
 

 

Dennis Kundisch, Leena Suhl und Lars Beckmann (Herausgeber) 

 

Tagungsband Multikonferenz 
Wirtschaftsinformatik 2014  
(MKWI 2014) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISBN 978-3-00-045311-3 

Copyright 2014, Universität Paderborn, Deutschland 

 



 

 

The Bandwagon Effect in Digital Environments: An 

Experimental Study on Kickstarter.com 

Dennis M. Steininger 

University of Augsburg, School of Business and Economics, Chair of Information Systems & 

Management, Universitaetsstr. 16, 86159 Augsburg,  

E-Mail: dennis.steininger@wiwi.uni-augsburg.de 

Mark Lorch 

University of Mannheim, Business School, Schloss, 68131 Mannheim,  

E-Mail: lorch@bwl.uni-mannheim.de 

Daniel Veit 

University of Augsburg, School of Business and Economics, Chair of Information Systems & 

Management, Universitaetsstr. 16, 86159 Augsburg,  

E-Mail: veit@wiwi.uni-augsburg.de 

Abstract 

Online investment decision behavior in crowdfunding projects is characterized by a lack of 

information and a comparatively high risk. Although crowdfunding has achieved notable attention 

from the general public in the last years, the academic research on this fast-growing market remains 

rather limited until today. This paper investigates how users behave when making risky online 

investment decisions in crowdfunding. How are they influenced by information on the choices of 

earlier funders on a web-based platform? These questions are evaluated using an online experiment 

based on kickstarter.com. We show that crowdfunding supporters follow the signal of previous users, 

even when this is associated with a higher monetary commitment. Based on these findings, 

implications for crowdfunding project creators and platform operators are discussed. 
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1 Introduction 

Crowdfunding platforms are virtual marketplaces where any individual can pitch a project idea and 

interested others can invest in the proposed idea, often with direct or indirect benefits for the funders 

(Burtch 2011). Almost 1.5 billion US Dollars were raised via crowdfunding world-wide in 2011 and 

the total funding volume is expected to have doubled in 2012 (Esposti 2012). The fast-growing but 

early-stage industry has achieved notable attention from the general public, but academic research on 

crowdfunding is rather limited until today (Gerber et al. 2012; Mollick 2012). Only little is known 

(Zhang and Liu 2012) about how funders are and can be influenced in their decision on the funding 

amount and in their selection of the rewards they receive in return for their contribution in 

crowdfunding. Research on crowdfunding has mainly focused on the online and offline links between 

funders and funded such as geographical proximity (e.g., Agrawal et al. 2011; Lin and Viswanathan 

2013). We will close this research gap by focusing on one possible factor: the investment choices of 

previous supporters in the crowdfunding context of Kickstarter.com. 

When the behavior of people is influenced by actions of other individuals, this is described as herding 

behavior or as the bandwagon effect (Leibenstein 1950). Such situations can be found in political 

campaigns, fashion, dining, financial investment, or technology adoption. It is argued that online 

environments are particularly susceptible to herding as it is much easier to inform about and perceive 

previous decisions. This holds true in particular for crowdfunding markets, as the available 

information about a project is fairly limited and the risk involved is comparatively high, what makes 

people even more prone to herding (Duan et al. 2009). 

Based on these considerations we will investigate the question ‘how are online investment decisions 

influenced by information on choices of earlier funders?’ The influences and interrelationships of 

these factors are investigated using an online experiment. 

The remainder of this paper is structured as follows: Next, we discuss related literature streams and 

develop our research hypotheses. We then outline the design of our experiment and present the results 

of our research. Finally, we discuss theoretical and managerial implications and highlight limitations 

of our research as a guide for future work.  

2 Background and Theoretical Foundations 

Crowdfunding is widely seen as a type of crowdsourcing (Howe 2006; Kleemann et al. 2008). The 

basic idea of crowdfunding is to finance projects or organizations by a large group (the crowd) instead 

of only a few sophisticated investors. Crowdfunding is defined as “an open call, essentially through 

the internet, for the provision of financial resources either in form of donation or in exchange for some 

form of reward and/or voting rights in order to support initiatives for specific purposes” (Lambert and 

Schwienbacher 2010, p. 6).  

