices.

3.4. Simulations applying Q-Learning

Krause et al. (2005) compare Nash equilibrium analysis and AB modeling with Q-learning for
the case of a power pool with transmission constraints (the network representation is depicted in
Fig. 1).
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The model contains three agents who strategically set mark-ups to their electricity selling bids;
the set of possible mark-ups is {0, 10, 20, 30} $/MW for the two agents whose cost function
intercept is 10 $/MW and {0,10,20} $/MW for the third agent, whose cost intercept is 20 $/MW.
The agents apply an update rule similar to the one used in Q-learning for learning the value of
each possible action:

Q atð ÞpQ atð Þ þ a rtþ1 � Q atð Þð Þ:
However, unlike in the original Q-learning formulation by Watkins (1989), there is no

differentiation between the states that agents are in at each iteration. So, one important element of
Q-learning, e.g. taking into account future rewards of possible actions, is not included in this
formulation. Despite this modification, the authors achieve satisfactory simulation results. They
apply an ε-greedy strategy for action selection13 and compute Nash equilibria for simplified
model settings. In those cases in which there exists one Nash equilibrium, the agents’ actions
quickly converge to this equilibrium, whereas in the case of two Nash equilibria, cyclic behavior
is observed.

In a later study, Krause and Andersson (2006) apply the same model for analyzing the social
welfare implications of the following three different congestion management methods:14

– Locational Marginal Pricing (LMP)
– Market Splitting
– Flow-based Market Coupling (FBMC).

The case in which all generators bid their true cost functions (referred to as perfect
competition) is compared to a case in which all three generators apply the above described Q-
learning-like algorithm (the oligopolistic competition case). Simulation results reveal that LMP
results in the highest overall welfare in both the competitive and the oligopolistic case. Market
splitting performs second best in both cases and FBMC shows lowest overall welfare. However,

13 For a description of the ε-greedy strategy, the reader is referred to Sutton and Barto (1998).
14 The congestion management methods are not described here. For references to these concepts, the interested reader is
referred to the cited paper.

Fig. 1. Transmission system in the model described by Krause et al. (2005).
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in the case with learning agents, generators’ surplus is higher while consumer surplus is lower
than in the competitive case. This is due to the exercise of market power by the generators.

Similar results for a different model specification are reported by Naghibi-Sistani et al. (2006).
In their model, two different states are defined: (i) low production cost and (ii) high production
cost. Agents strategically set the slope of their linear bid supply function; the possible bidding
strategies are classified as high, middle and low (price/slope). In their simulations, only two
bidders compete to satisfy demand in a power pool without transmission constraints. The authors
use a Softmax action selection rule. The temperature parameter T is adjusted during the
simulation in the following manner:

T � 20 1� p aijsð Þð ÞjDQ s; aið Þ
where p(αi|s) is generator I's probability of choosing action α in state s, and |ΔQ(s, αi)| is the
absolute change in Q-value from one iteration to the next. According to this definition, T is high
when theQ-values have not converged to a final value, and low when changes inQ become small.
The motivation behind this formulation is to reduce convergence time and sensitivity to learning
parameters. However, as the choice of this particular formulation is not argued in detail, and is not
compared to other possible formulations, it seems rather arbitrary.15 Reported results from an
illustrative simulation runs show that agents quickly learn to play the strategy corresponding to a
Nash equilibrium; the probability of this strategy converges to 1 after ~100 iterations.