Kickstarter.com is a well-known American crowdfunding platform (CFP) which gained a lot of media 

attention during the last years, mostly due to extremely successful projects that collected several 

million dollars (e.g. Lindvall 2012; Strickler 2012). Crowdfunding on Kickstarter proceeds as follows: 

In order to request funds, a creator sets up a project page on kickstarter.com. Creators offer different 

rewards to their funders in return for, and depending on, the amount of their contribution. When a 

funder decides to support a project, he selects a funding amount and an associated reward. 

Crowdfunding on Kickstarter is all-or-nothing, which means all funders get their money back when 
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the funding goal is not reached in time. At the end of a successful funding period, Kickstarter transfers 

the money to the project creator who starts to implement his idea. 

Harvey Leibenstein in 1950 introduced bandwagon effects as situations “where an individual will 

demand more (less) of a commodity at a given price because some or all other individuals in the 

market also demand more (less) of the commodity” (Leibenstein 1950, p. 190). Until today, the term 

attracts attention in marketing and economics literature, most of the time described as social learning. 

Social learning is defined as “mechanisms through which individuals may learn from others” (Cai et 

al. 2009, p. 864). This includes, inter alia, observational learning, where individuals are influenced by 

the information that is contained in other people’s action. The theory of informational cascades is used 

to explain observational learning and is based on the idea, that social and economic actions are 

influenced by the actions and experiences of other individuals (Welch 1992). An informational 

cascade takes place, when it’s rational for an individual to ignore his private information and to imitate 

the behavior of its predecessors (Bikhchandani et al. 1998). An informational cascade can arise “when 

decision makers have imperfect knowledge of the true value of a product so they infer its utility from 

observing actions of their predecessors.” (Duan et al. 2009). Once a cascade has started, the private 

information of the decision maker does not join the common knowledge pool, as his observable action 

does not convey any information about it. Later decisions are not improved due to this reason. 

Ignoring his private information and joining the herd is thus described as a negative herd externality 

on the rest of the population (Banerjee 1992; Burtch 2011). 

Researchers document evidence of bandwagon effects in online environments due to observational 

learning (Chen et al. 2011). Salganik et al. (2006) created an artificial music download platform and 

analyzed the influence of knowledge about the previous participants’ choice on download behavior. 

Tucker and Zhang (2011) find that displaying previous numbers of clicks attracts visitors to popular 

vendors. Chen et al. (2011) examine the differential and interaction effects of word-of-mouth (Arndt 

1967; Bowman and Narayandas 2001) and observational learning in a natural experiment on 

Amazon.com. Simonsohn and Ariely (2008) find evidence of observational learning in online auctions 

on Ebay.com. Based on these strong theoretical foundations of informational cascade theory and the 

presented empirical findings, we posit: 

h1: A funders’ preference for a crowdfunding reward is positively related to its popularity compared 

to other alternative crowdfunding rewards. 

The basic model of informational cascades assumes an equality in signal strength, but we can also 

consider a setting in which heterogeneity between the individuals is allowed (Bikhchandani et al. 

1992, 1998). When more informed individuals decide first, novices may imitate the behavior of 

experienced decision makers, so that an informational cascade could start even easier. But when a 

fashion leader appears later in a sequence he can break an existing cascade by following his private 

signal as he will be more certain about his choice. One group, which could be described as fashion 

leaders in crowdfunding settings, are of more experienced crowdfunders that may be able to better 

estimate the strengths, weaknesses and risks of a crowdfunding project. Hence, we suggest: 

h2: Experienced crowdfunders will be less influenced by the choice of earlier decision makers. 

3 Methodology 

To test our hypotheses we conduct an online experiment. Our experiment uses between-subject design, 

crossing the amount of supporters (popular vs. unpopular), which leads to two different experimental 
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groups. Two crowdfunding rewards at different prices of $19.59 (low-priced reward) and $19.79 

(high-priced reward) are presented and the participants are asked to decide between the two rewards. 

The descriptions of the rewards are completely identical except for the price and the experimental 

treatments. The rewards are both introduced as “One Square. Shipping included in the US. 

International, please add $15.” An overview of the experimental groups and treatments is given in 

Table 1. 

An exemplary crowdfunding project from kickstarter.com, which offers a reinvented, squared water 

bottle, is used as the basis of our stimuli in order to meet a realistic scenario and assure typical 

wording and common practices of crowdfunding projects (Mayer 2012). The exemplary project was 

successfully funded on October 11, 2012 with more than 1700 supporters reaching 600% of its 

funding goal of $20.000.  