Xiong et al. (2004) compare market prices and price volatility in uniform price and pay-as-bid
electricity auctions with the help of a model with Q-learning generator agents. The environmental
states are defined as last round's market prices; the set of possible states is {0,1,2,...,20}. Agents
learn to set bid prices that maximize their payoffs; possible actions are also in the range of
{0,1,2,...,20} and bid volumes are always equal to the net capacity of a generator. The rein-
forcement for each hour h of the day comprises the profit r of that hour, and also the ratio of actual
and target utilization rate ( p is a parameter defining how strictly an agent tries to satisfy the target
utilization rate):

rh s; að Þ ¼ r hð Þ � actual utilization hð Þ
target utilization hð Þ

� �p

:

Action selection is effected with the ε-greedy strategy. Simulation runs are conducted with ten
generator agents and with both price-inelastic demand and a responsive demand-side; both
demand scenarios are run with uniform price and pay-as-bid clearing. The authors compare
market prices16 and bid prices of one agent for the four simulated scenarios. The conclusion from
their simulation results is that agents bid at higher prices in the pay-as-bid case, but overall prices
are higher under uniform pricing. The introduction of interruptible loads causes prices to drop for
both clearing mechanisms; however, the price decrease is stronger with uniform pricing.

15 The authors’ proposition is even counterproductive: while aiming at reducing the influence of one parameter of the
learning algorithm, they introduce a new one which is simply set to 20. This parameter does not have an interpretation
related to psychological findings about learning, nor does it have a sensible machine learning interpretation. Instead, it
abandons the distinction between action-value estimates on the one hand and choice probabilities on the other hand. In
original Q-learning with Softmax action selection, the temperature parameter defines the preference of exploration over
exploitation of successful strategies. With T values set individually for each action in each state, this principle is
abandoned.
16 It is not specified how the “market price” is calculated in the pay-as-bid case, in which each generator faces different
prices. It can be assumed that the authors take the weighted average over all successful bids as the market price.
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Bakirtzis and Tellidou (2006) also compare uniform and pay-as-bid pricing with agents
applying Q-learning. As in the previous paper, environmental states are defined by the last
round's market price (uniform price or quantity weighted average price of winning bids,
respectively). Agents also bid their full capacity at the price learned through the Q-learning
algorithm; possible bid prices are bounded by the price cap and the generator's marginal
generating cost. The action selection rule applied in this paper is adapted from the Simulated
Annealing Q-learning algorithm developed by Guo et al. (2004). All simulated scenarios
comprise 5-7 generators; load is constant and price-inelastic. Four cases are examined:
(i) uniform pricing with one dominant generator whose installed capacity is enough to satisfy
total demand alone and whose marginal generating costs are lowest; (ii) same as (i) but pay-
as-bid pricing; (iii) uniform pricing with the dominant agent from the first two cases
partitioned into three equally sized generators, whose marginal costs are lowest; (iv) same as
(iii) but pay-as-bid pricing. Results show that the dominant firm in (i) and (ii) learns to set the
bid price that fully maximizes its profits. The two next cheapest suppliers learn to stay below
the bid price of the dominant firm, in order to be dispatched. In the pay-as-bid case, the bid
prices of these two generators are closer to the dominant generator's bid than under uniform
pricing, but resulting market prices are slightly higher in the latter case. In the more
competitive cases (iii) and (iv), the three generators with the lowest marginal generating costs
compete to serve demand, and prices mostly stay below the marginal cost of the next cheapest
generator. Here, however, average prices under pay-as-bid are higher than market clearing
prices under uniform pricing.

3.5. Simulations applying Learning Classifier Systems

Learning Classifier Systems (LCS) combine reinforcement learning (for increasing the
probability of choosing successful actions) and genetic algorithms (for producing new rules from
successful ones). A classifier is a rule of the form “if bconditionN then bactionN”, where the
condition describes the state of the environment. An LCS is thus suitable for agents to solve
cognitive tasks.

Bagnall and Smith (2005) present a simplified AB simulation model of the pre-NETA UK
electricity market that applies LCS for developing successful bidding strategies. The model and
simulation results have also been described in several other papers, e.g. Bagnall and Smith
(1999), Bagnall and Smith (2000), Bagnall (2000a), Bagnall (2000b), and Bagnall (2004). The
agent population in the presented model consists of 21 generator agents, each owning one
generating unit. The units are classified as one of the four types: nuclear, coal, gas, or oil/gas
turbine. Every generation type has different characteristics of fixed cost, start-up cost, and
generation cost. The market environment is characterized by the forecast demand for each half-
hour time slot (representing typical days of summer/winter and weekday/weekend demand), by
capacity premia for each half-hour time slot of the following day, and by transmission
constraints. Agents are grouped into three different constraint groups: unconstrained, constrained
on, or constrained off. During one daily trading cycle, the system marginal price and pool
purchase price17 are calculated from all bids submitted by the generators (forming the
unconstrained schedule). The constraint levels and the unconstrained schedule then produce the
constrained schedule. Prices and payments are communicated to the agents at the end of each
round.