During the experiment, the participants choose between the rewards by stating their preference on a 

scale from 1 (low-priced reward) to 7 (high-priced reward). To get a deeper inside in their thoughts 

and feelings about the rewards, the willingness to buy and the perceived value scales are adapted from 

Dodds et al. (1991) with only limited changes. As described, we expect that crowdfunding experts will 

be less influenced by a cascade than inexperienced crowdfunders. To test this hypothesis we adopt a 

three-item scale to measure the crowdfunding expertise of the participants (Lambert-Pandraud et al. 

2005). 

We recruit participants of our survey via the micro-task platform Amazon Mechanical Turk (MTurk). 

Although micro-task markets lower “the cost of recruiting participants and offer research immediate 

access to hundreds of users”(Heer and Bostock 2010), researchers report issues with random answers 

and spammers on Mturk. Therefore, a verification mechanism is needed to make sure that workers 

answer our survey accurately (Downs et al. 2010; Kapelner and Chandler 2010). To block low 

performance workers and spammers, several additional measures are implemented in our 

questionnaire (Schulze et al. 2011). 

The questionnaire is tested in three qualitative pretests with university students. While answering the 

questions, pretesters are able to write down everything that they notice. When having finished the 

survey, every participant describes his decision process and influential factors in a personal interview. 

The questionnaire is refined based on the feedback. Afterwards a quantitative pretest with participants 

from MTurk is performed. 

In order to validate our research instrument we follow the approaches of Straub (1989) and 

MacKenzie et al. (2011) to assure content validity, construct validity and reliability. First, content 

validity is defined as “the degree to which items in an instrument reflect the content universe to which 

the instrument will be generalized” (Straub et al. 2004, p. 424). Literature reviews and expert judges 

are suggested to assure content validity. After a literature review on every construct, experts from 

different fields such as IS, marketing and crowdfunding evaluate our questionnaire. Second, “construct 

validity is an issue of operationalization or measurement between constructs. The concern is that 

instrument items selected for a given construct are, considered together and compared to other latent 

constructs, a reasonable operationalization“ (Straub et al. 2004). A high correlation between items of 

the same scale (convergent validity) and a low correlation between items of constructs that are 

expected to differ (discriminant validity) is assured by a exploratory factor analysis based on the final 

survey data (Straub 1989). Finally, to estimate internal reliability Cronbach’s alpha has traditionally 

been used with an acceptance level of .70 or above (MacKenzie et al. 2011, p. 314). All constructs 

reach Cronbach’s alpha above .80. 
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We published our survey on October 24, 2012 at 3:15 p.m. on Mturk with a reward of $0.35. We 

preselected workers according to their qualifications (Geiger et al. 2011) and made a geographical 

restriction and allowed only US citizens to take our survey. 366 responses were collected until 

November 9, 2012 with an average response time of 11 minutes and an effective hourly rate of $1.89. 

We had to reject a certain number of assignments due to quality issues. In total, 144 questionnaires 

were usable for this project. The characteristics of the respondents indicate that 57% of the 

respondents are female. Average age is 36,49 years. 38% of the participants have a bachelor degree, 

30% attend college at the moment. 41% reported an annual household income between $35.000 and 

$75.000, 29% between $15.000 and $35.000. More than two thirds heard about crowdfunding before 

taking our survey. This is way higher than our experience during the pretests with German students, 

providing support for our decision to conduct the survey with US participants on MTurk. Moreover, 

23% had already supported a crowdfunding initiative in the past. 

4 Results 

In this section, we report our main findings, which demonstrate that popularity has a significant effect 

on funders’ reward decision. We present the results from an analysis of variance between all 

experimental groups and test for the influence of consumers’ need for uniqueness and crowdfunding 

knowledge via a multiple regression in a second step. Figure 1 summarizes the reward decisions in the 

two experimental groups. In the first experimental group, nearly 71% of the funders decide in favor of 

the low-priced reward ($19.59) over the high-priced reward ($19.79) and follow the decision of their 

predecessors. When the popularity is shifted from low-priced reward to the high-priced reward, only a 

third of the funders decide in favor of the low-priced reward. The hypotheses regarding the two main 

effects are tested first by an analysis of variance. Table 2 presents the mean of the preferences 

indicated by the participants. It is measured on a 7-point scale, where 1 indicates a preference for the 

low-priced reward and 7 for the high-priced reward. The results of the one-way independent ANOVA 

show that the mean differences between the experimental groups are significant.  

 

Table 1.  Experimental Groups and Treatments 

 low-priced reward ($19.59) high-priced reward ($19.79) 

group 1 79 supporters 9 supporters 

group 2 9 supporters 79 supporters 
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Figure 1. Reward Decisions in Experimental Groups 

 

Table 2.  Result of one-way independent ANOVA 

 Group 1 (n=72) Group 2 (n=72) 

Popularity low-priced reward high-priced reward 

Preference     

  Mean
a
 2.74 4.24 

  Standard Deviation 2.25 2.41 

 F(3,284) = 13.89 (p < .001), r = .357 

LSD Test: Group1 < Group2*** 

a Mean value on a 7-point scale, where 1 indicates low-priced reward and 7 indicates high-priced reward 

* p < .05; ** p < .01; *** p < .001; 

In a second step of our analysis, we use a multiple regression with the reward preference as dependent 

variable. We create a dummy variable as predictor: it indicates if the low-priced reward is more 

popular (0) or if more predecessors chose the high-priced reward (1). The coefficients for the effects 

of popularity are shown to be highly significant and positive as summarized in Table 3. We do not find 

crowdfunding knowledge to be a significant moderator of the popularity effect as assumed in 

hypothesis h2. However, when looking at the direct effects on the choice of the higher priced reward, 

we find a negative significant effect. We control for demographics and some additional variables that 

potentially might influence funder’s choice. Only if funders show characteristics of experiential 

thinking in their decision style, we find a significant effect on the choice of the higher priced reward.   

  

70,80% 

34,70% 

6,90% 

15,30% 

22,20% 

50% 

low-priced reward no decision high-priced reward

popular 

popular 
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Table 3.  Result of Multiple Regression 

Variables Coefficients Std. Err. 

Popularity 1.647*** .372 

Crowdfunding Knowledge -.244
 ns

 .127 

Interaction Effect Popularity x Crowdfunding 

Knowledge 

-.071
 ns

 .244 

Controls   

Product Involvement -.002
 ns

 .174 

Product Quality -,260
 ns

 .201 

Experiential Thinking .507*** .119 

Education .074
 ns

 .146 

Sex .253
 ns

 .393 

Age .027
 ns

 .016 

Income .041
 ns

 .182 

Others   

R
2
 .257 2.180 

Sample Size 144  

ns= not significant; *p < .05; **p < .01; ***p < .001 

5 Discussion 

We find that funders are significantly influenced by information on preceding funders’ reward 

decisions. This is consistent with previous findings in offline (e.g. Cai et al. 2009; van Herpen et al. 

2009) as well as online settings (e.g. Chen et al. 2011; Simonsohn and Ariely 2008). However, 

previous studies did not take a financial perspective into account, analyzing for example only the 

popularity of free software downloads or songs with only a single price (Duan et al. 2009; Salganik et 

al. 2006). We contribute to this literature stream with the striking result that observational learning 

even takes place when following the decision of previous others is associated with a higher monetary 

commitment. Similar results can be found in the literature on charitable giving, where donors changed 

their contribution in the direction of social information (Croson and Shang 2008). Interestingly, we did 

not find crowdfunding knowledge to be a moderator (interaction effect) of the observational learning 

effects but could see an overall negative trend on the preference for the high-priced reward along 

experienced crowdfunders in groups. It seems that this type of funders pays more attention to project 

characteristics and reward descriptions and therefore notices the high similarity between the offered 

rewards. We controlled for the decision thinking style and found a significant effect if funders make 

their decisions experiential, i.e. in a rather spontaneous manner. They significantly tend to spend more 

money. 

Existing crowdfunding literature focuses mainly on the categorization of crowdfunding initiatives, the 

motivation of crowdfunding participants (Gerber et al. 2012; Ordanini et al. 2011) and success drivers 

of crowdfunding campaigns (Lambert and Schwienbacher 2010; Mollick 2012). We contribute to this 

literature stream as we show two influence factors for funders’ decisions about their funding amount 

and their selection of rewards, which they receive in return for their support.  