17 The pool purchase price is the sum of the system marginal price and the capacity premium.

1747                                                  



                      

The agents follow two related objectives, quantified by two different reward functions: avoid
losses and maximize profits. They apply two learning classifier systems (LCS) in order to learn
rules for achieving these objectives. The learning task is to set the bid price, all other bid
parameters being constant for each generation type. Each LCS has three components:

– the performance component produces a prediction array consisting of estimates of the expected
reward for following specific actions, for any given input and rule set;

– the reinforcement component alters the parameters of the current rule set based on the
environmental feedback;

– the rule discovery component generates new, potentially superior, rules from old ones using a
genetic algorithm.

The three main research questions that the authors seek to analyze are whether the agents
learn to behave in ways observable in the real world, how changes to the market mechanism
alter agent behavior, and whether the agents can learn to cooperate. As regards the first
question of interest, the authors conclude that the agents’ behavior is broadly consistent with
real-world strategies. This conclusion is grounded on the observation that nuclear units
generally bid at low prices, regardless of the demand level, whereas oil/gas turbine units bid
high in order to capture peak generation; coal and gas units bid close to the level required for
profitability and increase their bids in times of high demand. An additional series of
experiments has been run in order to answer the second question: the payment calculation has
been changed from uniform pricing to a pay-as-bid scheme. The results show that agents tend
to bid higher under pay-as-bid, but the overall cost of meeting demand is still higher under
uniform pricing. The third research question was concerned with the evolution of cooperation.
Cooperation has been defined here as situations in which two or more players make the same
high bid. Although the agents are able to produce high market prices in some environments,
the authors do not find many rounds in which the cooperation criterion is met. They conclude
that the number of available actions, the exploitation/experimentation policy of the LCS and
the potential incorrect generalization over environments makes it difficult for agents to
maintain cooperative strategies.

Bagnall and Smith (2005) compare their approach to the models of Bunn and Oliveira (2001)
and Bower and Bunn (2001). They emphasize that the complexity of the agent architecture and
the information used for learning is the main difference of their model in comparison to related
approaches. Unfortunately, they do not provide any arguments why this high complexity of agent
behavior is actually needed and in what way their results might be more valuable than those
generated from other simulation models. Neither do they examine any research questions that
cannot be answered with the other referred approaches. As long as a simple model of agent
behavior can realistically represent the real-world features of interest, there is no apparent reason
to apply more complicated approaches. The authors of the presented papers have not yet
convincingly made clear what failures of simpler learning representations they avoid with the
very complex LCS applied in their model.

3.6. Simulations with supply function optimizing agents

While analytical evaluation of supply function equilibria in power markets either assumes
continuous supply functions or restricts the analysis of various industry ownership struc-
tures to symmetric equally sized firms (or both), Day and Bunn (2001) present a method for
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determining imperfectly competitive outcomes in electricity markets based on computational
modeling. Their proposed model contains generation companies who bid individual piece-
wise linear supply functions into a market with uniform price clearing. The agents seek to
optimize the value of an objective function, i.e. their daily profits from both spot sales and
long-term financial contracts. The optimization routine that the agents apply works under the
conjecture that the other agents submit the same bid as in the previous trading round. Agents in
this model have a limited optimizing behavior in that they only change the bid price of one
power plant per iteration (they choose the plant which increases the value of the objective
function most when bid at another price). Electricity demand is represented by an aggregate
demand function with a defined demand elasticity; simulations are run with different demand
elasticities in order to determine the influence of demand response on the generators’ ability to
exercise market power.