Our findings have important implications for the different players in the crowdfunding environment. 

From a project creators’ perspective, herding is considered to be beneficial for the success of 
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crowdfunding initiatives as it helps projects to keep their funding drive (Burtch 2011). However, we 

find that it also can be obstructive to the funding success as it could discourage funders to support with 

a higher funding amount.  

Platform operators should carefully decide if they offer information about the reward decisions of 

previous funders. On the one hand, it offers some insights in how much financial risk previous 

supporters are willing to take. Hence, the information assists potential funders in their decision-

making. On the other hand, the characteristics of an informational cascade are that people ignore their 

private information and follow the signal of the herd. In this way, funders could be influenced to spend 

more money than they planned taking a higher risk than they can manage. Platform operators should 

notice that “herding is associated with poorer decision-making for investors [funders]” (Burtch 2011). 

Finally, we want to outline possible limitations of our approach and will draw a picture of possible 

future research that could overcome these drawbacks and further contribute to a deeper understanding 

of crowdfunding in general and the selection of rewards and funding amounts in detail. As this is the 

first academic research that focuses on the reward decision of funders and the influences on the 

amount of financial support in crowdfunding campaigns, further research in this area seems beneficial. 

While popularity information of a reward are only one important factor, other influences such as the 

type of reward (e.g. material vs. immaterial), scarcity, the delivery date, or project and reward 

descriptions could be subjects of future investigations. The results of our pretests highly suggest that 

future research should investigate funders’ reactions to different levels of popularity and - most 

important - price differences to achieve a deeper understanding of our findings. A dynamic approach 

observing the development of rewards’ popularity during the investment path of a crowdfunding 

campaign could offer valuable new insights too. In our experiment, funders had to decide only 

between two different rewards. In a real world setting, most creators of crowdfunding projects will 

offer far more than this. However, informational cascade theory can also be applied to settings with 

more than two alternatives. In these situations cascades “tend to take longer to form and aggregate 

more information” (Bikhchandani et al. 1998). Our experimental setting is somewhat similar to online 

environments such as online-shops, mobile application markets or micro-lending platforms. Future 

research endeavors could investigate if our findings are adaptable to these markets. 

6 Conclusion 

Although crowdfunding has achieved notable attention from the general public, this fast-growing 

market is being researched to a very limited extend only. Existing literature mainly focuses on 

motivation factors for crowdfunding participants and on success factors for funding initiatives. Little is 

known about how crowdfunding supporters set their funding amount and how they select rewards, 

which they receive in return for their financial support. Therefore, we investigate ‘how are online 

investment decisions influenced by information on choices of earlier funders?’ based on observational 

learning and informational cascade theory. 

We perform an online experiment based on the platform kickstarter.com where participants select 

between two rewards at different funding amount levels to test our hypotheses. We contribute to the 

literature stream of observational learning and are able to show that online funders even follow the 

decision of previous others when a higher financial commitment is associated. Experienced 

crowdfunders are less prone to herding effects and pay more attention on characteristics of rewards. 

We discuss these results in the light of the informational cascade theory that suggests such a change in 

the payoff structure as a possible way to reduce or even eliminate socially inefficient herding 
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(Banerjee 1992). To the best of our knowledge, this is the first study that confirms this suggestion 

empirically. 

Our results have implications for project creators as well as platform operators. Creators should keep 

in mind that herding can not only lead to a stronger financial support, but can also be obstructive to 

funding success when funders gather together on a low-priced reward. Hence, first funders might be 

the most important funders of a project based on our results. This might also be explained through a 

path dependency perspective. Countering these effects might be, to encourage friends and family to be 

first funders or to advertise for the higher rewards through additional incentives for first funders. From 

a platform operator’s perspective, information on previous decisions can be offered to their users 

serving as signals about how much risk others are willing to take. However, funders could be 

provoked to take a higher financial risk than they can manage. 

Future research might further investigate on other influence factors such as different types of rewards, 

delivery date, scarcity, and the general project description. Moreover, other levels of price differences 

and popularity of a reward might be of interest to understand our results in more detail possibly 

together with alternative theoretical perspectives such as signaling or path dependency theory. Finally, 

future research endeavors could investigate if our findings are adaptable to other online contexts such 

as online shopping platforms, mobile application markets or P2P lending. 
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