The authors evaluate their computational model by comparing it with the equilibrium in
continuous supply functions that can be obtained through the approach formulated by Klemperer
and Meyer (1989). They find that results from the two approaches are reassuringly close for a
simplified market scenario which models competition between three symmetric generating
companies who have linear marginal costs. Based on this finding, the authors are confident that
the computational approach can also deliver realistic results for more complex scenarios that
cannot be represented by an analytical supply function equilibrium model. Following this
argument, they then use the computational model for analyzing different options for the second
round of plant divestiture in the England and Wales electricity market in 1999. Results from
various runs with different demand elasticities and different volumes of financial forward
contracts show that the analyzed divestiture options result in lower average percentage bids above
marginal cost. For a 25% and 50% plant divestiture, the average bid above marginal cost in
different periods (summer, spring/autumn, and winter) significantly decreased as compared to the
initial conditions without divestiture. One result that the authors point out is that the main
reduction in mark-up is caused by the creation of five generators (from initially three); the
difference in divestiture percentage has only a small effect on observed mark-ups. However, the
authors also find that the proposed divestiture still leaves considerable market power with
generators in the short term, and could result in prices more than 20% above short-run marginal
costs.

In a later paper, Bunn and Day (2002) present this model as a competitive benchmark
against which to assess generator conduct and to diagnose the separate causes of market
structure and market conduct in situations in which prices appear to be above marginal costs.
As the England and Wales electricity market cannot be characterized by perfect competition,
but rather as a daily profit-maximizing oligopoly, the authors argue that fully competitive
(marginal cost) baselines are not appropriate for assessing market power abuse. Instead, they
argue that the result from their computational model can serve as a realistic baseline for
imperfect (oligopoly) competition, where agents learn to compete, but not to collude. For the
tested scenarios, the simulated system supply functions are shown to lie above the marginal
cost function and significantly below the system supply curve observed in the England and
Wales pool on an exemplary day, except at low demand levels. This leads the authors to the
conclusion that the extent to which the simulated supply functions are above the marginal cost
function is caused by the market structure. The extent to which observed system supply
functions in the real-world market are still above the simulated system supply functions is then
interpreted as the degree of collusion within the market, and identifies a problem of market
conduct.
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3.7. Large-scale national agent-based electricity simulations

To our knowledge, four national U.S. and one Australian laboratories are currently developing
large-scale agent-based electricity system models which are intended to serve as tools for
reliability and market design analysis for power markets:

– EMCAS, the Electricity Market Complex Adaptive System developed by Argonne National
Laboratory (Conzelmann et al., 2005);

– Marketecture from Los Alamos National Laboratory18 (Atkins et al., 2004);
– N-ABLE™, the Agent-Based Laboratory for Economics developed at Sandia National
Laboratory (Ehlen and Scholand, 2005);

– Simulations for Coupled Systems within the GridWise™ program at Pacific Northwest
National Laboratory (Widergren et al., 2004); and

– NEMSIM, the Australian National Electricity Market Simulator which is under development
at CSIRO (Batten and Grozev, 2006).

These models rely on very detailed databases of the regions under study, which includes the
topology of the transmission grid and other physical constraints, differentiated load data and
detailed cost data of the power plants. The issues that most of the models address are questions of
best market designs to prevent the exercise of market power, transmission system reliability, or
also environmental regulation measures. The models seem to be designed as a decision support
for concrete policy making and not primarily for academic research. Consequently, the model
descriptions are rather vague and much of the exact implementation of agent behavior or
simulated scenarios remains unclear.

Some of the cited papers contain pointers to the literature about learning algorithms though
no actual model implementation using any kind of agent learning is presented. The agents’
behavior has been described in more detail for two models: In one scenario simulated with the
N-ABLE™ model, agents apply a heuristic planning process in the form of a greedy
scheduling algorithm. The research question of this scenario was the influence of real-time
pricing contracts on consumption and profitability in the retail electricity market (Ehlen et al.,
2007). In the Marketecture model agents follow one out of three possible fixed strategies: they
set bid prices and quantities according to the competitor, oligopolist, or the competitive-
oligopolist strategy. The competitor strategy refers to bidding at marginal cost, whereas the
oligopolist bids at the point where the marginal revenue and marginal cost functions intersect;
the competitive-oligopolist strategy lies at a random point in the range between the two other
strategies. Buyers’ and sellers’ surplus, efficiency and market clearing prices/quantities are
compared for three different market clearing algorithms (Atkins et al., 2004). However, as
agents do not adapt to the different market clearing rules, no well-grounded conclusions can be
drawn on the efficiency of these rules.

In summary, the scientific usefulness and academic contribution of large-scale AB models that
integrate an enormous amount of details (for example, the demand representation in the Mar-
ketecture model goes down to the level of every individual and its activity and mobility profile)

18 Leading scientists who developed the Marketecture model at the Los Alamos National Laboratory have now gone to
the Network Dynamics and Simulation Science Laboratory (NDSSL) at Virginia Tech, so it is not clear whether they
continue the work on Marketecture there. AB electricity market simulation seems to be one out of many other topics
investigated at the NDSSL lab.
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Table 1
Summarized overview of agent-based electricity market modeling approaches

References Agents’ actions Market Demand side Transmission
system

Research questions

Model-based learning algorithms ( Section 3.1)
Bower and Bunn (2000);
Bower and Bunn
(2001)

Set bid prices for portfolio
of plants

Day-ahead market with
uniform or pay-as-bid
clearing

Static price responsive load No transmission
constraints

Comparison of pay-as-bid vs. uniform price clearing,
and daily vs. hourly bidding (impact on prices)

Bower et al. (2001) Set bid prices for portfolio
of plants

Day-ahead market
with uniform or
pay-as-bid clearing

Static price responsive load No transmission
constraints

Impact of merger options in the German electricity
market on wholesale prices

Bunn and Oliveira (2001);
Bunn and Oliveira
(2003)

Set mark-ups on
bid prices in both
markets separately

Forward market with
pay-as-bid clearing,
balancing mechanism

Active demand side bidding No transmission
constraints

Evaluation of generators’ conduct in the England
and Wales market: can either one of the generators,
or two of them together exercise market power?

Bunn and Oliveira
(in press)

Trade power plants with other
agents; play Cournot strategy in
the electricity market

Market for power plant
capacity; day-ahead
electricity market

Static hourly linear demand
functions

No transmission
constraints

Do electricity markets tend towards technological
diversification or specialization? Which influence
does the market clearing have on this question?

Visudhiphan and Ilić
(2001);
Visudhiphan (2003)

Set bid prices and quantities
(step-wise bid functions)

Uniform price
call market

Fixed inelastic demand No transmission
constraints

Realistic representation of market price dynamics and
participants' bidding behavior in electricity markets;
role of generator learning for strategic bidding

Genetic algorithms ( Section 3.2)
Cau and Anderson (2002);
Cau (2003)

Assign bid quantities to
price segments

Cost minimizing ISO Inelastic, uncertain demand
(high /low with equal probability)

No transmission
constraints

Analysis of collusive strategies by the agents

Nicolaisen et al. (2000);
Lane et al. (2000)

Set bid prices Double auction with
uniform pricing

Active demand side bidding No transmission
constraints

Measure market power exerted in a double auction

Richter and Sheblé (1998);
Petrov and Sheblé (2000)

Set bid prices Double auction with
uniform pricing

Price inelastic, no demand-side
bidding

No transmission
constraints

Examination of bidding strategies

Erev and Roth reinforcement learning ( Section 3.3)
Bin et al. (2004) Set bid prices Call market with

uniform, pay-as-bid
and electricity value
equivalent pricing

Fixed inelastic demand No transmission
constraints

Comparison of resulting prices for the three pricing
mechanisms

Cincotti et al. (2005);
Cincotti et al. (2006)

Set bid prices, or price
quantity pairs

Call market Fixed inelastic demand No transmission
constraints

Comparison of bidding strategies and resulting prices
in pay-as-bid and uniform price auctions

Nicolaisen et al. (2001) Set bid prices Double-auction with
discriminatory
midpoint pricing

Adaptive demand side (both
buyers and sellers of electricity
bid in the auction)

No transmission
constraints

Analysis of buyers and sellers market power under
different concentration conditions; distinction
between structural market power and market power
due to agent learning

(continued on next page)
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Table 1 (continued)

References Agents’ actions Market Demand side Transmission
system

Research questions

Rupérez Micola et al.
(2006)

Set bid prices on three
subsequent markets

Wholesale and retail
electricity market,
natural gas market

Fixed inelastic demand No transmission
constraints

Can agents benefit from vertical integration? How can
agents exert vertical market power?

Sun and Tesfatsion (2007) Set supply functions Real-time market,
day-ahead market
with locational
marginal pricing

Fixed inelastic demand Bid-based DC
optimal power
flow problem

Market design reliability

Veit et al. (2006) Set bid quantities ISO for spot and
forward trading

Demand function with
intercept and slope

Nodal prices (DC
power flow
problem)

Dynamics between forward trading and a spot market

Weidlich and Veit (2006) Set price quantity bid pairs Call market,
procurement auction
for balancing power

Fixed inelastic demand No transmission
constraints

Dynamics between two interrelated markets,
comparison prices in pay-as-bid and uniform
price settlement case

Q-learning ( Section 3.4)
Bakirtzis and Tellidou
(2006)

Set bid prices Uniform price and
pay-as-bid call market

Fixed inelastic load No transmission
constraints

Comparison of market prices in uniform price and
pay-as-bid auctions

Krause et al. (2005);
Krause and Andersson
(2006)

Set bid prices Generation cost
minimizing ISO
(considers network
constraints)

Fixed demand; linear
function of demand side
marginal benefit

DC network
representation with
transmission
capacity constraints

Comparison between Q-learning and Nash equilibrium
strategies; evaluation of different congestion
management mechanisms

Naghibi-Sistani et al.
(2006)

Set slope of linear bid function Uniform price
call market

Fixed price-elastic demand No transmission
constraints

Comparison between Nash equilibria and the proposed
Q-learning algorithm with temperature variation

Xiong et al. (2004) Set bid prices Uniform price and
pay-as-bid call market

Both fixed inelastic demand
and interruptible loads
(demand response)

No transmission
constraints

Comparison of market prices in uniform price and
pay-as-bid auctions

Learning classifier systems ( Section 3.5)
Bagnall (2000b);
Bagnall and Smith
(2005)

Set bid prices ISO who integrates
unit commitment
constraints into the
allocation calculation

Fixed half-hourly
forecast demand

No transmission
constraints

Can the agents evolve behaviors observable in the real
world? How do market mechanisms (uniform price
vs. pay-as-bid) effect bidding behavior?

Supply function optimization heuristic ( Section 3.6)
Day and Bunn (2001);
Bunn and Day (2002)

Allocate plant capacity
to price bins

ISO calculating the
system marginal price

Fixed, price-elastic demand
(locally linear functions)

No transmission
constraints

Differentiation between market structure and market
conduct as a reason for high electricity prices; analysis
of the impact of divestiture proposals on the possibility
of players to exert market power
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has not yet been proven. The practical usefulness cannot be judged here, as hardly any – or only
illustrative – simulation results from the cited models are publicly available.

4. Summary and discussion

In order to allow a better comparison and a brief overview of the different modeling
approaches, the presented papers are shortly summarized in Table 1 (entries in this table are
categorized according to the applied learning model applied; within one category, the cited papers
are ordered alphabetically). In those cases in which the same authors have described similar or
enhanced models in several papers, only the most relevant reference has been specified. As for
their rather practical application and not primarily academic focus, the large-scale simulation
models presented in Section 3.7 are not included in this overview.

The comparison of the different models shows the similarities and differences between current
AB electricity models:

– The large majority of models neglect transmission grid constraints.
– Most of the models represent the demand side as a fixed, price-insensitive load.
– In most models, the agents’ learning task is to set profit-maximizing bid prices or mark-ups.
Capacity withholding strategies are mostly not modeled explicitly; however, setting a high bid
price can also be interpreted as (economic) withholding.

– No preferred learning representation or trend towards specific models of behavior can be
observed. A number of models rely on the reinforcement learning algorithm formulated by Erev
and Roth (1998) (and modifications of this algorithm); however, they do not form a considerable
majority. Genetic algorithms seem to be left apart, though not completely abandoned.

– Most research questions of AB modelers center around market power and market mechanisms.
The comparison between pay-as-bid and uniform pricing is a very popular question. Here,
results from different models seem to be consistent; most authors find that agents bid higher
under pay-as-bid, but overall prices are higher under uniform pricing. Another important
research issue in for AB electricity modelers is the assessment of potential for market power
under different market structures or market mechanisms.

The amount of papers reviewed in this survey shows that electricity market research applying AB
simulation is a very active field of research. One might describe it as adolescent— it has departed
from its infancy which began in the last years of the past century. This is documented by the
appearance of the first notable papers that have successfully been published in energy-related or other
journals. However, we still observe a large heterogeneity in representing boundedly rational actors in
electricity markets, and also in validation techniques, result evaluation and quality assessment, or
simply in labeling. Agent-based modeling allows for great flexibility in specifying how agents
behave; the reverse of this medal is that models are rarely comparable, and can sometimes not be
described in all necessary detail. On its way to adulthood, hence, several methodological questions
will have to be discussed by researchers who are active in this field, in order to increase the
comparability of different models. Some of these issues are enumerated in the following.

4.1. Agent learning behavior

The common element of all models presented here is adaptivity. Agents are able to learn to
achieve their goals (high profits, high plant utilization etc.) given the environment they are placed
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in. The way in which learning takes place is implemented differently in almost all models. Even if
two researchers use the same basic learning algorithm, they may define and describe it in a
different manner. Parameter values are often not justified properly and are not fully revealed. A
precise description of an agent's action domain or the space of possible environmental or internal
states is not defined clearly in every paper. Especially in the models applying Q-learning, the
definition of environmental states has implications on the model results; however, none of the
cited papers using Q-learning argues why the states have been set as they are, and whether they
have the Markov property.

Moreover, the choice of the learning algorithm itself is hardly argued and justified in any
paper. Some algorithms like e.g. the Erev and Roth reinforcement learning formulation, are
popular and used by many researchers. Others are hardly used at all, without apparent reason.19

Most papers do not answer the question why they chose a specific learning model and how good it
performs in comparison to others. Also, it might be interesting to discuss if there is any
meaningful minimum level of rationality that agents participating in electricity markets should be
endowed with.

4.2. Market dynamics and complexity

As stated in the introduction, the electricity sector is characterized by the interlinking of
multiple markets, and by additional complexities through limited transmission capacities and unit
commitment constraints. Most papers considered here simplify real-world markets significantly;
they consider only one market or neglect technical constraints. Some AB models are so highly
stylized that they cannot claim to be more realistic than traditional equilibrium models. Also, the
focus of most researchers is placed on convergence towards stable market outcomes. The out-of-
equilibrium dynamics or the way towards an equilibrium are not considered. It might also be
interesting to examine under which circumstances agents reach an equilibrium outcome and when
they fail to do so; or, in case of multiple equilibria, which outcome occurs more frequently and
how robust these outcomes are against some changes in parameter values.

These considerations also lead to the question of what can at all be considered the outcome of
an agent-based simulation. Most researchers let the simulation run a specified number of
iterations and then calculate some aggregate values from the late iterations (considering early
iterations as a settling phase for the learning algorithm). Usually the results are boiled down to one
convergence price per simulation. We are not aware of any paper in which the characteristics of
the time series of prices are examined in more detail (in order to answer questions like “How
volatile are prices?”, “Can price spikes be observed?”, “Are prices mean reverting?”, etc.). Also,
the agents’ profits and success of different trading strategies are rarely discussed.

One important aspect of the electricity sector that can perhaps best be represented in AB
models is not considered in any of the presented papers: bilateral trading. It might be interesting to
compare the efficiency of market outcomes in a bilateral setting with that of a centralized auction.
Moreover, vertical integration could realistically be modeled in agent-based simulations. With
few exceptions, however, this aspect is neglected in current agent-based electricity sector models.
We would suggest that these still neglected factors should be stressed more in future modeling
approaches.

19 To give an example for a learning representation that has hardly gained any attention by AB electricity researchers,
one might mention Experience-Weighted Attraction, which is a learning model that combines aspects of reinforcement
learning and belief-based learning. It has been formulated by Camerer and Ho (1999) and has shown a good fit when
compared to three classes of games.
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4.3. Calibration and validation

Calibrating and validating agent-based electricity models is a challenging task, and only few
guidelines for this process have yet been defined. To our knowledge, only Macal and North
(2005) have reported the process of validating their model using different techniques. Many of the
reviewed papers in this survey lack information about empirical model validation; those
researchers who have undertaken some empirical validation proceeded in heterogeneous ways.

While standard verification and validation techniques for simulation models (e.g. described by
Sargent 2005 or Law 2007) can and should also be applied for AB simulations, it is difficult to
establish credibility in the implemented agent behavior. Very recently, the need for reliable
validation techniques has obviously been recognized. AB researchers have analyzed and
suggested procedures and guidelines for calibrating and validating agent-based simulation
models, e.g. Windrum et al. (2007), Marks (2007), Richiardi et al. (2006), Midgley et al. (2007),
and a whole journal special issue is devoted to this topic (Fagiolo et al., 2007). These general
suggestions should now be assessed with regard to their usefulness for electricity modeling
purposes. The development of guidelines for assuring the validity of AB electricity models would
greatly benefit the research quality and diminish the heterogeneity of approaches in this field. It
should thus be one of the main tasks for future work.

4.4. Model description and publication

Just as model verification and validation is done very differently in the cited papers, so is the
description of the model, its parameters, and the results. Some papers do not deliver information
about the number of runs they have conducted, some do not even publish all model parameters so
that it is not possible to replicate the reported results. It would be helpful if some standard way of
model description, as it is conventional for other economic methodologies, became accepted in
the medium-term.

Presumably, many models are still used by their developers, so that these are reluctant to make
their source code available. However, this would greatly benefit the research field, because
researchers could revise and check the implementations of others and could also reuse parts of
them. Leigh Tesfatsion has taken the initiative in this direction by setting up a website with links
to published sets of AB electricity model source code20 (and by publishing her source code as
well).

5. Conclusion

This paper has critically reviewed a considerable amount of relevant papers in agent-based
electricity market research. Table 1 summarizes the core characteristics of the cited work and
displays the similarities and differences between the approaches. In Section 4 we have identified
some of the current problems facing this research methodology that require further effort and a
consolidation of the approaches pursued by different research groups. Especially sound
argumentations for the choice of specific learning algorithms, more careful and well documented
validation and verification procedures as well as the appropriate publication of details of concrete
simulation models are crucial for the further development of agent-based electricity market
modeling.

20 http://www.econ.iastate.edu/tesfatsi/ElectricOSS.htm.
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Despite the open issues and problems, AB electricity research has been successful in recent
time. Many AB researchers have successfully replicated core characteristics of today's electricity
markets using models with adaptive, self-seeking agents. With a decrease of heterogeneity
between competing models, and with increasing consensus on important methodological
questions, the field of ABmodeling can soon become one major strand of research for the analysis
of complex electricity systems.
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